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Abstract Two broadly known characteristics of germ cells in many organisms are their

development as a ‘cyst’ of interconnected cells and their high sensitivity to DNA damage. Here we

provide evidence that in the Drosophila testis, connectivity serves as a mechanism that confers to

spermatogonia a high sensitivity to DNA damage. We show that all spermatogonia within a cyst die

synchronously even when only a subset of them exhibit detectable DNA damage. Mutants of the

fusome, an organelle that is known to facilitate intracyst communication, compromise synchronous

spermatogonial death and reduces overall germ cell death. Our data indicate that a death-

promoting signal is shared within the cyst, leading to death of the entire cyst. Taken together, we

propose that intercellular connectivity supported by the fusome uniquely increases the sensitivity of

the germline to DNA damage, thereby protecting the integrity of gamete genomes that are passed

on to the next generation.

DOI: https://doi.org/10.7554/eLife.27960.001

Introduction
A prevalent feature of germ cell development across species is their proliferation as an intercon-

nected cluster of cells, widely known as a germ cell cyst. In many organisms from insects to humans,

germ cells divide with incomplete cytokinesis that results in interconnected cells with shared cyto-

plasm, leading to cyst formation (Greenbaum et al., 2011; Haglund et al., 2011; Pepling et al.,

1999). During oogenesis of many species from flies to mammals, this intercellular connectivity is criti-

cal for the process of oocyte specification, allowing only some of the developing germ cells to

become oocytes while the others adopt a supportive role (de Cuevas et al., 1997; Lei and Spra-

dling, 2016; Pepling et al., 1999). For example, in the Drosophila ovary, four rounds of germ cell

divisions with incomplete cytokinesis results in a cyst of 16 interconnected germ cells, where only

one becomes an oocyte while the remaining 15 germ cells become nurse cells. During this process,

nurse cells support oocyte development by providing their cytoplasmic contents to oocytes via inter-

cellular trafficking (Cox and Spradling, 2003; de Cuevas et al., 1997; Huynh and St Johnston,

2004).

In contrast to oogenesis, where cytoplasmic connectivity has a clear developmental role in oocyte

development, spermatogenesis is a process where all germ cells within a cyst are considered to be

equivalent and become mature gametes (Fuller, 1993; Yoshida, 2016). Despite the lack of a ‘nurs-

ing mechanism’ during spermatogenesis, intercellular connectivity is widely observed in spermato-

genesis in a broad range of organisms (Greenbaum et al., 2011; Yoshida, 2016). While a function
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for this connectivity has been proposed in post-meiotic spermatids in complementing haploid

genomes (Braun et al., 1989), the biological significance of male germ cell connectivity during pre-

meiotic stages of spermatogenesis remains unknown.

Another well-known characteristic of the germline is its extreme sensitivity to DNA damage com-

pared to the soma, with clinical interventions such as radiation or chemotherapy often resulting in

impaired fertility (Arnon et al., 2001; Meistrich, 2013; Oakberg, 1955). Although high DNA dam-

age sensitivity in mammalian female may be explained by its extremely limited pool size, it remains

unclear how mammalian male germline is also sensitive to DNA damage. It has been postulated that

the high sensitivity of the germline to DNA damage is part of a quality control mechanism for the

germ cell genome, which is passed onto the next generation (Gunes et al., 2015). However, the

means by which the germline achieves such a high sensitivity to DNA damage remains unclear.

Here we provide evidence that germ cell connectivity serves as a mechanism to sensitize the sper-

matogonia (SGs) to DNA damage in the Drosophila testis. We show that an entire SG cyst under-

goes synchronized cell death as a unit even when only a subset of SGs within the cyst exhibit

detectable DNA damage. Disruption of the fusome, a germline-specific organelle that facilitates

communication amongst germ cells within a cyst (de Cuevas et al., 1997), compromises synchro-

nized germ cell death within a cyst in response to DNA damage. The sensitivity of a germ cell cyst

to DNA damage increases as the number of interconnected germ cells within increases, demonstrat-

ing that connectivity serves as a mechanism to confer higher sensitivity to DNA damage. Taken

together, we propose that germ cell cyst formation serves as a mechanism to increase the sensitivity

of genome surveillance, ensuring the quality of the genome that is passed onto the next generation.

Results

Ionizing radiation induces spermatogonial death preferentially at the 16
cell stage
The Drosophila testis serves as an excellent model to study germ cell development owing to its well-

defined spatiotemporal organization, with spermatogenesis proceeding from the apical tip down

the length of the testis. Germline stem cells (GSCs) divide to produce gonialblasts (GBs), which

undergo transit-amplifying divisions to become a cyst of 16 interconnected spermatogonia (16-SG)

before entering the meiotic program as spermatocytes (Figure 1A). In our previous study we

showed that protein starvation induces SG death, predominantly at the early stages (~4 SG stage) of

SG development (Yang and Yamashita, 2015) (Figure 1A). Starvation-induced SG death, which

itself is non-apoptotic (Yacobi-Sharon et al., 2013), is mediated by apoptosis of somatic cyst cells

encapsulating the SGs (Yang and Yamashita, 2015). Cyst cell apoptosis breaks the ‘blood-testis-

barrier’ and leads to SG death (Fairchild et al., 2015; Lim and Fuller, 2012). Though we noted sig-

nificant SG death at the 16-SG stage in the course of our previous work, it was independent of nutri-

ent conditions and thus was not the focus of the study (Yang and Yamashita, 2015).

In search of the cause of this 16-SG death, we discovered that it can be induced by ionizing radia-

tion. When adult flies were exposed to ionizing radiation that causes DNA double strand breaks

(DSBs), a dramatic induction of SG death was observed (Figure 1B,C). Dying SGs induced by ioniz-

ing radiation were detected by Lysotracker staining as described by previous studies, showing char-

acteristic acidification of the entire cell (Chiang et al., 2017; Yacobi-Sharon et al., 2013; Yang and

Yamashita, 2015). SG death in control and irradiated flies proceeded in the same manner, where all

of the SGs within a cyst die simultaneously by becoming Lysotracker-positive (Figure 1B). Impor-

tantly, in contrast to starvation-induced SG death which was dependent on somatic cyst cell apopto-

sis, radiation-induced SG death was not suppressed by inhibiting cyst cell apoptosis (Figure 1—

figure supplement 1), suggesting that radiation-induced SG death is a germ cell-intrinsic response.

