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Abstract Aneuploidy and epigenetic alterations have long been associated with carcinogenesis,

but it was unknown whether aneuploidy could disrupt the epigenetic states required for cellular

differentiation. In this study, we found that ~3% of random aneuploid karyotypes in yeast disrupt

the stable inheritance of silenced chromatin during cell proliferation. Karyotype analysis revealed

that this phenotype was significantly correlated with gains of chromosomes III and X. Chromosome

X disomy alone was sufficient to disrupt chromatin silencing and yeast mating-type identity as

indicated by a lack of growth response to pheromone. The silencing defect was not limited to

cryptic mating type loci and was associated with broad changes in histone modifications and

chromatin localization of Sir2 histone deacetylase. The chromatin-silencing defect of disome X can

be partially recapitulated by an extra copy of several genes on chromosome X. These results

suggest that aneuploidy can directly cause epigenetic instability and disrupt cellular differentiation.

DOI: https://doi.org/10.7554/eLife.27991.001

Introduction
The histone modification landscape and the associated open or closed (silenced) chromatin confor-

mations regulate access to the genetic information by the transcriptional machinery and provide a

mechanism for the establishment and maintenance of stable epigenetic states in well-differentiated

cells and tissues (Jaenisch and Bird, 2003). Alterations in epigenetic modifications have been recog-

nized as a key step in the initiation and progression of cancer whereby quiescent or slowly-dividing

somatic cells escape their normal differentiated state and undergo precocious proliferation.

(Feinberg et al., 2006; Timp and Feinberg, 2013; Morgan and Shilatifard, 2015). However, the

mechanisms underlying changes in the epigenetic-state associated with neoplastic transformation

have not been fully elucidated.

Cancer progression is also associated with a wide range of genetic abnormalities, from mutations

of single genes to structural or copy number alterations on the chromosomal level. Aneuploidy, an

unbalanced genomic state in which the number of chromosomes deviates from a multiple of the

haploid complement, is found in over 90% of human solid tumors and 50% of hematopoietic malig-

nancies (Mitelman et al., 2012). Although the association of aneuploidy with cancer was noted

more than a century ago, its contribution to cancer progression has only been actively explored in
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recent years (Boveri, 1914; Holland and Cleveland, 2012). Aneuploidy is correlated with complex

patterns of altered gene transcription (Upender et al., 2004; Ried et al., 2012), but its potential

impact on the epigenetic state of cancer cells remains unclear due to the co-existence of the other

genetic alterations in highly complex and unstable cancer genomes.

Studies in unicellular eukaryotes, such as the budding yeast Saccharomyces cerevisiae, have pro-

vided valuable insights into the effects of aneuploidy on gene expression and corresponding cellular

phenotypes because diverse aneuploid strains that differ only in chromosome stoichiometry, but not

in DNA sequence, can be readily generated (Pfau and Amon, 2012; Mulla et al., 2014). In yeast,

chromosome copy number variation leads to scaled changes in the transcriptome and proteome for

most of the genes carried on the aneuploid chromosome, as well as expression level changes that

vary significantly more than the scaled amount for 5–10% of total genes distributed throughout the

genome (Torres et al., 2007; Rancati et al., 2008; Pavelka et al., 2010; Sheltzer et al., 2012). The

widespread but mostly moderate gene expression changes caused by aneuploidy lead to quantita-

tive alterations in cell growth under a wide range of environmental conditions. However, the existing

yeast studies have not addressed whether aneuploidy has the potential to alter the stable epigenetic

states correlated with cellular differentiation. This is in part because yeast cells lack complex devel-

opmental fates and yeast genome comprises mostly open chromatin accessible to the transcriptional

machinery (Millar and Grunstein, 2006).

Yeast cells, however, do have a few well-established regions of silenced chromatin, including the

cryptic mating type loci HML and HMR on chromosome III, the rDNA repeats on chromosome XII,

and subtelomeric regions (Bühler and Gasser, 2009). In particular, chromatin silencing at HML and

HMR is critical for the specification of the sexual identity of yeast, in the form of a or a mating type,

which is stably inherited from generation to generation. The underlying epigenetic mechanism of

mating type specification depends on the recruitment of the Sir2 NAD-dependent histone deacety-

lase to HM loci through interactions with other Sir proteins (Sir1, 3, and 4) and several other acces-

sory factors (Liou et al., 2005; Kueng et al., 2013; Behrouzi et al., 2016). Spreading of the Sir

protein complex across this region of DNA leads to hypoacetylated histones and establishes stably

silenced chromatin (Rusche et al., 2003).

In this study, we took advantage of the genetic tools available in yeast and used HML silencing as

the primary readout to test whether aneuploidy can affect cell identity by disrupting heterochroma-

tin chromatin assembly and maintenance. By inducing meiosis in triploid cells, we generated thou-

sands of aneuploid colonies and screened them using an imaging-based assay to determine the

frequency at which aneuploid karyotypes disrupted transcriptional silencing at HML. Using a battery

of genomic, transcriptomic and cell biological analyses, we investigated the mechanisms by which

aneuploidy caused defects in chromatin silencing and epigenetic inheritance.

Results

Diverse aneuploid karyotypes can cause chromatin desilencing
To investigate whether and at what frequency random chromosome stoichiometries could disrupt

chromatin silencing, we started with a haploid yeast strain containing a yellow fluorescent protein

(YFP) with a nuclear localization sequence under the URA3 promoter, which was inserted into the

silent HML locus. This HML::YFP reporter was shown previously to respond to transcriptional silenc-

ing in a Sir2, and 3-dependent manner, like the genes that normally reside at the silent mating type

loci (Xu et al., 2006). We converted the haploid strain carrying HML::YFP to a fully isogenic and

homozygous triploid strain by cycles of mating-type switching and mating (Figure 1—figure supple-

ment 1A) as previously described (Pavelka et al., 2010). The resulting triploid strain, which exhib-

ited complete silencing at the HML locus as indicated by the lack of YFP fluorescence (Figure 1B),

were then sporulated and viable meiotic progenies were isolated through tetrad dissection. Previous

studies showed that ~100% of the resulting colonies were aneuploid with random combinations of

chromosome numbers, due to the segregation of 3 sets of homologous chromosomes during meio-

sis (Campbell et al., 1981; Pavelka et al., 2010; St Charles et al., 2010). Using fluorescence micros-

copy, we examined and identified individual colonies with defects in the silencing of YFP at the HML

locus. Roughly 3% (98 out of 3418) of viable aneuploid spore colonies exhibited varying degrees of

silencing defects. In contrast, we did not observe silencing defects in haploid meiotic progenies
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Figure 1. Aneuploid yeast strains show defective silencing at HML, subtelomeric, and rDNA chromatin regions. (A) The design of a microscopy-based

screen to isolate karyotypically stable aneuploid strains, generated by inducing triploid meiosis, that exhibit defective silencing of the HML locus. (B)

Representative fluorescence images show HML::YFP reporter expression in euploid and aneuploid cells of various karyotypes, as indicated. YFP

expression from the HML locus is not detectable in the parental haploid, diploid and triploid strains; YFP fluorescence is heterogeneous within Dsir1

and aneuploid cell populations suggests defective silencing at the HML locus. Scale bar, 4 mm. (C) The bar plot shows the number of times each of the

sixteen yeast chromosomes was found to be aneuploid (chromosome number different from the basal ploidy) in 24 strains with defective silencing.

Aneuploidies of Chr III and Chr X are significantly overrepresented in strains with defective silencing compared with other 38 stable aneuploids isolated

by the same method (Pavelka et al., 2010). *p<0.05 for Chr III and Chr X; p=0.09 for Chr XII calculated using an exact binomial test. (D) The box plot

shows mean YFP intensities, determined by microscopy as in Figure 1B, for 175 individual cells per strain. The karyotype of each aneuploid strain is

indicated; WT and Dsir1 cells are haploid. The box spans the first through third quartile values, the line inside each box indicates the median, the solid

black square designates the mean, and the whiskers mark the 90/10 percentile range. *p<0.01, **p<0.001, ***p<0.0001 compared with WT haploid;

calculated using a Mann–Whitney U test. (E) The bar plot depicts the expression, measured by quantitative RT-PCR, of several normally silenced genes:

YFP inserted into the endogenous HML locus; subtelomeric genes YFR057W (Chr III), COS12 (Chr XII), AAD15 (Chr XV), and PAU4 (Chr XII); and rDNA

Figure 1 continued on next page

Mulla et al. eLife 2017;6:e27991. DOI: https://doi.org/10.7554/eLife.27991 3 of 23

Research article Cell Biology Genes and Chromosomes

https://doi.org/10.7554/eLife.27991


(n = 100) obtained through sporulation of a diploid strain carrying the HML::YFP reporter as a con-

trol (data not shown).

To study how the imbalance of specific chromosomes alters chromatin silencing, we first deter-

mined which of the desilenced aneuploid strains had stable karyotypes, since most of the yeast

aneuploids obtained through triploid meiosis are karyotypically unstable (Pavelka et al., 2010).

Using fluorescence-activated cell sorting (FACS) and qPCR karyotyping analyses, as previously

described (Pavelka et al., 2010), we identified 24 aneuploid strains with unique and stable karyo-

types, each with gain or loss of multiple chromosomes compared to the basal ploidy – defined as

the copy number possessed by most chromosomes (Supplementary file 1). In the desilenced strains,

Chromosome (Chr) III, Chr X, Chr XII, and Chr XIII showed the most abundant copy number variation

(more specifically, gain) (Figure 1C). In particular, Chr III and Chr X were significantly enriched as

chromosomes in gained aneuploid numbers in the desilenced aneuploid strains compared with a set

of stable aneuploid strains of the same genetic background (S288c) that were isolated through trip-

loid meiosis but not selected for silencing phenotype (Pavelka et al., 2010) (Figure 1C).

