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Abstract Following learning, increased coupling between spindle oscillations in the medial

prefrontal cortex (mPFC) and ripple oscillations in the hippocampus is thought to underlie memory

consolidation. However, whether learning-induced increases in ripple-spindle coupling are

necessary for successful memory consolidation has not been tested directly. In order to decouple

ripple-spindle oscillations, here we chemogenetically inhibited parvalbumin-positive (PV+)

interneurons, since their activity is important for regulating the timing of spiking activity during

oscillations. We found that contextual fear conditioning increased ripple-spindle coupling in mice.

However, inhibition of PV+ cells in either CA1 or mPFC eliminated this learning-induced increase in

ripple-spindle coupling without affecting ripple or spindle incidence. Consistent with the

hypothesized importance of ripple-spindle coupling in memory consolidation, post-training

inhibition of PV+ cells disrupted contextual fear memory consolidation. These results indicate that

successful memory consolidation requires coherent hippocampal-neocortical communication

mediated by PV+ cells.

DOI: https://doi.org/10.7554/eLife.27868.001

Introduction
Rhythmic oscillations that occur during sleep and periods of quiet wakefulness are thought to be

important for memory consolidation (Diekelmann and Born, 2010). Specifically, during periods of

rest, hippocampal sharp-wave ripples, a form of high frequency network oscillation (100–250 Hz), are

observed in temporal proximity to prefrontal cortical oscillations called spindles (12–15 Hz)

(Siapas and Wilson, 1998). This temporal correlation, referred to as ripple-spindle coupling, is

thought to support communication between the hippocampus and prefrontal cortex required for

memory consolidation (Buzsáki, 1989, 1996; Clemens et al., 2011; Dudai et al., 2015;

Frankland and Bontempi, 2005; Girardeau and Zugaro, 2011; Igarashi, 2015; Peyrache et al.,

2009; Schwindel and McNaughton, 2011; Siapas and Wilson, 1998; Sirota et al., 2003;

Staresina et al., 2015; Wierzynski et al., 2009; Wilson and McNaughton, 1994). Consistent with

this hypothesis, cortical electrical stimulation both enhances ripple-spindle coupling and improves

performance on an object-location task (Maingret et al., 2016). However, whether increased ripple-
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spindle coupling following learning is necessary for memory consolidation is unknown. Furthermore,

the specific cell types that underlie this phenomenon have not yet been identified.

In the hippocampus, parvalbumin-positive (PV+) interneurons play a key role in regulating tempo-

ral correlations in activity. More specifically, in the CA1 region of the hippocampus, PV+ cells are not

required for the generation of ripple oscillations, but appear to be important for the timing of rip-

ples and the synchronization of spiking during ripples. PV+ cells exhibit phase-locked firing with rip-

ples (Klausberger et al., 2003), and optogenetic inhibition of CA1 PV+ cells disrupts this phase-

locking (Gan et al., 2017) and the coherence of spiking during ripples in CA1 (Stark et al., 2014),

without impacting the probability of ripple occurrence (Gan et al., 2017). Less is known about the

role of PV+ cells in regulating temporal correlations during oscillations in the mPFC. But, as with rip-

ples in CA1, PV+ cell activity is phase-locked to spindles in the mPFC (Averkin et al., 2016;

Hartwich et al., 2009; Peyrache et al., 2011), suggesting a similar role of PV+ cells in promoting

coherent cortical population activity. The promotion of temporal coherence by PV+ cells during rip-

ples and spindles matches previous findings showing that PV+ basket cells can act as a ‘clocking

mechanism’ in circuits to ensure specific cell populations fire at appropriate times (Freund and

Katona, 2007). Given the importance of spike-synchrony for communication between circuits

(Wang et al., 2010), such mechanisms may be critical for inter-regional communication events such

as increased ripple-spindle coupling following learning. This raises the possibility that increased rip-

ple-spindle coupling depends on the activity of PV+ cells. If so, then inhibition of PV+ cell activity in

either CA1 or mPFC should perturb inter-regional communication by altering ripple and spindle

coherence.

To test the hypotheses that (1) PV+ cells mediate increases in ripple-spindle coupling following

learning, and (2) that this increase in coupling is necessary for memory consolidation, we trained

mice using contextual fear conditioning. This form of learning engages plastic processes in the hip-

pocampus, including CA1 (Johansen et al., 2011; Maren et al., 2013), and the mPFC, including the

anterior cingulate cortex (ACC) (Vetere et al., 2011; Zhao et al., 2005). We used PV+ cell-specific

eLife digest Sleep contributes to the strengthening of memories. During non-dreaming sleep,

neurons in regions of the brain that form and store memories – such as the hippocampus and

prefrontal cortex – fire in rhythmic waves. The neurons in the hippocampus tend to fire during a

wave that repeats up to 250 times per second, called sharp-wave ripples. Meanwhile, in the

prefrontal cortex, the neurons tend to fire during a lower frequency wave that repeats 12 to 15

times per second, called spindles.

During sleep and quiet wakefulness, hippocampal ripples often synchronize with prefrontal

spindles; that is, both waves tend to occur at approximately the same time. Many neuroscientists

think this allows the brain regions to better communicate with one another, which in turn should

help the brain to strengthen memories. Consistent with this possibility, rodents that learn a new task

show more synchrony between ripples and spindles afterwards. But no one had actually tested

whether this increase in ripple-spindle synchrony does strengthen the rodent’s memory of the task.

It was also unclear how the brain achieves such an increase.

Xia et al. suspected that this process involved a group of inhibitory brain cells called parvalbumin-

positive interneurons. These cells act like timekeepers, and help to synchronize the firing of groups

of neurons. Xia et al. now show that training mice to associate an environment with a mild electric

shock made it more likely that the animals would show ripple-spindle synchrony. Yet, inhibiting the

activity of parvalbumin-positive interneurons in either the hippocampus or prefrontal cortex blocked

this effect. It also prevented sleep from strengthening the animals’ memory of the link between the

environment and the shock.

Patients with Alzheimer’s disease have fewer parvalbumin-positive interneurons. By showing that

these neurons help strengthen new memories, these findings may explain why losing them can

impair memory. Restoring or replacing interneuron activity could be a promising therapeutic avenue

to explore.

DOI: https://doi.org/10.7554/eLife.27868.002
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Cre driver mice to express chemogenetic constructs allowing us to selectively inhibit PV+ cells in the

ACC or CA1 following training. To investigate the role of PV+ cells in promoting increased ripple-

spindle coupling, we performed in vivo electrophysiological recordings in mice post-training. As

expected, we observed an increase in the probability of ripple-spindle coupling following contextual

fear conditioning. Notably, post-training inhibition of PV+ cell activity in the ACC or CA1 did not

alter ripple or spindle incidence, but eliminated the learning-induced increase in ripple-spindle cou-

pling. Consistent with this finding, inhibition of PV+ cell activity in either ACC or CA1 also impaired

contextual fear memory consolidation. These data indicate that PV+ cells play an important role in

enhancing hippocampal-neocortical dialogue following learning, and that this communication is

important for memory consolidation.

Results

Chemogenetic inhibition of PV+ cells
To target PV+ interneurons in the ACC or CA1, we micro-infused an adeno-associated virus (AAV)

that expresses the inhibitory Designer Receptor Exclusively Activated by Designer Drugs (DREADD)

hM4Di with a fluorescent reporter (mCherry) in a Cre-recombinase-dependent manner (AAV-DIO-

hM4Di-mCherry) in mice expressing Cre-recombinase only in PV+ cells (PV-Cre mice)

(Armbruster et al., 2007; Hippenmeyer et al., 2005; Sohal et al., 2009). Four weeks following sur-

gery, numerous mCherry+/PV+ interneurons were observed in the ACC or CA1, respectively

(Figure 1a; Figure 1—figure supplement 1a; Figure 1—figure supplement 2). Over 85% of endog-

enous PV+ cells were mCherry+, reflecting efficient infection rates (Figure 1b, n = 10). Moreover,

>93% of mCherry+ cells expressed PV, indicating that infection was limited to the target cell type

(Figure 1c, n = 10) (Sohal et al., 2009).

DREADDs are activated by the synthetic ligand, clozapine-N-oxide (CNO). To verify that CNO-

induced activation of hM4Di suppresses PV+ interneuron activity, we used whole-cell patch clamp to

record from ACC slices from PV-Cre mice infected with the DREADD viral vector, AAV-DIO-hM4Di-

mCherry. To further control for any off-target effects of CNO, or any effects caused by the metabolic

conversion of CNO to clozapine (Gomez et al., 2017), we also performed the same experiments

using the control vector, AAV-DIO-mCherry (Figure 1d; hM4Di-mCherry+ n = 12, hM4Di-mCher-

ry-n=10, mCherry+ n = 13, mixed-model permutation test, 1000 permutations, [hM4Di-mCherry+ ver-

sus hM4Di-mCherry- versus mCherry+]: p=0.001). mCherry+ cells from both hM4Di- and control

vector-infused mice exhibited much higher spiking rates than mCherry� cells across all current levels

tested prior to CNO application, verifying that infection was limited to fast-spiking PV+ interneurons

(Klausberger et al., 2003). CNO induced hyperpolarization of hM4Di-infected PV+ cells, as bath

application of CNO decreased firing rates of hM4Di-mCherry+, but not mCherry�, or mCherry+ cells

in mice micro-infused with the control vector (Figure 1e; mixed-model permutation test, 1000 per-

mutations, [hM4Di-mCherry+ versus hM4Di-mCherry- versus mCherry+] x [pre-CNO versus post-

CNO]: p=0.001; individual cell firing rates pre- and post-CNO are shown in Figure 1—figure supple-

ment 3). Furthermore, CNO decreased the input resistance of hM4Di-mCherry+ cells only

(Figure 1f; �80 pA current injection, two-way ANOVA, [hM4Di-mCherry+ versus hM4Di-mCherry-

versus mCherry+] x [pre-CNO versus post-CNO]: F32,1 = 13.14, p=6.8�10�5, post hoc paired t-test

with Bonferroni correction hM4Di-mCherry+ [pre-CNO versus post-CNO], t11 = 4.9, p=0.001,

hM4Di-mCherry- [pre-CNO versus post-CNO], t9 = �2.3, p=0.12, mCherry+ [pre-CNO versus post-

CNO], t12 = 0.67, p=1.0), consistent with the interpretation that activation of hM4Di opens inwardly-

rectifying K+ channels. There were no changes in the excitability of mCherry- cells following bath

application of CNO. This is likely because pyramidal cells in ex vivo slices do not receive inhibitory

input from PV+ cells at baseline, and therefore inhibiting PV+ cells with bath application of CNO has

no further effect on pyramidal cell excitability. These experiments also demonstrate that the effect

of our manipulation (i.e., CNO-mediated inhibition) is specific for hM4Di+ cells.