The frequency of dying SG cysts peaked around 3 to 6 hr after irradiation and decreased by 24 hr

post-irradiation (Figure 1C). Interestingly, we found that ionizing radiation robustly induces cell

death at the 16-SG stage, although death of other stages (2-, 4-, 8 cell SGs) was also induced

(Figure 1C and see below). This pattern of SG death held true regardless of the ionizing radiation

dose (Figure 1—figure supplement 2). While testing multiple doses of ionizing radiation, we

noticed that exposure to even a very low dose of ionizing radiation could dramatically induce death

of 16-SGs. By measuring dose-dependent death of 16-SGs at six hours post-irradiation, we found
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Figure 1. A high level of SG death in response to ionizing radiation. (A) Illustration of SG development and germ cell death in the Drosophila testis. (B)

An example of the testis apical tip (left panels) with dying SGs marked by Lysotracker staining in control and irradiated flies. High magnification images

of dying 16-SGs (dotted outline) are shown in right panels. Lysotracker (red), Vasa (white), FasIII and Lamin Dm0 (green), and DAPI (blue). Bars: 25 mm

(left panels), 5 mm (right panels). (C) Quantification of dying SG cysts by stage from 3 to 24 hr after 3000 rad (Mean ±SD). n � 17 testes, repeated in

triplicate. It should be noted that the SG death frequency was scored as ‘number of dying SG cysts at each stage per testis’. We have shown that the

number of SG cysts is consistently ~5–6 cysts per stage per testis (Yang and Yamashita, 2015), justifying the use of ‘number of dying SG cysts/testis’ as

a proxy for frequency of SG cyst death. (D) Number of Lysotracker-positive 16-SG cysts (red) and TUNEL-positive wing imaginal disc cells (black) 6 hr

post-irradiation as a function of radiation dose (Mean ±SD). n � 17 testes, and n � 3 wing discs, repeated in triplicate. Best fit lines shown determined

by non-linear regression.

DOI: https://doi.org/10.7554/eLife.27960.002

The following figure supplements are available for figure 1:

Figure supplement 1. Radiation-induced SG cyst death is independent of somatic cyst cell apoptosis.

DOI: https://doi.org/10.7554/eLife.27960.003

Figure supplement 2. SG death in response to ionizing radiation.

DOI: https://doi.org/10.7554/eLife.27960.004

Figure supplement 3. TUNEL staining to detect somatic cell death in response to ionizing radiation.

DOI: https://doi.org/10.7554/eLife.27960.005
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that the 16-SG death induced by increasing radiation was a distinctly non-linear response, quickly

reaching a plateau of ~3 dying 16-SG cysts per testis (Figure 1D). In comparison, cell death in the

wing imaginal disc (Figure 1—figure supplement 3) followed a linear dose-response relationship

where an increase in radiation resulted in a proportional increase in cell death (Figure 1D). These

results demonstrate a remarkable sensitivity of 16-SGs to ionizing radiation compared to somatic

cells.

All SGs within a cyst die even when only a subset of cells exhibit
detectable DNA damage
To gain insight into the cause of the unusual sensitivity of 16-SGs to DNA damage, we evaluated the

response of SGs to ionizing radiation at a cell biological level. DSBs result in phosphorylation of the

histone H2A variant (g-H2Av), the Drosophila equivalent of mammalian g-H2AX, reflecting the very

early cellular response to DSBs (Madigan et al., 2002). Using an anti-g-H2Av antibody (pS137), we

confirmed that g-H2Av can be robustly detected in SGs following a high dose of ionizing radiation

(Figure 2—figure supplement 1). When a low dose of ionizing radiation was used (�100 rad), we

frequently observed 16-SG cysts in which only a subset of cells within the cyst exhibited detectable

g-H2Av signal but all 16 cells were Lysotracker-positive and dying (Figure 2A).

The fraction of g-H2Av-positive SGs within each cyst increased gradually with increasing radiation

dose irrespective of SG stage (Figure 2B and Figure 2—figure supplement 2), consistent with the

linear nature in which ionizing radiation damages DNA molecules (Ulsh, 2010). However, Lysotracker

staining showed that SGs within a cyst were always either all Lysotracker-positive or -negative

(Figure 2C). These results suggest that while DNA damage is induced in individual SGs within a cyst

proportional to the dose of radiation, cell death is induced in all of the SGs within the entire cyst,

leading to elevated SG death that follows a non-linear response with increasing dose.

The fusome is required for synchronized all-or-none SG death within the
cysts
The above results led us to hypothesize that all SGs within a cyst might be triggered to die together

even when only a subset of SGs within the cyst have detectable DNA damage, explaining the

extremely high sensitivity of the germline to DNA damage. In Drosophila and other insects, the

fusome is a germline-specific membranous organelle that connects the cytoplasm of germ cells

within a cyst and mediates intracyst signaling amongst germ cells (Lilly et al., 2000; Lin et al.,

1994). We speculated that if germ cell cysts undergo synchronized cell death by sharing the decision

to die, the fusome might mediate the ‘all-or-none’ mode of SG death upon DNA damage.

To examine the role of the fusome in all-or-none SG death upon irradiation, we used RNAi-medi-

ated knockdown of a-spectrin and a mutant of hts, core components of the fusome (de Cuevas

et al., 1996; Hime et al., 1996; Lilly et al., 2000; Lin et al., 1994; Yue and Spradling, 1992) (Fig-

ure 3—figure supplement 1). Mutant and control flies were irradiated and their testes were stained

with Lysotracker to identify dying SGs in combination with the lipophilic dye FM4–64 to mark cyst

cell membranes, demarcating the boundaries of SG cysts (see methods) (Chiang et al., 2017). In

control testes, 16-SG cysts were almost always found to be either completely Lysotracker-positive or

-negative under all conditions tested as described above (Figure 3A,B,E,F), confirming our observa-

tion using fixed samples (Figure 2). Of particular importance, even at a lower dose of radiation (e.g.

100 rad) where only a subset of germ cells exhibit visible g-H2Av staining (Figure 2B), the 16-SG

cyst was either entirely Lysotracker-negative or -positive. In contrast, a-spectrin RNAi and hts mutant

testes frequently contained 16-SG cysts with a mixture of individual Lysotracker-positive and -nega-

tive SGs (Figure 3C,D,G,H), suggesting that the all-or-none mode of SG death was compromised.

