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Abstract In vivo calcium imaging through microendoscopic lenses enables imaging of previously26

inaccessible neuronal populations deep within the brains of freely moving animals. However, it is27

computationally challenging to extract single-neuronal activity from microendoscopic data, because28

of the very large background �uctuations and high spatial overlaps intrinsic to this recording29

modality. Here, we describe a new constrained matrix factorization approach to accurately30

separate the background and then demix and denoise the neuronal signals of interest. We31

compared the proposed method against previous independent components analysis and32

constrained nonnegative matrix factorization approaches. On both simulated and experimental33

data recorded from mice, our method substantially improved the quality of extracted cellular34

signals and detected more well-isolated neural signals, especially in noisy data regimes. These35

advances can in turn signi�cantly enhance the statistical power of downstream analyses, and36

ultimately improve scienti�c conclusions derived from microendoscopic data.37
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Introduction39

Monitoring the activity of large-scale neuronal ensembles during complex behavioral states is40

fundamental to neuroscience research. Continued advances in optical imaging technology are41

greatly expanding the size and depth of neuronal populations that can be visualized. Speci�cally,42

in vivo calcium imaging through microendoscopic lenses and the development of miniaturized43

microscopes have enabled deep brain imaging of previously inaccessible neuronal populations of44

freely moving mice (Flusberg et al., 2008; Ghosh et al., 2011; Ziv and Ghosh, 2015). This technique45

has been widely used to study the neural circuits in cortical, subcortical, and deep brain areas, such46

as hippocampus (Cai et al., 2016; Rubin et al., 2015; Ziv et al., 2013), entorhinal cortex (Kitamura47

et al., 2015; Sun et al., 2015), hypothalamus (Jennings et al., 2015), prefrontal cortex (PFC) (Pinto48

and Dan, 2015), premotor cortex (Markowitz et al., 2015), dorsal pons (Cox et al., 2016), basal49

forebrain (Harrison et al., 2016), striatum (Barbera et al., 2016; Carvalho Poyraz et al., 2016; Klaus50

et al., 2017), amygdala (Yu et al., 2017), and other brain regions.51

Although microendoscopy has potential applications across numerous neuroscience �elds (Ziv52

and Ghosh, 2015), methods for extracting cellular signals from this data are currently limited and53

suboptimal. Most existing methods are specialized for 2-photon or light-sheet microscopy. However,54

these methods are not suitable for analyzing single-photon microendoscopic data because of its55

distinct features: speci�cally, this data typically displays large, blurry background �uctuations due56

to �uorescence contributions from neurons outside the focal plane. In Figure 1 we use a typical57

microendoscopic dataset to illustrate these e�ects (see S1 Video for raw video). Figure 1A shows an58

example frame of the selected data, which contains large signals additional to the neurons visible59

in the focal plane. These extra �uorescence signals contribute as background that contaminates60

the single-neuronal signals of interest. In turn, standard methods based on local correlations for61

visualizing cell outlines (Smith and Häusser, 2010) are not e�ective here, because the correlations62

in the �uorescence of nearby pixels are dominated by background signals (Figure 1B). For some63

neurons with strong visible signals, we can manually draw regions-of-interest (ROI) (Figure 1C).64

Following (Barbera et al., 2016; Pinto and Dan, 2015), we used the mean �uorescence trace of the65

surrounding pixels (blue, Figure 1D) to roughly estimate this background �uctuation; subtracting66

it from the raw trace in the neuron ROI yields a relatively good estimation of neuron signal (red,67

Figure 1D). Figure 1D shows that the background (blue) has much larger variance than the relatively68

sparse neural signal (red); moreover, the background signal �uctuates on similar timescales as the69

single-neuronal signal, so we can not simply temporally �lter the background away after extraction70

of the mean signal within the ROI. This large background signal is likely due to a combination of71

local �uctuations resulting from out-of-focus �uorescence or neuropil activity, hemodynamics of72

blood vessels, and global �uctuations shared more broadly across the �eld of view (photo-bleaching73

e�ects, drifts in z of the focal plane, etc.), as illustrated schematically in Figure 1E.74

The existing methods for extracting individual neural activity from microendoscopic data can75

be divided into two classes: semi-manual ROI analysis (Barbera et al., 2016; Klaus et al., 2017;76

Pinto and Dan, 2015) and PCA/ICA analysis (Mukamel et al., 2009). Unfortunately, both approaches77

have well-known �aws (Resendez et al., 2016). For example, ROI analysis does not e�ectively78

demix signals of spatially overlapping neurons, and drawing ROIs is laborious for large population79

recordings. More importantly, in many cases the background contaminations are not adequately80

corrected, and thus the extracted signals are not su�ciently clean enough for downstream analyses.81

As for PCA/ICA analysis, it is a linear demixing method and therefore typically fails when the neural82

components exhibit strong spatial overlaps (Pnevmatikakis et al., 2016), as is the case in the83

microendoscopic setting.84

Recently, constrained nonnegative matrix factorization (CNMF) approaches were proposed85

to simultaneously denoise, deconvolve, and demix calcium imaging data (Pnevmatikakis et al.,86

2016). However, current implementations of the CNMF approach were optimized for 2-photon87

and light-sheet microscopy, where the background has a simpler spatiotemporal structure. When88
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Figure 1. Microendoscopic data contain large background signals with rapid fluctuations due to multiple

sources. (A) An example frame of microendoscopic data recorded in dorsal striatum (see Methods and

Materials section for experimental details). (B) The local “correlation image" (Smith and Häusser, 2010)

computed from the raw video data. Note that it is difficult to discern neuronal shapes in this image due to the

high background spatial correlation level. (C) The mean-subtracted data within the cropped area (green) in (A).

Two ROIs were selected and coded with different colors. (D) The mean fluorescence traces of pixels within the

two selected ROIs (magenta and blue) shown in (C) and the difference between the two traces. (E) Cartoon

illustration of various sources of fluorescence signals in microendoscopic data. “BG” abbreviates “background.”

applied to microendoscopic data, CNMF often has poor performance because the background is89

not modeled sufficiently accurately (Barbera et al., 2016).90

In this paper, we significantly extend the CNMF framework to obtain a robust approach for91

extracting single-neuronal signals from microendoscopic data. Specifically, our extended CNMF92

for microendoscopic data (CNMF-E) approach utilizes a more accurate and flexible spatiotemporal93

background model that is able to handle the properties of the strong background signal illustrated94

in Fig. 1, along with new specialized algorithms to initialize and fit the model components. After a95

brief description of the model and algorithms, we first use simulated data to illustrate the power96

of the new approach. Next, we compare CNMF-E with PCA/ICA analysis comprehensively on both97

simulated data and four experimental datasets recorded in different brain areas. The results show98

that CNMF-E outperforms PCA/ICA in terms of detecting more well-isolated neural signals, extracting99

higher signal-to-noise ratio (SNR) cellular signals, and obtaining more robust results in low SNR100

regimes. Finally, we show that downstream analyses of calcium imaging data can substantially101

benefit from these improvements.102
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Name Description Domain

! number of pixels ℕ+

" number of frames ℕ+

# number of neurons ℕ

$ motion corrected video data ℝ!×"
+

% spatial footprints of all neurons ℝ!×#
+

& temporal activities of all neurons ℝ#×"
+

' background activity ℝ!×"
+

( observation noise ℝ!×"

) weight matrix to reconstruct ' using neighboring pixels ℝ!×!

!0 constraint baseline for all pixels ℝ!
+

"* spatial location of the *th pixel ℕ2

+* standard deviation of the noise at pixel "* ℝ+

Table 1. Variables used in the CNMF-E model and algorithm. ℝ: real numbers; ℝ+: positive real numbers; ℕ:

natural numbers; ℕ+: positive integers.

Model and model fitting103

CNMF for microendoscope data (CNMF-E)104

The recorded video data can be represented by a matrix $ ∈ ℝ!×"
+

, where ! is the number of105

pixels in the field of view and " is the number of frames observed. In our model each neuron * is106

characterized by its spatial “footprint” vector #* ∈ ℝ!
+
characterizing the cell’s shape and location,107

and “calcium activity” timeseries $* ∈ ℝ"
+
, modeling (up to a multiplicative and additive constant) cell108

*’s mean fluorescence signal at each frame. Here, both #* and $* are constrained to be nonnegative109

because of their physical interpretations. The background fluctuation is represented by a matrix110

' ∈ ℝ!×"
+

. If the field of view contains a total number of # neurons, then the observed movie data111

is modeled as a superposition of all neurons’ spatiotemporal activity, plus time-varying background112

and additive noise:113

$ =

#∑
*=1

#* ⋅ $
"
*
+ ' + ( = %& + ' + (, (1)

where % = [#1,… ,## ] and & = [$1,… , $# ]
"
. The noise term ( ∈ ℝ!×"

is modeled as Gaussian, ((,) ∼114

 (!,Σ). Σ is a diagonal matrix, indicating that the noise is spatially and temporally uncorrelated.115

Estimating the model parameters %,& in model (1) gives us all neurons’ spatial footprints and116

their denoised temporal activity. This can be achieved by minimizing the residual sum of squares117

(RSS), aka the Frobenius norm of the matrix $ − (%& + '),118

‖$ − (%& + ')‖2
-
, (2)

while requiring the model variables %,& and ' to follow the desired constraints, discussed below.119

Constraints on neuronal spatial footprints % and neural temporal traces &120

Each spatial footprint #* should be spatially localized and sparse, since a given neuron will cover121

only a small fraction of the field of view, and therefore most elements of #* will be zero. Thus we122

need to incorporate spatial locality and sparsity constraints on % (Pnevmatikakis et al., 2016). We123

discuss details further below.124

Similarly, the temporal components $* are highly structured, as they represent the cells’ fluo-125

rescence responses to sparse, nonnegative trains of action potentials. Following (Vogelstein et al.,126

2010; Pnevmatikakis et al., 2016), we model the calcium dynamics of each neuron $* with a stable127

autoregressive (AR) process of order .,128

/*(,) =

.∑
0=1

1
(*)
0
/*(, − 0) + 2*(,), (3)
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where 2*(,) ≥ 0 is the number of spikes that neuron fired at the ,-th frame. (Note that there is no129

further noise input into /*(,) beyond the spike signal 2*(,).) The AR coefficients {1 (*)
0
} are different130

for each neuron and they are estimated from the data. In practice, we usually pick . = 2, thus131

incorporating both a nonzero rise and decay time of calcium transients in response to a spike; then132

Eq. (3) can be expressed in matrix form as133

3* ⋅ $* = %*, with 3* =

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

1 0 0 ⋯ 0

−1 (*)
1

1 0 ⋯ 0

−1 (*)
2

−1 (*)
1

1 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 ⋯ −1 (*)
2

−1 (*)
1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

. (4)

The neural activity %* is nonnegative and typically sparse; to enforce sparsity we can penalize the134

%0 (Jewell and Witten, 2017) or %1 (Pnevmatikakis et al., 2016; Vogelstein et al., 2010) norm of %*,135

or limit the minimum size of nonzero spike counts (Friedrich et al., 2017b). When the rise time136

constant is small compared to the timebin width (low imaging frame rate), we typically use a simpler137

