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Abstract Bacteria frequently need to adapt to altered environmental conditions. Adaptation

requires changes in gene expression, often mediated by global regulators of transcription. The

nucleoid-associated protein H-NS is a key global regulator in Gram-negative bacteria and is

believed to be a crucial player in bacterial chromatin organization via its DNA-bridging activity.

H-NS activity in vivo is modulated by physico-chemical factors (osmolarity, pH, temperature) and

interaction partners. Mechanistically, it is unclear how functional modulation of H-NS by such

factors is achieved. Here, we show that a diverse spectrum of H-NS modulators alter the DNA-

bridging activity of H-NS. Changes in monovalent and divalent ion concentrations drive an abrupt

switch between a bridging and non-bridging DNA-binding mode. Similarly, synergistic and

antagonistic co-regulators modulate the DNA-bridging efficiency. Structural studies suggest a

conserved mechanism: H-NS switches between a ‘closed’ and an ‘open’, bridging competent,

conformation driven by environmental cues and interaction partners.

DOI: https://doi.org/10.7554/eLife.27369.001

Introduction
Although the bacterial genome is compacted by a vast variety of factors, including DNA supercoil-

ing, and macromolecular crowding, it owes much of its organization to nucleoid-associated proteins

(Dame, 2005; Dame et al., 2011; Dillon and Dorman, 2010; Dorman, 2013; Rimsky and Travers,

2011; Travers and Muskhelishvili, 2005; Luijsterburg et al., 2008; Dame and Tark-Dame, 2016).

A key protein in nucleoid organization of Gram-negative bacteria is the Histone-like Nucleoid Struc-

turing protein (H-NS). Genome-wide binding studies have revealed that H-NS binds along the

genome in long patches (Grainger et al., 2006; Kahramanoglou et al., 2011; Lucchini et al., 2006;

Navarre, 2006; Oshima et al., 2006), which have been proposed to mediate the formation of geno-

mic loops (Noom et al., 2007; van der Valk et al., 2014). H-NS is also an important regulator of

global gene expression, implied in mediating global transcriptional responses to environmental stim-

uli (osmolarity, pH, temperature) (Atlung and Ingmer, 1997), and operating as xenogeneic silencer,

silencing horizontally integrated DNA (Navarre et al., 2006). A large fraction of Escherichia coli and

Salmonella genes (5–10%) is thus regulated (usually repressed) by the action of H-NS. H-NS opera-

tion is modulated by environmental stimuli and through interplay with other proteins (Atlung and

Ingmer, 1997; Stoebel et al., 2008). In solution, the H-NS protein exists as a dimer, which oligomer-

izes at high concentrations (Ceschini et al., 2000; Spurio et al., 1997). H-NS consists of three struc-

tural domains: a C-terminal domain responsible for DNA binding (Shindo et al., 1995), a N-terminal
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dimerization domain (Bloch et al., 2003; Cerdan et al., 2003; Esposito et al., 2002; Ueguchi et al.,

1996) and a central dimer-dimer interaction domain responsible for multimer formation

(Arold et al., 2010; Leonard et al., 2009). These two interaction domains are connected by a long

a-helix (Arold et al., 2010) (helix a3). H-NS exhibits two seemingly distinct DNA-binding modes:

DNA bridging (Dame et al., 2006; Dame et al., 2000; Dame et al., 2001; Dame et al., 2002;

Schneider et al., 2001), the condensation of DNA by intra- and inter- molecular DNA binding by

H-NS and DNA stiffening, the rigidification of DNA through the formation of a H-NS-DNA filament

(Amit et al., 2003; Dame and Wuite, 2003; Liu et al., 2010). These modes have been attributed to

the basic functional H-NS unit (a dimer) binding to DNA either in cis or in trans (Wiggins et al.,

2009; Joyeux and Vreede, 2013). H-NS paralogues StpA, Sfh, Hfp, and truncated derivatives such

as H-NST, have been proposed to modulate H-NS function by forming heteromers with H-NS

(Baños et al., 2008; Deighan et al., 2003; Müller et al., 2010; Williams et al., 1996;

Williamson and Free, 2005), with DNA-binding properties different from homomeric H-NS. Mem-

bers of the Hha/YmoA family of proteins are H-NS co-regulators with limited sequence homology to

H-NS (Madrid et al., 2007). At many targets along the genome, H-NS and Hha co-localize. Localiza-

tion of Hha at these sites is strictly H-NS dependent, whereas the genome-wide binding pattern of

H-NS is only mildly affected by Hha (Ueda et al., 2013).

Although evidence has been put forward that the concentration of divalent ions determines the

binding mode of H-NS (Liu et al., 2010), a mechanistic explanation is lacking. Moreover, the possi-

ble effect of co-regulators of H-NS, such as Hha, on these binding modes has remained unexplored.

To obtain a better understanding of the molecular basis underlying the H-NS binding modes, it is

crucial to determine the effects of ion valence and concentration, as well as the presence of helper

proteins on both the stiffening and the bridging mode. Here, we investigate DNA stiffening on short

DNA tethers using Tethered Particle Motion (TPM). As intramolecular DNA bridging does not occur

on short DNA tethers, DNA stiffening can be uncoupled from DNA bridging. In addition, to accu-

rately determine intermolecular DNA-bridging efficiencies in solution, we developed a sensitive

quantitative bulk assay. Using these two assays, we unravel the assembly pathway of bridged DNA-

H-NS-DNA complexes and the roles of mono- and divalent ions, helper proteins Hha and YdgT, and

truncated H-NS derivatives. Finally, Molecular Dynamics (MD) simulations reveal that ions and inter-

acting proteins directly alter H-NS structure from a ‘closed’ bridging incapable to an ‘open’ bridging

eLife digest The genetic information every cell needs to work properly is encoded in molecules

of DNA that are much longer than the cell itself. A key challenge in biology is to understand how

DNA is organized to fit inside each cell, whilst still providing access to the information that it

contains. Since the way DNA is organized can influence which genes are active, rearranging DNA

plays an important role in controlling how cells behave.

In Escherichia coli and many other bacteria, a protein called H-NS contributes to DNA

reorganization by forming or rupturing loops in the DNA in response to changes in temperature, the

levels of salt and other aspects of the cell’s surroundings. In controlling loop formation, it dictates

whether specific genes are switched on or off. However, it remains unclear how H-NS detects the

environmental changes.