Inhibition of PV+ cells in either ACC or CA1 does not alter ripple or
spindle incidence
Ripple-spindle coupling was previously found to increase following training in an odor-reward task

(Mölle et al., 2009). Here, we tested whether coupling is similarly increased following training in an
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Figure 1. Chemogenetic inhibition of PV+cells. (a) Representative images showing co-localization of hM4Di-mCherry+ and PV+ cells in PV-Cre mice

infused with AAV-DIO-hM4Di-mCherry virus in CA1 or ACC. (b) High overlap of PV+ cells that are mCherry+ (n = 10). (c) High overlap of mCherry+ cells

that are PV+ cells (n = 10). (d) Representative current clamp traces in hM4Di-mCherry+ cells and mCherry- cells in AAV-DIO-hM4Di-mCherry-infused

mice, and mCherry+ cells in AAV-DIO-mCherry-infused mice before and after bath application of CNO (hM4Di-mCherry+ n = 12, hM4Di-mCherry-n=10,

mCherry+ n = 13, mixed-model permutation test, 1000 permutations, [hM4Di-mCherry+ versus hM4Di-mCherry- versus mCherry+]: p=0.001). (e,f) Bath

application of CNO (e) decreases firing rate (post-CNO � pre-CNO) in hM4Di-mCherry+ cells (but not mCherry- cells, or mCherry+ cells in AAV-DIO-

mCherry-infused mice), (mixed-model permutation test, 1000 permutations, [hM4Di-mCherry+ versus hM4Di-mCherry- versus mCherry+] x [pre-CNO

versus post-CNO]: p=0.001), and (f) decreases input resistance in hM4Di-mCherry+ cells (but not mCherry- cells, or mCherry+ cells in AAV-DIO-mCherry-

infused mice), (�80 pA current injection, two-way ANOVA, [hM4Di-mCherry+ versus hM4Di-mCherry- versus mCherry+] x [pre-CNO versus post-CNO]:

F32,1 = 13.14, p=6.8�10�5, post hoc paired t-test with Bonferroni correction hM4Di-mCherry+ [pre-CNO versus post-CNO], t11 = 4.9, p=0.001, hM4Di-

mCherry- [pre-CNO versus post-CNO], t9 = �2.3, p=0.12, mCherry+ [pre-CNO versus post-CNO], t12 = 0.67, p=1.0). Data are mean ±s.e.m., or

individual mouse. (***p<0.001, n.s.: not significant).

DOI: https://doi.org/10.7554/eLife.27868.003

The following figure supplements are available for figure 1:

Figure supplement 1. Representative hM4Di-mCherry expression and LFP electrode locations in PV-Cre mice.

DOI: https://doi.org/10.7554/eLife.27868.004

Figure 1 continued on next page
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aversively-motivated task, contextual fear conditioning (Kim and Fanselow, 1992). We micro-

infused the AAV-DIO-hM4Di-mCherry vector in either the ACC or CA1 of PV-Cre mice, and recorded

local field potentials (LFPs) in both regions to simultaneously detect spindles and ripples (Figure 1—

figure supplement 1b). Mice were trained in contextual fear conditioning and immediately following

training administered either CNO or vehicle. ACC and CA1 activity was recorded both pre-training

(one day before training) and post-training (Figure 2a). Because ripple-spindle coupling is observed

most commonly during sleep, we measured ripples (100–250 Hz) and spindles (12–15 Hz) during

non-REM (NREM) periods in the pre- and post-training recording sessions using previously estab-

lished criteria (Boyce et al., 2016; Klausberger et al., 2003; Phillips et al., 2012) (Figure 2b). Inhib-

iting PV+ cells in either the ACC or CA1 with CNO did not alter the incidence of ripples (Figure 2c;

Virus-ACC: n = 8 per group; two-way repeated measures ANOVA pre-training versus post-training x

Vehicle (Veh) versus CNO; pre-training versus post-training F1,14 = 1.77, p=0.20; Veh versus CNO

F1,14 = 0.0007, p=0.98; interaction F1,14 = 2.91, p=0.11; Virus-CA1: n = 8 per group; pre-training ver-

sus post-training F1,14 = 1.317, p=0.27; Veh versus CNO F1,14 = 3.63, p=0.077; interaction F1,14 =

0.10, p=0.76), consistent with previous reports using genetic manipulation of PV+ cells (Gan et al.,

2017; Rácz et al., 2009). This finding contrasts with a previous study in which inhibiting CA3 PV+

cells disrupted ripple generation (Schlingloff et al., 2014), and suggests that PV+ cells may play

region-specific roles in modulating ripple oscillations. CNO-mediated inhibition of PV+ cells in either

the ACC or CA1 did not alter the incidence of spindles (Figure 2d; Virus-ACC: n = 8 per group; pre-

training versus post-training F1,14 = 1.48, p=0.24; Veh versus CNO F1,14 = 2.25, p=0.16; interaction

F1,14 = 3.54, p=0.081; Virus-CA1: n = 8 per group; pre-training versus post-training F1,14 = 0.039,

p=0.85; Veh versus CNO F1,14 = 0.002, p=0.96; interaction F1,14 = 2.74, p=0.12). Furthermore, CNO

did not affect ripple or spindle amplitude (Figure 2—figure supplement 1a–b), induce seizure-like

activity (i.e., high frequency oscillations) (Figure 2—figure supplement 1c–d), nor alter sleep archi-

tecture (total NREM, NREM epoch duration) (Figure 2—figure supplement 1e–f).

Inhibition of PV+ cells in either ACC or CA1 eliminates learning-induced
increases in ripple- spindle coupling
Having established that CNO-induced inhibition of PV+ cells does not alter ripple or spindle inci-

dence, we next asked whether inhibition of PV+ cells affects the co-incidence of these two oscilla-

tions. We computed the cross-correlation between ripple and spindle amplitudes and observed a

conditioning-dependent increase in ripple-spindle coupling in vehicle-treated mice. CNO-induced

inhibition of PV+ cells post-training eliminated the conditioning-dependent increase in coupling (Fig-

ure 3; Figure 3b: ACC: top; n = 8 per group; pre-training versus post-training F1,14 = 2.88, p=0.11;

Veh versus CNO F1,14 = 0.15, p=0.70; interaction F1,14 = 6.68, p=0.022; post hoc Bonferroni’s test,

Veh pre-training versus Veh post-training p=0.018, CNO pre-training versus CNO post-training

p>0.999; CA1: bottom; n = 8 per group; pre-training versus post-training F1,14 = 0.46, p=0.51; Veh

versus CNO F1,14 = 0.09, p=0.77; interaction F1,14 = 8.42, p=0.012; post hoc Bonferroni’s test, Veh

pre-training versus Veh post-training p=0.048, CNO pre-training versus CNO post-training p=0.28;

Figure 3c: ACC: top; n = 8 per group; Welch’s t-test t9.24 = 2.46, p=0.035; Veh versus one one-sam-

ple t-test t7 = 2.59, p=0.036; CNO versus one one-sample t-test t7 = 0.17, p=0.87; CA1: bottom;

Pre-training-normalized peak correlation coefficients, n = 8 per group; Mann-Whitney p=0.015; Veh

versus one one-sample Wilcoxon signed rank test, p=0.008; CNO versus one one-sample Wilcoxon

signed rank test, p=0.31). An identical pattern was observed using other measures of coupling

(cross-correlation of ripple and spindle events [Figure 2—figure supplement 1g–h] and ripple-spin-

dle joint occurrence rate [Figure 2—figure supplement 1i]). The peak levels of ripple-spindle cou-

pling, during both Pre- and Post-training, were significantly higher than chance in all ACC- and CA1-

infused mice (an example is shown in Figure 3—figure supplement 1a). This suggests that the

Figure 1 continued

Figure supplement 2. Representative spread of hM4Di-mCherry infection in ACC and CA1.

DOI: https://doi.org/10.7554/eLife.27868.005

Figure supplement 3. Decrease in firing rate was observed Post-CNO in (a) hM4Di-mCherry+cells (n = 12), but not in (b) hM4Di-mCherry- cells (n = 10),

or (c) mCherry+cells (n = 13).

DOI: https://doi.org/10.7554/eLife.27868.006
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baseline coupling still likely reflected a significant, continuous communication between ACC and

CA1, but this level was dynamically modulated by fear learning. Importantly, CNO treatment had no

effect on this conditioning-dependent increase in ripple-spindle coupling in mice micro-infused with

the control vector (AAV-DIO-mCherry) into the ACC, indicating that the combination of hM4Di and

CNO administration was necessary for the observed effects in vivo (Figure 3—figure supplement

1b). Our findings that post-conditioning inhibition of PV+ cells in either the ACC or CA1 eliminated

ripple-spindle coupling indicates that intact PV+ cell activity in both regions is necessary for coordi-

nating the enhanced hippocampal-neocortical communication following learning.
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Figure 2. Inhibition of PV+cell in ACC or CA1 does not alter ripple or spindle incidence. (a) Experimental design. (b) Example traces of LFPs recorded

in ACC (top two traces, low-pass filtered, and spindle-band filtered) and CA1 (bottom two traces, low-pass filtered, and ripple-band filtered), during a

typical sleep session in one animal. Grey regions indicate spindles (top) and ripples (bottom) detected in ACC and CA1 LFPs, respectively. Red lines

denote amplitude threshold used. Grey boxes denote ripple or spindle windows that passed detection threshold. (c,d) No change (c) in ripple

incidence in mice micro-infused with virus in ACC (n = 8 per group; two-way repeated measures ANOVA pre-training versus post-training x Vehicle

(Veh) versus CNO; pre-training versus post-training F1,14 = 1.77, p=0.20; Veh versus CNO F1,14 = 0.0007, p=0.98; interaction F1,14 = 2.91, p=0.11) or CA1

(n = 8 per group; pre-training versus post-training F1,14 = 1.317, p=0.27; Veh versus CNO F1,14 = 3.63, p=0.077; interaction F1,14 = 0.10, p=0.76), or (d)

spindle incidence in mice miroinfused with virus in ACC (n = 8 per group; pre-training versus post-training F1,14 = 1.48, p=0.24; Veh versus CNO F1,14 =

2.25, p=0.16; interaction F1,14 = 3.54, p=0.081) or CA1 (n = 8 per group; pre-training versus post-training F1,14 = 0.039, p=0.85; Veh versus CNO F1,14 =

0.002, p=0.96; interaction F1,14 = 2.74, p=0.12). Data are individual mouse, or mean ±s.e.m.