Importantly, the mean fraction of 16-SG that died in response to radiation exposure at any dose was

reduced when the fusome was disrupted (Figure 3B,D,F,H, black bars). These data show that the

fusome is required for the coordinated death of all SGs within a cyst, and suggests that the intracyst

communication increases overall SG death in response to radiation-induced DNA damage. More-

over, the fact that loss of germ cell communication in fusome mutants allows for the survival of some

SGs strongly argues against the possibility that SGs without cytologically detectable g-H2Av are suf-

ficiently damaged to trigger cell death on their own and that SGs are individually dying. Instead, the

death of SGs without detectable g-H2Av in wild type/control can likely be attributed to a shared
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death signal from other cells, as blockade of intercellular communication in fusome mutants allows

for their survival.

It should be noted that the fusome mutants appeared to maintain ring canals, as evidenced by

the intact ring shape of Pavarotti-GFP, a marker for ring canals (Minestrini et al., 2002) (Figure 3—

figure supplement 2). Therefore, intracyst communication triggering SG death is likely mediated by

the fusome, rather than physical openings between SGs within the cyst (see Discussion). Consistent

with this, somatic follicle cells of the egg chamber, which are known to be connected by ring canals

without a fusome (McLean and Cooley, 2013a), were observed to die individually by becoming pos-

itive for cleaved caspase (Dcp-1) (Figure 3—figure supplement 3A). Additionally, these cells did

not exhibit extreme sensitivity to low doses of radiation and displayed an essentially linear dose-

response (Figure 3—figure supplement 3B,C).

The mitochondrial proteins HtrA2/Omi and Endonuclease G are
required for all-or-none SG death
The above results suggest that intercellular communication mediated by the fusome plays a critical

role in allowing for all-or-none commitment of SGs to death or survival. Based on these results, we

Figure 2. All SGs within a cyst die even when only a fraction of cells exhibit detectable DNA damage. (A) An example of a dying 16-SG cyst (yellow

dotted outline) with only a subset of SGs containing detectable DNA damage (arrowhead). g-H2Av (green), Lysotracker (red), Vasa (white). Bar: 5 mm. (B)

Number of g-H2Av-positive cells within each 16-SG cyst at various radiation doses. Blue circles, individual data points. Red line, mean. n = number of

16-SG cysts scored. (C) Number of Lysotracker-positive cells within each 16-SG cyst. Blue circles, individual data points. Red line, mean. n = number of

16-SG cysts scored.

DOI: https://doi.org/10.7554/eLife.27960.006

The following figure supplements are available for figure 2:

Figure supplement 1. g-H2Av can be strongly detected in germ cells following irradiation.

DOI: https://doi.org/10.7554/eLife.27960.007

Figure supplement 2. All SG stages show gradual accumulation of g-H2Av-positive cells with increasing radiation.

DOI: https://doi.org/10.7554/eLife.27960.008
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hypothesized that a signal to promote cell death exists that is rapidly transmitted from damaged

SGs to others via their intercellular connections.

It has previously been shown that germ cell death in the Drosophila testis is non-apoptotic, and

depends on mitochondria-associated factors (Yacobi-Sharon et al., 2013). The Drosophila homolog

of the mitochondrial serine protease HtrA2/Omi is cleaved and released from the mitochondrial

compartment as part of the mitochondria-associated death pathway to promote cell death in

response to nuclear DNA damage (Igaki et al., 2007; Khan et al., 2008; Tain et al., 2009;

Vande Walle et al., 2008). The catalytic function of released HtrA2/Omi is known to control the

death of SGs in the testis. Yacobi-Sharon et al. further showed that Endonuclease G (EndoG) is also

involved in germ cell death (Yacobi-Sharon et al., 2013). EndoG normally resides in mitochondria

but is released to promote degradation of nuclear chromatin and induce cell death (Widlak and Gar-

rard, 2005).

In HtrA2/Omi mutant flies, we frequently observed a mix of Lysotracker-positive and -negative

SGs within a single cyst, similar to what was seen in fusome mutants (Figure 4A). Disruption of the

all-or-none mode of SG death within the cyst was observed at any dose of radiation tested

(Figure 4B). Disrupted all-or-none SG death occurred in both heterozygous (OmiD1/+) and

Figure 3. The fusome is required for synchronized all-or-none SG death within a cyst. (A) A Lysotracker-positive 16-SG cyst (green, dotted outline) in

unfixed control testes, with cyst borders marked by FM4–64 (red) and SG nuclei marked by Hoechst 33342 (blue). Bar: 7.5 mm. (B) Number of

Lysotracker-positive cells within each 16-SG cyst of control testes at varying radiation doses. Black line, mean. n = number of 16-SG cysts scored. (C) A

16-SG cyst (dotted outline) in nos-gal4 >UAS-a-spectrinRNAi testes containing a single Lysotracker-positive SG (arrowhead). Bar: 10 mm. (D) Number of

Lysotracker-positive cells within each 16-SG cyst of nos-gal4 >UAS-a-spectrinRNAi testes at varying radiation doses. Black line, mean. n = number of 16-

SG cysts scored. P-values (comparing the corresponding radiation doses between control and mutant) determined by chi-squared test (See methods).

(E, F) hts01103/+ control testes. Bar: 5 mm. (G, H) hts01103/Df(2R)BSC26 mutant testes. Bar: 7.5 mm.

DOI: https://doi.org/10.7554/eLife.27960.009

The following source data and figure supplements are available for figure 3:

Source data 1. Number of dying SGs per 16-SG cyst in control, a-spectrinRNAi and hts mutant testes in response to irradiation.

DOI: https://doi.org/10.7554/eLife.27960.013

Figure supplement 1. Validation of fusome elimination in hts mutant and a-spectrinRNAi testes.

DOI: https://doi.org/10.7554/eLife.27960.010

Figure supplement 2. SG ring canals are maintained in fusome mutants.

DOI: https://doi.org/10.7554/eLife.27960.011

Figure supplement 3. Follicle cell death in response to irradiation.

DOI: https://doi.org/10.7554/eLife.27960.012
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transheterozygous (OmiD1/OmiDf1) conditions, consistent with the previous report that heterozygous

conditions exhibit haploinsufficiency in inducing SG death (Yacobi-Sharon et al., 2013). In contrast,

wild type control 16-SG cysts maintained their all-or-none mode of SG death (Figure 4B). Likewise, a

loss-of-function EndoGMB07150 mutant allele (DeLuca and O’Farrell, 2012) also showed disruption of

all-or-none SG death in both heterozygous (EndoGMB07150/+) and transheterozygous

(EndoGMB07150/Df(3R)BSC699) conditions (Figure 4C,D). Taken together, these data show the

involvement of mitochondrial cell death pathway components HtrA2/Omi and EndoG in the all-or-

none mode of SG death. Considering that these proteins are released from mitochondria to induce

cell death, it is tempting to speculate that these proteins (or their downstream molecules/signals)

are shared among SGs via the fusome to trigger synchronized SG death.