To address this question, van der Valk et al. used biochemical techniques to study the activity of

H-NS from E. coli under different environmental conditions. The experiments show that changes in

the environment cause structural changes to H-NS, altering its ability to form DNA loops. A

previously unnoticed region of the protein acts as a switch to control these structural changes, and

ultimately affects which genes are active in the cell.

These findings shed new light on how bacteria organize their DNA and the strategies they have

developed to adapt to different environments. The new protein region identified in H-NS may also

be present in similar proteins found in other organisms. In the future, this knowledge may ultimately

help to develop new antibiotic drugs that target H-NS proteins in bacteria.

DOI: https://doi.org/10.7554/eLife.27369.002
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capable conformation, thus providing a molecular understanding of the modulation of H-NS

function.

Results

The role of Mg2+and H-NS multimerization in DNA bridging and DNA
stiffening
In order to dissect the role of divalent ions in the formation of bridged and stiffened complexes, we

applied a novel, sensitive, and quantitative DNA-bridging assay and carried out TPM experiments

(providing a quantitative and selective readout of DNA stiffening). The DNA-bridging assay relies on

immobilization of bait DNA on magnetic microparticles and the capture and detection of 32P labeled

prey DNA if DNA-DNA bridge formation occurs (see Figure 1—figure supplement 4b for a sche-

matic depiction of the assay). 80% of initial prey DNA is recovered at high H-NS concentrations (see

Figure 1a). In the absence of either the H-NS protein or bait DNA, no prey DNA is recovered under

our experimental conditions. Next, we used this assay to quantify the DNA-bridging efficiency of

H-NS as a function of the amount of Mg2+ ions (see Figure 1b), reproducing the qualitative results

of Liu et al. (2010) and providing independent confirmation of the previously observed effects. The

concentration range from 0 to 10 mM Mg2+ is considered to be physiologically relevant

(Hurwitz and Rosano, 1967). Importantly, the transition from no bridging to complete bridging is

abrupt between 4–6 mM Mg2+, indicating that changes in Mg2+ concentration might drive a binary

switch.

Earlier studies have shown that H-NS binding along a single DNA molecule results in DNA stiffen-

ing (Amit et al., 2003; Liu et al., 2010). However, due to the co-occurrence of DNA bridging, previ-

ous studies were incapable of measuring DNA stiffening in the presence of Mg2+. Here, we used

TPM to investigate DNA stiffening as a function of Mg2+ concentration. In TPM, the Root Mean

Square displacement (RMS) of bead movement is a direct reflection of tether stiffness and length

(Figure 1—figure supplement 4a). DNA-binding proteins can affect both, but previous studies have

shown that the DNA contour length is not affected by binding of H-NS (Dame et al., 2006;

Dame et al., 2001). Thus, an increase in stiffness due to H-NS binding translates into a higher RMS

value of a DNA tether (Figure 1d). Here, we measured the effects of H-NS on DNA stiffness in the

absence and presence of 10 mM Mg2+ and confirmed that H-NS stiffens DNA (Amit et al., 2003;

Liu et al., 2010); importantly, our experiments reveal that Mg2+ does not affect the stiffness of the

fully formed H-NS-DNA complexes at saturation, as in both conditions the RMS is the same

(Figure 1d). Analysis of the binding characteristics using the McGhee-von Hippel equation revealed

that the association constant of H-NS is somewhat reduced in the presence of Mg2+, while coopera-

tivity increases under these conditions (Figure 3—figure supplement 1a,d). The reduction in DNA-

binding affinity of H-NS may be attributed to shielding of the negatively charged phosphate back-

bone by Mg2+.

The cooperative binding of H-NS and DNA stiffening observed by TPM suggest that H-NS multi-

merizes along DNA, likely via the recently defined dimer-dimer interaction domain (Arold et al.,

2010). Multimerization along DNA has been previously suggested (Esposito et al., 2002;

Williams et al., 1996) but has never been conclusively demonstrated. To test this hypothesis, we

generated a mutant, H-NSY61DM64D, predicted to have disrupted dimer-dimer interaction based on

the H-NS1-83 crystal structure (Arold et al., 2010). Size exclusion chromatography showed that this

H-NS mutant indeed exists solely as a dimer in solution independent of protein concentration (Fig-

ure 1—figure supplement 1b), whereas wild-type H-NS forms large multimeric structures (Fig-

ure 1—figure supplements 1a and Arold et al., 2010; Leonard et al., 2009). The multimerization

behavior of both proteins was unaffected by the presence of Mg2+. Electrophoretic Mobility Shift

Assay confirmed that the DNA binding of the H-NS mutant is intact (Figure 1—figure supplement

2). TPM experiments reveal that H-NSY61DM64D binding does not lead to the formation of stiff H-NS-

DNA filaments (Figure 1e). The RMS is reduced compared to that of bare DNA, indicating not only

that dimer-dimer interactions are disrupted, but also that individual H-NS dimers mildly distort DNA.

DNA-bridging experiments reveal that H-NSY61DM64D is also incapable of forming DNA-H-NS-DNA

complexes (Figure 1—figure supplement 3). This indicates that individual H-NSY61DM64D dimers do

not form stable bridges and that dimer-mediated bridging, involving H-NS-dimer binding
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cooperativity due to high local DNA concentration adjacent to existing bridges (Dame et al., 2006;

Dame et al., 2000), is insufficient to explain the formation of bridged DNA-H-NS-DNA complexes.

The nature of the effect of Mg2+ on DNA-bridging efficiency is not understood. An increase in affin-

ity would be expected if Mg2+ would only facilitate interactions between the DNA phosphate back-

bone and negatively charged residues on H-NS, but this is not observed (Figure 3—figure

supplement 1). As Mg2+ does not affect the multimeric state of H-NS in solution (Figure 1—figure

supplement 1), a model involving an effect on H-NS multimerization can be excluded. A structural

effect of Mg2+ on individual units within H-NS filaments could explain the observed effects of Mg2+

on the bridging efficiency of H-NS.
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Figure 1. Modulation of H-NS function by ionic conditions. (a) DNA-bridging efficiency as a function of H-NS concentration in the presence of 10 mM

MgCl2. (b) DNA-bridging efficiency as a function of MgCl2 concentration. (c) DNA-bridging efficiency as a function of the KCl concentration. (d) Root

Mean Square displacement (RMS) as a function of H-NS concentration, in the presence and absence of 10 mM MgCl2 (N > 70, per data point). (e) RMS

of DNA as a function of H-NSY61DM64D in the presence and absence of MgCl2 (N > 70, for each point). (f) Extension of DNA as a function of the KCl

concentration (N > 70, for each point). Error bars indicate standard deviation. Dashed lines are to guide the eye.