DOI: https://doi.org/10.7554/eLife.27868.007

The following figure supplement is available for figure 2:

Figure supplement 1. Inhibition of PV+cells in ACC or CA1 does not alter ripple or spindle amplitude, induce seizures, or alter sleep architecture, but

impairs learning-induced increase in ripple-spindle coupling.

DOI: https://doi.org/10.7554/eLife.27868.008
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We additionally examined the relationship between ripples and ACC delta oscillations since rip-

ples are also coupled to delta oscillations (Sirota et al., 2003), and enhancement of cortical delta

oscillations is associated with improved memory (Marshall et al., 2006). Similar to the effects of

inhibiting PV+ cells on disrupting ripple-spindle coupling, we observed that the post-conditioning

increase in coupling between ripple and ACC delta oscillations was eliminated by inhibition of PV+

cells in either the ACC or CA1 (Figure 3—figure supplement 1c–d). Importantly, inhibiting PV+ cells

did not affect the time lag between baseline ripple and spindle, or between ripple and delta, peak

correlation (Figure 3—figure supplement 1e–f). Thus, inhibition of PV+ cells prevents learning-

induced increases in the probability of coupling of hippocampal-neocortical oscillations, but not the

baseline interactions.
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Figure 3. Inhibition of PV+cell in ACC or CA1 eliminates learning-induced increases in ripple-spindle coupling. (a) Learning-induced increases in cross-

correlation between spindle and ripple amplitude in Veh-treated mice are prevented in CNO-treated mice micro-infused with hM4Di-mCherry in ACC

or CA1. Insets show correlation within ±0.5 s of spindle centre. (b) Peak cross-correlation coefficients quantified from (a), in mice micro-infused with virus

in ACC (top; n = 8 per group; pre-training versus post-training F1,14 = 2.88, p=0.11; Veh versus CNO F1,14 = 0.15, p=0.70; interaction F1,14 = 6.68,

p=0.022; post hoc Bonferroni’s test, Veh pre-training versus Veh post-training p=0.018, CNO pre-training versus CNO post-training p>0.999), or CA1

(bottom; n = 8 per group; pre-training versus post-training F1,14 = 0.46, p=0.51; Veh versus CNO F1,14 = 0.09, p=0.77; interaction F1,14 = 8.42, p=0.012;

post hoc Bonferroni’s test, Veh pre-training versus Veh post-training p=0.048, CNO pre-training versus CNO post-training p=0.28). (c) Pre-training-

normalized peak correlation coefficients in mice micro-infused with virus in ACC (n = 8 per group; Welch’s t-test t9.24 = 2.46, p=0.035; Veh versus one

one-sample t-test t7 = 2.59, p=0.036; CNO versus one one-sample t-test t7 = 0.17, p=0.87), or CA1 (Pre-training-normalized peak correlation

coefficients, n = 8 per group; Mann-Whitney p=0.015; Veh versus one one-sample Wilcoxon signed rank test, p=0.008; CNO versus one one-sample

Wilcoxon signed rank test, p=0.31). Data are individual mouse, or mean ±s.e.m. (*p<0.05).

DOI: https://doi.org/10.7554/eLife.27868.009

The following figure supplements are available for figure 3:

Figure supplement 1. Probability of ripple-spindle coupling is significantly greater than chance; and learning-induced increase in ripple-spindle

coupling is not prevented by CNO in mice infused with the control virus; similar to the effect on ripple-spindle coupling, inhibition of PV+cell in the

ACC or CA1 eliminates learning-induced increases in ripple-delta coupling, without changing the time lag between baseline ripple and spindle or delta

oscillations.

DOI: https://doi.org/10.7554/eLife.27868.010

Figure supplement 2. The learning-induced increase in ripple-spindle coupling is transient.

DOI: https://doi.org/10.7554/eLife.27868.011
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Chronic post-training inhibition of PV+ cells in either ACC or CA1
impairs consolidation of contextual fear memory
If increased ripple-spindle coupling is essential for memory consolidation (Igarashi, 2015), then

post-training inhibition of PV+ interneurons should impair memory consolidation. We first assessed

whether PV+ interneurons were activated following learning. Analysis of the activity-regulated gene,

Fos, shows that following fear conditioning, PV+ cell activity was elevated in both CA1 and ACC

(compared to untrained control mice), indicating that this population of cells is strongly activated by

learning (Figure 4—figure supplement 1a). These results are consistent with previous studies show-

ing strong activation of inhibitory interneurons following learning (Pi et al., 2013; Sparta et al.,

2014), and, specifically, PV+ cells following fear conditioning (Donato et al., 2013; Restivo et al.,

2015; Ruediger et al., 2011).

To directly assess whether intact PV+ cell activity in the CA1 or ACC is required for memory con-

solidation, we trained mice in contextual fear conditioning and then administered CNO or vehicle

for 4 weeks. Mice were then tested drug-free. Inhibition of PV+ cells in the ACC impaired consolida-

tion of contextual fear memory, with CNO-treated mice freezing less compared to vehicle-treated

controls. Similarly, chronic, post-training suppression of PV+ cells in CA1 impaired consolidation of

contextual fear memory (Figure 4a; ACC: Veh n = 6, CNO n = 8, Mann-Whitney test p=0.028; CA1:

Veh n = 7, CNO n = 9, t-test t14 = 3.42, p=0.004). Inhibiting PV+ interneurons in either region imme-

diately prior to testing did not affect freezing during test (Figure 4b; ACC: Veh n = 9, CNO n = 8, t-

test t15 = 0.44, p=0.66; CA1: Veh n = 6, CNO n = 5, t-test t9 = 0.28, p=0.78), indicating that PV+ cell

activity is not necessary for memory retrieval.

Using ex vivo patch-clamp experiments, we verified that chronic (month-long) CNO treatment

inhibited hM4Di-infected neurons without altering baseline neuronal excitability (Figure 4c–e;

Figure 4d: mCherry+ Veh n=14, CNO n = 20, mCherry- Veh n = 14, CNO n = 15, mixed-model per-

mutation test, 1000 permutations, CNO versus Veh: p=0.77; Figure 4e: mCherry+ Veh n=14, CNO

n = 20, mCherry- Veh n = 14, CNO n = 15, voltage clamp, mixed-model permutation test, 1000 per-

mutations, CNO versus Veh: p=0.88). Furthermore, analysis of the activity-regulated gene, Fos, con-

firmed that CNO water treatment reduced retrieval-induced activation of hM4Di-infected neurons in

both CA1 and ACC (Figure 4f–h, Figure 4—figure supplement 1c; Figure 4g: Veh n = 4, CNO

n = 5, t-test t7 = 1.37, p=0.21; Figure 4h: Veh n = 4, CNO n = 5, t-test t7 = 2.54, p=0.039).

The ACC also modulates pain affect (Bliss et al., 2016). Therefore, it is possible that our PV

manipulations in the ACC impact pain processing post-learning, rather than disrupting memory con-

solidation. To address this potential confound, we trained mice in a cued fear conditioning paradigm

in which a tone was paired with a shock. This form of fear learning does not depend on either the

CA1 or ACC (Fanselow, 2010; Rajasethupathy et al., 2015). In contrast to the effects observed in

contextual fear conditioning, chronic CNO-induced suppression of ACC PV+ cell activity did not

affect consolidation of tone fear conditioning (Figure 4—figure supplement 2d), suggesting that

post-shock pain processing was not altered. Moreover, similar chronic CNO-induced suppression of

ACC PV+ cell activity did not alter general exploratory or anxiety-related behaviours (Figure 4—fig-

ure supplement 2a–b).

Inhibition of PV+ cells in the first but not fourth post-training week
impairs consolidation of contextual fear memory
In these experiments, the activity of PV+ cells was chemogenetically suppressed for one month fol-

lowing training. However, in recording experiments, we detected increases in ripple-spindle cou-

pling immediately following contextual fear conditioning, and not 7 or 14 days later (Figure 3—

figure supplement 2). This suggests that increased ripple-spindle coupling may transiently contrib-

ute to memory consolidation, and, furthermore, that shorter periods of PV suppression might be suf-

ficient to impair consolidation. To test this idea, mice were fear conditioned and tested 28 days

later, as above. However, CNO was administered either during the first or last post-training week to

temporally restrict inhibition of PV+ interneurons (Figure 5a–b; Figure 5a: ACC: Veh n = 7, CNO

n = 6, Welch’s t-test t7.48 = 2.51, p=0.038; CA1: Veh n = 9, CNO n = 9, t-test t16 = 2.87, p=0.011;

Figure 5b: ACC: Veh n = 7, CNO n = 7, Mann-Whitney test p=0.90; CA1: Veh n = 8, CNO n = 9, t-

test t15 = 0.62, p=0.55). CNO-induced suppression of PV+ cell activity in the ACC in the first, but not

last, post-training week impaired consolidation of contextual fear memory. Similarly, post-training
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Figure 4. Inhibition of PV+cell in ACC or CA1 during the retention delay prevents fear memory consolidation. (a) Decreased freezing during fear

memory test (28 d following training) in mice micro-infused with hM4Di-mCherry virus in ACC or CA1 and treated with CNO versus Veh post-training

(i.p. systemic injection post-training followed by drug delivery (CNO or Veh) in water for days 1–27 and 1 d clean-water washout) (ACC: Veh n = 6, CNO

n = 8, Mann-Whitney test p=0.028; CA1: Veh n = 7, CNO n = 9, t-test t14 = 3.42, p=0.004). (b) No disruption in freezing during fear memory test (28 d

Figure 4 continued on next page
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suppression of PV+ interneuron activity in CA1 during the first, but not last, post-training week

impaired consolidation of contextual fear memory.