Figure 4. The mitochondrial proteins HtrA2/Omi and Endonuclease G are required for all-or-none SG death. (A) SG cysts (dotted outlines) in OmiD1/

OmiDf1 mutant testes containing individual Lysotracker-positive SGs (arrows). Hoechst 33342 (blue), FM 4–64 (red), Lysotracker (green). Bar: 10 mm. (B)

Number of Lysotracker-positive SGs in each 16-SG cyst in OmiD1/OmiDf1, OmiD1/+, and wild type testes. Black line, mean. n � 43 cysts per dose. (C) 16-

SG cyst (dotted outline) in EndoGMB07150/Df(3R)BSC699 testes containing individual Lysotracker-positive SGs. Hoechst 33342 (blue), FM 4–64 (red),

Lysotracker (green). Bar: 10 mm. (D) Number of Lysotracker-positive SGs in each 16-SG cyst in EndoGMB07150/Df(3R)BSC699 and EndoGMB07150/+ testes.

Black line, mean. n � 37 cysts per dose.

DOI: https://doi.org/10.7554/eLife.27960.014

The following source data is available for figure 4:

Source data 1. Number of dying SGs per 16-SG cyst in control, Omi and Endo G mutant testes in response to irradiation.

DOI: https://doi.org/10.7554/eLife.27960.015
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p53 and mnk/chk2 do not regulate the all-or-none mode of SG death
The DNA damage response is a highly conserved pathway controlling cell death and DNA repair

(Ciccia and Elledge, 2010; Song, 2005). We thus examined the potential involvement in radiation-

induced SG death of the universal DNA damage response pathway components, mnk/chk2 and p53,

whose conserved function in DNA damage response in Drosophila has been shown (Brodsky et al.,

2004; Peters et al., 2002). By using well-characterized loss-of-function alleles (mnk6006 and p535A-1-

4) (Takada et al., 2003; Wichmann et al., 2006; Xie and Golic, 2004), we found that these mutants

broadly suppress SG death at high and low doses of radiation (Figure 5D). However, SG death in

these mutants maintained an all-or-none pattern (Figure 5A–C,E). These results suggest that while

p53 and mnk/chk2 may contribute to SG death via their general role in controlling the DNA damage

response as has been described in somatic cells, they do not play a role in mediating the all-or-none

pattern of SG death within a cyst that is unique to interconnected germ cells.

Consistent with the idea that neither mnk/chk2 or p53 is responsible for a germline-specific, all-

or-none mode of cell death in response to DNA damage, Mnk/Chk2 or p53 was barely upregulated

in the germline in response to a low dose of radiation (100 rad), which is sufficient to induce robust

SG death. Using a polyclonal anti-Mnk/Chk2 antibody (Takada et al., 2015), we barely detected any

signal in germ cells, although some level of signal was seen in the surrounding somatic cyst cells (Fig-

ure 5—figure supplement 1). Likewise, a p53 transcriptional reporter (Wylie et al., 2014) showed

only a slight increase in the signal in response to a low dose of radiation (Figure 5—figure supple-

ment 2). Even at a high dose, robust expression of the reporter was observed only at 24 hr after irra-

diation, much later than the peak of SG death, which typically happens within a few hours.

Collectively, these data (i.e. mnk/chk2 and p53 mutants maintaining all-or-none cell death and the

lack of robust Mnk/Chk2 and p53 expression in response to DNA damage) indicate that expression

of p53 or Mnk/Chk2 in SGs is unlikely to account for the all-or-none mode of germ cell death in

response to DNA damage.

Increasing connectivity of SGs increases sensitivity to DNA damage
The above results suggest that the ability of SGs to trigger cell death in response to DNA damage is

facilitated by the sharing of death-promoting signals amongst SGs within a cyst, killing SGs that are

not sufficiently damaged to commit to cell death on their own. This sharing of death-promoting sig-

nals is mediated by and dependent on the fusome, which facilitates intracyst communication. If this

is the case, it would be predicted that increasing the connectivity of a SG cyst (the number of inter-

connected SGs within the cyst) would increase its sensitivity to DNA damage, because increased SG

number per cyst will increase the probability of any cells being sufficiently damaged to trigger death.

Indeed, as mentioned above, we observed a trend of 16-SG cysts dying more frequently than 2-, 4-,

or 8-SGs (Figure 1C, Figure 1—figure supplement 2). By plotting cell death frequency of all SG

stages as a function of increasing radiation dose (Figure 6A), it becomes clear that the sensitivity of

SG cysts correlates with their connectivity, where 8-SGs are less sensitive than 16-SGs but more sen-

sitive than 4-SGs and so on. Interestingly, single-celled GBs, the immediate daughter of GSCs that

have not formed any intercellular connections, exhibited an essentially linear increase in death in

response to radiation dose, which is reminiscent of somatic imaginal disc cells or follicle cells

(Figure 1D, Figure 3—figure supplement 3). These results support the idea that germ cell connec-

tivity plays a key role in increasing the sensitivity of the germline to DNA damage.

Discussion
Our present study may provide a link between two long-standing observations in germ cell biology:

(1) the broad conservation of intercellular connectivity (cyst formation) of germ cells and (2) the sen-

sitivity of the germline to DNA damage. The purpose for germ cell cyst formation outside the mero-

istic ovary (i.e. nursing mechanism) remained unclear. Our study in the Drosophila male germline

shows that the connectivity of germ cells can serve as a key mechanism for their ability to robustly

induce cell death, providing an explanation for cyst formation outside of the oocyte nursing mecha-

nism. However, there are many cell types that are known to be connected to sibling cells, where syn-

chronized cell death among the connected cells is not observed or does not make any biological

sense. For example, early-stage embryos of Drosophila develop as syncytia, where all nuclei are
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Figure 5. p53 and mnk/chk2 suppress SG death but do not regulate the all-or-none mode of SG death. (A–C) Examples of dying 16-SGs (dotted

outline) in wild-type (A), mnk6006/Df(2L)Exel7077 mutant (B), and p535A-1-4/Df(3R)ED6096 mutant (C) testes. Lysotracker (red), Lamin Dm0 (green), DAPI

