
Hfq Rosetta FloppyTail Supplemental Protocol 
 
Materials and Equipment 

• Mac OS X or Linux 
• Python 2.7 
• Rosetta 2017.12 (https://www.rosettacommons.org/downloads/academic/2017/wk12) 
• PyRosetta4 (http://www.pyrosetta.org/dow) 

 
 
Procedure 

Generating the Extended Tail Structure 
1. Acquire the E. Coli Hfq, or other desired, crystal structure. A little post-processing may 

be necessary. In this case, we need to unzip the file. In other cases, it may be necessary to 
generate the hexameric structure from the symmetry operations reported in the PDB. 
$ wget http://www.rcsb.org/pdb/files/1HK9.pdb.gz  
 

2. Clean the structure of non-ATOM records:  
$ grep ATOM 1hk9.pdb > 1hk9.clean.pdb 
 

3. Use the extend_terminus.py script to append/prepend the termini sequences, one 
monomer at a time. This will set ϕ/ψ values to -135°/135° for the appended/prepended 
residues. For example, to prepend “MAKGQ” to the N-terminus of chain A, use the 
following command: 
$ extend_terminus.py –c A –o 1hk9.Ap.pdb –p 1hk9.clean.pdb MAKGQ 

 The arguments break down as follows: 
a. The -c flag with the A argument specifies the chain. 
b. The -p flag indicates prepend mode, -a should be used to append. 
c. The -o flag with the 1hk9.Ap.pdb argument specifies the output file. 
d. The positional argument 1hk9.clean.pdb specifies the input file. 
e. Finally, the positional argument MAKGQS defines the sequence to prepend, with a 

single residue overlap. 
 

To prepend all six N-termini, repeat the above command for each chain, using the 
previous output as input. For example, to prepend to chain B, using the structure 
produced by prepending to chain A, we would run: 
$ extend_terminus.py –c B –o 1hk9.Bp.pdb -p 1hk9.Ap.pdb MAKGQS 

 *note the sequence may change if subunits are not identical! 
An alternative approach to independently extend all termini would be to extend the 
termini of a single subunit and then generate C6 symmetric copies of the monomer to 
produce the hexamer (this approach ensures identical starting conformations for all 
subunits). Note that step 4 should be carried out prior to creating a symmetric hexamer 
from a single monomer, as step 4 fixes the backbone dihedral angles in tail residues that 
were resolved in the X-ray crystal structure. 

 



4. To generate models with identical starting positions, we use the convert_to_beta.py 
script. The script converts all backbone dihedral angles to the ideal values (ϕ = -135, ψ = 
135) for an extended conformation, given a direction (either toward the c-terminus, -c, 
or the n-terminus, -n) and a starting residue (-s). Additionally, the --publication-
specific flag can be used to apply dihedral angles from the E. coli Hfq structure 
(residues 65–70) instead of ideal angles. By default, the script iterates over all chains. 
$ convert_to_beta.py –i 1hk9.pdb –s 65 –c –o 1hk9.extend.pdb --
publication-specific 
 

5. Once the structure containing all disordered regions has been generated, it needs to be 
“relaxed” in Rosetta’s all-atom energy function. Relaxing alleviates defects and running 
simulations on unrelaxed input structures is bad practice as it makes interpreting results 
more difficult. Here, relax with restraints is used as we don’t want to move the termini at 
this stage: 
path/to/Rosetta/main/source/bin/relax.macosclangrelease \ 

-s 1hk9.extend.pdb \ 
-relax:constrain_relax_to_start_coords \ 
-relax:ramp_constraints false \ 
-ex1 \ 
-ex2 \ 
-use_input_sc  \ 
-flip_HNQ \ 
-no_optH false \ 
-relax:min_type lbfgs_armijo_nonmonotone \ 
-nstruct 1 

The necessary flags and arguments here are -s input.pdb, -
relax:constrain_relax_to_start_coords, and -relax:ramp_constraints 
false. These specify the input structure, set harmonic restraints to the starting backbone 
atomic positions, and turn off restraint ramping (respectively). The other flags arguments 
are good practice. The flags, -ex1 and -ex2, increase sampling, by one standard 
deviation, of the first and second side-chain dihedral angles, while -use_input_sc 
includes the crystallographic side-chain conformation in the rotamer set sampled during 
relax. The flag, -flip_HNQ, tests alternate configurations for specific atoms (which 
cannot be distinguished in the electron density) in the side-chains histidine, asparagine, 
and glutamine. The flag and argument, -no_optH false, turn off hydrogen optimization 
during relax. Finally, the flag, -relax:min_type, specifies the minimization algorithm 
to be used during relax. Additionally, -nstruct N can be used to generate a number, N, 
of structures. Due to restraints, there is little structural variation, so one will suffice. 
 