DOI: https://doi.org/10.7554/eLife.27369.003

The following figure supplements are available for figure 1:

Figure supplement 1. Multimeric state of H-NS measured using size exclusion chromatography.

DOI: https://doi.org/10.7554/eLife.27369.004

Figure supplement 2. Electrophoretic Mobility shift assay.

DOI: https://doi.org/10.7554/eLife.27369.005

Figure supplement 3. DNA recovery of H-NS and.

DOI: https://doi.org/10.7554/eLife.27369.006

Figure supplement 4. Schematic depiction of techniques used in this study.

DOI: https://doi.org/10.7554/eLife.27369.007

Figure supplement 5. Modulation of H-NS by alternative anions.

DOI: https://doi.org/10.7554/eLife.27369.008
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Mg2+alters H-NS structure
To investigate the role of Mg2+ on individual H-NS dimers we carried out MD simulations of an H-NS

dimer in both the absence and presence of Mg2+, using our previously established model of a full-

length H-NS dimer (van der Valk et al., 2014). Visual inspection of the H-NS dimer simulations at 50

mM KCl reveals that H-NS changes from an ‘open’ extended conformation into more compact

‘closed’ shapes (see Figure 2a for snapshots from these simulations, Figure 2—figure supplement

1 for examples of the ‘closed’ conformation, or Figure 2—video 1 for a movie of one such simula-

tion). The three domains in H-NS interact, and these inter-domain interactions are facilitated by par-

tial unfolding and buckling of the long central a helix (helix a3) connecting the dimerization and

dimer-dimer interaction domains. The average distance between the donor and acceptor of all heli-

cal hydrogen bonds (O-H distance) in helix a3 indicates that the buckle forms in region Glu42-Ala49

(Figure 2b). By analyzing the O-H distance between residues Ser45 and Ala49 in time, key residues

at the site of buckle formation (see Figure 2—figure supplement 3), we found that buckles can be

reversible and irreversible, within the simulation time scale of 50 ns. Reversible buckles, caused by

thermal fluctuations, typically last a few nanoseconds and occur several times during a single simula-

tion run (see green line in Figure 2—figure supplement 3 for an example). Irreversible buckles, sta-

bilized by inter-domain interactions, do not return to a helical conformation during our simulations

(see red line in Figure 2—figure supplement 3 for an example). To characterize the interactions

that occur during the simulations, we generated contact maps that show the probability of finding

interactions between residues, with a contact defined as the minimum distance between two resi-

dues being 0.6 nm or less, see Materials and methods for details of this analysis (Figure 2—figure

supplement 2a). These maps reveal that the DNA-binding domain interacts with other parts of the

protein complex. In absence of Mg2+, the DNA-binding domain interacts with the dimerization

domain, rendering the DNA-binding QGR motif (residues 112–114) (Gordon et al., 2011) of one

DNA-binding domain inaccessible (see the snapshots in Figure 2a). Although the simulations were

performed in absence of DNA, these observations suggest that DNA bridging is not possible in such

a conformation, as the H-NS dimer can bind DNA only through its remaining/second DNA-binding

domain. In this ‘closed’ conformation, interactions occur between the IRT residues at position 10–12

and the AMDEQGK residues at position 122–128. These interactions are hydrophilic in nature, sup-

plemented by a salt bridge between R11 and D124 or E125. In the presence of Mg2+ interactions

between the DNA-binding domain and the dimerization domain no longer occur (see the snapshots

in Figure 2a or the movie in Figure 2—video 2), The absence of such interactions is further illus-

trated by the contact map in Figure 2—figure supplement 2b and in higher detail in Figure 2—fig-

ure supplement 5. The likelihood of finding Mg2+ interacting with (i.e. being within 0.6 nm of) H-NS

residues, indicated by PMg2+, revealed that Mg2+ has a preference for glutamate residues in region

22–35 (Figure 2c, Figure 2—figure supplement 8), where the ions shield this region from interact-

ing with the DNA-binding domains. The Mg2+ ions transiently interact with the glutamate residues,

with residence times in the order of a few ns (as seen in Figure 2—video 2). Furthermore, Mg2+ ions

interact with region 98–105 (sequence DENGE), right next to the DNA-binding QGR motif

(Figure 2c). The presence of Mg2+ stabilizes the ‘open’ conformation of H-NS, ensuring that DNA

bridging can occur. Furthermore, we noted that Mg2+ is also located close to the buckle and may

directly stabilize helix a3 through interactions with Glu42, Glu43, Glu44, and Ser45 (Figure 2—fig-

ure supplement 7), resulting in an ‘open’, bridging capable, H-NS conformation (see Figure 2—vid-

eos 1 and 2). These data suggest that Mg2+ modulates H-NS by shielding interactions between the

DNA-binding domain and dimerization domain, and by influencing the conformation of helix a3.

Based on these observations, we designed an H-NS mutant predicted to bridge DNA independent

of Mg2+. We therefore generated a mutant in which several of the amino acids involved in buckle

formation (E43,E44,S45) were substituted with alanines. In our DNA-bridging assay, H-NSE43A,E44A,

S45A retains its ability to bridge DNA, but indeed achieves high DNA recovery (±50%) in the absence

of Mg2+ (Figure 2—figure supplement 9a). Low concentrations of Mg2+ are sufficient to reach satu-

rated DNA bridging (up to 80% DNA recovery) (Figure 2—figure supplement 9a). This observation

independently confirms our model that the stretch of glutamates at the buckle is responsible for

Mg2+ sensing and Mg2+-dependent bridging by H-NS. Additionally, we note that the DNA-binding

affinity of H-NE43A,E44A,S45A is not significantly altered and that its DNA binding cooperativity is simi-

lar to that of wildtype H-NS in the absence of Mg2+ (Figure 2—figure supplement 9b, Figure 3—
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Figure 2 continued on next page
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figure supplement 1d). Yet, in the presence of Mg2+, wild-type H-NS exhibits a far more coopera-

tive DNA binding (Figure 3—figure supplement 1d). This suggests that the transition between the

‘open’ and ‘closed’ conformation of H-NS promotes lateral filament formation by H-NS.