AR(1) model (with an instantaneous rise following a spike) (Pnevmatikakis et al., 2016).138

Constraints on background activity '139

In the above we have largely followed previously-described CNMF approaches (Pnevmatikakis140

et al., 2016) for modeling calcium imaging signals. However, to accurately model the background141

effects in microendoscopic data we need to depart significantly from these previous approaches.142

Constraints on the background term ' in Eq. (1) are essential to the success of CNMF-E, since143

clearly, if ' is completely unconstrained we could just absorb the observed data $ entirely into144

', which would lead to recovery of no neural activity. At the same time, we need to prevent145

the residual of the background term (i.e., ' − '̂, where '̂ denotes the estimated spatiotemporal146

background) from corrupting the estimated neural signals %& in model (1), since subsequently,147

the extracted neuronal activity would be mixed with background fluctuations, leading to artificially148

high correlations between nearby cells. This problem is even worse in the microendoscopic context149

because the background fluctuation usually has significantly larger variance than the isolated150

cellular signals of interest (Figure 1D), and therefore any small errors in the estimation of ' can151

severely corrupt the estimated neural signal %& .152

In (Pnevmatikakis et al., 2016), ' is modeled as a rank-1 nonnegative matrix ' = ! ⋅ & "
, where153

! ∈ ℝ!
+
and & ∈ ℝ"

+
. This model mainly captures the global fluctuations within the field of view154

(FOV). In applications to 2-photon or light-sheet data, this rank-1 model has been shown to be155

sufficient for relatively small spatial regions; the simple low-rank model does not hold for larger156

fields of view, and so we can simply divide large FOVs into smaller patches for largely-parallel157

processing (Pnevmatikakis et al., 2016; Giovannucci et al., 2017b). (See (Pachitariu et al., 2016)158

for an alternative approach.) However, as we will see below, the local rank-1 model fails in many159

microendoscopic datasets, where multiple large overlapping background sources exist even within160

modestly-sized FOVs.161

Thus we propose a new model to constrain the background term '. We first decompose the162

background into two terms:163

' = '5 + '/ , (5)

where '5
represents fluctuating activity and '/ = !0 ⋅ "

"
models constant baselines (" ∈ ℝ"

denotes164

a vector of " ones). To model '5
, we exploit the fact that background sources (largely due to blurred165

out-of-focus fluorescence) are empirically much coarser spatially than the average neuron soma166

size 6. Thus we model '5
at one pixel as a linear combination of the background fluorescence in167

pixels which are chosen to be nearby but not nearest neighbors:168

'
5

*,
=

∑
0∈Ω*

7*0 ⋅ '
5

0,
, ∀, = 1… " , (6)
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where Ω* = {0 | dist("*,"0) ∈ [68, 68 + 1)}, with dist("*,"0) the Euclidean distance between pixel * and 0.169

Thus Ω* only selects the neighboring pixels with a distance of 68 from the *-th pixel (the green dot170

and black pixels in Figure 2B illustrate * and Ω*, respectively); here 68 is a parameter that we choose171

to be greater than 6 (the size of the typical soma in the FOV), e.g., 68 = 26. This choice of 68 ensures172

that pixels * and 0 in (6) share similar background fluctuations, but do not belong to the same soma.173

We can rewrite Eq. (6) in matrix form:174

'5 = )'5 , (7)

where )*0 = 0 if dist("*,"0) ∉ [68, 68 + 1). In practice, this hard constraint is difficult to enforce175

computationally, and is overly stringent given the noisy observed data. We relax the model by176

replacing the right-hand side '5
with the more convenient closed-form expression177

'5 = ) ⋅ ($ − %& − !0 ⋅ "
" ). (8)

According to Eq. (1) and (5), this change ignores the noise term (; since elements in ( are spatially178

uncorrelated,) ⋅ ( contributes as a very small disturbance to '̂5
in the left-hand side. We found179

this substitution for '̂5
led to significantly faster and more robust model fitting.180

Fitting the CNMF-E model181

Now we can formulate the estimation of all model variables as a single optimization meta-problem:

minimize

%,& ,9,'5 ,) ,!0

‖$ − %& − !0 ⋅ "
" − '5‖2

-
(P-All)

subject to % ≥ 0, % is sparse and spatially localized

$* ≥ 0, %* ≥ 0, 3(*)$* = %*, %* is sparse ∀* = 1…#

'5 ⋅ " = !

'5 = ) ⋅ ($ − %& − !0 ⋅ "
" )

)*0 = 0 if dist("*,"0) ∉ [68, 68 + 1).

We call this a “meta-problem" because we have not yet explicitly defined the sparsity and spatial182

locality constraints on % and 9 = [%1,… , %# ]
"
; these can be customized by users under different183

assumptions (see details in Methods and Materials). Also note that %* is completely determined184

by $* and 3(*)
, and '5

is not optimized explicitly but (as discussed above) can be estimated as185

) ⋅ ($ − %& − !0 ⋅ "
" ), so we optimize with respect to) instead.186

The problem (P-All) optimizes all variables together and is non-convex, but can be divided into187

three simpler subproblems that we solve iteratively:188

Estimating %, !0 given &̂ , '̂5

minimize
%, !0

‖$ − % ⋅ &̂ − !0 ⋅ "
" − '̂5‖2

-
(P-S)

subject to % ≥ 0, % is sparse and spatially localized

Estimating & , !0 given %̂, '̂5

minimize
& , 9, !0

‖$ − %̂ ⋅ & − !0 ⋅ "
" − '̂5‖2

-
(P-T)

subject to $* ≥ 0, %* ≥ 0

3(*)$* = %*, %* is sparse ∀* = 1…#

Estimating) , !0 given %̂, &̂

minimize

) , '5 , !0

‖$ − %̂ ⋅ &̂ − !0 ⋅ "
" − '5‖2

-
(P-B)

subject to '5 ⋅ " = !

'5 = ) ⋅ ($ − %̂ ⋅ &̂ − !0 ⋅ "
" ).

)*0 = 0 if dist("*,"0) ∉ [68, 68 + 1)
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For each of these subproblems, we are able to use well-established algorithms (e.g., solutions189

for (P-S) and (P-T) are discussed in (Friedrich et al., 2017a; Pnevmatikakis et al., 2016)) or slight190

modifications thereof. By iteratively solving these three subproblems, we obtain tractable updates191

for all model variables in problem (P-All). Furthermore, this strategy gives us the flexibility of192

further potential interventions (either automatic or semi-manual) in the optimization procedure,193

e.g., incorporating further prior information on neurons’morphology, or merging/splitting/deleting194

spatial components and detecting missed neurons from the residuals. These steps can significantly195

improve the quality of the model fitting; this is an advantage compared with PCA/ICA, which offers196

no easy option for incorporation of stronger prior information or manually-guided improvements197

on the estimates.198

Full details on the algorithms for initializing and then solving these three subproblems are199

provided in the Methods and Materials section.200

Results201

CNMF-E can reliably estimate large high-rank background fluctuations202

We first use simulated data to illustrate the background model in CNMF-E and compare its perfor-203

mance against the low-rank NMF model used in the basic CNMF approach (Pnevmatikakis et al.,204

2016). We generated the observed fluorescence $ by summing up simulated fluorescent signals of205

multiple sources as shown in Figure 1E plus additive Gaussian white noise (Figure 2A).206

An example pixel (green dot, Figure 2A,B) was selected to illustrate the background model in207

CNMF-E (Eq. (6)), which assumes that each pixel’s background activity can be reconstructed using its208

neighboring pixels’ activities. The selected neighbors form a ring and their distances to the center209

pixel are larger than a typical neuron size (Figure 2B). Figure 2C shows that the fluorescence traces210

of the center pixel and its neighbors are highly correlated due to the shared large background211

fluctuations. Here for illustrative purposes we fit the background by solving problem (P-B) directly212

while assuming %̂&̂ = 0. This mistaken assumption should make the background estimation more213

challenging (due to true neural components getting absorbed into the background), but nonetheless214

in Figure 2 we see that the background fluctuation was well recovered (Figure 2D). Subtracting this215

estimated background from the observed fluorescence in the center yields a good visualization216

of the cellular signal (Figure 2D). Thus this example shows that we can reconstruct a complicated217

background trace while leaving the neural signal uncontaminated.218

For the example frame in Figure 2A, the true cellular signals are sparse and weak (Figure 2E).219

When we subtract the estimated background using CNMF-E from the raw data, we obtain a good220

recovery of the true signal (Figure 2D,F). For comparison, we also estimate the background activity221

by applying a rank-1 NMF model as used in basic CNMF; the resulting background-subtracted222

image is still severely contaminated by the background (Figure 2G). This is easy to understand: the223

spatiotemporal background signal in microendoscopic data typically has a rank higher than one,224

due to the various signal sources indicated in Figure 1E), and therefore a rank-1 NMF background225

model is insufficient.226

A naive approach would be to simply increase the rank of the NMF background model. Figure227

2H demonstrates that this approach is ineffective: higher-rank NMF does yield generally better228

reconstruction performance, but with high variability and low reliability (due to randomness in the229

initial conditions of NMF). Eventually as the NMF rank increases many single-neuronal signals of230

interest are swallowed up in the estimated background signal (data not shown). In contrast, CNMF-E231

recovers the background signal more accurately than any of the high-rank NMF models.232

In real data analysis settings, the rank of NMF is an unknown and the selection of its value is a233

nontrivial problem. We simulated data sets with different numbers of local background sources234

and use a single parameter setting to run CNMF-E for reconstructing the background over multiple235

such simulations. Figure 2I shows that the performance of CNMF-E does not degrade quickly as236

we have more background sources, in contrast to rank-1 NMF. Therefore CNMF-E can recover the237
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Figure 2. CNMF-E can accurately separate and recover the background fluctuations in simulated data. (A) An

example frame of simulated microendoscopic data formed by summing up the fluorescent signals from the

multiple sources illustrated in Figure 1E. (B) A zoomed-in version of the circle in (A). The green dot indicates the

pixel of interest. The surrounding black pixels are its neighbors with a distance of 15 pixels. The red area

approximates the size of a typical neuron in the simulation. (C) Raw fluorescence traces of the selected pixel

and some of its neighbors on the black ring. Note the high correlation. (D) Fluorescence traces (raw data; true

and estimated background; true and initial estimate of neural signal) from the center pixel as selected in (B).