Running Rosetta FloppyTail 
The FloppyTail algorithm is fully described in Kleiger et al.1 and demonstrated to be useful for 
studying disordered regions in both Crawley et al2. and Zhang et al.3 

                                                
1 http://www.ncbi.nlm.nih.gov/pubmed/19945379 
2 http://www.ncbi.nlm.nih.gov/pubmed/21071445 
3 http://www.ncbi.nlm.nih.gov/pubmed/23395180 



 
Briefly, FloppyTail is a Monte Carlo algorithm that samples conformations of a disordered 
region in two phases. The first is a low resolution phase where the backbone atoms are fully 
represented, but side-chains are “summarized” by a single pseudo-atom centroid centered at the 
Cb atom position. In this phase, large changes in the backbone dihedral angles, f/y, are 
attempted (known as small/shear moves) and accepted in accordance with the Metropolis 
criterion. Occasionally (3% of the time), the energy is minimized using a gradient-based 
minimization. In the second phase, side-chains centroids are restored to their fully atomic 
representations. Then, side-chain dihedrals are sampled as well as backbone dihedrals. 
Furthermore, side-chain repacking (describe better) precludes every other gradient-based 
minimization move. 
 
To set the myriad options of FloppyTail, we use a “flag file” (sample for monomer): 

# input 
-s 1hk9.relax.pdb 
 
# define flexible region via movemap file 
-movemap movemap.txt 
 
# shear moves are not productive initially so no shear 
# for the first 1/3 of the simulation 
-FloppyTail::shear_on 0.333 
 
# root the fold tree at the center of mass, so 
# we can “flop” both termini simultaneously 
-FloppyTail::COM_root 
 
# do not change AA identities during packing 
-packing::repack_only 
 
# monte carlo and sampling options 
-FloppyTail::perturb_temp 0.8 
-FloppyTail::perturb_cycles 100000 # ~500 moves per residue 
-FloppyTail::refine_temp 0.8 
-FloppyTail::refine_cycles 1000 
-FloppyTail::refine_repack_cycles 10 
 
# current best practices for minimization/scoring 
-run::min_type lbfgs_armijo_nonmonotone 
-score::weights talaris2014 
 
# recommended number of structures to model 
-nstruct 30000 
 
# output 
-out:path:pdb decoys/ 
-out:pdb_gz 

  



The movemap file defines degrees of freedom for specified regions. Below, we give an example 
for E. coli Hfq, in Rosetta numbering (residues are continuously number from 1, as they appear 
in the PDB file). 

RESIDUE * CHI # repack only, default for all 
JUMP * NO # do not move subunits relative to one another 
# chain A 
RESIDUE 1 5 BBCHI 
RESIDUE 65 102 BBCHI 
# chain B 
RESIDUE 103 107 BBCHI 
RESIDUE 167 204 BBCHI 
# chain C 
RESIDUE 205 209 BBCHI 
RESIDUE 269 306 BBCHI 
# chain D 
RESIDUE 307 311 BBCHI 
RESIDUE 371 408 BBCHI 
# chain E 
RESIDUE 409 413 BBCHI 
RESIDUE 473 510 BBCHI 
# chain F 
RESIDUE 511 515 BBCHI 
RESIDUE 575 612 BBCHI 

  



The simulation is then carried out on a cluster (either the Maryland Advanced Research 
Computing Center, MARCC, or Jazz, our in-house cluster). Using 720 cores, in parallel, the 
monomer simulation takes 48–64 hours. Below is a sample submission script for the slurm queue 
management system used by MARCC. 
 

#!/bin/bash -l 
 
#SBATCH --job-name=HFQ_FT 
#SBATCH --partition=parallel 
#SBATCH --time=80:0:0 
#SBATCH --nodes=30 
#SBATCH --ntasks-per-node=24 
#SBATCH --mem=120GB 
#SBATCH --output /dev/null # do not want verbose FT output 
#SBATCH --error outerr/%j.err  # Name of stdout output file (%j 
expands to jobId), remember to make outerr directory 
#SBATCH --mail-user=jeliazkov@jhu.edu 
#SBATCH --mail-type=END 
 
# loading and unloading modules, for MPI 
module unload openmpi/intel/1.8.4 gcc python 
module load intel-mpi git 
module load anaconda-python 
 
# job description 
ROSETTABIN=/home-2/jjeliaz1@jhu.edu/Rosetta/main/source/bin 
ROSETTAEXE=FloppyTail 
COMPILER=mpi.linuxgccrelease 
EXE=$ROSETTABIN/$ROSETTAEXE.$COMPILER 
echo Starting MPI job running $EXE 
 
# running with a date and time stamp 
date 
time mpirun $EXE @floppy_tail.flags 
date 
# 

 
Analysis 

Tail–Core Interaction Calculations 
The script identify_interactions.py can be used to identify residue–residue interactions 
between two sets of residues over a set of models, or decoys.  

identify_interactions.py --pdb_numbering --n_procs 14 --set1 66-82 -
-set2 1-65 --manual_suffix .pdb.gz decoys 

 
 