Modulation of DNA bridging by osmotic factors
Although it has long been known that the expression of some H-NS controlled genes (such as the

proU operon) is modulated by the osmolarity of the medium (Cairney et al., 1985), the underlying

mechanism remains undetermined. Previous studies have revealed that the H-NS DNA stiffening

mode is mildly sensitive to the KCl concentration (Amit et al., 2003; Liu et al., 2010). Using TPM,

we were able to confirm these observations. The reduction in DNA stiffening is gradual (Dame and

Wuite, 2003) and modest (Figure 1f). It is thus questionable whether the multimerization of H-NS

along DNA alone is sufficient to explain its role in repression of transcription (and modulation

thereof). Could the modulation of gene repression be due to ionic effects on DNA-bridging effi-

ciency? Using our DNA-bridging assay, we observed complete abolishment of H-NS DNA bridging

by KCl at concentrations exceeding 120 mM (Figure 1c), a binary response, similar to what we

observed for the Mg2+ titration. This in vitro observation mirrors the in vivo response of the ProU

operon, at which KCl concentrations exceeding 100 mM are required to alleviate H-NS-mediated

repression (Cairney et al., 1985). Control experiments using K-glutamate (Figure 1—figure supple-

ment 5) confirm that K+, and not the counter-ion, is responsible for the observed effects, even

though the counter ion may affect the DNA-binding affinity of the protein (Figure 1—figure supple-

ments 5c and Leirmo et al., 1987) This strong and abrupt effect on DNA bridging, while leaving

DNA stiffening essentially unaffected, might indicate that H-NS reverts to the ‘closed’ conformation

by the addition of K+. To investigate this effect at a structural level we performed MD simulations at

Figure 2 continued

involved in DNA binding is highlighted as ball-stick models. Mg2+ ions are shown as dark gray orbs. The protein is shown in ribbon representation with

a transparent surface. The atomic radii in the protein were set to 3 A to smooth the surface. (b) Location of buckle in helix a3. The average distance dO-

N between donor and acceptor in the helical hydrogen bond in helix a3 is plotted as a function of the residue index of the acceptor. The dashed black

line in the graphs indicates the distance threshold for forming a hydrogen bond. Time traces of these distances are given in Figure 2—figure

supplement 3. (c) Location of Mg2+ on H-NS. The probability of finding Mg2+ ions within 0.6 nm of an H-NS residue, PMg
2+, is plotted as function of

the residue index for the three systems containing Mg2+.

DOI: https://doi.org/10.7554/eLife.27369.009

The following video and figure supplements are available for figure 2:

Figure supplement 1. Examples of ‘closed’ H-NS conformations in the presence of (a) 50 mM KCl, (b) 130 mM KCl, or (c) Hha.

DOI: https://doi.org/10.7554/eLife.27369.010

Figure supplement 2. Contact maps of full-length H-NS dimers simulations in different conditions.

DOI: https://doi.org/10.7554/eLife.27369.011

Figure supplement 3. Time traces of the O-H distance between residues 45 and 49.

DOI: https://doi.org/10.7554/eLife.27369.012

Figure supplement 4. Location of K+on hr-NS.

DOI: https://doi.org/10.7554/eLife.27369.013

Figure supplement 5. Contact maps of H-NS dimers in different conditions, focused on the interactions between the dimerization domain and the

DNA-binding domain.

DOI: https://doi.org/10.7554/eLife.27369.014

Figure supplement 6. Location of Hha on H-NS.

DOI: https://doi.org/10.7554/eLife.27369.015

Figure supplement 7. Correlation between hydrogen bond distance and proximity of Mg2+to the buckle in helix a3.

DOI: https://doi.org/10.7554/eLife.27369.016

Figure supplement 8. Mg2+localization on H-NS.

DOI: https://doi.org/10.7554/eLife.27369.017

Figure supplement 9. Function of the H-NS derivative, H-NSE43A,E44A,S45A.

DOI: https://doi.org/10.7554/eLife.27369.018

Figure 2—video 1. Conformational flexibility of H-NS.

DOI: https://doi.org/10.7554/eLife.27369.019

Figure 2—video 2. The effect of magnesium on the conformational flexibility of H-NS.

DOI: https://doi.org/10.7554/eLife.27369.020
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high KCl concentrations. The presence of 130 mM KCl alters interactions between the various

domains in H-NS (see contact maps in Figure 2—figure supplement 2c and d). In addition to inter-

actions between the DNA-binding domain and the dimerization domain, the two DNA-binding

domains in the dimer interact with each other. Moreover, the DNA-binding domains interact with

helix a3. In particular regions 98–105 (KYSYVDENGE) and 123–129 (EQGKS) are involved in these

interactions. The average distance between the donors and acceptors in the hydrogen bonds within

helix a3 (Figure 2b) indicates that that buckles in helix a3 also occur at a high KCl concentration, at

the same location as determined by low-salt conditions. These observations indicate that the ‘closed’

state can have multiple forms (see Figure 2—figure supplement 1 for snapshots), but that all these

conformations block the DNA-binding motif QGR from interacting with DNA. The presence of Mg2+

does not significantly alter the occurrence of buckles (Figure 2b). Instead, Mg2+ is capable of deter-

ring interactions between the DNA-binding domain and the dimerization domain by shielding resi-

dues in the dimerization domain involved in these interactions (Figure 2c, Figure 2—figure

supplement 8). However, the probability of interactions occurring between the DNA-binding

domain and other parts of the protein is reduced significantly in the presence of Mg2+ (Figure 2—

figure supplement 2 and Figure 2—figure supplement 5). High K+ concentrations therefore inhibit

H-NS bridging by promoting the ‘closed’ conformation of H-NS even in the presence of Mg2+ and

elucidates the modulatory and regulatory effects of KCl and osmolarity.