We subsequently focused on the four aneuploid strains showing the most prominent defects in

HML silencing for more in-depth analysis (Figure 1B,D). To exclude the possibility that the silencing

defect was caused by spontaneously arising mutations rather than aneuploidy, all four aneuploid

strains were subjected to whole-genome sequencing to compare with the parental euploid strains.

This analysis revealed an absence of coding region mutations that were not already present in the

parental euploid strains (see Materials and methods).

Quantification of the mean fluorescence intensity for each of the four aneuploid populations

showed a significant increase in YFP expression compared with the WT haploid control strains

(Figure 1D). The extent of HML::YFP reporter desilencing in the aneuploid strains was comparable

to or greater than that of the Dsir1 strain (Figure 1D). Interestingly, YFP expression was heteroge-

neous within each aneuploid population, and such heterogeneity was also observed in Dsir1 strain as

reported previously (Xu et al., 2006). To ensure the heterogeneous expression pattern of YFP+ and

YFP- signals within the population was not due to the karyotypic variations, cells with 2x Chr III and

1x Chr X gain were sorted into two distinct subpopulations based on YFP fluorescent signal for fur-

ther analysis, and qPCR karyotyping showed that both sub-populations retained the expected karyo-

type with gain of Chr III and X (Figure 1—figure supplement 1B–D). To determine if this

heterogeneity was due to the instability of the chromatin silencing state, we performed time-lapse

imaging of YFP expression over several cell divisions in aneuploid strains. We observed transitions

between repression and derepression of the HML locus in proliferating cell lineages (Figure 1—fig-

ure supplement 1E–G), which was never observed in haploid lineages (data not shown), suggesting

that these aneuploid karyotypes disrupted the stable inheritance of the silenced chromatin.

We next used quantitative RT-PCR (qPCR) analysis to confirm the defective HML silencing

observed by microscopy. This analysis revealed significant derepression of several genomic loci

Figure 1 continued

gene NTS1-2 (Chr XII). Transcriptional levels are plotted as fold expression relative to the WT haploid strain. Error bars represent the standard deviation

(SD) of three biological replicates. *p<0.05, **p<0.01, ***p<0.005 compared with WT haploid; calculated using a two-tailed t-test.

DOI: https://doi.org/10.7554/eLife.27991.002

The following video and figure supplement are available for figure 1:

Figure supplement 1. Heterogeneous expression pattern of YFP+ and YFP- signals within the aneuploid population was not due to the karyotypic

variations.

DOI: https://doi.org/10.7554/eLife.27991.003

Figure 1—Video 1. Transitions between repression and derepression of the HML locus in proliferating cell lineages with the following karyotypes: Gain

of III, III, X.

DOI: https://doi.org/10.7554/eLife.27991.004

Figure 1—Video 2. Transitions between repression and derepression of the HML locus in proliferating cell lineages with the following karyotypes: Loss

of I, V, VII, VIII, XI (basal ploidy, 2N).

DOI: https://doi.org/10.7554/eLife.27991.005

Figure 1-—Video 3. Transitions between repression and derepression of the HML locus in proliferating cell lineages with the following karyotypes:

Gain of I, X, XII, XIII.

DOI: https://doi.org/10.7554/eLife.27991.006
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across different chromosomes that are normally silenced (Li et al., 2006; Ellahi et al., 2015), includ-

ing not only YFP at HML but also the subtelomeric genes YFR057W, COS12, AAD15, and PAU4 and

the rDNA region gene NTS1-2 (Figure 1E). The observation of increased gene expression at all

three genomic regions previously implicated in chromatin silencing (Talbert and Henikoff, 2006)

demonstrates that aneuploidy can affect global gene expression by altering the state of chromatin

silencing, in addition to the previously shown effects related directly to changes in DNA copy num-

ber (Torres et al., 2007; Rancati et al., 2008; Pavelka et al., 2010; Sheltzer et al., 2012).

Chromosome X disomy is the simplest karyotype that disrupts
chromatin silencing
Since each of the above strains had multiple aneuploid chromosomes, we performed segregation

analysis to determine which chromosome aneuploidy was linked to the silencing phenotype. We

treated two strains, one with gains in Chr III (2x), and X (III, III, X-gain) and the other with gains in

Chr I, X, XII, and XIII (I, X, XII, XIII-gain), with low concentrations of radicicol, an inhibitor of Hsp90, to

induce chromosomal instability and karyotype changes (Chen et al., 2012). We then isolated and

karyotyped various aneuploid segregants from these strains (see methods) and analyzed silencing of

the HML::YFP reporter. Analysis of the aneuploid segregants obtained from the aneuploid strain (III,

III, X-gain) showed that the desilencing phenotype co-segregated with Chr X as the only gained

chromosome (referred as disome X hereafter) (Figure 2A). Interestingly, the gain of one or two extra

copies of Chr III, which carries the HM loci, did not affect HML silencing on its own. Furthermore,

qPCR analysis revealed that two extra copies of Chr III did not cause transcriptional derepression of

HML:YFP, subtelomeric genes, or rDNA regions (Figure 2B). However, gaining two copies of Chr III

did exacerbate the silencing defect of disome X (Figure 2A). Disome X segregants independently

obtained from the second aneuploid strain (I, X, XII, XIII-gain) also showed significant HML desilenc-

ing (Figure 2A). Conversely, a segregant from the above karyotype with extra copies of Chr I, XII,

and XIII, but not Chr X, did not show a significant difference in HML silencing compared with the

haploid control (Figure 2A). These observations establish a causal link between Chr X gain and HML

desilencing.

To further test whether an acute gain of Chr X would be sufficient to cause HML desilencing, we

induced Chr X disomy using a previously described conditional centromere strategy (Reid et al.,

2008; Anders et al., 2009). In both WT haploid cells and aneuploid strains with two extra copies of

Chr III, we integrated the GAL1 promoter (Pgal1) into the region of Chr X directly adjacent to the

consensus centromere sequences (Pgal1-CEN-X). Upon galactose addition, this GAL1 promoter was

activated to induce mitotic non-disjunction of Chr X, resulting in one viable progeny cell with an

extra copy of Chr X and an inviable one per cell division. For both the haploid and aneuploid strains

that contained the Pgal1-CEN-X construct, growth in galactose resulted in a significant increase in

YFP expression from HML compared with corresponding control strains, Chr X::Pgal1, in which Pgal1

was integrated into Chr X at sites distant from the consensus centromere sequences (Figure 2C).

This result further confirmed that gain of Chr X was sufficient to disrupt chromatin silencing at HML.

Because the heterogeneity in desilencing was similar between disomy X and Dsir1, we further

combined disomy X and Dsir1 to test whether these genetic lesions disrupt HML silencing through

the same or different mechanisms. Notably, the fluorescence of the HML::YFP reporter in this double

mutant was significantly higher (p<0.05) than in either disome X or Dsir1 individually, suggesting an

additive or synergistic effect between these genetic abnormalities on HML locus silencing

(Figure 2D).

Disomy X impairs growth arrest in response to a-factor
MATa haploid yeast cells normally respond to the pheromone a-factor by switching from vegetative

growth to a G1 cell cycle arrest. Desilencing at HM loci results in the expression of both a- and a-

specific genes and the inability to respond to pheromones (Osborne et al., 2009). To test whether

the effect of aneuploidy on silencing influences the pheromone-induced growth arrest, we treated

WT haploid, Dsir1 and disome X strains, all of the a mating type with the endogenous copy of the

HML locus (non-YFP inserted), with a-factor for 90 min. FACS-based cell cycle analysis showed that,

while WT haploid cells were fully arrested in the G1 phase, 23 ± 1.7% of Dsir1% and 14 ± 1.5% of dis-

ome X cells remained in G2 (Figure 3A). We next applied filter discs saturated with a-factor to a
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Figure 2. Gain of Chr X is sufficient to disrupt silencing. (A) The box plot shows mean YFP intensities, determined by microscopy of 125 individual cells

for each of the following strains: WT haploid, Dsir1, and two parental aneuploid strains (Gain of III, III, X and Gain of I, X, XII, XIII) and their segregants

(Gain of III; Gain of III, III; and Gain of I, XII, XIII). The box spans the first through third quartile values, the line inside each box indicates the median, the

solid black square designates the mean, and the whiskers mark the 90/10 percentile range. *p<0.01, **p<0.001, ***p<0.0001 compared with WT

haploid unless indicated by brackets; calculated using a Mann–Whitney U test. (B) The bar plot depicts the expression, measured by quantitative RT-

PCR, of several normally silenced genes in haploid and aneuploid cells with two extra copies of Chr III. These genes are YFP inserted into the

endogenous HML locus; subtelomeric genes YFR057W (Chr III), COS12 (Chr XII), AAD15 (Chr XV), and PAU4 (Chr XII); and rDNA gene NTS1-2 (Chr XII).

Transcription levels are plotted as fold expression relative to the WT haploid strain and not significantly different in Gain III, III strain compared to WT

haploid (p<0.05, calculated using a two-tailed t-test). Error bars represent SD of three biological replicates. (C) The box plots show mean YFP

intensities, determined by microscopy of 125 individual cells for each of the indicated WT haploid or aneuploid strains. The GAL1 promoter (Pgal1) was

integrated into Chr X either directly adjacent to (Pgal1-CEN-X) or far from (Chr X::Pgal1) consensus centromere sequences. The box plot presentation

and statistical analysis are performed as described in Figure 2A. (D) The box plots show mean YFP intensities, determined by microscopy of 125

individual cells for each of the following strains: WT haploid, Dsir1, disome X/SIR1 and disome X/Dsir1 double mutant. The box plot presentation and

statistical analysis are performed as described in Figure 2A.