Note that the background dominates the raw data in this pixel, but nonetheless we can accurately estimate the

background and subtract it away here. Scalebars: 10 seconds. Panels (E-G) show the cellular signals in the same

frame as (A). (E) Ground truth neural activity. (F) The residual of the raw frame after subtracting the background

estimated with CNMF-E; note the close correspondence with E. (G) Same as (F), but the background is estimated

with rank-1 NMF. A video showing (E-G) for all frames can be found at S2 Video. (H) The mean correlation

coefficient (over all pixels) between the true background fluctuations and the estimated background

fluctuations. The rank of NMF varies and we run randomly-initialized NMF for 10 times for each rank. The red

line is the performance of CNMF-E, which requires no selection of the NMF rank. (I) The performance of CNMF-E

and rank-1 NMF in recovering the background fluctuations from the data superimposed with an increasing

number of background sources.

background accurately across a diverse range of background sources, as desired.238

CNMF-E accurately initializes single-neuronal spatial and temporal components239

Next we used simulated data to validate our proposed initialization procedure (Figure 3A). In this240

example we simulated 200 neurons with strong spatial overlaps (Figure 3B). One of the first steps in241

our initialization procedure is to apply a Gaussian spatial filter to the images to reduce the (spatially242

coarser) background and boost the power of neuron-sized objects in the images. In Figure 3C, we243

see that the local correlation image (Smith and Häusser, 2010) computed on the spatially filtered244

data provides a good initial visualization of neuron locations; compare to Figure 1B, where the245

correlation image computed on the raw data was highly corrupted by background signals.246

We choose two example ROIs to illustrate how CNMF-E removes the background contamination247

and demixes nearby neural signals for accurate initialization of neurons’ shapes and activity. In the248

first example, we choose a well-isolated neuron (green box, Figure 3A+B). We select three pixels249

located in the center, the periphery, and the outside of the neuron and show the corresponding250
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Figure 3. CNMF-E accurately initializes individual neurons’ spatial and temporal components in simulated data.

(A) An example frame of the simulated data. Green and red squares will correspond to panels (D) and (E) below,

respectively. (B) The temporal mean of the cellular activity in the simulation. (C) The correlation image

computed using the spatially filtered data. (D) An example of initializing an isolated neuron. Three selected

pixels correspond to the center, the periphery, and the outside of a neuron. The raw traces and the filtered

traces are shown as well. The yellow dashed line is the true neural signal of the selected neuron. Triangle

markers highlight the spike times from the neuron. (E) Same as (D), but two neurons are spatially overlapping in

this example. Note that in both cases neural activity is clearly visible in the filtered traces, and the initial

estimates of the spatial footprints are already quite accurate (dashed lines are ground truth). (F) The contours

of all initialized neurons on top of the correlation image as shown in (D). Contour colors represent the rank of

neurons’ SNR (SNR decreases from red to yellow). The blue dots are centers of the true neurons. (G) The spatial

and the temporal cosine similarities between each simulated neuron and its counterpart in the initialized

neurons. (H) The local correlation and the peak-to-noise ratio for pixels located in the central area of each

neuron (blue) and other areas (green). The red lines are the thresholding boundaries for screening seed pixels

in our initialization step. A video showing the whole initialization step can be found at S3 Video.

fluorescence traces in both the raw data and the spatially filtered data (Figure 3D). The raw traces251

are noisy and highly correlated, but the filtered traces show relatively clean neural signals. This is252

because spatial filtering reduces the shared background activity and the remaining neural signals253

dominate the filtered data. Similarly, Figure 3E is an example showing how CNMF-E demixes two254

overlapping neurons. The filtered traces in the centers of the two neurons still preserve their own255

temporal activity.256

After initializing the neurons’ traces using the spatially filtered data, we initialize our estimate of257

their spatial footprints. Note that simply initializing these spatial footprints with the spatially-filtered258
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data does not work well (data not shown), since the resulting shapes are distorted by the spatial259

filtering process. We found that it was more effective to initialize each spatial footprint by regressing260

the initial neuron traces onto the raw movie data (See Methods and Materials for details). The261

initial values already match the simulated ground truth with fairly high fidelity (Figure 3D+E). In262

this simulated data, CNMF-E successfully identified all 200 neurons and initialized their spatial and263

temporal components (Figure 3F). We then evaluate the quality of initialization using all neurons’264

spatial and temporal similarities with their counterparts in the ground truth data. Figure 3G shows265

that all initialized neurons have high similarities with the truth, indicating a good recovery and266

demixing of all neuron sources.267

Thresholds on the minimum local correlation and the minimum peak-to-noise ratio (PNR) for268

detecting seed pixels are necessary for defining the initial spatial components. To quantify the269

sensitivity of choosing these two thresholds, we plot the local correlations and the PNRs of all pixels270

chosen as the local maxima within an area of
6

4
× 6

4
, where 6 is the diameter of a typical neuron, in271

the correlation image or the PNR image (Figure 3H). Pixels are classified into two classes according272

to their locations relative to the closest neurons: neurons’ central areas and outside areas (see273

Methods and Materials for full details). It is clear that the two classes are linearly well separated274

and the thresholds can be chosen within a broad range of values (Figure 3H), indicating that the275

algorithm is robust with respect to these threshold parameters here. In lower-SNR settings these276

boundaries may be less clear, and an incremental approach (in which we choose the highest-SNR277

neurons first, then estimate the background and examine the residual to select the lowest-SNR278

cells) may be preferred; this incremental approach is discussed in more depth in the Methods and279

Materials section.280

CNMF-E recovers the true neural activity and is robust to noise contamination and281

neuronal correlations in simulated data282

Using the same simulated dataset as in the previous section, we further refine the neuron shapes283

(%) and the temporal traces (&) by iteratively fitting the CNMF-E model. We compare the final results284

with PCA/ICA analysis (Mukamel et al., 2009) and the original CNMF method (Pnevmatikakis et al.,285

2016).286

After choosing the thresholds for seed pixels (Figure 3H), we run CNMF-E in full automatic mode,287

without any manual interventions. Two open-source MATLAB packages, CellSort
1
(Mukamel, 2016)288

and ca_source_extraction
2
(Pnevmatikakis, 2016), were used to perform PCA/ICA (Mukamel et al.,289

2009) and basic CNMF (Pnevmatikakis et al., 2016), respectively. Since the initialization algorithm290

in CNMF fails due to the large contaminations from the background fluctuations in this setting291

(recall Figure 2), we use the ground truth as its initialization. As for the rank of the background292

model in CNMF, we tried all integer values between 1 and 16 and set it as 7 because it has the best293

performance in matching the ground truth. We emphasize that including the CNMF approach in this294

comparison is not fair for the other two approaches, because it uses the ground truth heavily, while295

PCA/ICA and CNMF-E are blind to the ground truth. The purpose here is to show the limitations of296

basic CNMF in modeling the background activity in microendoscopic data.297

We first pick three closeby neurons from the ground truth (Figure 4A, top) and see how well298

these neurons’ activities are recovered. PCA/ICA fails to identify one neuron, and for the other299

two identified neurons, it recovers temporal traces that are sufficiently noisy that small calcium300

transients are submerged in the noise. As for CNMF, the neuron shapes remain more or less at the301

initial condition (i.e., the ground truth spatial footprints), but clear contaminations in the temporal302

traces are visible. This is because the pure NMFmodel in CNMF does not model the true background303

well and the residuals in the background are mistakenly captured by neural components. In contrast,304

on this example, CNMF-E recovers the true neural shapes and neural activity with high accuracy.305

1
https://github.com/mukamel-lab/CellSort

2
https://github.com/epnev/ca_source_extraction
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Figure 4. CNMF-E outperforms PCA/ICA analysis in extracting individual neurons’ activity from simulated data

and is robust to low SNR. (A) The results of PCA/ICA, CNMF, and CNMF-E in recovering the spatial footprints and

temporal traces of three example neurons. The trace colors match the neuron colors shown in the left. (B) The

intermediate residual sum of squares (RSS) values (normalized by the final RSS value), during the CNMF-E model

fitting. The "refine initialization" step refers to the modification of the initialization results in the case of high

temporal correlation (details in Methods and Materials). (C) The spatial and the temporal cosine similarities

between the ground truth and the neurons detected using different methods. (D) The pairwise correlations

between the calcium activity traces extracted using different methods. (E-G) The performances of PCA/ICA and

CNMF-E under different noise levels: the number of missed neurons (E), and the spatial (F) and temporal (G)

cosine similarities between the extracted components and the ground truth. (H) The calcium traces of one

example neuron: the ground truth (black), the PCA/ICA trace (blue), the CNMF-E trace (red) and the CNMF-E

trace without being denoised (cyan). The similarity values shown in the figure are computed as the cosine

similarity between each trace and the ground truth (black). Two videos showing the demixing results of the

simulated data can be found in S4 Video (SNR reduction factor=1) and S5 Video (SNR reduction factor=6).

We also compare the number of detected neurons: PCA/ICA detected 195 out of 200 neurons,306

while CNMF-E detected all 200 neurons. We also quantitatively evaluated the performance of source307

extraction by showing the spatial and temporal cosine similarities between detected neurons308

and ground truth (Figure 4C); we find that the neurons detected using PCA/ICA have much lower309

similarities with the ground truth (Figure 4C). We also note that the CNMF results are much worse310
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Figure 5. CNMF-E is able to demix neurons with high temporal correlations. (A) An example simulation from

the experiments summarized in panel (B), where corr($1, $2) is 0.9: green and red traces correspond to the

corresponding neuronal shapes in the left panels. The blue trace is the mean background fluorescence

fluctuation over the whole FOV. (B) The extraction accuracy of the spatial (#1 and #2) and the temporal ($1 and

$2) components of two close-by neurons, computed via the cosine similarity between the ground truth and the

extraction results.

than those of CNMF-E here, despite the fact that CNMF is initialized at the ground truth parameter311

values. This result clarifies an important point: the improvements from CNMF-E are not simply312

due to improvements in the initialization step. Furthermore, running the full iterative pipeline of313

CNMF-E leads to improvements in both spatial and temporal similarities, compared with the results314

in the initialization step.315

In many downstream analyses of calcium imaging data, pairwise correlations provide an impor-316

tant metric to study coordinated network activity (Warp et al., 2012; Barbera et al., 2016; Dombeck317

et al., 2009; Klaus et al., 2017). Since PCA/ICA seeks statistically independent components, which318

forces the temporal traces to have near-zero correlation, the correlation structure is badly corrupted319

in the raw PCA/ICA outputs (Figure 4D). We observed that a large proportion of the independence320

comes from the noisy baselines in the extracted traces (data not shown), so we postprocessed321
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the PCA/ICA output by thresholding at the 3 standard deviation level. This recovers some nonzero322

correlations, but the true correlation structure is not recovered accurately (Figure 4D). By contrast,323

the CNMF-E results matched the ground truth very well due to accurate extraction of individual324

neurons’ temporal activity (Figure 4D). As for CNMF, the estimated correlations are slightly elevated325

relative to the true correlations. This is due to the shared (highly correlated) background fluctuations326

that corrupt the recovered activity of nearby neurons.327

Next we compared the performance of the different methods under different SNR regimes.328

Because of the above inferior results we skip comparisons to the basic CNMF here. Based on329

the same simulation parameters as above, we vary the noise level Σ by multiplying it with a SNR330

reduction factor. Figure 4E shows that CNMF-E detects all neurons over a wide SNR range, while331

PCA/ICA fails to detect the majority of neurons when the SNR drops to sufficiently low levels.332

Moreover, the detected neurons in CNMF-E preserve high spatial and temporal similarities with333

the ground truth (Figure 4F-G). This high accuracy of extracting neurons’ temporal activity benefits334

from the modeling of the calcium dynamics, which leads to significantly denoised neural activity.335