Modulation of DNA bridging and DNA stiffening by truncated H-NS
variants
In addition to environmental factors such as osmolarity, H-NS activity is affected by interactions with

other proteins in vivo. Members of the Hha/YmoA protein family, such as Hha and YdgT, are known

to cooperate with H-NS in repression of genes (Baños et al., 2008), while other proteins such as

H-NST are capable of inhibiting H-NS function (Liu et al., 2010), likely by hampering H-NS multime-

rization. To systematically investigate the latter mechanism, we designed and synthesized truncated

H-NS derivatives, targeting the H-NS dimerization domain (H-NS1-58) or dimer-dimer interaction

domain (H-NS56-83). Interfering with H-NS dimerization, through the addition of H-NS1-58 in DNA-

bridging experiments, we observed a reduction in DNA recovery from 75% to 20% at ratios higher

than 1: 3 H-NS1-58/ H-NS (Figure 3a). Similarly, targeting the dimer-dimer interaction domain

(through H-NS56-82) resulted in complete abolishment of DNA bridging (Figure 3a). Next, we investi-

gated the effects of H-NS derivatives on H-NS DNA stiffening using TPM. Only at very high H-NS

derivative concentrations (30-fold excess) reduction of DNA stiffening was observed (Figure 3b).

These experiments reveal that both H-NS dimerization and dimer-dimer interactions can be effec-

tively targeted for inhibition of H-NS activity and that the respective domains are crucial to the for-

mation of bridged filaments. This suggests that natural H-NS inhibitors such as H-NST operate by

disrupting DNA bridging and provides clues for rational design of artificial peptide inhibitors of

H-NS.

Modulation of H-NS by Hha and YdgT
Gene regulation by H-NS often occurs in conjunction with other proteins; these co-regulators are

known to interact with H-NS at specific loci along the genome. Two such proteins, Hha, and YdgT,

are members of the Hha/YmoA (Madrid et al., 2007) family of proteins. In order to understand the

modulation of H-NS function by these proteins we investigated their influence on the H-NS DNA

binding modes. We observed that Hha, when added at equimolar concentrations, enhances DNA

bridging by H-NS at low Mg2+ concentrations (Figure 3c). A similar enhancement of H-NS-mediated

DNA bridging was observed with the Hha paralogue, YdgT. While Hha and YdgT promote DNA

bridging to a similar extent, YdgT promotes DNA bridging at significantly lower concentrations,

likely due to a higher affinity for H-NS. At higher concentrations of YdgT the effect on H-NS-medi-

ated bridging closely resembles the bridging profile obtained for H-NSE43A,E44A,S45A (Figure 3—fig-

ure supplement 2). To determine whether enhanced DNA bridging is due to structural changes in

H-NS-DNA filaments, we investigated the effects of Hha and YdgT on DNA stiffening (Figure 3d).

TPM experiments show a mild increase in H-NS mediated DNA stiffening in the presence of Hha.

We observe a negative offset in RMS in the presence of YdgT, indicating a more compact conforma-

tion. Specifically, this is evident in TPM experiments containing H-NS, YdgT, and Mg2+, where in the
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Figure 3. Modulation of H-NS function by protein cofactors. (a) DNA bridging efficiency as a function of inhibiting peptides targeting either the

dimerization domain (H-NS1-58) and multimerization domain (H-NS56-82). (b) Root Mean Square displacement (RMS) as a function of inhibiting peptides

targeting either the dimerization (H-NS1-58) and multimerization (H-NS56-82) (N > 70, for each point). (c) DNA bridging efficiency as a function of Mg2+

concentration in the presence and absence of 4 mM Hha or 2 mM YdgT. (d) RMS of DNA in the presence of H-NS, H-NS-Hha, and H-NS-YdgT. Dashed

lines are to guide the eye (N > 60, for each point).

DOI: https://doi.org/10.7554/eLife.27369.021

The following figure supplements are available for figure 3:

Figure supplement 1. McGhee-von Hippel analysis of H-NS DNA binding curves based on TPM data.

DOI: https://doi.org/10.7554/eLife.27369.022

Figure supplement 2. DNA-bridging efficiency of H-NS (red), H-NS + 4 mM YdgT (blue) and H-NSE43A,E44A,S45A (orange) as a function of MgCl2
concentration.

DOI: https://doi.org/10.7554/eLife.27369.023
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presence of Mg2+ and YdgT, H-NS causes ‘DNA collapse’ in TPM (data not shown), similar to earlier

observations for H-NS in the presence of Mg2+ without (Liu et al., 2010; Wang et al., 2014) or with

Hha added (Wang et al., 2014). This ‘DNA collapse’ is attributed to H-NS-mediated DNA bridge

formation. One possible explanation for the effects of Hha and YdgT, is that they effectively increase

the DNA-binding affinity of H-NS (Ali et al., 2013). To investigate whether Hha affects H-NS confor-

mation, we performed MD simulations, incorporating structural information from the recently

resolved H-NS1-43-Hha co-crystal structure (Ali et al., 2013). Our MD simulations reveal that Hha

does not prevent buckles in helix a3 (see Figure 2b). Instead Hha alters the interactions between

the dimerization domain and the DNA-binding domain (Figure 2—figure supplement 2) by block-

ing access to parts of dimerization domain. This hypothesis is further supported by interactions

between Hha and other parts of H-NS, including the DNA-binding domain and helix a3 (Figure 2—

figure supplement 6). In the presence of Mg2+ and Hha, the contacts between the DNA-binding

domain and dimerization domain are reduced even further. This shows that Hha modulates H-NS

function by stabilizing the ‘open’ -bridging capable- conformation of H-NS.

Discussion
It has been known for many years that H-NS binding induces gene silencing. H-NS activity in vivo is

modulated by physico-chemical factors (osmolarity, pH, temperature) and interaction partners.