Suppression of PV+ interneuron activity in either the ACC or CA1 produced a similar pattern of

results using a weaker conditioning protocol (Figure 5—figure supplement 1). More importantly,

we observed the same pattern of behavioral results in mice that underwent in vivo recording

(Figure 5c; ACC: Veh n = 8, CNO n = 8, Mann-Whitney test p=0.05; CA1: Veh n = 8, CNO n = 8, t-

test t14 = 2.64, p=0.020). Furthermore, analysis of the activity-regulated gene, Fos, confirmed that

activation of hM4Di-infected neurons was reduced by week-long CNO treatment in both CA1 and

ACC (Figure 4—figure supplement 1b).

The absence of effects on retrieval (Figure 4b), as well as at time points remote to training

(Figure 5b), suggests that PV+ interneuron suppression in the ACC or CA1 does not simply interfere

with the ability of mice to freeze. Indeed, chronic pre-training suppression of PV+ interneurons does

not alter subsequent learning or retrieval (Figure 4—figure supplement 2c). Together, these results

indicate that the increase in ripple-spindle coupling within a relatively narrow time window following

training is required for successful memory consolidation.

Inhibition of PV+ cells immediately post-training impairs consolidation
of contextual fear memory
To further narrow down the window in which PV+ cell activity in ACC and CA1 contributes to mem-

ory consolidation, we conducted an additional set of experiments. In these experiments, mice were

fear conditioned and tested 1 day later. Immediately following training, mice received a single injec-

tion of CNO or Veh (Figure 6a). Inhibition of PV+ cells in CA1 impaired consolidation of contextual

fear memory (Veh n = 7, CNO n = 10, t-test t15 = 2.75, p=0.015), consistent with a recent report

(Ognjanovski et al., 2017). Similarly, inhibition of PV+ cells in ACC impaired consolidation of contex-

tual fear memory (Veh n = 12, CNO n = 16, t-test t26 = 3.10, p=0.0046). In contrast, inhibiting PV+

interneurons in either region immediately prior to testing did not affect freezing during test

(Figure 6b; ACC: Veh n = 7, CNO n = 12, t-test t17 = 0.71, p=0.48; CA1: Veh n = 6, CNO n = 6, t-

test t10 = 0.74, p=0.94), indicating that PV+ cell activity is not necessary for memory retrieval 24 hr

following training.

Discussion
Ripple-spindle coupling has been proposed to facilitate memory consolidation, and is increased fol-

lowing odor-reward learning (Mölle et al., 2009). Furthermore, promoting ripple-spindle coupling

enhances consolidation of an object-location memory (Maingret et al., 2016). However, previous

studies did not directly test whether this form of hippocampal-neocortical communication is

Figure 4 continued

following training) in mice micro-infused with hM4Di-mCherry virus in ACC or CA1 and treated with CNO versus Veh (i.p. injection) prior to retrieval test

on the 28th day (ACC: Veh n = 9, CNO n = 8, t-test t15 = 0.44, p=0.66; CA1: Veh n = 6, CNO n = 5, t-test t9 = 0.28, p=0.78). (c) Design for ex vivo

experiments to assess effects of chronic CNO or Veh treatment on neuronal excitability in hM4Di-mCherry-infected and non-infected cells. (d) No effect

of chronic CNO on firing rates (mCherry+ Veh n=14, CNO n = 20, mCherry- Veh n = 14, CNO n = 15, mixed-model permutation test, 1000

permutations, CNO versus Veh: p=0.77), or (e) potassium currents (mCherry+ Veh n=14, CNO n = 20, mCherry- Veh n = 14, CNO n = 15, voltage clamp,

mixed-model permutation test, 1000 permutations, CNO versus Veh: p=0.88) in mCherry+ or mCherry- cells. (f) Design for in vivo experiments to assess

the effect of chronic CNO treatment on retrieval-induced neuronal activation. (g) Levels of retrieval-induced c-Fos expression in ACC mCherry- cells

(number of co-localized mCherry- and c-Fos+/10,000 mm2) were not different between groups receiving chronic CNO versus Veh. (Veh n = 4, CNO

n = 5, t-test t7 = 1.37, p=0.21), but (h) CNO reduced activation of hM4Di-mCherry+ neurons (number of co-localized mCherry+ and c-Fos+ cells/total

number of mCherry+ cells x 100), as expected (Veh n = 4, CNO n = 5, t-test t7 = 2.54, p=0.039). Data are mean ±s.e.m. (*p<0.05, **p<0.01).

DOI: https://doi.org/10.7554/eLife.27868.012

The following figure supplements are available for figure 4:

Figure supplement 1. Fear learning strongly activates PV+cells in both ACC and CA1; 7- or 28 day treatment of CNO reduces their activity.

DOI: https://doi.org/10.7554/eLife.27868.013

Figure supplement 2. Chronic inhibition of PV+cells does not alter anxiety level or locomotion, or alter subsequent learning or retrieval, or affect post-

shock sensitivity to pain.

DOI: https://doi.org/10.7554/eLife.27868.014
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Figure 5. Inhibition of PV+cell in ACC or CA1 during first, but not fourth, post-training week prevents fear memory consolidation. (a) Decreased

freezing during fear memory test (28 d following training) in mice micro-infused with hM4Di-mCherry virus in ACC or CA1 and treated with CNO versus

Veh post-training (i.p. systemic injection post-training followed by drug delivery (CNO or Veh) in water for days 1–7) (ACC: Veh n = 7, CNO n = 6,

Welch’s t-test t7.48 = 2.51, p=0.038; CA1: Veh n = 9, CNO n = 9, t-test t16 = 2.87, p=0.011). (b) No disruption in freezing during fear memory test (28 d

Figure 5 continued on next page
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necessary for successful memory consolidation, nor identify the cellular bases for mediating learning-

dependent changes in ripple-spindle coupling. Here we found that contextual fear learning

increased ripple-spindle coupling, and, furthermore, that chemogenetic inhibition of PV+ cells in the

ACC or CA1 both eliminated this learning-induced increase in ripple-spindle coupling and impaired

memory consolidation.

Figure 5 continued

following training) in mice micro-infused with hM4Di-mCherry virus in ACC or CA1 and treated with CNO versus Veh post-training (drug delivery (CNO

or Veh) in water for days 21–27 and 1 d clean-water washout) (ACC: Veh n = 7, CNO n = 7, Mann-Whitney test p=0.90; CA1: Veh n = 8, CNO n = 9, t-

test t15 = 0.62, p=0.55). (c) Decreased freezing during fear memory test (14 d following training) in mice micro-infused with hM4Di-mCherry virus in ACC

or CA1, implanted with LFP recording electrode and treated with CNO versus Veh post-training (i.p. systemic injection post-training followed by drug

delivery (CNO or Veh) in water for days 1–7) (ACC: Veh n = 8, CNO n = 8, Mann-Whitney test p=0.05; CA1: Veh n = 8, CNO n = 8, t-test t14 = 2.64,

p=0.020). Data are mean ±s.e.m. (*p<0.05).

DOI: https://doi.org/10.7554/eLife.27868.015

The following figure supplement is available for figure 5:

Figure supplement 1. Inhibition of PV+cells in the ACC or CA1 during retention delay also impairs memory consolidation using a weaker 2-shock fear

conditioning protocol.

DOI: https://doi.org/10.7554/eLife.27868.016
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Figure 6. Inhibition of PV+cell in ACC or CA1 immediately post-training, but not during retrieval, impairs fear memory recall at 1 day. (a) Decreased

freezing during fear memory test (1 d following training) in mice micro-infused with hM4Di-mCherry virus in ACC or CA1 and treated with CNO versus

Veh post-training (i.p. systemic injection post-training) (ACC: Veh n = 12, CNO n = 16, t-test t26 = 3.10, p=0.0046; CA1: Veh n = 7, CNO n = 10, t-test

t15 = 2.75, p=0.015). (b) No disruption in freezing during fear memory test (1 d following training) in mice micro-infused with hM4Di-mCherry virus in

ACC or CA1 and treated with CNO versus Veh (i.p. injection) prior to retrieval test on the 1 st day (ACC: Veh n = 7, CNO n = 12, t-test t17 = 0.71,

p=0.48; CA1: Veh n = 6, CNO n = 6, t-test t10 = 0.74, p=0.94). Data are mean ± s.e.m. (*p<0.05, **p<0.01).

DOI: https://doi.org/10.7554/eLife.27868.017
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Both mono- and multi-synaptic pathways between ACC and CA1 can support bidirectional com-

munication between these two regions via ripple-spindle coupling. We observed an average lag

between ripple and spindle peak amplitude of ~70 ms, consistent with ranges previously reported

(40–244 ms; e.g., [Peyrache et al., 2009; Phillips et al., 2012; Siapas and Wilson, 1998; Wang and

Ikemoto, 2016; Wierzynski et al., 2009]). This suggests that these two events are more likely coor-

dinated via multiple synapses. Although the exact mechanism is unclear, there are several possibili-

ties for bidirectional modulations. For example, ACC can modulate dorsal CA1 activity via thalamic

regions, including nucleus reuniens (e.g., [Varela et al., 2014; Xu and Südhof, 2013]). Interestingly,

mPFC neurons that project to the nucleus reuniens preferentially synapse onto hippocampus-projec-

ting reuniens cells (Vertes et al., 2007). In addition, a subset of neurons in the nucleus reuniens proj-

ect to inhibitory interneurons in CA1 (Dolleman-Van der Weel and Witter, 2000). Furthermore, a

group of nucleus reuniens cells also has collaterals in both CA1 and mPFC, potentially coordinating

activities between the two regions (Varela et al., 2014). CA1 can, in turn, modulate ACC via subicu-

lum (Varela et al., 2014), ventral hippocampus, retrosplenial cortex (e.g.,[Cenquizca and Swanson,

2007]), infralimbic cortex [Swanson, 1981], and/or prelimbic cortex [Thierry et al., 2000]).