If we skip the temporal denoising step in the algorithm, CNMF-E is less robust to noise, but still336

outperforms PCA/ICA significantly (Figure 4G). When SNR is low, the improvements yielded by337

CNMF-E can be crucial for detecting weak neuron events, as shown in Figure 4H.338

Finally, we examine the ability of CNMF-E to demix correlated and overlapping neurons. Using339

the two example neurons in Figure 3E, we ran multiple simulations at varying correlation levels340

and extracted neural components using the CNMF-E pipeline and PCA/ICA analysis. The spatial341

footprints in these simulations were fixed, but the temporal components were varied to have342

different correlation levels (1) between calcium traces by tuning their shared component with the343

common background fluctuations. For high correlation levels (1 > 0.7), the initialization procedure344

tends to first initialize a component that explains the common activity between two neurons and345

then initialize another component to account for the residual of one neuron. After iteratively refining346

the model variables, CNMF-E successfully extracted the two neurons’ spatiotemporal activity even347

at very high correlation levels (1 = 0.95; Figure 5A,B). PCA/ICA was also often able to separate two348

neurons for large correlation levels (1 = 0.9, Figure 5B), but the extracted traces have problematic349

negative spikes that serve to reduce their statistical dependences (Figure 4A).350

Application to dorsal striatum data351

We now turn to the analysis of large-scale microendoscopic datasets recorded from freely behaving352

mice. We run both CNMF-E and PCA/ICA for all datasets and compare their performances in detail.353

We begin by analyzing in vivo calcium imaging data of neurons expressing GCaMP6f in the354

mouse dorsal striatum. (Full experimental details and algorithm parameter settings for this and the355

following datasets appear in the Methods and Materials section.) CNMF-E extracted 692 putative356

neural components from this dataset; PCA/ICA extracted 547 components (starting from 700 initial357

components, and then automatically removing false positives using the same criterion as applied in358

CNMF-E). Figure 6A shows how CNMF-E decomposes an example frame into four components: the359

constant baselines that are invariant over time, the fluctuating background, the denoised neural360

signals, and the residuals. We highlight an example neuron by drawing its ROI to demonstrate the361

power of CNMF-E in isolating fluorescence signals of neurons from the background fluctuations.362

For the selected neuron, we plot the mean fluorescence trace of the raw data and the estimated363

background (Figure 6B). These two traces are very similar, indicating that the background fluctuation364

dominates the raw data. By subtracting this estimated background component from the raw data,365

we acquire a clean trace that represents the neural signal.366

To quantify the background effects further, we compute the contribution of each signal compo-367

nent in explaining the variance in the raw data. For each pixel, we compute the variance of the raw368

data first and then compute the variance of the background-subtracted data. Then the reduced369

variance is divided by the variance of the raw data, giving the proportion of variance explained370

by the background. Figure 6C (blue) shows the distribution of the background-explained variance371
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Figure 6. Neurons expressing GCaMP6f recorded in vivo in mouse dorsal striatum area. (A) An example frame

of the raw data and its four components decomposed by CNMF-E. (B) The mean fluorescence traces of the raw

data (black), the estimated background activity (blue), and the background-subtracted data (red) within the

segmented area (red) in (A). The variance of the black trace is about 2x the variance of the blue trace and 4x the

variance of the red trace. (C) The distributions of the variance explained by different components over all pixels;

note that estimated background signals dominate the total variance of the signal. (D) The contour plot of all

neurons detected by CNMF-E and PCA/ICA superimposed on the correlation image. Green areas represent the

components that are only detected by CNMF-E. The components are sorted in decreasing order based on their

SNRs (from red to yellow). (E) The spatial and temporal components of 14 example neurons that are only

detected by CNMF-E. These neurons all correspond to green areas in (D). (F) The signal-to-noise ratios (SNRs) of

all neurons detected by both methods. Colors match the example traces shown in (G), which shows the spatial

and temporal components of 10 example neurons detected by both methods. Scalebar: 10 seconds. See S6

Video for the demixing results.

over all pixels. The background accounts for around 90% of the variance on average. We further372

remove the denoised neural signals and compute the variance reduction; Figure 6C shows that373

neural signals account for less than 10% of the raw signal variance. This analysis is consistent with374

our observations that background dominates the fluorescence signal and extracting high-quality375

neural signals requires careful background signal removal.376

The contours of the spatial footprints inferred by the two approaches (PCA/ICA and CNMF-E)377

are depicted in Figure 6D, superimposed on the correlation image of the filtered raw data. The378

indicated area was cropped from Figure 6A (left). In this case, most neurons inferred by PCA/ICA379
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were inferred by CNMF-E as well, with the exception of a few components that seemed to be false380

positives (judging by their spatial shapes and temporal traces and visual inspection of the raw381

data movie; detailed data not shown). However, many realistic components were only detected by382

CNMF-E (shown as the green areas in Figure 6D). In these plots, we rank the inferred components383

according to their SNRs; the color indicates the relative rank (decaying from red to yellow). We see384

that the components missed by PCA/ICA have low SNRs (green shaded areas with yellow contours).385

Figure 6E shows the spatial and temporal components of 14 example neurons detected only by386

CNMF-E. Here (and in the following figures), for illustrative purposes, we show the calcium traces387

before the temporal denoising step. For neurons that are inferred by both methods, CNMF-E shows388

significant improvements in the SNR of the extracted cellular signals (Figure 6F), even before the389

temporal denoising step is applied. In panel G we randomly select 10 examples and examine their390

spatial and temporal components. Compared with the CNMF-E results, PCA/ICA components have391

much smaller size, often with negative dips surrounding the neuron (remember that ICA avoids392

spatial overlaps in order to reduce nearby neurons’ statistical dependences, leading to some loss of393

signal strength; see (Pnevmatikakis et al., 2016) for further discussion). The activity traces extracted394

by CNMF-E are visually cleaner than the PCA/ICA traces; this is important for reliable event detection,395

particularly in low SNR examples. See (Klaus et al., 2017) for additional examples of CNMF-E applied396

to striatal data.397

Application to data in prefrontal cortex398

We repeat a similar analysis on GCaMP6s data recorded from prefrontal cortex (PFC, Figure 7),399

to quantify the performance of the algorithm in a different brain area with a different calcium400

indicator. Again we find that CNMF-E successfully extracts neural signals from a strong fluctuating401

background (Figure 7A), which contributes a large proportion of the variance in the raw data (Figure402

7B). Similarly as with the striatum data, PCA/ICA analysis missed many components that have403

very weak signals (33missed components here). For the matched neurons, CNMF-E shows strong404

improvements in the SNRs of the extracted traces (Figure 7D). Consistent with our observation in405

striatum (Figure 6G), the spatial footprints of PCA/ICA components are shrunk to promote statistical406

independence between neurons, while the neurons inferred by CNMF-E have visually reasonable407

morphologies (Figure 6E). As for calcium traces with high SNRs (Figure 7E, cell 1 − 6), CNMF-E traces408

have smaller noise values, which is important for detecting small calcium transients (Figure 7E, cell409

4). For traces with low SNRs (Figure 7, cell 7 − 10), it is challenging to detect any calcium events410

from the PCA/ICA traces due to the large noise variance; CNMF-E is able to visually recover many of411

these weaker signals. For those cells missed by PCA/ICA, their traces extracted by CNMF-E have412

reasonable morphologies and visible calcium events (Figure 7F).413

The demixing performance of PCA/ICA analysis can be relatively weak because it is inherently a414

linear demixing method (Pnevmatikakis et al., 2016). Since CNMF-E uses a more suitable nonlinear415

matrix factorization method, it has a better capability of demixing spatially overlapping neurons.416

As an example, Figure 7G shows three closeby neurons identified by both CNMF-E and PCA/ICA417

analysis. PCA/ICA forces its obtained filters to be spatially separated to reduce their dependence418

(thus reducing the effective signal strength), while CNMF-E allows inferred spatial components419

to have large overlaps (Figure 7G, left), retaining the full signal power. In the traces extracted420

by PCA/ICA, the component labeled in green contains many negative “spikes," which are highly421

correlated with the spiking activity of the blue neuron (Figure 7G, yellow). In addition, the green422

PCA/ICA neuron has significant crosstalk with the red neuron due to the failure of signal demixing423

(Figure 7G, cyan); the CNMF-E traces shows no comparable negative “spikes" or crosstalk. See also424

S8 Video for further details.425

Application to ventral hippocampus neurons426

In the previous two examples, we analyzed data with densely packed neurons, in which the neuron427

sizes are all similar. In the next example, we apply CNMF-E to a dataset with much sparser and428
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Figure 7. Neurons expressing GCaMP6s recorded in vivo in mouse prefrontal cortex. (A-F) follow similar

conventions as in the corresponding panels of Figure 6. (G) Three example neurons that are close to each other

and detected by both methods. Yellow shaded areas highlight the negative ‘spikes’ correlated with nearby

activity, and the cyan shaded area highlights one crosstalk between nearby neurons. Scalebar: 20 seconds. See

S7 Video for the demixing results and S8 Video for the comparision of CNMF-E and PCA/ICA in the zoomed-in

area of (G).

more heterogeneous neural signals. The data used here were recorded from amygdala-projecting429

neurons expressing GCaMP6f in ventral hippocampus. In this dataset, some neurons that are430

slightly above or below the focal plane were visible with prominent signals, though their spatial431

shapes are larger than neurons in the focal plane.432

This example is somewhat more challenging due to the large diversity of neuron sizes. It is433

possible to set multiple parameters to detect neurons of different sizes (or to e.g. differentially434

detect somas versus smaller segments of axons or dendrites passing through the focal plane),435

but for illustrative purposes here we use a single neural size parameter to initialize all of the436

components. This in turn splits some large neurons into multiple components. Following this437

crude initialization step, we updated the background component and then picked the missing438

neurons from the residual using a second greedy component initialization step. Next we ran CNMF-439

E for three iterations of updating the model variables %,& , and '. The first two iterations were440

performed automatically; we included manual interventions (e.g., merging/deleting components)441

before the last iteration, leading to improved source extraction results (see S10 Video for details442
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Figure 8. Neurons expressing GCaMP6f recorded in vivo in mouse ventral hippocampus. (A) Contours of all

neurons detected by CNMF-E (red) and PCA/ICA method (green). The grayscale image is the local correlation

image of the background-subtracted video data, with background estimated using CNMF-E. (B) Spatial

components of all neurons detected by CNMF-E. The neurons in the first three rows are also detected by

PCA/ICA, while the neurons in the last row are only detected by CNMF-E. (C) Spatial components of all neurons

detected by PCA/ICA; similar to (B), the neurons in the first three rows are also detected by CNMF-E and the

neurons in the last row are only detected by PCA/ICA method. (D) Temporal traces of all detected components

in (B). ‘Match’ indicates neurons in top three rows in panel (B); ‘Other’ indicates neurons in the fourth row. (E)

Temporal traces of all components in (C). Scalebars: 20 seconds. See S9 Video for demixing results.