DOI: https://doi.org/10.7554/eLife.27991.007
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lawn of WT haploid, Dsir1 and disome X MATa cells. The latter two strains showed significant reduc-

tions in pheromone sensitivity compared with the WT haploid population (Figure 3B). This demon-

strates that the silencing defect of disome X impairs the ability of these aneuploid cells to undergo

growth arrest in response to a paracrine factor.

Chromatin desilencing in disome X is associated with increased
acetylation of H4K16 and reduced Sir2 enrichment across HM loci
Hypoacetylation of histone H4 at lysine 16 (H4K16) is essential for the establishment and mainte-

nance of silencing at HM loci and subtelomeric genes (Katan-Khaykovich and Struhl, 2005;

Osborne et al., 2009). The deacetylation of H4K16 is carried out by Sir2, an NAD-dependent his-

tone deacetylase that localizes to silenced chromatin (Thurtle and Rine, 2014). To uncover whether

the distribution of acetylated H4K16 (H4K16ac) and occupancy of Sir2 is affected in the disome X

strain, we performed chromatin immunoprecipitation (ChIP) using anti-H4K16ac antibody in the hap-

loid, aneuploid, and Dsir1 strains, followed by qPCR using primer sets spanning HML and HMR. We

observed significantly increased acetylation of H4K16 across both HM loci in disome X and Dsir1 cells

compared with WT haploid controls (Figure 4A–B). Similarly, we performed ChIP using anti-Sir2::HA

antibody and found significantly reduced levels of Sir2 protein localized to both HM loci in the dis-

ome X and Dsir1 strains, compared to WT haploid control (Figure 4C–D). These results suggest that
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Figure 3. Cells with a gain of Chromosome X show abnormal growth arrest in response to a-factor. (A) The plots show FACS-based DNA content

analysis, indicating cell cycle stage, in MATa WT haploid, Dsir1, and disome X strains. Left panels represent untreated cells; right panels represent

strains treated with 2 mg/ml a-factor for 90 min. Peaks overlapping with the red dotted line represent cells in the G1 phase with a haploid genome

content (1N). Peaks overlapping with the blue dotted line represent cells in the G2 phase with a diploid genome content (2N). Percentages are the

fraction of total cells in G2,±SD. *p<0.001 compared with WT haploid; calculated using a two-tailed t-test. (B) Images depict a pheromone sensitivity

assay conducted by applying filter discs carrying a-factor (15 ml of 2 mg/ml) to lawns of WT haploid, Dsir1, or disome X MATa strains. The images shown

were used to calculate the size of the zone devoid of cell growth (the region between the rim of the disc and the dashed circle); these areas, indicative

of cellular sensitivity to a-factor, were normalized to the WT haploid strain and plotted. The plot shows the mean and SD from three replicates per

strain. *p<0.001 compared with WT haploid; calculated using a two-tailed t-test.

DOI: https://doi.org/10.7554/eLife.27991.008
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the defective silencing of HM loci in disome X cells may result from a reduction in chromatin-local-

ized Sir proteins, such as Sir2, and the corresponding increased acetylation of H4K16 at these sites.

Figure 4. HM desilencing in disome X cells correlates with increased H4K16 acetylation and reduced Sir2 enrichment across HM loci. (A–B) Bottom: The

plots show levels of H4K16 acetylation across the HML (A) and HMR (B) loci in disome X and Dsir1 strains relative to WT haploid cells, determined using

anti-H4K16ac chromatin immunoprecipitation (ChIP) followed by quantitative RT-PCR (qPCR) analysis. Top: Schematics of the HM loci indicate the

genomic positioning of primer sets A to F used for qPCR. Plots show the mean and SD from three biological replicates. *p<0.05, **p<0.01, ***p<0.005

calculated using two-tailed t-test and indicate statistically significant difference in H4K16 acetylation level at corresponding genomic locations in Dsir1

and disome X strains compared to WT haploid. (C–D) The plots indicate Sir2 occupancy across the HML (C) and HMR (D) loci in disome X and Dsir1

strains relative to WT haploid cells, determined using anti-Sir2::HA ChIP followed by qPCR analysis with the same primer sets depicted in (A) and (B) for

(C) and (D), respectively. Plots show the mean and SD from three biological replicates. *p<0.01, **p<0.005 compared with WT haploid; calculated using

t-test and indicate a statistically significant difference in Sir2 occupancy at corresponding genomic locations across HM loci in Dsir1 and disome X

strains compared to WT haploid.

DOI: https://doi.org/10.7554/eLife.27991.009
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Loss of HML silencing in disome X cells is associated with a dispersed
distribution of Sir2 and altered chromatin positioning
The silencing of the HM loci and subtelomeric regions is associated with characteristic distributions

for both Sir2 protein and the chromatin regions within the nucleus (Andrulis et al., 1998;

Taddei et al., 2009). To further understand the mechanism by which disomy X affects chromatin

silencing, we examined the localization of endogenous Sir2, tagged at the genomic locus with mTur-

quoise (mTurq), and observed that the Sir2-mTurq signal was more diffuse in disome X compared

with WT haploid cells (Figure 5A). We quantified this difference by calculating the coefficient of vari-

ation (CV; standard deviation/mean) of fluorescence pixel intensities within the sum projection of

each cell (Figure 5B). The CV was significantly reduced for Sir2-mTurq fluorescence in disomy X

compared with WT haploid populations (p<0.001, two-tailed t-test), particularly in the 35% of aneu-

ploid cells that had a significantly higher (p<0.01) mean expression of YFP from the HML locus than

the haploid control. The more dispersed Sir2 distribution in disome X cells is consistent with the

reduced concentration of Sir2 in silenced chromatin regions (Figure 4C–D). This analysis was

designed to quantitatively reflect the difference in the ‘sharpness’ of Sir2 localization while account-

ing for the difference in overall fluorescence level in each cell (Figure 5—figure supplement 1A–C).
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Figure 5. Disome X cells display abnormal Sir2 protein localizations and lack proper perinuclear positioning of silenced chromatin region. (A)

Representative fluorescent images are shown for Sir2-mTurq and the HML::YFP reporter in WT haploid and disome X strains. White boxes in the top

panels display magnified images (insets) of representative Sir2 foci. Scale bar, 4 mm. (B) The scatter plots show, for each WT haploid or disome X cell,

the coefficient of variation (CV) of Sir2-mTurq fluorescence plotted against the mean YFP pixel intensity. The CV was calculated as the ratio of the

standard deviation to the mean pixel intensity of Sir2-mTurq fluorescence over the total area of the sum projection of each cell. The CV in the disome X

strain is significantly reduced compared with haploid cells (p<0.001, one-tailed t-test), indicating a more diffusive distribution of Sir2 in aneuploid cells.

Additionally, 35% of disome X cells (determined using Tukey’s outlier test on the WT strain) have significantly higher (p<0.01) mean YFP intensities than

the WT haploid cell population; these disome X cells also show significantly (p<0.05) reduced CV compared with haploid controls. (C) Left:

Representative images show the position of the HML locus, tagged with LacO array and bound by LacI-GFP, relative to the nuclear envelope (NE),

marked by Nup60-mCherry. Top right: The illustration shows the three concentric zones of equal area used to map the location of the HML locus.

Bottom right: The bar graph shows the percentage of WT haploid or disome X cells with GFP puncta located in each of the three zones (n = 100 cells

per strain). Confidence values (p) are shown for a c

2 analysis comparing random (33% in each zone) and test distributions. *: Value significantly differs

from a random distribution (p<0.005, Chi-square test for independence). Scale bar, 1 mm.

DOI: https://doi.org/10.7554/eLife.27991.010

The following figure supplement is available for figure 5:

Figure supplement 1. SIR2 is not haploinsufficient for HML silencing

DOI: https://doi.org/10.7554/eLife.27991.011
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The positioning of chromatin relative to the nuclear envelope is also important for silencing

(Bystricky et al., 2009; Mekhail and Moazed, 2010). To address whether the normal perinuclear

positioning of silenced chromatin was disrupted in disome X cells, we introduced the LacO array into

the HML locus and expressed LacI-GFP to obsereve the LacO array-marked site in the nucleus,

demarcated with the nuclear envelope (NE) marker Nup60-mCherry. We defined three concentric

nuclear zones of equal area - NE (Zone 1), medial (zone 2), and central (zone 3) regions and deter-

mined the percentage of cells with the GFP puncta, corresponding to HML, in each zone. We

observed a significant (p<0.05) reduction in the percentage of disomy X cells with their HML locus

attached to the NE (zone 1) compared with the WT haploid strain. This was accompanied by a corre-

sponding increase in the percentage of cells with HML located in the central nuclear zone (zone 3),

suggesting that the silencing defect of the disome X strain is associated with altered chromatin posi-

tioning in the nucleus (Figure 5C).

Gain of chromosome X alters subtelomeric gene expression through
changes in H3K4me3 and H3K79me3
To determine if disomy X leads to a genome-wide alteration of histone modification, we assessed

two histone modifications associated with active chromatin, trimethylation of histone H3 at either

Lysine 4 (H3K4me3) or Lysine 79 (H3K79me3), by performing chromatin immunoprecipitation fol-

lowed by next-generation sequencing (ChIP-seq). In parallel, we analyzed a portion of the same

experimental cultures by RNA sequencing (RNA-seq) to correlate genome-wide changes in histone

modifications with the transcriptional output. The number of methylated genes (~60% of total S. cer-

evisiae genes) in the disome X and WT haploid strains was not significantly different

(Supplementary file 2). Consistent with previous reports (Pokholok et al., 2005; Guillemette et al.,

2011; Takahashi et al., 2011), both strains showed an overall positive correlation between gene

expression and H3K4me3 enrichment, but not H3K79me3 enrichment (Figure 6—figure supplement

1A).