(blue) and Vasa (white). Bars: 5 mm. (D) SG cyst death by stage in mnk/chk2 and p53 mutants 6 hr after irradiation with 100 rad and 2000 rad (Mean ±SD,

p-value *<0.05 t-test). Fixed, stained samples were used for scoring. Testes sample n � 11 for each genotype, repeated in triplicate. (E) Number of

Figure 5 continued on next page
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within a connected cytoplasm. The C. elegans germline is topologically similar to Drosophila early

embryos in that all cells share the same cytoplasm. In these two examples, damaged nuclei die indi-

vidually and synchronized cell death is not observed (Lettre et al., 2004; Takada et al., 2003). In

Drosophila oogenesis, 16 interconnected cystocytes have distinct fates (one oocyte and 15 nurse

cells), and it would not be beneficial to kill the oocyte when just one dispensable nurse cell is dam-

aged. Moreover, nurse cells undergo programmed apoptosis later in oogenesis to finalize the cyto-

plasmic transport into the oocyte, yet this apoptosis does not kill oocytes. These examples have two

important implications. First, openness via ring canals/intercellular bridges alone is likely insufficient

to mediate synchronized cell death. Second, there are likely additional purposes for intercellular con-

nectivity to be discovered other than the sharing of death-promoting signals.

Regarding the first point that physical openness alone is likely insufficient to induce cell death in

undamaged sibling cells, we speculate that the fusome plays a key role in facilitating intercellular

communication of death-promoting signals. Because fusome mutants apparently maintain cyto-

plasmic openings (ring canals) between SGs (Figure 3—figure supplement 2), it suggests that the

intercellular bridges/openings are not sufficient to allow intracyst communication of death-

Figure 5 continued

Lysotracker-positive SG per 16-SG cyst in mnk/chk2 and p53 mutants following 100 rad. Red line, mean. Unfixed samples stained with Lysotracker, FM

4–64, and Hoechst 33342 were used for scoring.

DOI: https://doi.org/10.7554/eLife.27960.016

The following source data and figure supplements are available for figure 5:

Source data 1. Number of dying SGs per 16-SG cyst in control, mnk/chk2 and p53 mutant testes in response to irradiation.

DOI: https://doi.org/10.7554/eLife.27960.019

Figure supplement 1. Expression of Mnk/Chk2 in response to ionizing radiation.

DOI: https://doi.org/10.7554/eLife.27960.017

Figure supplement 2. Expression of p53 reporter in response to ionizing radiation.

DOI: https://doi.org/10.7554/eLife.27960.018

Figure 6. Increasing connectivity confers higher sensitivity to DNA damage. Dose-dependent SG death in 2-, 4-, 8-, and 16-SG cysts (Mean ±SD). Best

fit lines shown determined by non-linear regression. n � 17 testes, repeated in triplicate. (A) (B) Model of SG death enhanced by connectivity.

DOI: https://doi.org/10.7554/eLife.27960.020
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promoting signals. Consistent with this idea, we found that follicle cells of the egg chamber do not

exhibit synchronized cell death in response to irradiation (Figure 3—figure supplement 3A), even

though these cells are known to maintain intercellular bridges/ring canals among multiple sibling

cells, through which molecules (e.g. GFP) can be transported (McLean and Cooley, 2013a). The lack

of synchronized cell death in the follicle cells coincided with a proportional/linear increase in cell

death with the increasing dose of radiation (Figure 3—figure supplement 3B,C). Therefore, we pro-

pose that the fusome functions to transmit the death-triggering signals, similar to its known role in

cell cycle synchronization within the germ cell cyst (Lilly et al., 2000)(Figure 6B).

We imagine two possibilities to explain how the signals are shared within a cyst, leading to cell

death: when one SG within a cyst decides to die, this ‘decision of death’ might be sent to all the

other SGs within the cyst, leading to all-or-none SG death. Alternatively, the signal shared among

SGs may be ‘additive’ in nature. In such a scenario, even when none of the individual SGs have suffi-

cient DNA damage to trigger cell death on its own, addition of all damage signaling within the cyst

might reach a level sufficient to induce cell death. Either way, such responses would effectively lower

the threshold of DNA damage per cell needed to trigger germ cell death. Consequently, the sharing

of signals between SGs through intercellular connections increases their likelihood to die following

DNA damage, explaining the unusually high sensitivity of the germline to DNA damage.

According to this model, higher connectivity would confer higher sensitivity to DNA damage: as

the connectivity increases, more cells would contribute to detecting any DNA damage the germline

may be experiencing. Indeed, our data show a positive correlation between sensitivity to radiation

and the increasing connectivity of SG cysts (Figure 6A). Remarkably, the fact that single-celled,

unconnected GBs exhibit an essentially linear death response to increasing radiation suggests that

individual germ cells do not necessarily have an intrinsically different DNA damage response that

accounts for their high sensitivity to DNA damage (Figure 6A).

A connectivity-based increase in sensitivity to DNA damage also has an important implication in

the development of multicellular organisms. To pass on genomes to the next generation, it is criti-

cally important for germ cells to have the most stringent mechanisms to prevent deleterious muta-

tions. However, as genome size increases in multicellular organisms, ubiquitously increasing the

stringency of genome quality control could result in a high rate of cell death in all tissues, which

could compromise the development or survival of organisms. Thus, a multicellular organism may

require differential sensitivities to DNA damage between the soma and the germline: a more sensi-

tive genome surveillance mechanism to protect the germline, whereas the priority of the soma shift-

ing toward survival to support development/maintenance of somatic organs. A connectivity-based

increase in sensitivity to DNA damage might be a simple method for multicellular organisms to

achieve drastically different sensitivities to DNA damage between the soma and germline without

having to alter intrinsic damage response pathways, although additional germline-specific DNA

damage response mechanisms cannot be excluded. We speculate that one reason germ cell connec-

tivity has arisen during evolution and been so widely conserved might be to confer higher sensitivity

to DNA damage specifically in the germline. It awaits future studies to understand whether germ

cells from other organisms exhibit high sensitivity to DNA damage in a manner dependent on intra-

cyst communication.

Materials and methods

Fly husbandry and strains
All fly stocks were raised on standard Bloomington medium at 25˚C, and young flies (0 to 2 day old

adults) were used for all experiments unless otherwise noted. The following fly stocks were used:

hts01103 (Yuan et al., 2012), nos-gal4 (Van Doren et al., 1998), UAS-a-spectrinRNAi (TRiP.