PV+ cells likely coordinate ripple-spindle coupling by facilitating synchronized spiking during rip-

ples and spindles. In CA1 and mPFC, PV+ cell activity is phase-locked to ripples (Klausberger et al.,

2003) and spindles (Averkin et al., 2016; Hartwich et al., 2009; Peyrache et al., 2011), respec-

tively. In CA1, inhibition of PV+ cells disrupts phase-locked firing of PV+ cells to ripples, and ripple

coherence (Gan et al., 2017; Stark et al., 2014). This is consistent with the proposed role of PV+

cells acting as a ‘clocking mechanism’ in circuits, ensuring that specific cell populations fire at appro-

priate times (Freund and Katona, 2007).

Inhibition of PV+ cells in the ACC or CA1 did not affect baseline probability of ripple-spindle cou-

pling, but prevented learning-induced increases in ripple-spindle coupling. In the absence of learn-

ing, PV+ cells show moderate levels of activation. However, following learning we observed strong

activation of PV+ cells in both regions, as well as a corresponding increase in the probability of rip-

ple-spindle coupling. Importantly, CNO-mediated inhibition did not eliminate PV+ cell activity, but

reduced it to pre-learning or home cage levels (as shown in our ex vivo and in vivo experiments).

Therefore, we would expect that chemogenetic inhibition of PV+ cells following learning should not

eliminate ripple-spindle coupling altogether, but instead, reduce it to the levels that occur in the

absence of training, which is what we observed. Consistent with this idea, fear conditioning increases

hippocampal network stability (Donato et al., 2013), and chemogenetic inhibition of PV+ cells in

CA1 blocks this learning-induced increase (Ognjanovski et al., 2017). Notably, when PV+ activity

levels are driven below baseline levels via other techniques, there is an associated reduction in the

probability of ripple-spindle coupling, even in the absence of learning (Phillips et al., 2012). This

suggests that the overall levels of PV+ cell activity regulate the probability of ripple-spindle coupling.

Accordingly, strong activation of PV+ cells during learning (Donato et al., 2013; Restivo et al.,

2015; Ruediger et al., 2011) may increase coherence both within and across brain regions. Synchro-

nous activity, such as ripple-spindle coupling, is particularly effective at driving inter-regional com-

munication and plasticity required for consolidation (Fell and Axmacher, 2011; Igarashi, 2015;

Wang et al., 2010). Therefore, inhibition of PV+ cell activity in either the CA1 or the mPFC likely pre-

vented this learning-induced increase in coupling, by perturbing intra-regional synchrony of action

potentials during ripples and spindles, and consequently, the coordination of inter-regional

communication.

In contrast, inhibition of PV+ cells in either ACC or CA1 immediately prior to testing did not affect

recall (at 1 or 28 days post-training). Since overall activity in ACC and CA1 are known to be impor-

tant for retrieval of contextual fear memories, these observations suggest that the activity of non-

PV+ cells was not affected by our PV manipulations. Consistent with this, the c-Fos levels in mCherry-

cells in these regions following CNO treatment were not altered.

Ripples are associated with simultaneous memory trace reactivation in the hippocampus and neo-

cortex (Peyrache et al., 2011; Peyrache et al., 2009; Schwindel and McNaughton, 2011). There-

fore, impaired ripple coherence following CA1 inhibition of PV+ cells (Stark et al., 2014) likely

reduced coordinated hippocampal output to the neocortex, and consequently decreased the proba-

bility of simultaneous memory trace reactivation in the neocortex. In the mPFC, memory trace reacti-

vation is often followed by occurrence of spindles, and increased activation of local PV+ cells

(Peyrache et al., 2011). This is thought to favor the consolidation of recently modified synapses
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during memory reactivation, while suppressing interfering inputs to the neocortex. Since ACC inhibi-

tion of PV+ cells was sufficient to disrupt ripple-spindle coupling (without changing the overall inci-

dence of spindles or ripples), this suggests that our manipulation interfered with the timely

occurrence of spindles following ripples/memory reactivation. Therefore, inhibition of ACC PV+ cells

likely prevented the strengthening of synapses in the neocortex that is necessary for memory

consolidation.

Our findings provide support for the idea that PV+ cells are necessary for learning-associated

increases in ripple-spindle coupling probability, and consequently, successful memory consolidation.

Ripple-spindle coupling is also increased following odor-reward learning (Mölle et al., 2009), and

therefore it seems plausible that the role of PV+ interneurons is similar during consolidation of appe-

titively-motivated (as well as aversively-motivated) tasks. There are, however, alternative possibilities

for why our PV manipulation resulted in consolidation deficit. For example, it is possible that the

effects of inhibition of PV+ cells outside of the sleep period (i.e., the ripple-spindle coupling window)

could contribute to the consolidation deficits that we observed.

Moreover, inhibition of PV+ cells may have increased lateral disinhibition and disrupted local cir-

cuit activity, in addition to disrupting global communication (i.e., ripple-spindle coupling). While we

cannot definitively exclude this possibility, three pieces of evidence suggest that the observed con-

solidation deficits are mediated primarily by disruption of global communication. First, we found

that inhibition of PV+ cells in either ACC or CA1 immediately following training impaired memory

tested 24 hr later. Activity in CA1, but not ACC, is critical for expression of contextual fear memory

at this time point (Frankland and Bontempi, 2005). Therefore, if our manipulation of PV+ cells activ-

ity only affected local activity, we would not predict the memory deficits following inhibition of ACC

PV+ cells. Second, inhibition of PV+ cells had no effect on retrieval of contextual fear memories,

tested either 24 hr or 28 days post-training, suggesting again that the overall local activity is rela-

tively undisturbed. This reinforces the idea that our PV manipulation is distinct from other manipula-

tions that more profoundly impact pyramidal cell activity in these regions. Third, consistent with this,

we did not observe increased activation in mCherry- cells in targeted regions following inhibition of

PV+ interneurons. Therefore, the more plausible explanation is that the observed deficits are caused

by disrupted global synchrony (i.e., ripple-spindle coupling).

We used a chemogenetic approach to manipulate PV+ cell activity in ACC and CA1. One advan-

tage of this approach is that chemogenetic-induced inhibition does not completely eliminate the

activity of infected cells (e.g., compared to some forms of optogenetic silencing), and therefore is

less likely to produce large-scale changes in overall circuit activity. Consistent with this, we did not

observe a detectable increase in activation of mCherry- cells in either in vivo or ex vivo experiments.

This may also explain why our PV manipulation did not produce broad changes in local field poten-

tial at theta (Amilhon et al., 2015) or gamma (Sohal et al., 2009) frequencies, as previously

observed using optogenetic silencing of PV+ cells. The absence of changes in the activity of non-

infected neurons may also be related to the fact that PV+ cells represent only a subpopulation of

GABAergic interneurons in both ACC and CA1 (Bezaire and Soltesz, 2013; Rudy et al., 2011;

Tremblay et al., 2016), and therefore it is plausible that non-infected cells in the circuit can still

maintain homeostasis of spiking activity when the activity of PV+ cells is suppressed. Moreover,

reducing PV-mediated inhibition could lead to disinhibition of other inhibitory cell types (e.g.,

[Lovett-Barron et al., 2012]), thereby producing little overall change in excitation or inhibition.

In conclusion, here we showed that contextual fear learning increased the probability of ripple-

spindle coupling. Inhibition of PV+ cells in either ACC or CA1 eliminated this learning-induced

enhancement and impaired fear memory consolidation. These data indicate that temporally corre-

lated activities across brain regions are necessary for contextual fear memory consolidation, and our

study provides evidence for an integral role for PV+ cells in this process.

Materials and methods

Mice
All procedures were approved by the Canadian Council for Animal Care (CCAC) and the Animal

Care Committees at the Hospital for Sick Children and the University of Toronto. Experiments were

conducted on 8–12 week old male and female PV-Cre knock-in transgenic mice where Cre-
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recombinase was targeted to the Pvalb locus, without disrupting endogenous PV expression (RRID:

IMSR_JAX:017320). The PV-Cre mice were originally generated by Silvia Arber (Hippenmeyer et al.,

2005), and obtained from Jackson Lab.

The mice were bred as homozygotes, weaned at 21 days, and group housed with 2–5 mice per

cage in a temperature-controlled room with 12 hr light/dark cycle (light on during the day). All

experiments were performed between 8 am and 12 pm. Mice were given ad libitum access to food

and water. Mice were randomly assigned to experimental groups. The experimenter was aware of

the experimental group assignment, as the same experimenter conducted the training and testing

of all mice, but was blinded during behavioral assessment and cell counting experiments. Mice were

excluded from analysis based on post-experimental histology: only mice with robust expression of

the viral vector (hM4Di-mCherry) specifically in the targeted region were included. The spread of

virus was estimated to be the following: CA1: AP �1.2 ~ �2.4 mm, ML ±0.2 ~ 3 mm, DV �1.5 ~ �2

mm; ACC: AP 1.2 ~ �0.2 mm; ML ±0.1 ~ 0.8 mm, DV �0.7 ~ �2 mm (Figure 1—figure supplement

2). For the in vivo electrophysiology experiments, only mice with correct electrode placements in

both the ACC and CA1, as well as robust viral vector expression in the targeted region were

included. Specifically, only mice where we could reliably detect sharp-wave ripples during the Pre-

training recording sessions were included, to ensure that the electrodes were in CA1 cell layer. In

rare cases where electrodes deteriorated prior to the completion of all experiments, and hence

resulting in high noise background and no viable signals, subsequent recordings were not included

in the analysis (Figure 3—figure supplement 1g. ACC-Veh, 2 mice).

Viral micro-infusion
AAV8-hSyn-DIO-hM4Di-mCherry and AAV8-hSyn-DIO-mCherry viruses were obtained from UNC

Vector Core (Chapel Hill, NC). In the DREADD receptor virus, AAV8-hSyn-DIO-hM4Di-mCherry, the

double-floxed inverted open reading frame of hM4Di fused to mCherry can be expressed from the

human synapsin (hSyn) promoter after Cre-mediated recombination. Similarly, in the control viral

vector, AAV8-hSyn-DIO-mCherry, the double-floxed inverted open reading frame of the mCherry

fluorescence tag can be expressed from the hSyn promoter after Cre-mediated recombination.