To compare the epigenetic and transcriptional changes in aneuploid cells, we plotted the differ-

ence in H3K4me3 enrichment between disome X and WT haploid strains against the fold change in

gene expression for each of the 3502 genes (~57% of the total genes in the yeast genome,

Supplementary file 2) that were expressed with detectable H3K4me3 marks in both strains. At the

genome-wide level, we found no correlation between an increased enrichment of H3K4me3 modifi-

cations and increased gene expression in disome X cells compared with the haploid control

(Figure 6A). Likewise, there was no difference in gene expression between disome X and haploid

populations for sets of genes that had H3K4me3 modifications only in one strain or the other (Fig-

ure 6—figure supplement 1B and C). However, most of the subtelomeric genes that were

expressed and modified in both strains (Supplementary file 2) were significantly enriched (p-

value=2.5 � 10�8, Fisher’s exact test) for H3K4me3 modifications and had higher expression levels

in disome X cells compared with the haploid control (Figure 6A).

The H3K79me3 histone mark has previously been implicated in the regulation of subtelomeric

silencing by modulating the binding of Sir proteins to these chromatin regions. In our ChIP- and

RNA- seq experiments, three subtelomeric genes, COS12, IMD2, and YIR042C, showed significantly

increased RNA expression levels and enriched H3K4me3 and H3K79me3 modifications in disome X

cells compared with WT (Figure 6C–D). Notably, COS12 was previously identified as a target of

H3K79me3-regulated silencing (Takahashi et al., 2011). On the genome-wide level or in subsets of

genes carrying H3K79me only in one or the other strain, however, we observed no correlation

between transcription levels and this epigenetic mark in disome X cells relative to WT (Figure 6B,

Figure 6—figure supplement 1D–E and Supplementary file 2).

The HML silencing defect results from increased copy number of at
least four genes on chr X
To identify the genetic components that contribute to the silencing defect caused by an extra copy

of Chr X, we used the HML::YFP reporter and fluorescence microscopy to screen the effect of an

increased copy number of each of the 304 genes located on Chr X, for loss of YFP silencing in the

disome III background as a means to sensitize the screen. We took advantage of the yeast MOBY

library, in which each gene, with its endogenous promoter, is carried on a low-copy (centromeric)
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Figure 6. Genome-wide analysis shows that disome X cells upregulate histone modifications and transcription of typically silenced genes. (A–B) Gene

expression changes determined by RNA-seq are plotted on the X-axis as log2 fold change (disome X/WT haploid), and H3K4me3 (A) and H3K79me3

(B) histone modification enrichments determined by ChIP-seq are plotted on the Y-axis as the difference in Z-scores (disome X - WT haploid), with each

dot representing an individual gene. Genes that were expressed (RPKM >1) and enriched for a given histone modification in both haploid and disome

X strains were included in this analysis and categorized into four groups: (I) Genome-wide, representing all of the included genes (grey dots); (II and III)

Subsets of genes from category I that were significantly (1.5- fold change, p<0.01) upregulated (blue dots) or down-regulated (green dots) in disome X

cells compared with haploid controls; and (IV) subtelomeric genes (red dots). Note that identities of subtelomeric genes in A and B are different

because the genes with occupancy of the two histone markers (K4me and K79me) were not the same and hence are at different points along the x-axis

of A and B. More detailed information about the genes in these categories is listed in Supplementary file 2. (C) Transcriptional levels of COS12 (Chr

XII), IMD2 (Chr VIII), and YIR042C (Chr IX) genes were measured by RNA-seq and plotted as fold change (disome X/WT haploid). Each bar depicts the

mean and SD of three biological replicates. *p<0.001 compared with WT haploid; calculated using two-tailed t-test. (D) Enrichment profiles of

H3K4me3 and H3K79me3 were determined by ChIP-seq and plotted as reads per million per nucleotide (RPM) for the indicated gene ORFs (black

arrows), with 500 bp of flanking sequence on both sides. Each plot shows the enrichment profiles for two biological replicates per WT haploid or

disome X strain. Both epigenetic marks are enriched at all three genomic loci in disome X cells compared with the haploid controls.

DOI: https://doi.org/10.7554/eLife.27991.012

The following source data and figure supplement are available for figure 6:

Source data 1. Source data for genome-wide analysis performed in Figure 6.

DOI: https://doi.org/10.7554/eLife.27991.014

Figure 6 continued on next page
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plasmid (Ho et al., 2009). The fifteen Chr X genes with top-ranked silencing defect were further veri-

fied by transforming the centromeric plasmid into a WT haploid strain (Supplementary file 3).

Because cells can maintain up to four copies of centromeric plasmids, we next integrated a single

extra copy of each of the top ten candidate genes into a WT haploid genome, but we found that

none of these individual genes significantly disrupted silencing when present at this level (data not

shown).

Two genes, RPL39 and RPS14B, encoding ribosomal proteins, were among those with the stron-

gest silencing defects when expressed on a centromeric plasmid. Since previous studies showed that

overexpression of a ribosomal protein-encoding gene, RPL32, impaired silencing (Singer et al.,

1998), we tested the effect of combining single extra copies, via integration, of RPL39 and RPS14B

together in the haploid genome; however, this combination did not alter silencing of the HML::YFP

reporter (Figure 7A,B). Previous studies also showed that silencing is affected by one other top can-

didates from our MOBY library screen ASF1, which encodes a nucleosome assembly factor

(Le et al., 1997; Singer et al., 1998; Smith et al., 1999). Integration of ASF1 together with DPB11,

a top hit in our screen but not previously known to affect silencing, into the haploid genome also

showed no effect on silencing (Figure 7A,B). However, when we combined all four genes tested

above (RPL39, RPS14B, ASF1, and DPB11) by integrating them into the haploid genome, significant

HML desilencing was observed compared to the haploid control, although the effect was not as

Figure 6 continued

Figure supplement 1. No difference in gene expression between disome X and haploid populations for sets of genes that had H3K4me3 and

H3K79me3 modifications only in one strain or the other.

DOI: https://doi.org/10.7554/eLife.27991.013
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Figure 7. The combined increase in copy number of at least four genes on Chr X causes HML silencing defects. (A) Representative images of YFP

fluorescence from the HML::YFP reporter in Dsir1, disome X, and WT haploid cells with a single extra copy of the indicated genes, where relevant. Scale

bar, 4 mm. (B) The box plot shows the mean YFP intensity of 125 cells for each strain shown in Figure 7A. The box spans the first through third quartile

values, the line inside each box indicates the median, the solid black square designates the mean, and the whiskers mark the 90/10 percentile range.

*p<0.01, **p<0.001, ***p<0.0001 compared with WT haploid; calculated using a Mann–Whitney U test.

DOI: https://doi.org/10.7554/eLife.27991.015

The following source data is available for figure 7:

Source data 1. Source data for gain-of-funtion screen.

DOI: https://doi.org/10.7554/eLife.27991.016
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strong as that in disome X cells (Figure 7A,B). These results suggest that the disomy X-induced desi-

lencing is complex and requires the combined effects of at least four Chr X-linked genes.

Discussion
Our imaging-based analysis of thousands of freshly-produced aneuploid yeast colonies demon-

strated that roughly 3% of random aneuploid karyotypes disrupt transcriptional silencing at the HML

locus, indicating that aneuploidy can impact gene expression to an extent far greater than the

effects resulting from direct gene-dosage changes. We identified specific karyotypic features associ-

ated with the silencing defect, with the simplest being gain of Chr X, which is sufficient to destabilize

the epigenetic state and alter cellular responses to a relevant physiological factor (a-factor). Further-

more, the loss of silencing at the HM loci on Chr III and transcriptional derepression at subtelomeric

regions on different chromosomes induced by Chr X disomy correlated with changes in the histone

modification landscape, including increased H4K16 acetylation, and H3K4 and H3K79 trimethylation.

Moreover, the silencing defect of disome X cells was associated with perturbed chromatin localiza-

tion within the nucleus. The genetic basis of disome X-induced desilencing is complex, requiring at

least four Chr X genes. Taken together, our results provide the evidence that aneuploidy can be a

direct genetic cause of epigenetic dysregulation.

Loss of chromatin silencing is associated with specific karyotypic
features
Our unbiased approach to identify chromosome stoichiometries associated with disrupted chromatin

silencing revealed that Chr III and Chr X were frequently gained in cells lacking stable silencing at

the HML locus. Notably, this pattern of chromosome enrichment was significantly different from that

found in viable, karyotypically-stable aneuploid strains obtained through triploid meiosis

(Pavelka et al., 2010), suggesting that chromatin desilencing is not an obligatory outcome of abnor-

mal chromosome numbers, but rather, is caused by specific chromosome imbalance. We expected

that Chr III and Chr XII would be enriched in our screen since extra copies of these chromosomes

would increase the copy number of heterochromatic DNA, which could potentially titrate silencing

factors (Smith et al., 1998; Michel et al., 2005; Dodson and Rine, 2015). However, only chromo-

some III gain was enriched and contributes to desilencing, but it was insufficient on its own for signif-

icant desilencing. Chr X, by contrast, lacks any known regions of silenced chromatin other than the

subtelomeric DNA, and so the effect of extra copies of this chromosome was unlikely to be related

to the titration of silencing factors. Our functional analysis suggests that the mechanisms underlying

disome X-associated desilencing are complex (discussed further below).

It is important to point out that the aneuploid karyotypes that we identified did not appear to

lead to a single state of chromatin silencing or desilencing but instead resulted in heterogeneous

populations of cells with respect to gene expression from the normally silenced chromatin regions.

Although the different levels of YFP expression in individual YFP+ cells might be due to the natural

gene expression noise, the co-existence of considerable fractions of both YFP+ and YFP- cells in

each of the aneuploid populations suggests that these karyotypes lead to instability of the epige-

netic state that is stably inherited in normal haploid cells.