on the manual merge and delete interventions performed here). In this example, we detected 24443

CNMF-E components and 24 PCA/ICA components. The contours of these inferred neurons are444

shown in Figure 8A. In total we have 20 components detected by both methods (shown in the first445

three rows of Figure 8B+C); each method detected extra components that are not detected by the446

other (the last rows of Figure 8B+C). Once again, the PCA/ICA filters contain many negative pixels in447

an effort to reduce spatial overlaps; see components 3 and 5 in Figure 8A-C, for example. All traces448

of the inferred neurons are shown in Figure 8D+E. We can see that the CNMF-E traces have much449

lower noise level and cleaner neural signals in both high and low SNR settings. Conversely, the450

calcium traces of the 3 extra neurons identified by PCA/ICA show noisy signals that are unlikely to451

be neural responses.452

Application to footshock responses in the bed nucleus of the stria terminalis (BNST)453

Identifying neurons and extracting their temporal activity is typically just the first step in the analysis454

of calcium imaging data; downstream analyses rely heavily on the quality of this initial source455

extraction. We showed above that, compared to PCA/ICA, CNMF-E is better at extracting activity456

dynamics, especially in regimes where neuronal activities are correlated (c.f. Figure 4D). Using457

in vivo electrophysiological recordings, we previously showed that neurons in the bed nucleus of458

the stria terminalis (BNST) show strong responses to unpredictable footshock stimuli (Jennings459

et al., 2013). We therefore measured calcium dynamics in CaMKII-expressing neurons that were460

transfected with the calcium indicator GCaMP6s in the BNST and analyzed the synchronous activity461

of multiple neurons in response to unpredictable footshock stimuli. We chose 12 example neurons462

that were detected by both CNMF-E and PCA/ICA methods and show their spatial and temporal463
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Figure 9. Neurons extracted by CNMF-E show more reproducible responses to footshock stimuli, with larger

signal sizes relative to the across-trial variability, compared to PCA/ICA. (A-C) Spatial components (A), spatial

locations (B) and temporal components (C) of 12 example neurons detected by both CNMF-E and PCA/ICA. (D)

Calcium responses of all example neurons to footshock stimuli. Colormaps show trial-by-trial responses of each

neuron, extracted by CNMF-E (top, red) and PCA/ICA (bottom, green), aligned to the footshock time. The solid

lines are medians of neural responses over 11 trials and the shaded areas correpond to median ±1median

absolute deviation (MAD). Dashed lines indicate the shock timings. (E) Scatter plot of peak-to-MAD ratios for all

response curves in (D). For each neuron, Peak is corrected by subtracting the mean activity within 4 seconds

prior to stimulus onset and MAD is computed as the mean MAD values over all timebins shown in (D). The red

line shows : = ;. Scalebars: 10 seconds. See S11 Video for demixing results.

components in Figure 9A-C. The activity around the onset of the repeated stimuli are aligned and464

shown as pseudo-colored images in panel D. The median responses of CNMF-E neurons display465

prominent responses to the footshock stimuli compared with the resting state before stimuli onset.466

In comparison, the activity dynamics extracted by PCA/ICA have relatively low SNR, making it more467
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challenging to reliably extract footshock responses. Panel E summarizes the results of panel D;468

we see that CNMF-E outputs significantly more easily detectable responses than does PCA/ICA.469

This is an example in which downstream analyses of calcium imaging data can significantly benefit470

from the improvements in the accuracy of source extraction offered by CNMF-E. (Sheintuch et al.471

(2017) recently presented another such example, showing that more neurons can be tracked across472

multiple days using CNMF-E outputs, compared to PCA/ICA.)473

Conclusion474

Microendoscopic calcium imaging offers unique advantages and has quickly become a critical475

method for recording large neural populations during unrestrained behavior. However, previous476

methods fail to adequately remove background contaminations when demixing single neuron477

activity from the raw data. Since strong background signals are largely inescapable in the context of478

one-photon imaging, insufficient removal of the background could yield problematic conclusions479

in downstream analysis. This has presented a severe and well-known bottleneck in the field. We480

have delivered a solution for this critical problem, building on the constrained nonnegative matrix481

factorization framework introduced in Pnevmatikakis et al. (2016) but significantly extending it in482

order to more accurately and robustly remove these contaminating background components.483

The proposed CNMF-E algorithm can be used in either automatic or semi-automatic mode, and484

leads to significant improvements in the accuracy of source extraction compared with previous485

methods. In addition, CNMF-E requires very few parameters to be specified, and these parameters486

are easily interpretable and can be selected within a broad range. We demonstrated the power487

of CNMF-E using data from a wide diversity of brain areas (subcortical, cortical, and deep brain488

areas), SNR regimes, calcium indicators, neuron sizes and densities, and hardware setups. Among489

all these examples (and many others not shown here), CNMF-E performs well and improves490

significantly on the standard PCA/ICA approach. Considering that source extraction is typically491

just the first step in calcium imaging data analysis pipelines (Mohammed et al., 2016), these492

improvements should in turn lead to more stable and interpretable results from downstream493

analyses. Further applications of the CNMF-E approach appear in (Cameron et al., 2016; Donahue494

and Kreitzer, 2017; Jimenez et al., 2016, 2017; Klaus et al., 2017; Lin et al., 2017; Murugan et al.,495

2016, 2017; Rodriguez-Romaguera et al., 2017; Tombaz et al., 2016; Ung et al., 2017; Yu et al., 2017;496

Mackevicius et al., 2017; Madangopal et al., 2017; Roberts et al., 2017; Ryan et al., 2017; Roberts497

et al., 2017; Sheintuch et al., 2017).498

We have released our MATLAB implementation of CNMF-E as open-source software (https:499

//github.com/zhoupc/CNMF_E (Zhou, 2017a)). A Python implementation has also been incorporated500

into the CaImAn toolbox (Giovannucci et al., 2017b). We welcome additions or suggestions for mod-501

ifications of the code, and hope that the large and growing microendoscopic imaging community502

finds CNMF-E to be a helpful tool in furthering neuroscience research.503

Methods and Materials504

Algorithm for solving problem (P-S)505

In problem (P-S), !0 is unconstrained and can be updated in closed form: !̂0 =
1

"
($̃ − % ⋅ &̂ − '̂5 ) ⋅ ".

By plugging this update into problem (P-S), we get a reduced problem

minimize
%

‖$̃ − % ⋅ &̃‖2
-

(P-S’)

subject to % ≥ 0, A is local and sparse,

where $̃ = $ − '̂5 − 1

"
$ """ and &̃ = &̂ − 1

"
&̂""" . We approach this problem using a version

of "hierarchical alternating least squares" (HALS; Cichocki et al. (2007)), a standard algorithm for

nonnegative matrix factorization. Friedrich et al. (2017b) modified the fastHALS algorithm (Cichocki

and Phan, 2009) to estimate the nonnegative spatial components%, ! and the nonnegative temporal

19 of 37

https://github.com/zhoupc/CNMF_E
https://github.com/zhoupc/CNMF_E
https://github.com/zhoupc/CNMF_E


Manuscript submitted to eLife

activity & ,& in the CNMF model $ = % ⋅& +!& " +( by including sparsity and localization constraints.

We solve a problem similar to the subproblem solved in Friedrich et al. (2017b):

minimize
%

‖$̃ − % ⋅ &̃‖2
-

(P-S”)

subject to % ≥ 0

%(*, =) = 0 ∀ "* ∉ >=

where >= denotes the the spatial patch constraining the nonzero pixels of the =-th neuron and506

restricts the candidate spatial support of neuron =. This regularization reduces the number of free507

parameters in %, leading to speed and accuracy improvements. The spatial patches can be deter-508

mined using a mildly dilated version of the support of the previous estimate of % (Pnevmatikakis509

et al., 2016; Friedrich et al., 2017a).510

Algorithms for solving problem (P-T)511

In problem (P-T), the model variable & ∈ ℝ#×"
could be very large, making the direct solution of (P-T)512

computationally expensive. Unlike problem (P-S), the problem (P-T) cannot be readily parallelized513

because the constraints 3(*)$* ≥ 0 couple the entries within each row of C, and the residual term514

couples entries across columns. Here, we follow the block coordinate-descent approach used in515

(Pnevmatikakis et al., 2016) and propose an algorithm that sequentially updates each $* and !0.516

For each neuron, we start with a simple unconstrained estimate of $*, denoted as '̂*, that minimizes517

the residual of the spatiotemporal data matrix while fixing other neurons’ spatiotemporal activity518

and the baseline term !0,519

'̂* = argmin

/*∈ℝ
"

‖$ − %̂∖* ⋅ &̂∖* − #̂*$* − !̂0 ⋅ "
" − '̂5‖2

-
= $̂* +

#̂"
*
⋅ $

res

#̂"
*
#̂*

, (9)

where $
res

= $ − %̂&̂ − !̂0"
" − '5

represents the residual given the current estimate of the model520

variables. Due to its unconstrained nature, '̂* is a noisy estimate of $*, plus a constant baseline521

resulting from inaccurate estimation of !0. Given '̂*, various deconvolution algorithms can be applied522

to obtain the denoised trace $̂* and deconvolved signal %̂* (Vogelstein et al., 2009; Pnevmatikakis523

et al., 2013; Deneux et al., 2016; Friedrich et al., 2017b; Jewell andWitten, 2017); in CNMF-E, we use524

the OASIS algorithm from (Friedrich et al., 2017b). (Note that the estimation of $* is not dependent525

on accurate estimation of !0, because the algorithm for estimating $* will also automatically estimate526

the baseline term in '̂*.) After the $* ’s are updated, we update !0 using the closed-form expression527

!̂0 =
1

"
($̃ − %̂ ⋅ &̂ − '̂5 ) ⋅ ".528

Estimating background by solving problem (P-B)529

Next we discuss our algorithm for estimating the spatiotemporal background signal by solving530

problem (P-B) as a linear regression problem given %̂ and &̂ . Since '5 ⋅ " = !, we can easily estimate531

the constant baselines for each pixel as532

!̂0 =
1

"
($ − %̂ ⋅ &̂) ⋅ ". (10)

Next we replace the !0 in (P-B) with this estimate and rewrite (P-B) as

minimize
)

‖? −) ⋅?‖2
-
, (P-W)

subject to )*0 = 0 if dist("*,"0) ∉ [68, 68 + 1),

where ? = $ − %̂ ⋅ &̂ − !̂0"
"
. Given the optimized )̂ , our estimation of the fluctuating background is533

'̂5 = )̂ ?. The new optimization problem (P-W) can be readily parallelized into ! linear regression534

problems for each pixel separately. By estimating all row columns of)*,∶, we are able to obtain the535

whole background signal as536

'̂ = )̂ ? + !̂0"
" . (11)
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In some cases, ? might include large residuals from the inaccurate estimation of the neurons’537

spatiotemporal activity %& , e.g., missing neurons in the estimation. These residuals act as outliers538

and distort the estimation of '̂5
and !0. To overcome this problem, we use robust least squares539

regression (RLSR) via hard thresholding to avoid contaminations from the outliers (Bhatia et al.,540

2015). Before solving the problem (P-W), we compute '− = )̂ ($ − %̂ ⋅ &̂ − !̂0"
" ) (the current estimate541

of the fluctuating background) and then apply a simple clipping preprocessing step to ?:542

?
/6*..@!