HMC04371), c587-gal4 (Decotto and Spradling, 2005), UAS-Diap1, EndoGMB07150 (DeLuca and

O’Farrell, 2012) (obtained from the Bloomington Stock Center), p535A-1-4 (Wichmann et al., 2006;

Xie and Golic, 2004), Df(2R)BSC26, Df(3R)ED6096, Df(2L)Exel7077, Df(3R)BSC699 (obtained from

the Bloomington Stock Center), p53RE-GFP-nls reporter (Wylie et al., 2014) (a gift of John Abrams,

University of Texas Southwestern Medical Center), OmiD1, OmiDf1 (Tain et al., 2009; Yacobi-

Sharon et al., 2013) (a gift of Eli Arama, Weizmann Institute of Science), mnk6006 (Takada et al.,
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2003) (a gift of William Theurkauf, University of Massachusetts Medical School), Ubi-Pavarotti-GFP

(Minestrini et al., 2002) (a gift of David Glover, University of Cambridge).

Immunofluorescence staining and microscopy
Immunofluorescence staining of testes was performed as described previously (Cheng et al., 2008).

Briefly, testes were dissected in PBS, transferred to 4% formaldehyde in PBS and fixed for 30 min.

Testes were then washed in PBS-T (PBS containing 0.1% Triton-X) for at least 60 min, followed by

incubation with primary antibody in 3% bovine serum albumin (BSA) in PBS-T at 4˚C overnight. Sam-

ples were washed for 60 min (three 20 min washes) in PBS-T, incubated with secondary antibody in

3% BSA in PBS-T at 4˚C overnight, washed as above, and mounted in VECTASHIELD with DAPI (Vec-

tor Labs). The following primary antibodies were used: mouse anti-Adducin-like 1B1 (hu-li tai shao –

Fly Base) [1:20; Developmental Studies Hybridoma Bank (DSHB); developed by H.D. Lipshitz]; mouse

anti-alpha-spectrin 3A9 (1:20; DSHB; developed by R. Dubreuil, T. Byers); rat anti-vasa (1:50; DSHB;

developed by A. Spradling), rabbit anti-vasa (1:200; d-26; Santa Cruz Biotechnology), mouse anti-

Fasciclin III (1:200; DSHB; developed by C. Goodman), anti-LaminDm0 (1:200; DSHB; developed by

P. A. Fisher), rabbit anti-g-H2AvD pS137 (1:100;Rockland), rabbit anti-Mnk (1:100; courtesy of Saeko

Takada), rabbit anti-Cleaved Drosophila Dcp-1 (Asp216) (1:200; Cell Signaling Technology). Images

were taken using a Leica TCS SP8 confocal microscope with 63x oil-immersion objectives (NA = 1.4)

and processed using Adobe Photoshop software. For detection of germ cell death, testes were

stained with Lysotracker Red DND-99 in PBS (1:1000) for 30 min prior to formaldehyde fixation.

Stages (GB, 2-, 4-, 8-, and 16-SGs) of dying SGs were identified by counting the number of nuclei

within the cyst visualized by Lamin Dm0 and DAPI (Chiang et al., 2017). Note that the number of

‘stageable’ dying SGs underrepresents the total population of dying SGs, because nuclear structures

disintegrate during later phases of cell death, making it impossible to count the number of SGs

within a dying cyst (Chiang et al., 2017). Such ‘unstageable’ SGs were not included in the scoring in

this study.

For observation of unfixed samples, testes were dissected directly into PBS and incubated in the

dark with the desired dyes for 5 min, mounted on slides with PBS and imaged within 10 min of dis-

section. The dyes used in live imaging are: Lysotracker Red DND-99 (1:200) or Lysotracker Green

DND-26 (1:200) (Thermo Fisher Scientific), Hoechst 33342 (1:200), and FM4-64FX in PBS (1:200)

(Thermo Fisher Scientific). SG stage (2-, 4-, 8-, or 16-SG) was assessed by number of Hoechst-stained

nuclei. Note that the scoring of dying SGs is not directly comparable between fixed and unfixed

samples (for example, results shown in Figure 1 vs. Figure 2), due to the difference in the method

of SG staging and timing.

Ionizing radiation
For radiation doses of 25–250 rad, a 137Cs source was used with a dose rate of approximately 100

rad per minute. Additionally, for radiation doses 100 rad and above, a Philips RT250 model or Kim-

tron Medical IC-320 orthovoltage unit was used (dose rates of 200 and 400 rad per minute respec-

tively). Dosimetry was carried out using an ionization chamber connected to an electrometer system

directly traceable to National Institute of Standards and Technology calibration. The relative biologi-

cal effectiveness of 137Cs and x-ray sources is comparable at lower doses (Fu et al., 1979), and

experiments were repeated with both sources for 100–250 rad, which yielded essentially the same

results irrespective of radiation source.

TUNEL assay
Larval heads with imaginal discs attached were dissected from third instar larvae into PBS, then fixed

in 4% formaldehyde in PBS for 30 min. Samples were then washed in PBS-T (PBS containing 0.1%

Triton-X) for at least 20 min, transferred to 100% methanol for 6 min with rocking, and washed again

for at least 20 min in PBS-T. TUNEL assay was then carried out according to manufacturer’s instruc-

tions using a Millipore ApopTag Red In Situ Apoptosis Detection Kit (S7165). Following washes with

PBS-T for 20 min, wing imaginal discs were dissected from larval heads and mounted in VECTA-

SHIELD with DAPI (Vector Labs).
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Dose-response best fit regressions
Best fit functions and lines for radiation dose-cell death response curves were generated by using

GraphPad Prism seven and the means-only values at all doses. Non-linear regressions were deter-

mined using a four-parameter logistic curve with no constraints on bottom, top, or hillslope

and >1500 iterations. Standard linear regression was performed using cell death as a function of

radiation dose. Goodness of fit, unadjusted R2 value, was determined by 1.0 less the ratio of the

regression sum of squares to the total sum of squares, 1 – SSreg/SStot.

Statistics for comparison of 16-SG death distributions
Distribution of number of dying SGs per 16-SG cyst between mutant and control conditions at every

dose of radiation were compared using a 2 � 3 Pearson’s chi-squared test. Data were transformed

into three categories: 0 SGs dying, all 16 SGs dying, or 1–15 (partial cyst) SGs dying.