The impact of chr X disomy on histone modifications at silenced and
non-silenced loci
H3K4 trimethylation is considered to be a mark of active transcription, given that its occupancy is

generally high at the promoters of actively transcribed genes (Pokholok et al., 2005;

Guillemette et al., 2011). Supporting this notion, our studies show a positive correlation between

enrichment of this histone mark and transcriptional activity in both haploid and aneuploid strains. In

yeast, H3K4 trimethylation is carried out by the Set1 complex and transcriptional outcomes related

to changes in this mark are partially dependent on the location of genes in active or silent chromatin

regions (Bryk et al., 2002; Krogan et al., 2002; Santos-Rosa et al., 2002). Although H3K4 is gener-

ally hypermethylated within regions of euchromatin and hypomethylated within heterochromatin,

loss of H3K4me3 due to deletion of SET1 had little effect on coding gene expression

(Margaritis et al., 2012). Consistently, our transcriptome analysis in disome X strains does not show

a correlation between H3K4me3 and global transcriptional activation. However, in the case of silent
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domains, such as subtelomeric genes, we indeed found that both H3K4me3 modifications and gene

expression were increased in disome X cells compared with the haploid control strain. The significant

changes in histone modification patterns, combined with transcriptional derepression at many loci in

regions of silent chromatin (mating-type loci, rDNA, and subtelomeric DNA) in disome X demon-

strated that aneuploidy has the capacity to alter the histone-modification profile. It should be noted,

however, that RNA-seq data showed that most of the subtelomeric genes are not strongly affected

by Chr X disomy, suggesting that this aneuploidy does not have a general effect on silencing at sub-

telomeres. However, this is consistent with the previous observation that expression of subtelomeric

genes in S. cerevisiae is largely uninfluenced by mutations in Sir proteins and Sir-based silencing is

not a widespread phenomenon at telomeres despite strong enrichment of Sir proteins at telomeric

regions (Takahashi et al., 2011; Ellahi et al., 2015).

Potential mechanisms by which chr X disomy disrupts stable epigenetic
inheritance
We investigated several non-mutually exclusive mechanisms by which gain of Chr X could disrupt

stable chromatin silencing. First, the defect in silencing could be due to a moderately reduced Sir2

level in Disome X compared to haploid (Figure 5—figure supplement 1A–C). However, this is

unlikely because previous study (Dodson and Rine, 2015) and our own experiments showed that

SIR2 is not haploinsufficient for silencing: heterozygous SIR2 diploid strain (Dsir2/SIR2), in which Sir2

level was reduced by an extent similar to that in disome X, did not compromise HML silencing (Fig-

ure 5—figure supplement 1D). Second, we explored the possibility that NAD biosynthesis could be

compromised because three genes (BNA1, BNA2, BNA4) involved in this pathway are located on

Chr X, and low NAD levels have been linked to defective silencing phenotypes (Grozinger et al.,

2001; Sandmeier et al., 2002; Bedalov et al., 2003). However, supplementing disome X strains

with NAD did not rescue the desilencing phenotype (data not shown). Third, our comprehensive

screen for Chr X genes showed that a combination of four genes partially recapitulated the desilenc-

ing phenotype of disome X when each is increased by only a single copy. The known functions of

these four genes are diverse, ranging from ribosomal components to a histone chaperone and a

DNA polymerase subunit, suggesting that chromatin desilencing in disome X results from the combi-

natorial effects of multiple pathways that may each contribute to the establishment or maintenance

of the silenced chromatin. This is consistent with previous studies showing that aneuploidy confers

complex or significant phenotypic changes by multigenic mechanisms (Selmecki et al., 2006;

Rancati et al., 2008; Selmecki et al., 2008; Pavelka et al., 2010; Chen et al., 2012, 2015).

Another possible mechanism by which aneuploidy could impact silencing is by affecting the

defined chromosome organization within the nucleus, whereby heterochromatin-like regions are

tethered to the nuclear periphery and form a specialized structural compartment, which is required

for Sir proteins to establish silencing (Andrulis et al., 1998; Mekhail et al., 2008; Bystricky et al.,

2009; Ruault et al., 2011). Indeed, our results show reduced attachment of the HML locus to the

nuclear envelope in disome X cells. The diffused Sir2 distribution, particularly in cells with desilenced

HML gene expression, is consistent with previous reports that the silencing function of this protein

requires its concentration to perinuclear pools (Hoppe et al., 2002; Taddei et al., 2009). However,

it is presently unclear whether the insufficient tethering of chromosome regions to be silenced to the

nuclear periphery or failed concentration of Sir2 to this area of the nucleus is directly caused by the

increased copy number of the relevant genes on Chr X. Studies of the transcriptome in trisomy 21

human fibroblasts show that, although the overall nuclear organization defined by lamin-associated

domains (LADs) is intact in these cells, alterations in H3K4me3 correlate with specialized gene

expression dysregulation domains (GEDDs) (Letourneau et al., 2014). This finding together with our

results suggests that a perturbed nuclear compartmentalization, which causes changes in gene

expression, may be an emergent outcome of gene copy number imbalance associated with certain

chromosome aneuploidy. However, our data do not clarify whether the altered chromatin position-

ing or HML perinuclear localization in disome X strain was a cause or consequence of chromatin

desilencing.

Epigenetic states are acquired through a precise balance between euchromatin and heterochro-

matin and are an essential mechanism to control proper cellular identity (Jaenisch and Bird, 2003).

Here, we have shown that numerical alterations in chromosomes can derepress heterochromatin to

break this delicate balance, relax epigenetic inheritance, and cause stochastic variation in cell
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identity that impairs the responsiveness to regulatory factors. Our findings provide the causal evi-

dence that aneuploidy is a source of epigenetic instability. It may thus be worth exploring a potential

linkage between epigenetic dysregulation and chromosome copy number alterations observed in

cancer. The aneuploidy-induced changes in heterochromatin inheritance and histone-modification

landscape may be an important mechanism by which chromosomal instability drives large-scale phe-

notypic variability during tumor evolution.

Materials and methods

Yeast strains and plasmids
The yeast strains used in this study were generated in the S288c background and are listed in

Supplementary file 1 and Supplementary file 4. To construct the parental strain RLY9017 (hml::

PURA3-NLS-YFP), the RLY2626 strain (MATa, HML, S288c background) was crossed with the Y3401

strain (MATa, hml::PURA3-NLS-YFP, W303 background) generously provided by James Broach

(Xu et al., 2006). The resulting diploid strain was sporulated to obtain a haploid strain with the

genotype MATa, hml::PURA3-NLS-YFP, which was further backcrossed with RLY2626 five times to get

a strain background congenic to S288c. The resulting haploid strain RLY9017 was then converted to

a fully isogenic triploid strain carrying HML::YFP by cycles of mating-type switching and mating as

described in Figure 1—figure supplement 1A.

To obtain segregant strains from aneuploid cells, the parental strains were grown in synthetic

complete (SC) medium (Sunrise Science Products, Inc., San Diego, CA) containing 25 mg/ml radicicol

(Sigma-Aldrich, Saint Louis, MO) for 12 hr at 30˚C and then plated on YPD plates at a single-colony

density (Chen et al., 2012). Single colonies were then selected for further analysis based on karyo-

type. The RLY9029 and RLY9031 strains were constructed by transforming the Chr X::Pgal1-URA
KL-

CenX cassette, amplified from the DY6304 strain generously provided by Rodney Rothstein using

primers WMP5 and WMP6, into the RLY9017 and RLY9024 strains, respectively (Reid et al., 2008).

The RLY9028 and RLY9030 strains were constructed by transforming the Pgal1-URA
KL cassette, ampli-

fied from the RLB914 strain using primers WMP3 and WMP4, into the RLY9017 and RLY9024 strains.

The RLY9033 and RLY9035 strains were obtained by crossing RLY2627 cells (MATa, HML) with

RLY9025 cells (MATa, hml::PURA3-NLS-YFP;+Chr X). The resulting trisomy X strain (diploid strain with

an extra copy of Chr X) was sporulated and meiotic progenies were selected for genotype (HML-WT

copy) and karyotype, determined by qPCR, to obtain WT haploid and disome X strains.

The LacO array and LacI-GFP fusion protein have been described previously (Robinett et al.,

1996; Straight et al., 1996). Briefly, the RLY9041 and RLY9042 strains carrying insertions of LacI-

GFP and LacO array 1.5 kb proximal to the HML locus were obtained by crossing RLY9035

(MATa; +Chr X) cells with the YDB111 (MATa) strain generously provided by James Haber

(Bressan et al., 2004). The resulting trisomy X strain was sporulated, and the dissected meiotic

progenies were selected for genotype (hmlprox::lacO(256)-LEU2; HIS3::PURA3-LacI::GFP-KanMX) by

growing on SC-Leu + G418 plates. WT haploid and disome X strains were identified by qPCR-based

karyotyping. PCR-mediated homologous recombination was used to C-terminally tag SIR2 with HA

and mTurquoise2, tag NUP60 with mCherry, and delete SIR1 by replacing the genomic locus with a

KanMX6 cassette (Longtine et al., 1998; Sheff and Thorn, 2004); correct integrations were con-

firmed by PCR-based genotyping.

To construct the plasmid pWM1 (RLB912), ORFs for RPL39 and RPS14B were amplified from

RLY9017 cells and cloned into EagI and XhoI sites respectively, into the pRS306 plasmid. To con-

struct the plasmid pWM2 (RLB913), Gibson assembly was used to clone the indicated ORFs into the

XhoI site of the pRS306 plasmid. The RLY9046 and RLY9047 strains were constructed by transform-

ing NcoI-digested pWM1 and HpaI-digested pWM2 into RLY9017 and RLY9018 cells, respectively.

To construct the RLY9048 strain, the RLY9046 and RLY9047 strains were crossed and sporulated; the

dissected meiotic progenies were selected for the indicated genotypes using a standard PCR-based

method. The plasmids used in this study are listed in Supplementary file 5.