Four weeks prior to behaviour or electrophysiology experiments, PV-Cre mice were micro-infused

bilaterally with one of these viral vectors (1.5 ml per side, 0.1 ml/min) in the ACC (+0.8 mm AP,±0.3

mm ML, �1.7 mm DV, from bregma according to Paxinos and Franklin [2001]) or CA1 (�1.9 mm

AP, ±1.3 mm ML, - 1.5 mm DV). Similar to the previously described protocol (Richards et al., 2014),

mice were pretreated with atropine sulphate (0.1 mg/kg, intraperitoneal), then anesthetized with

chloral hydrate (400 mg/kg, intraperitoneal). Mice were then placed on a stereotaxic frame, and

holes were drilled in the skull at the targeted coordinates. Viral vector was micro-infused at 0.1 ml/

min via glass pipettes connected to a Hamilton microsyringe with polyethylene tubing. After micro-

infusion, the glass pipette was left in the brain for another 5 min to allow sufficient time for the virus

to diffuse. We have found that this infusion procedure produces high infection in the targeted

region, without significant spread outside the region of interest (Rashid et al., 2016; Richards et al.,

2014). Mice were then treated with analgesic (ketoprofen, 5 mg/kg, subcutaneous) and 1 ml of 0.9%

saline (subcutaneous).

Drug
Clozapine-N-oxide (CNO, kindly provided by Dr. Bryan Roth, University of North Carolina) was dis-

solved in dimethyl sulfoxide (DMSO) to produce a 10 mg/ml CNO stock solution. For i.p. injections,

CNO stock solution was mixed with 0.9% saline, and injected at a dose of 5 mg/kg. The Vehicle

(Veh) control group received equivalent amount of DMSO solution dissolved in 0.9% saline. For

administration of CNO in the drinking water, preliminary experiments were first carried out to deter-

mine the amount of water a mouse consumes per day (approximately 3–5 ml of water/day). Based

on the number of mice per cage, the amount of water required for 7 days was calculated for each

cage, and 5 mg/kg of CNO/mouse/day was added to the water. We added sucrose (1%) to the

drinking water to encourage CNO consumption. The control group received vehicle in 1% sucrose.

For experiments that required more than 7 days of CNO/vehicle water, the water was changed every

7 days.
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Behavioural experiments
Contextual fear conditioning
Four weeks after micro-infusion with hM4Di-mCherry virus in ACC or CA1, PV-Cre mice were trained

in a standard contextual fear conditioning paradigm, as previously described (Wang et al., 2009).

Mice were first habituated to the conditioning chamber for 120 s, then given 3 shocks (0.5 mA each,

60 s apart; 3-shock protocol), and remained in the chamber for another 60 s following the last shock.

For all experiments that involve chronic CNO treatment, mice were given clean drinking water for

24 hr before test on the 28th day. This washout period was designed such that mice could be tested

drug-free. On the 28th day, mice were placed back into the training context for 5 min, without

shock. The amount of time mice spent freezing (% freezing, with minimum bout of 2 s) was moni-

tored with overhead cameras, and calculated using automatic scoring software FreezeFrame (Acti-

metrics). To investigate the robustness of the effect, the same experiments were performed using

the 2-shock protocol, where mice were habituated to the chamber for 120 s, then received 2 foot

shocks (0.5 mA), 60 s apart (Figure 5—figure supplement 1). Mice remained in the chamber for

another 60 s following the final shock, and were then returned to the home cage.

To examine the effect of inhibiting PV+ cells on retrieval, mice were injected i.p. with CNO or Veh

30 min prior to retrieval test (either 24 hr, or 28 days post-training). For acute inhibition experiments

(Figure 6a), mice received a single i.p. injection of CNO or Veh immediately after training, and were

tested 24 hr later.

To control for the possibility that chronic CNO impacts the ability to learn new information, mice

first were micro-infused with hM4Di-mCherry virus in the ACC, then four weeks later, given 27 days

of continuous CNO or vehicle water treatment. After 24 hr of clean water, mice were trained in con-

textual fear conditioning and memory assessed 24 hr later (Figure 4—figure supplement 2c).

Tone fear conditioning
Four weeks prior to conditioning, mice were micro-infused with hM4Di-mCherry virus in the ACC

(Figure 4—figure supplement 2d). Similar to the previously established protocol (Rashid et al.,

2016), on the day of training, mice were habituated to the conditioning chamber (square chamber,

grid floor, ethanol scent) for 120 s, then given 1 tone-shock pairing (60 s tone [2.8 kHz, 85 dB] co-ter-

minating with 2 s foot shock at 0.7 mA). Immediately afterwards, mice were treated with i.p. sys-

temic injection of CNO (5 mg/kg) or vehicle, followed by continuous CNO or vehicle water

treatment from day 1–7 and regular water from day 7–28. On day 28, mice were tested in a novel

context (round chamber, smooth floor, no ethanol scent) without shock (120 s no tone, followed by

60 s tone). The amount of time mice spent freezing during test was monitored and calculated, as

described above.

c-Fos analysis
To examine the effectiveness of chronic CNO treatment in suppressing PV+ cell activity in vivo (Fig-

ure 4, Figure 4—figure supplement 1b–c), PV-Cre mice were first micro-infused with AAV-DIO-

hM4Di-mCherry virus in the ACC or CA1, as described above. Four weeks after viral micro-infusion,

mice were trained in contextual fear conditioning (2- or 3-shock protocol), treated with chronic CNO

or vehicle in water, and tested at different delays (7 or 28 days). Ninety minutes post-test, mice were

perfused, and their brains used for c-Fos staining (see below).

To examine the activity of PV+ cells during learning, a group of PV-Cre mice either remained in

home cage, or were trained in contextual fear conditioning (3-shock protocol) (Figure 4—figure sup-

plement 1a). Ninety minutes post-training, all mice were perfused, and their brains used for c-Fos

and PV staining (see below).

Open field
To control for the possibility that chronic CNO alters anxiety levels, mice were micro-infused with

hM4Di-mCherry virus in the ACC, then four weeks later, given 27 days of continuous CNO or vehicle

water treatment. After 24 hr of clean water, mice were placed in the centre of an open square arena

(45 cm x 45 cm x 20 cm height) and allowed to explore for 10 min (Arruda-Carvalho et al., 2014).

The location of the mouse was tracked using an overhead camera. The amount of time a mouse

spent in each of the 3 zones (1. Outer; 2. Middle; 3. Inner), as well as total distance traveled
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(Figure 4—figure supplement 2a–b) was assessed using Limelight2 software (Actimetrics). An

increase in anxiety is thought to be reflected as the mouse spending more time in the outer zone of

the open field or showing decreased locomotor activity (Archer, 1973).

Immunohistochemistry
Immunofluorescence staining was conducted as previously described (Restivo et al., 2015). Specifi-

cally, at the end of behaviour experiments, mice were transcardially perfused with 1x PBS followed

by 10% paraformaldehyde. For the c-Fos experiment (Figure 4f–g, Figure 4—figure supplement

1), mice were perfused 90 min after behaviour test or training. Brains were fixed overnight at 4�C,

and transferred to 30% sucrose solution for 48 hr. Brains were sectioned coronally using a cryostat

(Leica CM1850), and 50 mm sections were obtained for the entire medial prefrontal cortex or hippo-

campus, for ACC- or CA1-infused animals, respectively.

For PV and c-Fos immunostaining, free-floating sections were blocked with PBS containing 2.5%

bovine serum albumin and 0.3% Triton-X for 30 min. Afterwards, sections were incubated in PBS

containing mouse monoclonal anti-PV primary antibody (1:1000 dilution; Sigma-Aldrich Cat# P3088

RRID:AB_477329) and rabbit polyclonal anti-c-Fos primary antibody (1:1000 dilution; Santa Cruz Bio-

technology Cat# sc-52 RRID:AB_2106783) for 48 hr at 4˚C. Sections were washed with PBS (3 times),

then incubated with PBS containing goat anti-mouse ALEXA Fluor 488 (for PV, 1:500 dilution;

Thermo Fisher Scientific Cat# A-11001 RRID:AB_2534069) and goat anti-rabbit ALEXA Fluor 633 (for

c-Fos, 1:500 dilution, Thermo Fisher, USA Scientific Cat# A-21070 RRID:AB_2535731) secondary anti-

body for 2 hr at room temperature. Sections were washed with PBS, mounted on gel-coated slides,

and coverslipped with Vectashield fluorescent mounting medium (Vector Laboratories). Images were

obtained using a confocal laser scanning microscope (LSM 710; Zeiss) with a 20X objective.

For cell counting experiments (Figures 1 and 4 and Figure 4—figure supplement 1), every sec-

ond section in either ACC or CA1 was assessed for mCherry+, PV+ and c-Fos+ cells. Approximately

4–6 sections/mouse were counted and averaged, with 3–6 mice/group. Transduction specificity (total

numbers of PV+ cells total numbers of mCherry+ cells x 100), and efficiency (total numbers of

mCherry+ cells/total numbers of PV+ cells x 100) were calculated. To evaluate the effectiveness of

CNO in vivo, c-Fos co-localization in mCherry+ cells (total numbers of c-Fos+ and mCherry+ co-local-

ized cells/total numbers of mCherry+ cells x 100) was calculated. To assess the activity in mCherry-

cells, c-Fos+ cells that are not co-localized with mCherry+ cells in the region was also counted, and

normalized to the area in the same section (total numbers of c-Fos+ and mCherry- cells/10,000 mm2).

To evaluate the activity of PV+ cells during learning, c-Fos co-localization in PV+ cells in each region

(total numbers of c-Fos+ and PV+ co-localized cells/total numbers of PV+ cells x 100) was calculated.

Ex vivo slice electrophysiology
PV-Cre mice were micro-infused with the DREADD receptor virus (AAV-DIO-hM4Di-mCherry) or the

control vector (AAV-DIO-mCherry) in the ACC (as above). Mice were separated into two groups: (1)

acute tests, to assess the excitability of ACC neurons upon direct application of CNO (Figure 1), or

(2) chronic tests, to assess whether lasting changes arise in the excitability of neurons after 28 days

of continuous CNO delivered in drinking water (Figure 4c–e).