Acknowledgements
We thank Drs. Saeko Takada, William Theurkauf, Eli Arama, David Glover, and John Abrams for

reagents. Bloomington Stock Center, the Developmental Studies Hybridoma Bank for reagents, the

University of Michigan Experimental Irradiation Core for radiation experiments, the University of

Michigan Center for Consulting for Statistics, Computing, and Analytics Research for help with statis-

tical analyses, Drs. Lei Lei, Sue Hammoud and Yamashita lab members for comments on the manu-

script, Dr. Lynn Cooley for sharing unpublished results. This work was supported by the University of

Michigan Medical Scientist Training Program, the University of Michigan Career Training in Repro-

ductive Biology training grant [T32 HD079342] and NIH Fellowship [F30 AG050398-01] to KL, and by

the Howard Hughes Medical Institute to YY.

Additional information

Competing interests

Yukiko M Yamashita: Reviewing editor, eLife. The other author declares that no competing interests

exist.

Funding

Funder Grant reference number Author

Howard Hughes Medical Insti-
tute

Yukiko M Yamashita

National Institute of General
Medical Sciences

R01 GM118308-01 Yukiko M Yamashita

National Institute on Aging F30 AG050398-01A1 Kevin L Lu

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Kevin L Lu, Conceptualization, Formal analysis, Funding acquisition, Investigation, Writing—original

draft, Writing—review and editing; Yukiko M Yamashita, Conceptualization, Supervision, Funding

acquisition, Investigation, Writing—original draft, Project administration, Writing—review and

editing

Author ORCIDs

Yukiko M Yamashita https://orcid.org/0000-0001-5541-0216

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.27960.022

Author response https://doi.org/10.7554/eLife.27960.02

Lu and Yamashita. eLife 2017;6:e27960. DOI: https://doi.org/10.7554/eLife.27960 13 of 16

Research article Developmental Biology and Stem Cells

3

https://orcid.org/0000-0001-5541-0216
https://doi.org/10.7554/eLife.27960.022
https://doi.org/10.7554/eLife.27960.023
https://doi.org/10.7554/eLife.27960


Additional files
Supplementary files
. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.27960.021

References
Arnon J, Meirow D, Lewis-Roness H, Ornoy A. 2001. Genetic and teratogenic effects of cancer treatments on
gametes and embryos. Human Reproduction Update 7:394–403. DOI: https://doi.org/10.1093/humupd/7.4.
394, PMID: 11476352

Braun RE, Behringer RR, Peschon JJ, Brinster RL, Palmiter RD. 1989. Genetically haploid spermatids are
phenotypically diploid. Nature 337:373–376. DOI: https://doi.org/10.1038/337373a0, PMID: 2911388

Brodsky MH, Weinert BT, Tsang G, Rong YS, McGinnis NM, Golic KG, Rio DC, Rubin GM. 2004. Drosophila
melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA
damage. Molecular and Cellular Biology 24:1219–1231. DOI: https://doi.org/10.1128/MCB.24.3.1219-1231.
2004, PMID: 14729967

Cheng J, Türkel N, Hemati N, Fuller MT, Hunt AJ, Yamashita YM. 2008. Centrosome misorientation reduces stem
cell division during ageing. Nature 456:599–604. DOI: https://doi.org/10.1038/nature07386, PMID: 18923395

Chiang AC, Yang H, Yamashita YM. 2017. spict, a cyst cell-specific gene, regulates starvation-induced
spermatogonial cell death in the Drosophila testis. Scientific Reports 7:40245. DOI: https://doi.org/10.1038/
srep40245, PMID: 28071722

Ciccia A, Elledge SJ. 2010. The DNA damage response: making it safe to play with knives. Molecular Cell 40:
179–204. DOI: https://doi.org/10.1016/j.molcel.2010.09.019, PMID: 20965415

Cinquin A, Zheng L, Taylor PH, Paz A, Zhang L, Chiang M, Snow JJ, Nie Q, Cinquin O. 2015. Semi-permeable
Diffusion Barriers Enhance Patterning Robustness in the C. elegans Germline. Developmental Cell 35:405–417.
DOI: https://doi.org/10.1016/j.devcel.2015.10.027, PMID: 26609956

Cox RT, Spradling AC. 2003. A Balbiani body and the fusome mediate mitochondrial inheritance during
Drosophila oogenesis. Development 130:1579–1590. DOI: https://doi.org/10.1242/dev.00365, PMID: 12620
983

de Cuevas M, Lee JK, Spradling AC. 1996. alpha-spectrin is required for germline cell division and differentiation
in the Drosophila ovary. Development 122:3959-68. PMID: 9012516

de Cuevas M, Lilly MA, Spradling AC. 1997. Germline cyst formation in Drosophila. Annual Review of Genetics
31:405–428. DOI: https://doi.org/10.1146/annurev.genet.31.1.405, PMID: 9442902

Decotto E, Spradling AC. 2005. The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and
signals. Developmental Cell 9:501–510. DOI: https://doi.org/10.1016/j.devcel.2005.08.012, PMID: 16198292

DeLuca SZ, O’Farrell PH. 2012. Barriers to male transmission of mitochondrial DNA in sperm development.
Developmental Cell 22:660–668. DOI: https://doi.org/10.1016/j.devcel.2011.12.021, PMID: 22421049

Fairchild MJ, Smendziuk CM, Tanentzapf G. 2015. A somatic permeability barrier around the germline is
essential for Drosophila spermatogenesis. Development 142:268–281. DOI: https://doi.org/10.1242/dev.
114967, PMID: 25503408

Fu KK, Phillips TL, Heilbron DC, Ross G, Kane LJ. 1979. Relative biological effectiveness of low- and high-LET
radiotherapy beams for jejunal crypt cell survival at low doses per fraction. Radiology 132:205–209.
DOI: https://doi.org/10.1148/132.1.205, PMID: 109900

Fuller MT. 1993. Spermatogenesis. In: The Development of Drosophila Melanogaster. Vol. 1 New York: Cold
Spring Harbor Laboratory Press. p. 71–147.