Microscopy
To prepare cells for microscopy, yeast strains were grown in SC or drop-out medium for about 18 hr

at 25˚C before the cultures were diluted to a starting OD600 of 0.2 and grown for another five hours
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to an OD600 of 0.6–0.8. Fluorescence microscopy was performed at room temperature on live cells

using a 100� aPlan Fluor NA 1.46 objective on a Zeiss Axiovert 200 M microscope (Zeiss, Jena, Ger-

many), equipped with a Yokogawa CSU-X1 spinning-disk confocal system. Using 488 or 561 nm illu-

mination to excite green or red fluorescent proteins, respectively, a series of optical sections with a

step size of 0.5 mm was acquired with a Hamamatsu C9100 EMCCD camera and MetaMorph acquisi-

tion software. ImageJ software (v. 1.50e; NIH; RRID:SCR_003070) was used to subtract background,

adjust contrast, and generate the final sum projections shown.

Time-lapse imaging was performed on a Perkin Elmer Ultraview VoX system (PerkinElmer, Inc.,

Waltham, MA) or a Zeiss LSM780 laser scanning confocal microscope (Zeiss, Jena, Germany) with a

63�/1.4 oil Plan-Apochromat objective and Zeiss Definite Focus. To prepare the cells, 10 ml of a

mid-log phase culture with an OD600 of 0.5 was placed on a thin SC agarose gel pad as described

(Tran et al., 2004). Z-stack images were acquired with a 0.5 mm step size at 30 min time intervals for

14–18 hr. For each time point, images were adjusted using ImageJ software (v. 1.50e; NIH; RRID:

SCR_003070), converted to maximum Z projections, and analyzed for mean fluorescence intensities

using Imaris software (Bitplane USA, Concord, MA; RRID:SCR_007370).

Induction of chromosome non-disjunction using galactose
Strains were grown overnight in SC +2% dextrose medium, diluted 2000 times with SC + 2% raffi-

nose medium (Sunrise Science Products, Inc., San Diego, CA), and grown to saturation at 25˚C. Cells
were pelleted, washed twice with water, inoculated into SC + 2% raffinose medium, and grown until

cultures reached log phase with OD600 of 0.6–0.8. Cells were pelleted again, washed twice with

water, and grown in SC + 2% galactose medium (Sunrise Science Products, Inc. San Diego, CA) for

nine hours (Anders et al., 2009). To stop galactose induction, the cells were pelleted, transferred

into SC + 2% dextrose medium (Sunrise Science Products, Inc., San Diego, CA), grown for three

hours at 25˚C, and imaged.

Selection of stable aneuploid karyotypes
Strains with stable aneuploid karyotypes were selected as previously described (Pavelka et al.,

2010). Briefly, DNA content was analyzed by fluorescence-activated cell sorting (FACS) for eight ran-

domly picked colonies derived from each of the desired triploid meiosis-generated spores; strains

were only selected for further analysis if the DNA content of the eight colonies showed levels of vari-

ability similar to those of the wild-type control strain RLY9017, indicating uniform ploidy. For these

strains, DNA content was reassessed as before, using cells that were independently revived from fro-

zen stocks three times. Strains that continued to show stable ploidy after repeated rounds of FACS

analysis were then karyotyped by qPCR.

Illumina whole-genome sequencing
Euploid (RLY9017, RLY9019, and RLY9021) and aneuploid (RLY9071, RLY9076, RLY9078, and

RLY9079) strains were subjected to whole-genome sequencing. Genomic DNA (gDNA) was

extracted from 15 ml of stationary phase yeast cultures, using a standard protocol (Hoffman, 2001)

with the following modifications. Three consecutive phenol/chloroform/isoamylalcohol extractions,

followed by a final chloroform extraction, were performed to reduce protein and phenol contamina-

tion, respectively. The gDNA samples were then treated with 50 ng/ml affinity-purified RNase A

(Thermo Fisher Scientific, Waltham, MA) for 60 min at 37˚C to remove contaminating RNA. Final

gDNA yields were quantified with a ND-1000 spectrophotometer (NanoDrop, Thermo Scientific,

Waltham, MA). Genomic libraries were prepared according to Illumina’s recommendations, except

that sonication was used instead of nebulization. Cluster generation and read sequencing were per-

formed according to Illumina’s recommendations. 150 bp paired-end reads were collected using the

Illumina MiSeq system (Illumina, Inc., San Diego, CA) and aligned to the UCSC sacCer3 reference

sequence using the BWA package; RRID:SCR_010910 (Li and Durbin, 2009), set at a maximum edit

distance of 2 per read and allowing for gapped alignment with a maximum of 5 gap opens and �5

gap extensions. The genome analysis toolkit (https://software.broadinstitute.org/gatk/; RRID:SCR_

001876) was used to call variants between the reference genome (sacCer3) and each of the strains.

Variants were annotated using SnpEff (http://snpeff.sourceforge.net; RRID:SCR_005191). We then

excluded SNPs found across all sequenced strains to eliminate mutations already present in the
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euploid background. All potential mutations were then manually inspected in IGV (http://www.

broadinstitute.org/igv; RRID:SCR_011793), and SNPs called in repetitive regions, in long poly-A or

poly-T stretches, or in regions of low alignment quality were discarded. All remaining SNPs were ver-

ified by reanalyzing each strain using Sanger sequencing. This analysis revealed that there were no

mutations in coding regions that were not already present in the parental euploid strains. Reads

have been deposited in the NCBI Sequence Read Archive (SRA; RRID:SCR_004891) under accession

no. SRP105283.

RNA-seq analysis
Cells were grown in SC medium for 18 hr at 25˚C; cultures were then diluted to a starting OD600 of

0.2 and grown for five to six hours to an OD600 of 0.6. RNA samples were prepared from ten OD600

units of the final yeast culture using a standard acid–phenol/chloroform extraction method

(Collart and Oliviero, 2001), and contaminating gDNA was removed by treating with DNase I

(Sigma-Aldrich, Saint Louis, MO). PolyA-selected, 50 bp single-end RNA-seq libraries were prepared

using the Illumina TruSeq stranded mRNA sample prep kit (Illumina, Inc., San Diego, CA), quantified

using a Bioanalyzer (Agilent, Santa Clara, CA), and sequenced on an Illumina HiSeq 2500 platform.

Reads were aligned to the sacCer3 reference genome using Bowtie software (RRID:SCR_005476)

with default alignment parameters. Read counts were normalized to chromosome copy number. The

resulting binary alignment/map (BAM) files were sorted and indexed using SAM tools (Li et al.,

2009). Differential gene expression was evaluated using the edgeR library (Robinson et al., 2010),

and adjusted p-values were calculated by the Benjamini-Hochberg procedure. Reads and processed

data files have been deposited in NCBI Gene Expression Omnibus (GEO) under accession no.

GSE98435.

Quantitative reverse transcriptase-PCR (qPCR) analysis
RNA was extracted as described above and cDNA was prepared from 2 mg of the resulting total

RNA using the Super-Script III reverse transcriptase kit (Thermo Fisher Scientific, Waltham, MA).

qPCR was performed using SYBR Green real-time PCR master mix (Quanta Biosciences, Beverly,

MA) and analyzed by standard procedures (Yuan et al., 2006). Gene expression profiles were nor-

malized to chromosome copy number. The oligos used for qPCR amplification are listed in

Supplementary file 6.

ChIP-seq analysis
Chromatin immunoprecipitation was performed as previously described (Aparicio et al., 2004).

Briefly, yeast cells were grown in 500 ml of SC medium to an OD600 of 0.8–0.9 and were cross-linked

with 1% formaldehyde (Sigma-Aldrich, Saint Louis, MO) for 20 min before the chromatin was

extracted. The chromatin was sonicated using Bioruptor (Diagenode, Denville, NJ) at the high set-

ting for ten cycles of 30 s on/off to yield an average DNA fragment size of 500 bp. Chromatin

extracts were diluted in immunoprecipitation (IP) buffer and centrifuged to pellet debris; the result-

ing supernatant, containing the chromatin solution, was aliquoted for immunoprecipitation as fol-

lows. Chromatin was first incubated overnight with antibody at 4˚C, then with Dynabeads protein G

beads (Thermo Fisher Scientific, Waltham, MA). Beads were washed several times, and DNA was

recovered in elution buffer (1% SDS, 0.1 M NaHCO3). Crosslinking was reversed by incubating sam-

ples at 65˚C overnight, followed by protease treatment, phenol/chloroform extraction, and ethanol

precipitation of the recovered DNA. Sequence libraries were constructed and validated using the

Illumina library protocol and sequenced using the Illumina HiSeq 2500 system as 50 bp single-end

reads. Reads were mapped to the sacCer3 reference genome using Bowtie software (RRID:SCR_

005476) with parameters: –best –strata -v2 -m 1. Peaks were called by Model-based Analysis of

ChIP-Seq (MACS2) using default settings (Zhang et al., 2008), mapped to the closest gene, and

kept only if they occurred within 600 bases of the transcription start site. Peak scores, defined as the

-log10 transformed q-values, normalized to chromosome copy number, were converted to Z-scores

for comparison across strains and plotted as the difference between disome X and WT haploid

strains (Figure 6A–B). Antibodies used for immunoprecipitation are: anti-HA (12CA5, Sigma-Aldrich,

Saint Louis, MO; RRID:AB_514505), anti-H3K79me3 (ab2621, Abcam, Cambridge, MA; RRID:AB_

303215), anti-H3K4me3 (04–745, EMD Millipore, Temecula, California; RRID:AB_1163444), and anti-
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H4K16ac (07–329, EMD Millipore, Temecula, California; RRID:AB_310525). Reads and processed

data files have been deposited in NCBI Gene Expression Omnibus (GEO; RRID:SCR_005012) under

accession no. GSE98282.