For the acute group, 4 weeks following viral micro-infusion mice were anesthetized with 1.25% tri-

bromoethanol (Avertin) and underwent cardiac perfusion with 10 mL of a chilled cutting solution

(containing, in mM: 60 sucrose, 83 NaCl, 25 NaHCO3, 1.25 NaH2PO4, 2.5 KCL, 0.5 CaCl2, 6 MgCl2,

20 D-glucose, 3 Na-pyruvate, 1 ascorbic acid), injected at a rate of approximately 2 mL/min. After

perfusion, the brain was quickly removed and cut coronally (350 mm thickness) with a vibratome

(Leica, VT1200S) in chilled cutting solution in order to obtain live, healthy slices containing the ACC.

Slices were transferred to a recovery chamber comprising of a 50:50 mix of warm (34˚C) cutting solu-

tion and aCSF (containing, in mM: 125 NaCl, 25 NaHCO3, 1.25 NaH2PO4, 2.5 KCl, 1.3 CaCl2,

1MgCl2, 20 D-glucose, 3 Na-pyruvate, 1 ascorbic acid). Following 40–60 min of incubation, slices

were transferred into a different incubation chamber with room temperature aCSF. Within the

recording chamber, aCSF was heated to 32˚C using an in-line heater (Warner Instruments, SF-28).

Whole-cell current clamp recordings were made using glass pipettes filled with internal solution

(comprising, in m): 126 K D-Gluconate, 5 KCl, 10 HEPES, 4 MgATP, 0.3 NaGTP, 10 Na-phosphocrea-

tine). Glass capillary pipettes were pulled with a flaming brown pipette puller (Sutter, P-97) to tip
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resistances between 3–8 MW. We determined the effects of acute CNO application by patching indi-

vidual mCherry+ or mCherry� cells and injecting square 500 ms current pulses into the cell (in 40 pA

steps, ranging from �80 pA to 400 pA), both before and after CNO application (washing aCSF con-

taining 10 mM CNO onto the slice for 10 min). We calculated the difference in firing rate (using the

positive current injections) and input resistance (using the negative current injections) pre- and post-

CNO application.

For the chronic group, 4 weeks following viral micro-infusion, mice were given either CNO or

vehicle in their drinking water for 28 days. On the 29th day, mice received clean drinking water for

24 hr, to flush out the CNO in their system and allow testing in drug-free conditions. Extraction and

incubation procedures followed those above. In addition to the current clamp recordings, voltage

clamp recordings were obtained by clamping the voltage for 500 ms in 20 mV steps from �90 mV

to +30 mV. To estimate the strength of the active, non-inactivating K+ currents (which may have

been altered by chronic CNO exposure) we measured the steady state current in the final 400 ms of

the voltage step.

In vivo electrophysiology
Four weeks after micro-infusion of hM4Di-mCherry or mCherry virus in the ACC or CA1 in PV-Cre

mice, custom-made local field potential (LFP) electrodes were implanted in the ACC (+0.8 mm

AP,±0.3 mm ML, �1.8 mm DV) and CA1 (�1.9 mm AP, ±1.3 mm ML,1 �1.7 mm DV). Similar to

described above, mice were first anesthetized with 2% isoflurane and placed on a stereotaxic frame.

Holes were drilled in the skull at the targeted coordinates, and virus was delivered as described

above. Four weeks following viral vector micro-infusion, mice were implanted with LFP electrodes.

Mice were anesthetized with 2% isoflurane and mounted onto a stereotaxic frame. Miniature stain-

less steel screw was placed in the cerebellum for ground, and a stripped stainless steel wire was

inserted into the neck muscle for recording electromyogram (EMG) activity. Holes were drilled at the

targeted coordinates, and custom made Teflon-coated stainless steel LFP electrodes (A-M Systems,

Carlsborg, WA) bundled in 23–25G stainless steel cannulas were slowly lowered to the ACC (bipolar

electrode with 0.3 mm distance between electrodes) and CA1 (tripolar electrode with 0.3 mm dis-

tance between electrodes), at the rate of 0.1 mm/s. LFP signals are referenced locally within the

ACC or CA1. All wires were soldered to gold pins and inserted into to a plastic cap (PlasticsOne).

The electrodes and cap were secured on the skull using dental cement. Mice were given ketoprofen

(5 mg/kg, subcutaneous) and 1 ml 0.9% saline (subcutaneous) for 2 days following surgery. Mice

were single-housed following surgery, to prevent potential fighting that could damage the cap.

Three days after surgery, mice were habituated to the recording chamber for two days (2 hr/day).

The sound-attenuated chamber was dimly lit, and contained a tall Plexiglass cylinder, inside which

mice were placed and allowed to sleep for the duration of the recording. All recording session were

carried out during ZT 2–6, and LFP activities were recorded using the RZ-5 recording system

(Tucker-Davis Technologies). Signal was amplified 1000 times, filtered between 1 and 400 Hz, and

digitized at 2 kHz. On the second day of habituation, baseline (pre-training; Figure 2a) LFP activity

was obtained. On the following day, mice were fear conditioned, similar to as described above.

Immediately afterward, mice were given CNO (5 mg/kg) or vehicle i.p., and within 5–10 min, placed

into the recording chamber to record the post-conditioning LFP activity (post-training, Figure 2a

and 2 hr). We chose this specific delay (5–10 min), because data from many other groups show that

neural activity in chemogenetic-infected cells is altered within 10–60 min following CNO injection (e.

g., (Alexander et al., 2009) [Figure 5c]; (Ryan et al., 2015) [Figure S12]). For PV+ cells specifically, a

previous study used an identical chemogenetic-based approach to inhibit PV+ cells (AAV-DIO-hM4Di

in PV-Cre mice, same dose of CNO) (Kuhlman et al., 2013). They measured calcium transients fol-

lowing CNO injection, and observed a decrease in PV+ cell activity, beginning 30–60 min following

CNO injection. The delay we chose therefore allows us to capture the earliest onset of CNO-medi-

ated effects on LFP activity.

Following the post-training recording session, mice were returned to the home cage, and given

CNO or vehicle in drinking water for the next 7 days. The first consolidation recording session took

place 7 days after fear conditioning (Con. 1, Figure 3—figure supplement 1g–h and 2 hr). All mice

were then placed on clean drinking water for another 7 days, and at the end, the second consolida-

tion recording session took place (Con. 2, Figure 3—figure supplements 1g–h and 2 hr). Mice were
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then placed back into the fear training context for 4 min without shock, to examine their fear mem-

ory (Figure 5c).

At the end of the experiments, mice were anesthetized and electrolytic lesions (20 mA for 30 s for

each electrode tip) were performed to verify the locations of electrodes. Mice were then transcar-

dially perfused, and brains were sectioned and imaged to verify the spread of virus, similar to as

described above. In addition, cresyl violet staining was performed on every other section in the ACC

and dorsal CA1, to verify electrode locations (Figure 1—figure supplement 1b).

Electrophysiological analysis
All analyses were performed offline using MATLAB (The MathWorks) and previously established

methods as detailed below.

Ripple, spindle, delta criteria
The detection criteria for ripples, spindles and delta waves are similar to the ones previously estab-

lished (Boyce et al., 2016; Eschenko et al., 2006; Maingret et al., 2016; Nakashiba et al., 2009;

Phillips et al., 2012), and manually verified and modified for current data set.

For ripple detection (Boyce et al., 2016; Nakashiba et al., 2009), the LFP obtained from CA1

pyramidal cell layer was first band-pass filtered (100–250 Hz), and amplitude was calculated using

the Hilbert transform. Ripple windows were characterized as signals that exceed the amplitude

threshold (three times the standard deviation). Signals that were less than 50 ms apart were merged.

For spindle detection (Eschenko et al., 2006; Phillips et al., 2012), the LFP obtained from ACC

was band-pass filtered (12–15 Hz), and amplitude was calculated using the Hilbert transform. Spindle

windows were characterized as signals that exceed the amplitude threshold (two times the standard

deviation), with minimum and maximum duration of 200 and 2000 ms, respectively. Signals that are

less than 100 ms apart were merged.

For delta detection (Maingret et al., 2016), the LFP obtained from ACC was band-pass filtered

(1–4 Hz), and amplitude was calculated using the Hilbert transform. Delta windows were character-

ized as signals that exceed the amplitude threshold (1.5 times the standard deviation), with minimum

and maximum duration of 150 and 500 ms, respectively. Signals that are less than 100 ms apart were

merged.

To measure ripple and spindle density, the number of ripple or spindle events during NREM peri-

ods were calculated for each mouse, and averaged across mice in the same group (Figure 2c–d). To

measure ripple and spindle amplitude, the peak instantaneous amplitude obtained using the Hilbert

transform was extracted in each ripple or spindle window, and averaged across the number of ripple

or spindle events in a recording session in each mouse. The values were then averaged across mice

of the same group. There were no task differences between vehicle-treated mice in the ACC and

CA1 group, so their results were combined (Figure 2—figure supplement 1a–b).

Power spectrum analysis
Power estimates were computed using the Welch’s method (MATLAB pwelch function) in series of 2

s bins, for the entire length of recording session for both the ACC and CA1 channels (Nguyen et al.,

2014). The results were averaged across mice. To examine the possibility of seizures in CNO-treated

mice, % total power in the CNO group for pre-training and post-training sessions was summed

within five frequency bands (delta: 1–4 Hz; theta: 4–12 Hz; alpha: 12–20 Hz; beta: 20–40 Hz; gamma:

40–100 Hz), and averaged across animals (Figure 2—figure supplement 1c–d).