*,
=

{
'−

*,
if ?*, ≥ '−

*,
+ A ⋅ +*

?*, otherwise

. (12)

Then we update the regression estimate using ?/6*..@!
instead of ?, and iterate. Here +* is the543

standard deviation of the noise at "* and its value can be estimated using the power spectral density544

(PSD) method (Pnevmatikakis et al., 2016). As for the first iteration of the model fitting, we set545

each '−
*,
= 1

|Ω*|
∑

0∈Ω*
?̃0, as the mean of the ?̃0, for all 0 ∈ Ω*. The thresholding coefficient A can be546

specified by users, though we have found a fixed default works well across the datasets used here.547

This preprocessing removes most calcium transients by replacing those frames with the previously548

estimated background only. As a result, it increases the robustness to inaccurate estimation of %& ,549

and in turn leads to a better extraction of %& in the following iterations.550

Initialization of model variables551

Since problem (P-All) is not convex in all of its variables, a good initialization of model variables is552

crucial for fast convergence and accurate extraction of all neurons’ spatiotemporal activity. Previous553

methods assume the background component is relatively weak, allowing us to initialize %̂ and &̂554

while ignoring the background or simply initializing it with a constant baseline over time. However,555

the noisy background in microendoscopic data fluctuates more strongly than the neural signals (c.f.556

Figure 6C and Figure 7B), which makes previous methods less valid for the initialization of CNMF-E.557

Here we design a new algorithm to initialize %̂ and &̂ without estimating '̂. The whole procedure558

is illustrated in Figure 10 and described in Algorithm 1. The key aim of our algorithm is to exploit559

the relative spatial smoothness in the background compared to the single neuronal signals visible560

in the focal plane. Thus we can use spatial filtering to reduce the background in order to estimate561

single neurons’ temporal activity, and then initialize each neuron’s spatial footprint given these562

temporal traces. Once we have initialized %̂ and &̂ , it is straightforward to initialize the constant563

baseline !0 and the fluctuating background '5
by solving problem (P-B).564

Spatially filtering the data565

We first filter the raw video data with a customized image kernel (Figure 10A). The kernel is generated566

from a Gaussian filter567

ℎ(") = exp

(
−

‖"‖2
2(6∕4)2

)
. (13)

Here we use ℎ(") to approximate a cell body; the factor of 1∕4 in the Gaussian width is chosen to568

match a Gaussian shape to a cell of width 6. Instead of using ℎ(") as the filtering kernel directly,569

we subtract its spatial mean (computed over a region of width equal to 6) and filter the raw data570

with ℎ̃(") = ℎ(") − ℎ̄("). The filtered data is denoted as D ∈ ℝ!×"
(Figure 10B). This spatial filtering571

step helps accomplish two goals: (1) reducing the background ', so that D is dominated by neural572

signals (albeit somewhat spatially distorted) in the focal plane (see Figure 10B as an example); (2)573

performing a template matching to detect cell bodies similar to the Gaussian kernel. Consequently,574

D has large values near the center of each cell body. (However, note that we can not simply e.g.575

apply CNMF to D, because the spatial components in a factorization of the matrix D will typically576

no longer be nonnegative, and therefore NMF-based approaches can not be applied directly.) More577

importantly, the calcium traces near the neuron center in the filtered data preserve the calcium578

activity of the corresponding neurons because the filtering step results in a weighted average of579

cellular signals surrounding each pixel (Figure 10B). Thus the fluorescence traces in pixels close to580
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Figure 10. Illustration of the initialization procedure. (A) Raw video data and the kernel for filtering the video

data. (B) The spatially high-pass filtered data. (C) The local correlation image and the peak-to-noise ratio (PNR)

image calculated from the filtered data in (B). (D) The temporal correlation coefficients between the filtered

traces (B) of the selected seed pixel (the red cross) and all other pixels in the cropped area as shown in (A-C).

The red and green contour correspond to correlation coefficients equal to 0.7 and 0.3 respectively. (E) The

estimated background fluctuation :'3(,) (green) and the initialized temporal trace /̂*(,) of the neuron (red).

:'3(,) is computed as the median of the raw fluorescence traces of all pixels (green area) outside of the green

contour shown in (D) and /̂*(,) is computed as the mean of the filtered fluorescence traces of all pixels inside the

red contour. (F) The decomposition of the raw video data within the cropped area. Each component is a rank-1

matrix and the related temporal traces are estimated in (E). The spatial components are estimated by regressing

the raw video data against these three traces. See S3 Video for an illustration of the initialization procedure.

neuron centers in D can be used for initializing the neurons’ temporal activity directly. These pixels581

are defined as seed pixels. We next propose a quantitative method to rank all potential seed pixels.582

Ranking seed pixels583

A seed pixel " should have two main features: first, D("), which is the filtered trace at pixel ", should584

have high peak-to-noise ratio (PNR) because it encodes the calcium concentration $* of one neuron;585

second, a seed pixel should have high temporal correlations with its neighboring pixels (e.g., 4586

nearest neighbors) because they share the same $*. We computed two metrics for each of these587

two features:588

> (") =
max,(D(", ,))

+(")
, E(") =

1

4

∑
dist(","′)=1

corr

(
D("),D("′)

)
. (14)

Recall that +(") is the standard deviation of the noise at pixel "; the function corr() refers to Pearson589

correlation here. In our implementation, we usually threshold D(") by 3+(") before computing E(")590

to reduce the influence of the background residuals, noise, and spikes from nearby neurons.591

Most pixels can be ignored when selecting seed pixels because their local correlations or PNR592

values are too small. To avoid unnecessary searches of the pixels, we set thresholds for both593

> (") and E("), and only pick pixels larger than the thresholds >min and Emin. It is empirically useful594

to combine both metrics for screening seed pixels. For example, high PNR values could result595

from large noise, but these pixels usually have small E(") because the noise is not shared with596

neighboring pixels. On the other hand, insufficient removal of background during the spatial597

filtering leads to high E("), but the corresponding > (") are usually small because most background598

fluctuations have been removed. So we create another matrix F(") = > (") ⋅ E(") that computes the599

pixelwise product of > (") and E("). We rank all F(") in a descending order and choose the pixel "∗
600

with the largest F(") for initialization.601
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Algorithm 1 Initialize model variables % and & given the raw data

Require: data $ ∈ ℝ!×"
, neuron size 6, the minimum local correlation EG*8 and the minimum PNR >G*8 for

selecting seed pixels.

1: ℎ ← a truncated 2D Gaussian kernel of width +; = +: =
6

4
; ℎ ∈ ℝ6×6 ⊳ 2D Gaussian kernel

2: ℎ̃ ← ℎ − ℎ̄; ℎ̃ ∈ ℝ6×6 ⊳mean-centered kernel for spatial filtering

3: D ← conv($ ,ℎ); D ∈ ℝ!×" ⊳ spatially filter the raw data

4: E ← local cross-correlation image of the filtered data D; E ∈ ℝ!

5: > ← PNR image of the filtered data D; > ∈ ℝ!

6: = ← 0 ⊳ neuron number

7: while True do

8: if E(") ≤ EG*8 or > (") ≤ >G*8 for all pixel " then

9: break;

10: else

11: = ← = + 1

12: #̂= ← !;# ∈ ℝ!

13: "∗ ← argmax"(E(") ⋅ > (")) ⊳ select a seed pixel

14: Ω= ← {"|" is in the square box of length (26 + 1) surrounding pixel "∗} ⊳ crop a small box near "∗

15: ((") ← corr(D(", ∶),D("∗, ∶)) for all " ∈ Ω=; ( ∈ ℝ|Ω=|

16: ''3 ←

∑
{"|((")≤0.3} $ (",∶)∑

{"|((")≤0.3} 1
; ''3 ∈ #" ⊳ estimate the background signal

17: $̂= ←

∑
{"|"(")≥0.7} D(",∶)
∑

{"|((")≥0.7} 1
; $̂= ∈ #" ⊳ estimate neural signal

18: #̂=(Ω=), !̂
(5 ), !̂(0) ← argmin#,!(5 ) ,!(0)‖$Ω=

− (# ⋅ $̂"
=
+ !(5 ) ⋅ '"

'3
+ !(0) ⋅ "" )‖2

-

19: #̂= ← max(0, #̂=) ⊳ the spatial component of the =-th neuron

20: $ ← $ − #̂= ⋅ $̂
"
=

⊳ peel away the neuron’s spatiotemporal activity

21: update E(") and > (") locally given the new $

22: % ← [#̂1, #̂2,… , #̂=]

23: & ← [$̂1, $̂2,… , $̂=]
"

24: return %,&

Greedy initialization602

Our initialization method greedily initializes neurons one by one. Every time we initialize a neuron,603

we will remove its initialized spatiotemporal activity from the raw video data and initialize the next604

neuron from the residual. For the same neuron, there are several seed pixels that could be used605

to initialize it. But once the neuron has been initialized from any of these seed pixels (and the606

spatiotemporal residual matrix has been updated by peeling away the corresponding activity), the607

remaining seed pixels related to this neuron have lowered PNR and local correlation. This helps608

avoid the duplicate initialization of the same neuron. Also, > (") and E(") have to be updated after609

each neuron is initialized, but since only a small area near the initialized neuron is affected, we can610

update these quantities locally to reduce the computational cost. This procedure is repeated until611

the specified number of neurons have been initialized or no more candidate seed pixels exist.612

This initialization algorithm can greedily initialize the required number of neurons, but the613

subproblem of estimating Î* given /̂* still has to deal with the large background activity in the614

residual matrix. We developed a simple method to remove this background and accurately initialize615

neuron shapes, described next. We first crop a (26 + 1) × (26 + 1) square centered at "∗
in the field616

of view (Figure 10A-E). Then we compute the temporal correlation between the filtered traces of617

pixel ;∗
and all other pixels in the patch (Figure 10D). We choose those pixels with small temporal618

correlations (e.g., 0.3) as the neighboring pixels that are outside of the neuron (the green contour in619

Figure 10D). Next, we estimate the background fluctuations as the median values of these pixels620

for each frame in the raw data (Figure 10E). We also select pixels that are within the neuron by621

selecting correlation coefficients larger than 0.7, then $̂* is refined by computing the mean filtered622

traces of these pixels (Figure 10E). Finally, we regress the raw fluorescence signal in each pixel onto623

three sources: the neuron signal (Figure 10E), the local background fluctuation (Figure 10F), and a624

constant baseline. Our initial estimate of Î* is given by the regression weights onto /̂* in Figure 10F.625
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Modifications for high temporal or spatial correlation626