Pheromone sensitivity assay
For cell cycle analysis, 107 mid-log phase cells were grown in SC medium containing 2 mg/ml a-factor

(US Biological, Salem, MA) for 90 mins at 30˚C. Cells were then fixed in 70% ethanol and analyzed

for DNA content using an Attune NxT flow cytometer (Thermo Fisher Scientific, Waltham, MA) as

described (Pavelka et al., 2010). For the halo assay, 15 ml of 2 mg/ml a-factor was applied to filter

discs centered on a lawn of MATa cells with a WT HML locus. Cells were grown for 2–3 days at 30˚C,
and the size of the halo (region devoid of cell growth) was determined as described previously

(Cherkasova et al., 1999).

Gain-of-function screen
304 of the 356 total Chr X ORFs are available in the Molecular Barcoded Yeast (MoBY) ORF plasmid

library (Ho et al., 2009) and used for the screen. Each plasmid was extracted and transformed inde-

pendently into the disome III strain RLY9023 (HML::PURA3-YFP) as described previously (Chen et al.,

2015). Transformants were grown in 96-well deep-well blocks containing 2 ml SC-Ura medium at

30˚C for 12 hr. Cells were then fixed with 1% paraformaldehyde and imaged on the Operetta high-

content imaging system (PerkinElmer, Inc., Waltham, MA) with a 63�/1.4 Plan-Apochromat objec-

tive. Desilencing scores were calculated as the ratio of the mean YFP fluorescence intensity of a test

strain carrying a MoBY plasmid to that of the disome X strain carrying an empty MoBY vector

(RLY9046).
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Dargemont C, Géli V, Holstege FC. 2012. Two distinct repressive mechanisms for histone 3 lysine 4 methylation
through promoting 3’-end antisense transcription. PLoS Genetics 8:e1002952. DOI: https://doi.org/10.1371/
journal.pgen.1002952, PMID: 23028359

Mekhail K, Moazed D. 2010. The nuclear envelope in genome organization, expression and stability. Nature
Reviews Molecular Cell Biology 11:317–328. DOI: https://doi.org/10.1038/nrm2894, PMID: 20414256

Mekhail K, Seebacher J, Gygi SP, Moazed D. 2008. Role for perinuclear chromosome tethering in maintenance
of genome stability. Nature 456:667–670. DOI: https://doi.org/10.1038/nature07460, PMID: 18997772

Michel AH, Kornmann B, Dubrana K, Shore D. 2005. Spontaneous rDNA copy number variation modulates Sir2
levels and epigenetic gene silencing. Genes & Development 19:1199–1210. DOI: https://doi.org/10.1101/gad.
340205, PMID: 15905408

Millar CB, Grunstein M. 2006. Genome-wide patterns of histone modifications in yeast. Nature Reviews
Molecular Cell Biology 7:657–666. DOI: https://doi.org/10.1038/nrm1986, PMID: 16912715

Mitelman F, Johansson B, Mertens FE. 2012. Mitelman Database of Chromosome Aberrations and Gene Fusions
in Cancer.

Morgan MA, Shilatifard A. 2015. Chromatin signatures of cancer. Genes & Development 29:238–249.
DOI: https://doi.org/10.1101/gad.255182.114, PMID: 25644600

Mulla W, Zhu J, Li R. 2014. Yeast: a simple model system to study complex phenomena of aneuploidy. FEMS
Microbiology Reviews 38:201–212. DOI: https://doi.org/10.1111/1574-6976.12048, PMID: 24118136

Osborne EA, Dudoit S, Rine J. 2009. The establishment of gene silencing at single-cell resolution. Nature
Genetics 41:800–806. DOI: https://doi.org/10.1038/ng.402, PMID: 19543267

Pavelka N, Rancati G, Zhu J, Bradford WD, Saraf A, Florens L, Sanderson BW, Hattem GL, Li R. 2010. Aneuploidy
confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 468:321–325.
DOI: https://doi.org/10.1038/nature09529, PMID: 20962780

Pfau SJ, Amon A. 2012. Chromosomal instability and aneuploidy in cancer: from yeast to man. EMBO reports 13:
515–527. DOI: https://doi.org/10.1038/embor.2012.65, PMID: 22614003

Mulla et al. eLife 2017;6:e27991. DOI: https://doi.org/10.7554/eLife.27991 21 of 23

Research article Cell Biology Genes and Chromosomes

https://doi.org/10.1038/embor.2012.55
http://www.ncbi.nlm.nih.gov/pubmed/22565320
https://doi.org/10.1128/MCB.22.12.4167-4180.2002
https://doi.org/10.1128/MCB.22.12.4167-4180.2002
http://www.ncbi.nlm.nih.gov/pubmed/12024030
https://doi.org/10.1038/ng1089
http://www.ncbi.nlm.nih.gov/pubmed/12610534
https://doi.org/10.1038/sj.emboj.7600692
http://www.ncbi.nlm.nih.gov/pubmed/15920479
https://doi.org/10.1074/jbc.C200023200
http://www.ncbi.nlm.nih.gov/pubmed/11805083
https://doi.org/10.1146/annurev-genet-021313-173730
http://www.ncbi.nlm.nih.gov/pubmed/24016189
https://doi.org/10.1002/(SICI)1097-0061(19970915)13:11%3C1029::AID-YEA160%3E3.0.CO;2-1
https://doi.org/10.1002/(SICI)1097-0061(19970915)13:11%3C1029::AID-YEA160%3E3.0.CO;2-1
http://www.ncbi.nlm.nih.gov/pubmed/9290207
https://doi.org/10.1038/nature13200
http://www.ncbi.nlm.nih.gov/pubmed/24740065
https://doi.org/10.1091/mbc.E06-03-0205
https://doi.org/10.1091/mbc.E06-03-0205
http://www.ncbi.nlm.nih.gov/pubmed/16807355
https://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
https://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
https://doi.org/10.1016/j.cell.2005.03.035
https://doi.org/10.1016/j.cell.2005.03.035
http://www.ncbi.nlm.nih.gov/pubmed/15907466
https://doi.org/10.1002/(SICI)1097-0061(199807)14:10%3C953::AID-YEA293%3E3.0.CO;2-U
http://www.ncbi.nlm.nih.gov/pubmed/9717241
https://doi.org/10.1371/journal.pgen.1002952
https://doi.org/10.1371/journal.pgen.1002952
http://www.ncbi.nlm.nih.gov/pubmed/23028359
https://doi.org/10.1038/nrm2894
http://www.ncbi.nlm.nih.gov/pubmed/20414256
https://doi.org/10.1038/nature07460
http://www.ncbi.nlm.nih.gov/pubmed/18997772
https://doi.org/10.1101/gad.340205
https://doi.org/10.1101/gad.340205
http://www.ncbi.nlm.nih.gov/pubmed/15905408
https://doi.org/10.1038/nrm1986
http://www.ncbi.nlm.nih.gov/pubmed/16912715
https://doi.org/10.1101/gad.255182.114
http://www.ncbi.nlm.nih.gov/pubmed/25644600
https://doi.org/10.1111/1574-6976.12048
http://www.ncbi.nlm.nih.gov/pubmed/24118136
https://doi.org/10.1038/ng.402
http://www.ncbi.nlm.nih.gov/pubmed/19543267
https://doi.org/10.1038/nature09529
http://www.ncbi.nlm.nih.gov/pubmed/20962780
https://doi.org/10.1038/embor.2012.65
http://www.ncbi.nlm.nih.gov/pubmed/22614003
https://doi.org/10.7554/eLife.27991


Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer
E, Zeitlinger J, Lewitter F, Gifford DK, Young RA. 2005. Genome-wide map of nucleosome acetylation and
methylation in yeast. Cell 122:517–527. DOI: https://doi.org/10.1016/j.cell.2005.06.026, PMID: 16122420

Rancati G, Pavelka N, Fleharty B, Noll A, Trimble R, Walton K, Perera A, Staehling-Hampton K, Seidel CW, Li R.
2008. Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor.
Cell 135:879–893. DOI: https://doi.org/10.1016/j.cell.2008.09.039, PMID: 19041751

Reid RJ, Sunjevaric I, Voth WP, Ciccone S, Du W, Olsen AE, Stillman DJ, Rothstein R. 2008. Chromosome-scale
genetic mapping using a set of 16 conditionally stable Saccharomyces cerevisiae chromosomes. Genetics 180:
1799–1808. DOI: https://doi.org/10.1534/genetics.108.087999, PMID: 18832360

Ried T, Hu Y, Difilippantonio MJ, Ghadimi BM, Grade M, Camps J. 2012. The consequences of chromosomal
aneuploidy on the transcriptome of cancer cells. Biochimica et Biophysica Acta (BBA) - Gene Regulatory
Mechanisms 1819:784–793. DOI: https://doi.org/10.1016/j.bbagrm.2012.02.020, PMID: 22426433

Robinett CC, Straight A, Li G, Willhelm C, Sudlow G, Murray A, Belmont AS. 1996. In vivo localization of DNA
sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. The
Journal of Cell Biology 135:1685–1700. DOI: https://doi.org/10.1083/jcb.135.6.1685, PMID: 8991083

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression
analysis of digital gene expression data. Bioinformatics 26:139–140. DOI: https://doi.org/10.1093/
bioinformatics/btp616, PMID: 19910308

Ruault M, De Meyer A, Loı̈odice I, Taddei A. 2011. Clustering heterochromatin: Sir3 promotes telomere
clustering independently of silencing in yeast. The Journal of Cell Biology 192:417–431. DOI: https://doi.org/
10.1083/jcb.201008007, PMID: 21300849

Rusche LN, Kirchmaier AL, Rine J. 2003. The establishment, inheritance, and function of silenced chromatin in
Saccharomyces cerevisiae. Annual Review of Biochemistry 72:481–516. DOI: https://doi.org/10.1146/annurev.
biochem.72.121801.161547, PMID: 12676793

Sandmeier JJ, Celic I, Boeke JD, Smith JS. 2002. Telomeric and rDNA silencing in Saccharomyces cerevisiae are
dependent on a nuclear NAD(+) salvage pathway. Genetics 160:877–889. PMID: 11901108

Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, Kouzarides
T. 2002. Active genes are tri-methylated at K4 of histone H3. Nature 419:407–411. DOI: https://doi.org/10.
1038/nature01080, PMID: 12353038

Selmecki A, Forche A, Berman J. 2006. Aneuploidy and isochromosome formation in drug-resistant Candida
albicans. Science 313:367–370. DOI: https://doi.org/10.1126/science.1128242, PMID: 16857942

Selmecki A, Gerami-Nejad M, Paulson C, Forche A, Berman J. 2008. An isochromosome confers drug resistance
in vivo by amplification of two genes, ERG11 and TAC1. Molecular Microbiology 68:624–641. DOI: https://doi.
org/10.1111/j.1365-2958.2008.06176.x, PMID: 18363649

Sheff MA, Thorn KS. 2004. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae.
Yeast 21:661–670. DOI: https://doi.org/10.1002/yea.1130, PMID: 15197731

Sheltzer JM, Torres EM, Dunham MJ, Amon A. 2012. Transcriptional consequences of aneuploidy. PNAS 109:
12644–12649. DOI: https://doi.org/10.1073/pnas.1209227109, PMID: 22802626

Singer MS, Kahana A, Wolf AJ, Meisinger LL, Peterson SE, Goggin C, Mahowald M, Gottschling DE. 1998.
Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics 150:613–
632. PMID: 9755194

Smith JS, Brachmann CB, Pillus L, Boeke JD. 1998. Distribution of a limited Sir2 protein pool regulates the
strength of yeast rDNA silencing and is modulated by Sir4p. Genetics 149:1205–1219. PMID: 9649515

Smith JS, Caputo E, Boeke JD. 1999. A genetic screen for ribosomal DNA silencing defects identifies multiple
DNA replication and chromatin-modulating factors. Molecular and Cellular Biology 19:3184–3197. DOI: https://
doi.org/10.1128/MCB.19.4.3184, PMID: 10082585

St Charles J, Hamilton ML, Petes TD. 2010. Meiotic chromosome segregation in triploid strains of
Saccharomyces cerevisiae. Genetics 186:537–550. DOI: https://doi.org/10.1534/genetics.110.121533,
PMID: 20697121

Straight AF, Belmont AS, Robinett CC, Murray AW. 1996. GFP tagging of budding yeast chromosomes reveals
that protein-protein interactions can mediate sister chromatid cohesion. Current Biology 6:1599–1608.
DOI: https://doi.org/10.1016/S0960-9822(02)70783-5, PMID: 8994824

Taddei A, Van Houwe G, Nagai S, Erb I, van Nimwegen E, Gasser SM. 2009. The functional importance of
telomere clustering: global changes in gene expression result from SIR factor dispersion. Genome Research 19:
611–625. DOI: https://doi.org/10.1101/gr.083881.108, PMID: 19179643

Takahashi YH, Schulze JM, Jackson J, Hentrich T, Seidel C, Jaspersen SL, Kobor MS, Shilatifard A. 2011. Dot1
and histone H3K79 methylation in natural telomeric and HM silencing. Molecular Cell 42:118–126. DOI: https://
doi.org/10.1016/j.molcel.2011.03.006, PMID: 21474073

Talbert PB, Henikoff S. 2006. Spreading of silent chromatin: inaction at a distance. Nature Reviews Genetics 7:
793–803. DOI: https://doi.org/10.1038/nrg1920, PMID: 16983375

Thurtle DM, Rine J. 2014. The molecular topography of silenced chromatin in Saccharomyces cerevisiae. Genes
& Development 28:245–258. DOI: https://doi.org/10.1101/gad.230532.113, PMID: 24493645

Timp W, Feinberg AP. 2013. Cancer as a dysregulated epigenome allowing cellular growth advantage at the
expense of the host. Nature Reviews Cancer 13:497–510. DOI: https://doi.org/10.1038/nrc3486,
PMID: 23760024

Mulla et al. eLife 2017;6:e27991. DOI: https://doi.org/10.7554/eLife.27991 22 of 23

Research article Cell Biology Genes and Chromosomes

https://doi.org/10.1016/j.cell.2005.06.026
http://www.ncbi.nlm.nih.gov/pubmed/16122420
https://doi.org/10.1016/j.cell.2008.09.039
http://www.ncbi.nlm.nih.gov/pubmed/19041751
https://doi.org/10.1534/genetics.108.087999
http://www.ncbi.nlm.nih.gov/pubmed/18832360
https://doi.org/10.1016/j.bbagrm.2012.02.020
http://www.ncbi.nlm.nih.gov/pubmed/22426433
https://doi.org/10.1083/jcb.135.6.1685
http://www.ncbi.nlm.nih.gov/pubmed/8991083
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
http://www.ncbi.nlm.nih.gov/pubmed/19910308
https://doi.org/10.1083/jcb.201008007
https://doi.org/10.1083/jcb.201008007
http://www.ncbi.nlm.nih.gov/pubmed/21300849
https://doi.org/10.1146/annurev.biochem.72.121801.161547
https://doi.org/10.1146/annurev.biochem.72.121801.161547
http://www.ncbi.nlm.nih.gov/pubmed/12676793
http://www.ncbi.nlm.nih.gov/pubmed/11901108
https://doi.org/10.1038/nature01080
https://doi.org/10.1038/nature01080
http://www.ncbi.nlm.nih.gov/pubmed/12353038
https://doi.org/10.1126/science.1128242
http://www.ncbi.nlm.nih.gov/pubmed/16857942
https://doi.org/10.1111/j.1365-2958.2008.06176.x
https://doi.org/10.1111/j.1365-2958.2008.06176.x
http://www.ncbi.nlm.nih.gov/pubmed/18363649
https://doi.org/10.1002/yea.1130
http://www.ncbi.nlm.nih.gov/pubmed/15197731
https://doi.org/10.1073/pnas.1209227109
http://www.ncbi.nlm.nih.gov/pubmed/22802626
http://www.ncbi.nlm.nih.gov/pubmed/9755194
http://www.ncbi.nlm.nih.gov/pubmed/9649515
https://doi.org/10.1128/MCB.19.4.3184
https://doi.org/10.1128/MCB.19.4.3184
http://www.ncbi.nlm.nih.gov/pubmed/10082585
https://doi.org/10.1534/genetics.110.121533
http://www.ncbi.nlm.nih.gov/pubmed/20697121
https://doi.org/10.1016/S0960-9822(02)70783-5
http://www.ncbi.nlm.nih.gov/pubmed/8994824
https://doi.org/10.1101/gr.083881.108
http://www.ncbi.nlm.nih.gov/pubmed/19179643
https://doi.org/10.1016/j.molcel.2011.03.006
https://doi.org/10.1016/j.molcel.2011.03.006
http://www.ncbi.nlm.nih.gov/pubmed/21474073
https://doi.org/10.1038/nrg1920
http://www.ncbi.nlm.nih.gov/pubmed/16983375
https://doi.org/10.1101/gad.230532.113
http://www.ncbi.nlm.nih.gov/pubmed/24493645
https://doi.org/10.1038/nrc3486
http://www.ncbi.nlm.nih.gov/pubmed/23760024
https://doi.org/10.7554/eLife.27991


Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, Dunham MJ, Amon A. 2007. Effects of aneuploidy on
cellular physiology and cell division in haploid yeast. Science 317:916–924. DOI: https://doi.org/10.1126/
science.1142210, PMID: 17702937

Tran PT, Paoletti A, Chang F. 2004. Imaging green fluorescent protein fusions in living fission yeast cells.
Methods 33:220–225. DOI: https://doi.org/10.1016/j.ymeth.2003.11.017, PMID: 15157889

Upender MB, Habermann JK, McShane LM, Korn EL, Barrett JC, Difilippantonio MJ, Ried T. 2004. Chromosome
transfer induced aneuploidy results in complex dysregulation of the cellular transcriptome in immortalized and
cancer cells. Cancer Research 64:6941–6949. DOI: https://doi.org/10.1158/0008-5472.CAN-04-0474,
PMID: 15466185

Xu EY, Zawadzki KA, Broach JR. 2006. Single-cell observations reveal intermediate transcriptional silencing
states. Molecular Cell 23:219–229. DOI: https://doi.org/10.1016/j.molcel.2006.05.035, PMID: 16857588

Yuan JS, Reed A, Chen F, Stewart CN. 2006. Statistical analysis of real-time PCR data. BMC Bioinformatics 7:85.
DOI: https://doi.org/10.1186/1471-2105-7-85, PMID: 16504059

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu
XS. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biology 9:R137. DOI: https://doi.org/10.1186/
gb-2008-9-9-r137, PMID: 18798982

Mulla et al. eLife 2017;6:e27991. DOI: https://doi.org/10.7554/eLife.27991 23 of 23

Research article Cell Biology Genes and Chromosomes

https://doi.org/10.1126/science.1142210
https://doi.org/10.1126/science.1142210
http://www.ncbi.nlm.nih.gov/pubmed/17702937
https://doi.org/10.1016/j.ymeth.2003.11.017
http://www.ncbi.nlm.nih.gov/pubmed/15157889
https://doi.org/10.1158/0008-5472.CAN-04-0474
http://www.ncbi.nlm.nih.gov/pubmed/15466185
https://doi.org/10.1016/j.molcel.2006.05.035
http://www.ncbi.nlm.nih.gov/pubmed/16857588
https://doi.org/10.1186/1471-2105-7-85
http://www.ncbi.nlm.nih.gov/pubmed/16504059
https://doi.org/10.1186/gb-2008-9-9-r137
https://doi.org/10.1186/gb-2008-9-9-r137
http://www.ncbi.nlm.nih.gov/pubmed/18798982
https://doi.org/10.7554/eLife.27991