These findings support the hypothesis that H-NS plays a role in environmental adaptation. However,

mechanistically it is unclear how functional modulation of H-NS by such factors is achieved. Based on

our findings, we conclude that H-NS is incapable of bridging or stiffening DNA as dimers. H-NS

dimers bind DNA in cis (Dame et al., 2006; Dame et al., 2000) and associate side-by-side along

DNA, likely via the recently identified dimer-dimer interaction domain (Arold et al., 2010), resulting

in DNA stiffening. This process is cooperative as H-NS dimers interact with neighbors, as well as with

DNA. Our studies reveal that H-NS-DNA filaments are structurally very similar, independent of the

presence of Mg2+ (Figure 1d). But functionally, these H-NS-DNA filaments are distinct. H-NS can be

‘activated’ by Mg2+, which promotes a conformational change, rendering both DNA-binding

domains of H-NS dimers accessible for DNA bridging. In our model, the assembly of bridged com-

plexes proceeds in distinct steps: (1) nucleation (Lang et al., 2007) (binding of an H-NS dimer at a

high affinity site), (2) lateral filament growth by H-NS dimer-dimer interactions (leading to DNA stiff-

ening) and (3) bridging of the assembled filament to bare DNA provided in trans (Figure 4). Each

step can potentially be modulated by osmolarity and protein interaction partners. Here, we show

that these factors most effectively target DNA bridging.

What are the implications of our observations? Our observations add to the large body of evi-

dence showing that regulation of transcription via H-NS is complex, and that it does not proceed via

a single, simple, well-defined mechanism. The most straightforward form of repression by H-NS is

via occlusion of RNA polymerase from the promoter (Lim et al., 2012; Prosseda et al., 2004;

Göransson et al., 1990). Whether this mechanism of repression involves lateral filament formation

or bridging is unclear. It is expected that both types of complexes assembled at a promoter site can

in principle occlude RNA polymerase. A second mechanism of repression is to trap RNA polymerase

*

        Mg2+ binding  Nucleation

*

*

*

*

*

Multimerization DNA bridginga b c d

Figure 4. Model of H-NS complex assembly. (a) H-NS nucleates at preferred DNA sequences in the genome. (b) H-NS laterally multimerizes laterally

along the DNA in the ‘closed’ conformation. (c) In the presence of Mg2+ or other H-NS modulators such as Hha, H-NS switches to the ‘open’, bridging

capable conformation. (d) H-NS forms DNA bridges in trans. The red asterisk indicates the buckle location. Mg2+ ions are shown as green orbs.

DOI: https://doi.org/10.7554/eLife.27369.024
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at the promoter, preventing promoter escape (Schröder and Wagner, 2000; Shin et al., 2005).

RNA polymerase trapping likely involves DNA bridging of promoter upstream and downstream ele-

ments (Dame et al., 2002; Shin et al., 2005). A third mechanism of repression by H-NS is to inter-

fere with RNA polymerase progression during active transcription by intragenic binding (Dole et al.,

2004). In this model, both modes could interfere with transcription. However, it was suggested

recently that only bridged filaments are capable of interfering with transcription (Kotlajich et al.,

2015), with lateral filaments likely being disassembled as RNA polymerase encounters them. Gener-

ally, the type of complex formed by H-NS is expected to depend on the type and number of ions,

combined with local DNA conformation (dependent on DNA sequence or DNA topology), and the

presence of modulating proteins. The interplay between these factors will determine the strength of

the complex, and degree of repression. Thus, different H-NS repressed genes are expected to be

subject to different types of modulation, providing a key to a coordinated response in gene expres-

sion to altered conditions and selectivity for the interplay with specific co-regulators at specific tar-

get regions.

Materials and methods

Construction of expression vectors
H-NS expression vector
The vector pRD18 for expression of H-NS was constructed by inserting the PCR amplified hns gene

into the pET3His overexpression vector using NdeI and XhoI restriction sites. Using the XhoI restric-

tion site, the encoded protein does not contain a C-terminal His-tag.

H-NSY61DM64D expression vector
The vector pRD69 for expression of H-NSY61DM64D was constructed by inserting a PCR fragment con-

taining the hns gene mutated to encode aspartic acid instead of tyrosine/methionine at position 61

and 64 into pET3His using NdeI and XhoI restriction sites.

Hha expression vector
The vector pRD38 for expression of N-terminally His tagged Hha was constructed by inserting a PCR

fragment containing the hha gene into pET3His using XhoI and BamHI restriction sites.

YdgT expression vector
The vector pRD39 for expression of N-terminally His tagged YdgT was constructed by inserting a

PCR fragment containing the ydgT gene into pET3His using XhoI and BamHI restriction sites.

Protein overproduction and purification
H-NS/H-NSY61DM64D/H-NSE43A,E44A,S45A. BL21 (DE3) (RRID: WB-STRAIN: HT115(DE3)) Dhns::kan/frt

pLysE (NT201, our lab) cells transformed with plasmids expressing H-NS/H-NS mutants were grown

to an OD600 of 0.4, and induced for 2 hr using IPTG (500 mM). For the H-NE43A,E44A,S45A protein, the

cells were co-transformed with pRD252, coding for LacI to help suppress leaky expression of

H-NE43A,E44A,S45A. The cells were pelleted and lysed by sonication in 100 mM NH4Cl, 20 mM Tris pH

7.2, 10% glycerol, 8 mM b-mercaptoethanol, 3 mM benzamidine). The soluble fraction was loaded

onto a P11 column and eluted using a 100 mM-1 M NH4Cl gradient, the protein eluted at 280 mM

NH4Cl. The peak fractions were dialysed to buffer B (identical to buffer A, but containing 130 mM

NaCl instead of NH4Cl) by overnight dialysis. The dialysate was loaded onto a heparin column (GE

Healthcare) and eluted using a 130 mM-1 M NaCl gradient, the protein eluted at 350 mM NaCl. The

pooled peak fractions were dialysed to buffer B and concentrated using a 1 ml Resource-Q column

(GE Healthcare). The purity of the protein was verified on an SDS-PAGE gel. The protein concentra-

tion was determined using a Bicinchoninic Acid assay (Pierce BCA protein assay kit, Thermo

Scientific).
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H-NS1-58
BL21 (DE3) (RRID: WB-STRAIN: HT115(DE3)) Dhns::kan/frt pLysE (NT210, our lab) cells transformed

with plasmids expressing H-NS/H-NS mutants were grown to an OD600 of 0.4, and induced for 2 hr

using IPTG (500 mM). The cells were pelleted and lysed by sonication in 100 mM NaCl, 20 mM Tris

pH 7.2, 10% glycerol, 8 mM b-mercaptoethanol, 3 mM benzamidine). The soluble fraction was

heated to 65˚C for 10 min and then spun down at 10.000 RPM for 10 min. The supernatant was col-

lected and a 1:1 ratio saturated ammonium sulfate (50 mM Tris pH 7.2, 4M ammonium sulfate) was

gradually added to the cooled sample. The sample was spun down at 8.000 RPM for 15 min and a