The above procedure works well in most experimental datasets as long as neurons are not highly627

spatially overlapped and temporally correlated. However, in a few extreme cases, this initialization628

may lead to bad local minima. We found that two practical modifications can lead to improved629

results.630

High temporal correlation, low spatial overlaps: The greedy initialization procedure assumes631

that closeby neurons are not highly correlated. If this assumption fails, CNMF-E will first merge632

nearby neurons into one component for explaining the shared fluctuations, and then the following633

initialized components will only capture the residual signals of each neuron. Our solution to this634

issue relies on our accurate background removal procedure, after which we simply re-estimate each635

neural trace $* as a weighted fluorescence trace of the background-subtracted video ($ − '̂5 − !̂0"
" ),636

$̂* =
#̃" ⋅ ($ − '̂5 − !̂0"

" )

#̃" ⋅ #̃
, (15)

where #̃* only selects pixels with large weights by thresholding the estimated #̂* with max(#̂*)∕2 (this637

reduces the contributions from smaller neighboring neurons). This strategy improves the extraction638

of individual neurons’ traces in the high correlation scenarios and the spatial footprints can be639

corrected in the following step of updating %̂. Figure 4B and Figure 5 illustrate this procedure.640

High spatial overlaps, low temporal correlation: CNMF-E may initialize components with641

shared temporal traces because they have highly overlapping areas. We solve this problem by642

de-correlating their traces (following a similar approach in (Pnevmatikakis et al., 2016)). We start643

by assuming that neurons with high spatial overlap do not fire spikes within the same frame. If so,644

only the inferred spiking trace with the largest value is kept and the rest will be set to 0. Then we645

initialize each $* given these thresholded spiking traces and the corresponding AR coefficients.646

Interventions647

We use iterative matrix updates to estimate model variables in CNMF-E. This strategy gives us the648

flexibility of integrating prior information on neuron morphology and temporal activity during the649

model fitting. The resulting interventions (which can in principle be performed either automatically650

or undermanual control) can in turn lead to faster convergence andmore accurate source extraction.651

We integrate 5 interventions in our CNMF-E implementation. Following these interventions, we652

usually run one more iteration of matrix updates.653

Merge existing components654

When a single neuron is split mistakenly into multiple components, a merge step is necessary to655

rejoin these components. If we can find all split components, we can superimpose all their spa-656

tiotemporal activities and run rank-1 NMF to obtain the spatial and temporal activity of the merged657

neuron. We automatically merge components for which the spatial and temporal components are658

correlated above certain thresholds. Our code also provides methods to manually specify neurons659

to be merged based on human judgment.660

Split extracted components661

When highly correlated neurons are mistakenly merged into one component, we need to use spatial662

information to split into multiple components according to neurons’ morphology. Our current663

implementation of component splitting requires users to manually draw ROIs for splitting the664

spatial footprint of the extracted component. Automatic methods for ROI segmentation (Apthorpe665

et al., 2016; Pachitariu et al., 2013) could be added as an alternative in future implementations.666

Remove false positives667

Some extracted components have spatial shapes that do not correspond to real neurons or tempo-668

ral traces that do not correspond to neural activity. These components might explain some neural669

signals or background activity mistakenly. Our source extraction can benefit from the removal of670
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these false positives. This can be done by manually examining all extracted components, or in prin-671

ciple automatically by training a classifier for detecting real neurons. The current implementation672

relies on visual inspection to exclude false positives. We also rank neurons based on their SNRs and673

set a cutoff to discard all extracted components that fail to meet this cutoff. As with the splitting674

step, removing false positives could also potentially use automated ROI detection algorithms in the675

future. See S10 Video for an example involving manual merge and delete operations.676

Pick undetected neurons from the residual677

If all neural signals and background are accurately estimated, the residual of the CNMF-E model678

$
res

= $ − %̂&̂ − '̂ should be relatively spatially and temporally uncorrelated. However, the initializa-679

tion might miss some neurons due to large background fluctuations and/or high neuron density.680

After we estimate the background '̂ and extract a majority of the neurons, those missed neurons681

have prominent fluorescent signals left in the residual. To select these undetected neurons from682

the residual $
res
, we use the same algorithm as for initializing neurons from the raw video data, but683

typically now the task is easier because the background has been removed.684

Post-process the spatial footprints685

Each single neuron has localized spatial shapes and including this prior into the model fitting of686

CNMF-E, as suggested in (Pnevmatikakis et al., 2016), leads to better extraction of spatial footprints.687

In the model fitting step, we constrain % to be sparse and spatially localized. These constraints688

do give us compact neuron shapes in most cases, but in some cases there are still some visually689

abnormal components detected. We include a heuristic automated post-processing step after690

each iteration of updating spatial shapes (P-S). For each extracted neuron %(∶, =), we first convert691

it to a 2D image and perform morphological opening to remove isolated pixels resulting from692

noise (Haralick et al., 1987). Next we label all connected components in the image and create693

a mask to select the largest component. All pixels outside of the mask in %(∶, *) are set to be 0.694

This post-processing induces compact neuron shapes by removing extra pixels and helps avoid695

mistakenly explaining the fluorescence signals of the other neurons.696

Further algorithmic details697

The simplest pipeline for running CNMF-E includes the following steps:698

1. Initialize %̂, &̂ using the proposed initialization procedure.699

2. Solve problem (P-B) for updates of !̂0 and '̂5
.700

3. Iteratively solve problem (P-S) and (P-T) to update %̂, &̂ and !0.701

4. If desired, apply interventions to intermediate results.702

5. Repeat steps 2, 3, and 4 until the inferred components are stable.703

In practice, the estimation of the background ' (step 2) often does not vary greatly from iteration to704

iteration and so this step usually can be run with fewer iterations to save time. In practice, we also705

use spatial and temporal decimation for improved speed, following (Friedrich et al., 2017a). We706

first run the pipeline on decimated data to get good initializations, then we up-sample the results707

%̂, &̂ to the original resolution and run one iteration of steps (2-3) on the raw data. This strategy708

improves on processing the raw data directly because downsampling increases the signal to noise709

ratio and eliminates many false positives.710

Step 4 provides a fast method for correcting abnormal components without redoing the whole711

analysis. (This is an important improvement over the PCA/ICA pipeline, where if users encounter712

poor estimated components it is necessary to repeat the whole analysis with new parameter values,713

which may not necessarily yield improved cell segmentations.) The interventions described here714

themselves can be independent tasks in calcium imaging analysis; with further work we expect many715

of these steps can be automated. In our interface for performing manual interventions, the most716

frequently used function is to remove false positives. Again, components can be rejected following717
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Name Description Default Values Used in

6 size of a typical neuron soma in the FOV 30JG Algorithm 1

68 the distance between each pixel and its neighbors 60JG Problem (P-B)

>min the minimum peak-to-noise ratio of seed pixels 10 Algorithm 1

Emin the minimum local correlation of seed pixels 0.8 Algorithm 1

A the ratio between the outlier threshold and the noise 10 Problem (P-B)

Table 2. Optional user-specified parameters.

visual inspection in PCA/ICA analysis, but the performance of CNMF-E can be improved with further718

iterations after removing false positives, while this is not currently an option for PCA/ICA.719

We have also found a two-step initialization procedure useful for detecting neurons: we first720

start from relatively high thresholds of >min and Emin to initialize neurons with large activity from the721

raw video data; then we estimate the background components by solving problem (P-B); finally we722

can pick undetected neurons from the residual using smaller thresholds. We can terminate the723

model iterations when the residual sum of squares (RSS) stabilizes (see Figure 4B), but this is seldom724

used in practice because computing the RSS is time-consuming. Instead we usually automatically725

stop the iterations after the number of detected neurons stabilizes. If manual interventions are726

performed, we typically run one last iteration of updating ',% and & sequentially to further refine727

the results.728

Parameter selection729

Table 2 shows 5 key parameters used in CNMF-E. All of these parameters have interpretable meaning730

and can be easily picked within a broad range. The parameter 6 controls the size of the spatial filter731

in the initialization step and is chosen as the diameter of a typical neuron in the FOV. As long as 6732

is much smaller than local background sources, the filtered data can be used for detecting seed733

pixels and then initializing neural traces. The distance between each seed pixel and its selected734

neighbors 68 has to be larger than the neuron size 6 and smaller than the spatial range of local735

background sources; in practice, this range is fairly broad. We usually set 68 as 26. To determine the736

thresholds >min and Emin, we first compute the correlation image and PNR image and then visually737

select very weak neurons from these two images. >min and Emin are determined to ensure that738

CNMF-E is able to choose seed pixels from these weak neurons. Small >min and Emin yield more false739

positive neurons, but they can be removed in the intervention step. Finally, in practice, our results740

are not sensitive to the selection of the outlier parameter A , thus we frequently set it as 10.741

Complexity analysis742

In step 1, the time cost is mainly determined by spatial filtering, resulting in K(!" ) time. As for the743

initialization of a single neuron given a seed pixel, it is only (K(" )). Considering the fact that the744

number of neurons is typically much smaller than the number of pixels in this data, the complexity745

for step 1 remainsK(!" ). In step 2, the complexity of estimating !̂0 isK(!" ) and estimating '̂5
scales746

linearly with the number of pixels !. For each pixel, the computational complexity for estimating747

)*,∶ is K(" ). Thus the computational complexity in updating the background component is K(!" ).748

In step 3, the computational complexities of solving problems (P-S) and (P-T) have been discussed749

in previous literature (Pnevmatikakis et al., 2016) and they scale linearly with pixel number ! and750

time " , i.e., K(!" ). For the interventions, the one with the largest computational cost is picking751

undetected neurons from the residual, which is the same as the initialization step. Therefore, the752

computational cost for step 4 is K(!" ). To summarize, the complexity for running CNMF-E is K(!" ),753

i.e. the method scales linearly with both the number of pixels and the total recording time.754
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Dataset Striatum PFC Hippocampus BNST

Size (; × : × ,) 256 × 256 × 6000 175 × 184 × 9000 175 × 184 × 9000 175 × 184 × 9000

(# PCs, # ICs) (2000, 700) (275, 250) (100, 50) (200, 150)

PFC/ICA 986 181 174 53

CNMF-E 726 221 335 435

Table 3. Running time (sec) for processing the 4 experimental datasets.