Sleep scoring
Sleep stages (NREM/REM) were determined using adaptive theta/delta ratio (Klausberger et al.,

2003) (threshold = 3.5 x mode) extracted from power spectrums during the periods where the

mouse is immobile (Figure 2—figure supplement 1e–f, EMG amplitude <3 x mode for at least 10

s). Low theta/delta ratio (below threshold) is indicative of NREM periods, whereas high theta/delta

ratio (above threshold) is characteristic of REM episodes. Due to the length of the recording, we are

unable to reliably detect REM periods of significant duration.
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Cross-correlation analyses
The probability of ripple-spindle coupling (Figure 3, Figure 3—figure supplement 1a–b) and rip-

ple-delta coupling (Figure 3—figure supplement 1c–d) were examined using cross-correlation of

instantaneous amplitudes of LFP (Adhikari et al., 2010). This method was found to be sensitive and

robust in detecting the directionality and lag between LFP signals in different brain regions and is

independent of amplitude changes (Adhikari et al., 2010). Briefly, for ripple-spindle coupling, ripple

amplitude was cross-correlated with spindle amplitude in the ±4 s time window from spindle centre,

with sliding window at 0.01 s increments. The correlation time window was restricted to NREM sleep

periods only. Correlation coefficient was obtained for each spindle-ripple pair, and averaged across

all spindle windows for each mouse in a recording session, and averaged across mice in the same

group. To assess whether the correlation levels measured were significantly above chance, we com-

puted correlation at chance level (Adhikari et al., 2010). Specifically, the ripple amplitude time win-

dows were pseudo-randomly shuffled 4–10 s with respect to spindle amplitude time windows for

100 times. The shifted amplitude windows were then cross-correlated. The process was performed

for each mouse within each condition to generate the distribution of correlations at chance. The

original correlation was considered significant if the peak value was higher than 99th percentile of

the randomly generated cross-correlation peaks. Using this analysis, ripple-spindle cross-correlations

across all conditions were significant in all mice.

Lag between ripple-spindle peak correlation and spindle centre was also calculated (Figure 3—

figure supplement 1e–f [left panel]). A negative lag indicates a ripple lead, whereas a positive lag

indicates a spindle lead. For ripple-delta coupling, ripple amplitude was cross-correlated with delta

amplitude in the ±0.5 s time window from delta onset, with 0.01 s lag. Correlation coefficient was

obtained for each delta-ripple pair, and averaged across all delta windows for each mouse in a

recording session, and averaged across mice. Lag between ripple-delta peak correlation and delta

onset was calculated (Figure 3—figure supplement 1e–f [right panel]). A negative lag indicates a

ripple lead, whereas a positive lag indicates a delta lead.

To confirm our coupling results, we also assessed ripple-spindle coupling using a second method,

by computing cross-correlation using ripple and spindle window centers as timestamps (Siapas and

Wilson, 1998) (Figure 2—figure supplement 1g–h). Ripple timestamps were cross-correlated with

spindle timestamps in the ±4 s time window, with sliding window at 0.1 s increments. Correlation

coefficient was obtained for each mouse in a recording session, and the post-training correlation

coefficient was normalized to pre-training for each mouse, and then averaged across mice in the

same group.

Ripple-spindle joint occurrence rates
As a third measure of ripple-spindle coupling, we calculated the number of ripple-spindle coupled

events (Maingret et al., 2016), defined as ripple events that occur within ±0.25 s time window from

spindle centre (Figure 2—figure supplement 1i). The values were normalized to the number of spin-

dle events in the same recording session for a mouse. Then post-training joint occurrence rate was

normalized to pre-training joint occurrence rate for each mouse, and then averaged across mice in

the same group.

Statistical analysis
No statistical tests were used to pre-determine sample size, but the sample sizes used are similar to

those generally used within the field. Data were tested for normality and variance. If data from nei-

ther group were significantly non-normal and if variances are not significantly unequal, data were

analyzed using parametric two-way repeated measures ANOVA, or two-sample Student’s unpaired

t-test. For comparisons between two groups, if the groups had significantly different variances (with

a = 0.05), Welch’s t-test was used. For comparisons to a hypothetical mean of 1, one-sample t-test

was used. Where appropriate, ANOVA was followed by post hoc pairwise comparisons with Bonfer-

roni correction. If data were significantly non-normal (with a = 0.05) or variances were significantly

unequal, mixed-model permutation test, Kruskal-Wallis test or Mann-Whitney test (between-group

comparisons), and Wilcoxon signed-rank test or Friedman test (within-group comparisons) were

used accordingly. All tests were two-sided. Statistical analyses were performed using R and Graph-

pad Prism V6.

Xia et al. eLife 2017;6:e27868. DOI: https://doi.org/10.7554/eLife.27868 20 of 25

Research article Neuroscience

https://doi.org/10.7554/eLife.27868


Acknowledgements
We thank N Insel, JC Kim, M Morrissey, A Pourheidary, S Tanninen and J Volle for technical assis-

tance and comments. This work was supported by Canadian Institutes of Health Research (CIHR)

grants to PWF (FDN143227), SAJ (MOP74650), and Natural Sciences and Engineering Research

Council of Canada (NSERC) grants to KT (RGPIN-2015–05458) and BAR (RGPIN-2014–04947). FX

was supported by fellowships from NSERC and CIHR and MMT from NSERC. PWF and SAJ are

senior fellows in the Child Brain and Development Program and the Brain, Mind and Consciousness

programs, respectively, at the Canadian Institute for Advanced Research (CIFAR). BAR is an Associ-

ate Fellow in the Learning in Machines and Brains Program at CIFAR.

Additional information

Funding

Funder Grant reference number Author

Canadian Institutes of Health
Research

FDN143227 Paul W Frankland

Canadian Institutes of Health
Research

MOP74650 Sheena A Josselyn

Natural Sciences and Engi-
neering Research Council of
Canada

RGPIN-2015-05458 Kaori Takehara-Nishiuchi

Natural Sciences and Engi-
neering Research Council of
Canada

RGPIN-2014-04947 Blake A Richards

Natural Sciences and Engi-
neering Research Council of
Canada

Frances Xia
Matthew M Tran

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Frances Xia, Conceptualization, Data curation, Formal analysis, Funding acquisition, Validation, Inves-

tigation, Visualization, Methodology, Writing—original draft, Project administration, Writing—review

and editing; Blake A Richards, Conceptualization, Data curation, Formal analysis, Supervision, Fund-

ing acquisition, Validation, Investigation, Visualization, Methodology, Writing—original draft, Writ-

ing—review and editing; Matthew M Tran, Data curation, Formal analysis, Funding acquisition,

Investigation; Sheena A Josselyn, Funding acquisition, Writing—original draft, Writing—review and

editing; Kaori Takehara-Nishiuchi, Conceptualization, Data curation, Formal analysis, Supervision,

Funding acquisition, Validation, Investigation, Visualization, Methodology, Writing—original draft,

Project administration, Writing—review and editing; Paul W Frankland, Conceptualization, Supervi-

sion, Funding acquisition, Visualization, Methodology, Writing—original draft, Project administration,

Writing—review and editing

Author ORCIDs

Frances Xia http://orcid.org/0000-0001-7415-6620

Blake A Richards http://orcid.org/0000-0001-9662-2151

Sheena A Josselyn http://orcid.org/0000-0001-5451-489X

Kaori Takehara-Nishiuchi https://orcid.org/0000-0002-7282-7838

Paul W Frankland http://orcid.org/0000-0002-1395-3586

Ethics

Animal experimentation: All procedures in this study were approved by the Canadian Council for

Animal Care (CCAC) and the Animal Care Committees at the Hospital for Sick Children and the Uni-

versity of Toronto.

Xia et al. eLife 2017;6:e27868. DOI: https://doi.org/10.7554/eLife.27868 21 of 25

Research article Neuroscience

http://orcid.org/0000-0001-7415-6620
http://orcid.org/0000-0001-9662-2151
http://orcid.org/0000-0001-5451-489X
https://orcid.org/0000-0002-7282-7838
http://orcid.org/0000-0002-1395-3586
https://doi.org/10.7554/eLife.27868


Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.27868.019

Author response https://doi.org/10.7554/eLife.27868.020

Additional files
Supplementary files
. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.27868.018

References
Adhikari A, Sigurdsson T, Topiwala MA, Gordon JA. 2010. Cross-correlation of instantaneous amplitudes of field
potential oscillations: a straightforward method to estimate the directionality and lag between brain areas.
Journal of Neuroscience Methods 191:191–200. DOI: https://doi.org/10.1016/j.jneumeth.2010.06.019,
PMID: 20600317

Alexander GM, Rogan SC, Abbas AI, Armbruster BN, Pei Y, Allen JA, Nonneman RJ, Hartmann J, Moy SS,
Nicolelis MA, McNamara JO, Roth BL. 2009. Remote control of neuronal activity in transgenic mice expressing
evolved G protein-coupled receptors. Neuron 63:27–39. DOI: https://doi.org/10.1016/j.neuron.2009.06.014,
PMID: 19607790

Amilhon B, Huh CY, Manseau F, Ducharme G, Nichol H, Adamantidis A, Williams S. 2015. Parvalbumin
interneurons of hippocampus tune population activity at theta frequency. Neuron 86:1277–1289. DOI: https://
doi.org/10.1016/j.neuron.2015.05.027, PMID: 26050044

Archer J. 1973. Tests for emotionality in rats and mice: a review. Animal Behaviour 21:205–235. DOI: https://doi.
org/10.1016/S0003-3472(73)80065-X, PMID: 4578750

Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. 2007. Evolving the lock to fit the key to create a family of
G protein-coupled receptors potently activated by an inert ligand. PNAS 104:5163–5168. DOI: https://doi.org/
10.1073/pnas.0700293104, PMID: 17360345

Arruda-Carvalho M, Restivo L, Guskjolen A, Epp JR, Elgersma Y, Josselyn SA, Frankland PW. 2014. Conditional
deletion of a-CaMKII impairs integration of adult-generated granule cells into dentate gyrus circuits and
hippocampus-dependent learning. Journal of Neuroscience 34:11919–11928. DOI: https://doi.org/10.1523/
JNEUROSCI.0652-14.2014, PMID: 25186740
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Schlingloff D, Káli S, Freund TF, Hájos N, Gulyás AI. 2014. Mechanisms of sharp wave initiation and ripple
generation. Journal of Neuroscience 34:11385–11398. DOI: https://doi.org/10.1523/JNEUROSCI.0867-14.
2014, PMID: 25143618

Schwindel CD, McNaughton BL. 2011. Hippocampal-cortical interactions and the dynamics of memory trace
reactivation. Progress in brain research 193:163–177. DOI: https://doi.org/10.1016/B978-0-444-53839-0.00011-
9, PMID: 21854962

Siapas AG, Wilson MA. 1998. Coordinated interactions between hippocampal ripples and cortical spindles
during slow-wave sleep. Neuron 21:1123–1128. DOI: https://doi.org/10.1016/S0896-6273(00)80629-7, PMID:
9856467
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