1:1 ratio of 5 mM Tris pH 7.2, 15% glycerol was added to the supernatant. To remove further impuri-

ties, the sample was run through a 1 ml hydrophobic interaction column and 1 ml Blue-agarose col-

umn (the protein should not bind to either of these column) before finally binding the protein to 1

ml Resource-Q column (GE Healthcare). The protein was eluted with a 25 mM �1M gradient of

NaCl, the protein eluted at roughly 380 mM NaCl. The purity of the protein was verified on an SDS-

PAGE gel. The protein concentration was determined using a Bicinchoninic Acid assay (Pierce BCA

protein assay kit, Thermo Scientific).

Hha/YdgT
BL21 (DE3) (RRID: WB-STRAIN: HT115(DE3)) Dhns::frt, hha::kan, pLysE (our lab) cells transformed

with plasmids pRD38/pRD39 expressing hha/ydgT were grown at 37˚C to an OD600 of 0.4, and

induced for two hours using IPTG (500 mM). The cells were pelleted and lysed in 20 mM HEPES pH

7.9, 1 M KCl, 10% glycerol, 8 mM b-mercaptoethanol. The soluble fraction was loaded onto a Ni-col-

umn. The column was first washed with buffer D (20 mM HEPES pH 7.9, 0.5 M KCl, 10% glycerol, 8

mM b-mercaptoethanol). The protein was then eluted using a 0 mM-0.5 M Imidazole gradient, the

protein eluted at 300 mM Imidazole. The peak fractions were dialysed to buffer E (identical to buffer

D, but containing 100 mM KCl) by overnight dialysis. The sample was then loaded onto pre-equili-

brated SP Hi-Trap-column and Ni-column connected in series. After loading the samples on the col-

umn, the SP Hi-Trap -column was disconnected and the protein was eluted from the Ni-column

using a 0–0.5 M imidazole gradient. The purity of the protein was verified on an SDS-PAGE gel. The

protein concentration was determined using a Bicinchoninic Acid assay.

Peptide production and purification
A truncated form of H-NS (H-NS56-82) was synthesized by way of automated solid phase synthesis

using standard protocols via Fmoc-strategy. Purification was performed by RP-HPLC with a Gemini

5m C18 reversed phase column. Identity of the peptides was determined via MALDI-MS. The purity

was determined by means of analytical RP-HPLC. The peptide was freeze dried and dissolved in 20

mM Tris pH 7.2, 300 mM KCl, 10% glycerol, 8 mM b-mercaptoethanol. The peptide concentration

was determined using a Bicinchoninic Acid assay (Pierce BCA protein assay kit, Thermo Scientific).

Size exclusion chromatography
Size exclusion chromatography was done using a Superose-12 column with a flow of 0.3 ml/min,

pre-equilibrated with 10 mM Tris-HCl, 50 mM KCl, 5% glycerol containing or lacking 10 mM MgCl2.

The absorbance of the eluting fractions was measured at 215 nm. These experiments were per-

formed in triplicate.

DNA substrates
DNA preparation
All experiments were performed using a random, AT-rich, 685 bp (32% GC) DNA substrate

(Laurens et al., 2012). The DNA substrate was generated by PCR, and the PCR products were puri-

fied using a GenElute PCR Clean-up kit (Sigma-Aldrich). If required, DNA was 32P-labeled as

described previously (Wagner et al., 2011).

DNA-bridging assay
Streptavidin-coated paramagnetic Dynabeads M280 (Invitrogen) were washed once with 100 mL of

1xPBS and twice with Coupling Buffer (CB: 20 mM Tris-HCl pH 8.0, 2 mM EDTA, 2 M NaCl, 2 mg/

mL BSA(ac), 0.04% Tween20) according to manufacturer instructions. After washing, the beads were
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resuspended in 200 mL CB containing 100 nM biotinylated DNA. Next, the bead suspensions were

incubated for 30 min on a rotary shaker (1000 rpm) at 25˚C. After incubation, the beads were

washed twice with Incubation buffer (IB: 10 mM Tris-HCl pH 8.0, 50 mM KCl, 10* mM MgCl2, 5% v/v

Glycerol, 1 mM DTT and 1 mM Spermidine) before resuspension in IB and addition of ±8000 cpm of

radioactively labeled 32P 685 bp DNA. Radioactive DNA was supplemented with unlabeled 685 bp

DNA to maintain a constant (20 nM) DNA concentration. The DNA-bridging protein H-NS (concen-

trations indicated in the text), and if applicable Hha or YdgT were added and the mixture was incu-

bated for 30 min on a shaker (1000 rpm) at 25˚C. To remove unbridged prey DNA, the beads were

washed with IB, before resuspension in 12 mL stop buffer (10 mM Tris pH 8.0, 1 mM EDTA, 200 mM

NaCl, 0.2% SDS). All samples were quantified through liquid scintillation counting over 10 min. All

values recovered from the DNA-bridging assay were corrected for background signal (using a sam-

ple lacking H-NS), and normalized to a reference sample containing the amount of labeled 32P 685

bp DNA used in the assay. The samples were then run on a 5% 0.5x TBE gel to ensure DNA integ-

rity. DNA bridging was calculated based on a reference sample containing 2 mL of prey DNA. All

DNA-bridging experiments were performed in triplicate. Unless indicated otherwise all DNA-bridg-

ing experiments were performed in the presence of 10 mM of MgCl2 and 3,3 mM of H-NS (10%

more H-NS than is required for saturation - see Figure 1A). Each experiment contains 50 mM KCl,

to which additional KCl or K-glutamate are added depending on the experimental condition tested.