Greenbaum MP, Iwamori T, Buchold GM, Matzuk MM. 2011. Germ cell intercellular bridges. Cold Spring Harbor
Perspectives in Biology 3:a005850. DOI: https://doi.org/10.1101/cshperspect.a005850, PMID: 21669984

Gunes S, Al-Sadaan M, Agarwal A. 2015. Spermatogenesis, DNA damage and DNA repair mechanisms in male
infertility. Reproductive BioMedicine Online 31:309–319. DOI: https://doi.org/10.1016/j.rbmo.2015.06.010,
PMID: 26206278

Haglund K, Nezis IP, Stenmark H. 2011. Structure and functions of stable intercellular bridges formed by
incomplete cytokinesis during development. Communicative & Integrative Biology 4:1–9. DOI: https://doi.org/
10.4161/cib.13550, PMID: 21509167

Hime GR, Brill JA, Fuller MT. 1996. Assembly of ring canals in the male germ line from structural components of
the contractile ring. Journal of Cell Science 109:2779–88. PMID: 9013326

Huynh JR, St Johnston D. 2004. The origin of asymmetry: early polarisation of the Drosophila germline cyst and
oocyte. Current Biology 14:R438–R449. DOI: https://doi.org/10.1016/j.cub.2004.05.040, PMID: 15182695

Igaki T, Suzuki Y, Tokushige N, Aonuma H, Takahashi R, Miura M. 2007. Evolution of mitochondrial cell death
pathway: Proapoptotic role of HtrA2/Omi in Drosophila. Biochemical and Biophysical Research
Communications 356:993–997. DOI: https://doi.org/10.1016/j.bbrc.2007.03.079, PMID: 17397804

Khan FS, Fujioka M, Datta P, Fernandes-Alnemri T, Jaynes JB, Alnemri ES. 2008. The interaction of DIAP1 with
dOmi/HtrA2 regulates cell death in Drosophila. Cell Death and Differentiation 15:1073–1083. DOI: https://doi.
org/10.1038/cdd.2008.19, PMID: 18259196

Lu and Yamashita. eLife 2017;6:e27960. DOI: https://doi.org/10.7554/eLife.27960 14 of 16

Research article Developmental Biology and Stem Cells

https://doi.org/10.7554/eLife.27960.021
https://doi.org/10.1093/humupd/7.4.394
https://doi.org/10.1093/humupd/7.4.394
http://www.ncbi.nlm.nih.gov/pubmed/11476352
https://doi.org/10.1038/337373a0
http://www.ncbi.nlm.nih.gov/pubmed/2911388
https://doi.org/10.1128/MCB.24.3.1219-1231.2004
https://doi.org/10.1128/MCB.24.3.1219-1231.2004
http://www.ncbi.nlm.nih.gov/pubmed/14729967
https://doi.org/10.1038/nature07386
http://www.ncbi.nlm.nih.gov/pubmed/18923395
https://doi.org/10.1038/srep40245
https://doi.org/10.1038/srep40245
http://www.ncbi.nlm.nih.gov/pubmed/28071722
https://doi.org/10.1016/j.molcel.2010.09.019
http://www.ncbi.nlm.nih.gov/pubmed/20965415
https://doi.org/10.1016/j.devcel.2015.10.027
http://www.ncbi.nlm.nih.gov/pubmed/26609956
https://doi.org/10.1242/dev.00365
http://www.ncbi.nlm.nih.gov/pubmed/12620983
http://www.ncbi.nlm.nih.gov/pubmed/12620983
http://www.ncbi.nlm.nih.gov/pubmed/9012516
https://doi.org/10.1146/annurev.genet.31.1.405
http://www.ncbi.nlm.nih.gov/pubmed/9442902
https://doi.org/10.1016/j.devcel.2005.08.012
http://www.ncbi.nlm.nih.gov/pubmed/16198292
https://doi.org/10.1016/j.devcel.2011.12.021
http://www.ncbi.nlm.nih.gov/pubmed/22421049
https://doi.org/10.1242/dev.114967
https://doi.org/10.1242/dev.114967
http://www.ncbi.nlm.nih.gov/pubmed/25503408
https://doi.org/10.1148/132.1.205
http://www.ncbi.nlm.nih.gov/pubmed/109900
https://doi.org/10.1101/cshperspect.a005850
http://www.ncbi.nlm.nih.gov/pubmed/21669984
https://doi.org/10.1016/j.rbmo.2015.06.010
http://www.ncbi.nlm.nih.gov/pubmed/26206278
https://doi.org/10.4161/cib.13550
https://doi.org/10.4161/cib.13550
http://www.ncbi.nlm.nih.gov/pubmed/21509167
http://www.ncbi.nlm.nih.gov/pubmed/9013326
https://doi.org/10.1016/j.cub.2004.05.040
http://www.ncbi.nlm.nih.gov/pubmed/15182695
https://doi.org/10.1016/j.bbrc.2007.03.079
http://www.ncbi.nlm.nih.gov/pubmed/17397804
https://doi.org/10.1038/cdd.2008.19
https://doi.org/10.1038/cdd.2008.19
http://www.ncbi.nlm.nih.gov/pubmed/18259196
https://doi.org/10.7554/eLife.27960


Lei L, Spradling AC. 2016. Mouse oocytes differentiate through organelle enrichment from sister cyst germ cells.
Science 352:95–99. DOI: https://doi.org/10.1126/science.aad2156, PMID: 26917595

Lettre G, Kritikou EA, Jaeggi M, Calixto A, Fraser AG, Kamath RS, Ahringer J, Hengartner MO. 2004. Genome-
wide RNAi identifies p53-dependent and -independent regulators of germ cell apoptosis in C. elegans. Cell
Death and Differentiation 11:1198–1203. DOI: https://doi.org/10.1038/sj.cdd.4401488, PMID: 15272318

Lilly MA, de Cuevas M, Spradling AC. 2000. Cyclin A associates with the fusome during germline cyst formation
in the Drosophila ovary. Developmental Biology 218:53–63. DOI: https://doi.org/10.1006/dbio.1999.9570,
PMID: 10644410

Lim JG, Fuller MT. 2012. Somatic cell lineage is required for differentiation and not maintenance of germline
stem cells in Drosophila testes. PNAS 109:18477–18481. DOI: https://doi.org/10.1073/pnas.1215516109,
PMID: 23091022

Lin H, Yue L, Spradling AC. 1994. The Drosophila fusome, a germline-specific organelle, contains membrane
skeletal proteins and functions in cyst formation. Development 120:947–956. PMID: 7600970

Madigan JP, Chotkowski HL, Glaser RL. 2002. DNA double-strand break-induced phosphorylation of Drosophila
histone variant H2Av helps prevent radiation-induced apoptosis. Nucleic Acids Research 30:3698–3705.
DOI: https://doi.org/10.1093/nar/gkf496, PMID: 12202754

McLean PF, Cooley L. 2013a. Protein equilibration through somatic ring canals in Drosophila. Science 340:1445–
1447. DOI: https://doi.org/10.1126/science.1234887, PMID: 23704373

Meistrich ML. 2013. Effects of chemotherapy and radiotherapy on spermatogenesis in humans. Fertility and
Sterility 100:1180–1186. DOI: https://doi.org/10.1016/j.fertnstert.2013.08.010, PMID: 24012199
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