Tethered particle motion experiments
Tethered particle motion experiments were performed as reported previously (Driessen et al.,

2014; van der Valk et al., 2017). Flow cells were prepared as described with minor modifications

(Driessen et al., 2014; van der Valk et al., 2017). Here, before flowing in protein diluted in the

experimental buffer (10 mM Tris-HCl pH 8.0, 50 mM KCl, 10 mM MgCl2/EDTA, 5% v/v Glycerol, 1

mM DTT) the flow cell was washed using 4 flow cell volumes with the experimental buffer. Next, the

flow cell was incubated for 10 min with protein solution before sealing the flow cell. The flow cell

was maintained at a constant temperature of 25˚C. Measurements were started 10 min after the

introduction of protein solution. TPM experiments were done at least in duplicate. The data were

analyzed as previously described (Driessen et al., 2014; van der Valk et al., 2017). The RMS was

first converted to persistence length(Lp) using Equation 1 (Göransson et al., 1990):

RMS¼ 233�
156

1þ 0:08Lp
� �0:45

(1)

Lp values were then used to calculate the fractional coverage (Equation 2) (Göransson et al.,

1990):

n#¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Lp; measured

q

�
ffiffiffiffiffiffiffiffiffiffiffi

1

Lp; naked

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Lp; saturated

q

�
ffiffiffiffiffiffiffiffiffiffiffi

1

Lp; naked

q (2)

The fractional coverage (d) was fit using the McGhee-von Hippel model for cooperative lattice

binding (Equation 3-5) (McGhee and von Hippel, 1974):

#

c
¼K � 1� dð Þ �

2!þ 1ð Þ 1� dð Þþ#�R

2!� 1ð Þ 1� dð Þ

� �n�1

�
1� nþ 1ð Þ#þR

2 1� dð Þ

� �2

(3)

where

R¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� nþ 1ð Þ#ð Þ2þ4!# 1� dð Þ

q

(4)

and

d¼ n#

Here, the association constant(K) is described as a function of the protein concentration (c) and a

cooperativity parameter (!Þ.
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To this end, weighted orthogonal distance regression (ODR) was performed to estimate the

parameters of the nonlinear implicit equation describing the cooperative ligand binding. The binding

site size (n) of H-NS was fixed to a value of 30 bp during regression, which corresponds to values

determined previously (Dame et al., 2006; Amit et al., 2003). The association constant (K) and the

cooperativity parameter (w) were assumed to be positive real numbers. A custom fitting routine was

implemented in Fortran and makes use of the ODRPACK library (Boggs et al., 1992).

Molecular dynamics simulations
The starting conformation of the full-length H-NS dimer was constructed as described previously

(van der Valk et al., 2014). The system was placed in a periodic dodecahedron box with a distance

of at least 0.8 nm between the box edge and the most extended atom of the protein dimer, fol-

lowed by the addition of water and ions. With this system we performed Molecular Dynamics (MD)

simulations of full length H-NS at different concentrations of KCl, and MgCl2 and with the addition

of Hha, summing up to a total of six different systems. Hha was added by aligning the crystal struc-

ture containing the H-NS – Hha complex (PDB code 4ICG [Ali et al., 2013]) with the full-length struc-

tural model and copying the Hha molecules. System size ranged from 513457 atoms for the Hha

systems to around 1,135,000 atoms for the other four systems.

Interactions between atoms were described by the AMBER99-SB-ILDN force field (Lindorff-

Larsen et al., 2010), in combination with the TIP3P water model (Jorgensen et al., 1983). Long-

range electrostatic interactions were treated via the Particle Mesh Ewald method (Darden et al.,

1993; Essmann et al., 1995) with a short-range electrostatic cutoff distance at 1.1 nm. Van der

Waals interactions were cut off at 1.1 nm. Preparation of the systems consisted of energy minimiza-

tion equilibration of the solvent. Energy minimization was performed by the conjugate gradient

method. After energy minimization, the positions of water molecules and ions were equilibrated by

a 1 ns molecular dynamics run at a temperature of 298 K and a pressure of 1 bar in which the heavy

atoms in the protein were position-restrained with a force constant in each direction of 1000 kJ/mol

nm. After preparation, we performed 16 50 ns runs for each system, varying initial conditions by

assigning new random starting velocities drawn from the Maxwell-Boltzmann distribution at 298 K.

All simulations were performed with GROMACS v.4.6.3 (Pronk et al., 2013) at the Dutch National

Supercomputer with the leap-frog integration scheme and a time step of 2 fs, using LINCS

(Hess et al., 1997) to constrain all bonds. All simulations were performed in the isothermal-isobaric

ensemble at a pressure of 1 bar, using the v-rescale thermostat (Bussi et al., 2007) and the Parri-

nello-Rahman barostat (Parrinello and Rahman, 1981).

Frames were stored every 10 ps. The first 10 ns of each simulation are excluded from analysis,

unless stated otherwise. Analysis focused on determining contacts between domains, between H-NS

and Hha, between H-NS and ions, and helical hydrogen bonds. Contact maps of interactions

between residues in the H-NS dimer system were obtained by first calculating the minimum distance

between each residue pair in the system. A residue pair is counted to be in contact if they are at a

minimum distance of 0.6 nm or less. The probability of a contact is then calculated as the average

over all 16 simulations (excluding the first 10 ns) and displayed as a contact probability matrix. We

used a modified version of the g_mdmat tool in GROMACS (Pronk et al., 2013) in combination with

Perl scripts to generate contact maps. To determine the location of ions with respect to the H-NS

system, we calculated the minimum distance between each residue in the H-NS dimer and the ions

and counted a contact if the distance between an H-NS residue and an ion is 0.6 nm or less. These

contact probabilities (PMg2+, PK+ and PCl-) are averaged over all 16 simulations and the two mono-

mers. A similar procedure was performed to determine the probability of contacts between H-NS

and Hha, PHha, and between H-NS domains, with P1-40 indicating the probability of finding the DNA-

binding domain (residues 96–137) close to the dimerization domain (residues 1–40). P96-137 indicates

the probability of finding the dimerization domain close to the DNA-binding domain.

To determine the location of the buckle in helix a3, we calculated the helical hydrogen bond dis-

tances dO-N for residues 22–67 in each monomer between the backbone carbonyl oxygen O of resi-

due i and the backbone amide nitrogen N of residue i + 4. A hydrogen bond is counted to be in

contact if they are at a minimum distance of 0.35 nm or less. These probabilities are averaged over

all 16 simulations (excluding the first 10 ns) and the two monomers. Snapshots and movies were gen-

erated with PyMOL.
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