Implementations755

Our MATLAB implementation supports running CNMF-E in three different modes that are optimized756

for different datasets: single-mode, patch-mode and multi-batch-mode.757

Single-mode is a naive implementation that loads data into memory and fits the model. It is fast758

for processing small datasets (< 1GB).759

For larger datasets, many computers have insufficient RAM for loading all data into memory760

and storing intermediate results. Patch-mode CNMF-E divides the whole FOV into multiple small761

patches and maps data to the hard drive (Giovannucci et al., 2017b). The data within each patch are762

loaded only when we process that patch. This significantly reduces the memory consumption. More763

importantly, this mode allows running CNMF-E in parallel on multi-core CPUs, yielding a speed-up764

roughly proportional to the number of available cores.765

Multi-batch mode builds on patch-mode, and is optimized for even larger datasets, especially766

data collected over multiple sessions/days. This mode segments data into multiple batches tem-767

porally and assumes that the neuron footprints % are shared across all batches. We process each768

batch using patch mode and perform partial weighted updates on % given the traces & obtained in769

each batch.770

All modes also include a logging system for keeping track of manual interventions and interme-771

diate operations.772

The Python implementation is similar; see (Giovannucci et al., 2017b) for full details.773

Running time774

To provide a sense of the running time of the different steps of the algorithm, we timed the code on775

the simulation data shown in Figure 4. This dataset is 253 × 316 pixels ×2000 frames. The analyses776

were performed on a desktop with Intel Xeon CPU E5-2650 v4 @2.20GHz and 128GB RAM running777

Ubuntu 16.04. We used a parallel implementation for performing the CNMF-E analysis, with patch778

size 64 × 64 pixels, using up to 12 cores. PCA/ICA took ∼ 211 seconds to converge, using 250 PCs and779

220 ICs. CNMF-E spent 55 seconds for initialization, 1 second for merging and deleting components,780

110 seconds for the first round of the background estimation and 40 seconds in the following781

updates, 8 seconds for picking neurons from the residual, and 10 seconds per iteration for updating782

spatial (%) and temporal (&) components, resulting in a total of 258 seconds.783

Finally, Table 3 shows the running time of processing the four experimental datasets.784

Simulation experiments785

Details of the simulated experiment of Figure 2786

The field of view was 256 × 256, with 1000 frames. We simulated 50 neurons whose shapes were787

simulated as spherical 2-D Gaussian. The neuron centers were drawn uniformly from the whole FOV788

and the Gaussian widths +; and +: for each neuron was also randomly drawn from
(
6

4
, ( 1

10

6

4
)2
)
,789

where 6 = 12 pixels. Spikes were simulated from a Bernoulli process with probability of spiking per790

timebin 0.01 and then convolved with a temporal kernel L(,) = exp(−,∕M!) − exp(−,∕MN), with fall time791

M! = 6 timebin and rise time MN = 1 timebin. We simulated the spatial footprints of local backgrounds792

as 2-D Gaussian as well, but the mean Gaussian width is 5 times larger than the neurons’ widths. As793

for the spatial footprint of the blood vessel in Figure 2A, we simulated a cubic function and then794
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convolved it with a 2-D Gaussian (Gaussian width=3 pixel). We use a random walk model to simulate795

the temporal fluctuations of local background and blood vessel. For the data used in Figure 2A-H,796

there were 23 local background sources; for Figure 2I, we varied the number of background sources.797

We used the raw data to estimate the background in CNMF-E without subtracting the neural798

signals %̂&̂ in problem (P-B). We set 68 = 15 pixels and left the remaining parameters at their default799

values. The plain NMF was performed using the built-in MATLAB function nnmf, which utilizes800

random initialization.801

Details of the simulated experiment of Figure 3, Figure 4 and Figure 5802

We used the same simulation settings for both Figure 3 and Figure 4. The field of view was 253 × 316803

and the number of frames was 2000. We simulated 200 neurons using the same method as the804

simulation in Figure 2, but for the background we used the spatiotemporal activity of the background805

extracted using CNMF-E from real experimental data (data not shown). The noise level Σ was also806

estimated from the data. When we varied the SNR in Figure4D-G, we multiplied Σ with an SNR807

reduction factor.808

We set 6 = 12 pixels to create the spatial filtering kernel. As for the thresholds used for determin-809

ing seed pixels, we varied them for different SNR settings by visually checking the corresponding810

local correlation images and PNR images. The selected values were Emin = [0.9, 0.8, 0.8, 0.8, 0.6, 0.6]811

and >min = [15, 10, 10, 8, 6, 6] for different SNR reduction factors [1, 2, 3, 4, 5, 6]. For PCA/ICA analysis,812

we set the number of PCs and ICs as 600 and 300 respectively.813

The simulation in Figure 5 only includes 2 neurons (as seen in Figure 3E) using the same814

simulation parameters. We replaced their temporal traces $1 and $2 with (1 − O)$1 + O$3 and (1 −815

O)$2 + O$3, where O is tuned to generate different correlation levels (1), and $3 is simulated in the816

same way as $1 and $2. We also added a new background source whose temporal profile is $3 to817

increase the neuron-background correlation as O increases. CNMF-E was run as in Figure 4. We818

used 20 PCs and ICs for PCA/ICA.819

In vivomicroendoscopic imaging and data analysis820

For all experimental data used in this work, we ran both CNMF-E and PCA/ICA. For CNMF-E, we821

chose parameters so that we initialized about 10-20% extra components, which were then merged822

or deleted (some automatically, some under manual supervision) to obtain the final estimates.823

Exact parameter settings are given for each dataset below. For PCA/ICA, the number of ICs were824

selected to be slightly larger than our extracted components in CNMF-E (as we found this led to825

the best results for this algorithm), and the number of PCs was selected to capture over 90% of the826

signal variance. The weight of temporal information in spatiotemporal ICA was set as 0.1. After827

obtaining PCA/ICA filters, we again manually removed components that were clearly not neurons828

based on neuron morphology.829

We computed the SNR of extracted cellular traces to quantitatively compare the performances830

of two approaches. For each cellular trace ', we first computed its denoised trace $ using the831

selected deconvolution algorithm (here, it is thresholded OASIS); then the SNR of ' is832

9PF =
‖$‖2

2

‖' − $‖2
2

. (16)

For PCA/ICA results, the calcium signal ' of each IC is the output of its corresponding spatial filter,833

while for CNMF-E results, it is the trace before applying temporal deconvolution, i.e., '̂* in Eq. (9). All834

the data can be freely accessed online Zhou et al. (2017).835

Dorsal striatum data836

Expression of the genetically encoded calcium indicator GCaMP6f in neurons was achieved using a837

recombinant adeno-associated virus (AAV) encoding the GCaMP6f protein under transcriptional838

control of the synapsin promoter (AAV-Syn-GCaMP6f). This viral vector was packaged (Serotype 1)839
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and stored in undiluted aliquots at a working concentration of > 1012 genomic copies per ml at840

−80◦C until intracranial injection. 500Jl of AAV1-Syn-GCaMP6f was injected unilaterally into dorsal841

striatum (0.6mm anterior to Bregma, 2.2mm lateral to Bregma, 2.5mm ventral to the surface of the842

brain). 1 week post injection, a 1mm gradient index of refraction (GRIN) lens was implanted into843

dorsal striatum ∼ 300Jm above the center of the viral injection. 3 weeks after the implantation, the844

GRIN lens was reversibly coupled to a miniature 1-photon microscope with an integrated 475nm845

LED (Inscopix). Using nVistaHD Acquisition software, images were acquired at 30 frames per second846

with the LED transmitting 0.1 to 0.2 mW of light while the mouse was freely moving in an open847

field arena. Images were down sampled to 10Hz and processed into TIFFs using Mosaic software.848

All experimental manipulations were performed in accordance with protocols approved by the849

Harvard Standing Committee on Animal Care following guidelines described in the US NIH Guide850

for the Care and Use of Laboratory Animals.851

The parameters used in running CNMF-E were: 6 = 13 pixels, 68 = 18 pixels, Emin = 0.7, and852

>min = 7. 728 components were initialized from the raw data in the first pass before subtracting the853

background, and then additional components were initialized in a second pass. Highly-correlated854

nearby components were merged and false positives were removed using the automated approach855

described above. In the end, we obtained 692 components.856

Prefrontal cortex data857

Cortical neurons were targeted by administering 2 microinjections of 300 ul of AAV-DJ-CamkIIa-858

GCaMP6s (titer: 5.3 x 1012, 1:6 dilution, UNC vector core) into the prefrontal cortex (PFC) (coordi-859

nates relative to bregma; injection 1: +1.5 mm AP, 0.6 mm ML, -2.4 ml DV; injection 2: +2.15 AP, 0.43860

mmML, -2.4 mm DV) of an adult male wild type (WT) mice. Immediately following the virus injection861

procedure, a 1 mm diameter GRIN lens implanted 300 um above the injection site (coordinates862

relative to bregma: +1.87 mm AP, 0.5 mmML, -2.1 ml DV). After sufficient time had been allowed for863

the virus to express and the tissue to clear underneath the lens ( 3 weeks), a baseplate was secured864

to the skull to interface the implanted GRIN lens with a miniature, integrated microscope (nVista,865

473 nm excitation LED, Inscopix) and subsequently permit the visualization of Ca2+ signals from866

the PFC of a freely behaving mouse. The activity of PFC neurons were recorded at 15 Hz over a867

10 min period (nVista HD Acquisition Software, Inscopix) while the test subject freely explored an868

empty novel chamber. Acquired data was spatially down sampled by a factor of 2, motion corrected,869

and temporally down sampled to 15 Hz (Mosaic Analysis Software, Inscopix). All procedures were870

approved by the University of North Carolina Institutional Animal Care and Use Committee (UNC871

IACUC).872

The parameters used in running CNMF-E were: 6 = 13 pixels, 68 = 18 pixels, Emin = 0.9, and873

>min = 15. There were 169 components initialized in the first pass and we obtained 225 components874

after running the whole CNMF-E pipeline.875

Ventral hippocampus data876

The calcium indicator GCaMP6f was expressed in ventral hippocampal-amygdala projecting neurons877

by injecting a retrograde canine adeno type 2-Cre virus (CAV2-Cre; from Larry Zweifel, University878

of Washington) into the basal amydala (coordinates relative to bregma: -1.70 AP, 3.00mm ML,879

and -4.25mm DV from brain tissue at site), and a Cre-dependent GCaMP6f adeno associated virus880

(AAV1-flex-Synapsin-GCaMP6f, UPenn vector core) into ventral CA1 of the hippocampus (coordinates881

relative to bregma: -3.16mm AP, 3.50mm ML, and -3.50mm DV from brain tissue at site). A 0.5mm882

diameter GRIN lens was then implanted over the vCA1 subregion and imaging began 3 weeks after883

surgery to allow for sufficient viral expression. Mice were then imaged with Inscopix miniaturized884

microscopes and nVistaHD Acquisition software as described above; images were acquired at 15885

frames per secondwhilemice explored an anxiogenic Elevated PlusMaze arena. Videos weremotion886

corrected and spatially downsampled using Mosaic software. All procedures were performed in887

accordance with protocols approved by the New York State Psychiatric Institutional Animal Care888
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and Use Committee following guidelines described in the US NIH Guide for the Care and Use of889

Laboratory Animals.890

The parameters used in running CNMF-E were: 6 = 15 pixels, 68 = 30 pixels, A = 10, Emin = 0.9,891

and >min = 15. We first temporally downsampled the data by 2. Then we applied CNMF-E to892

the downsampled data. There were 53 components initialized. After updating the background893

component, the algorithm detected 6 more neurons from the residual. We merged most of894

these components and deleted false positives. In the end, there were 24 components left. The895

intermediate results before and after each manual intervention are shown in S10 Video.896

BNST data with footshock897

Calcium indicator GCaMP6s was expressed within CaMKII-expressing neurons in the BNST by898

injecting the recombinant adeno-associated virus AAVdj-CaMKII-GCaMP6s (packaged at UNC Vector899

Core) into the anterior dorsal portion of BNST (coordinates relative to bregma: 0.10mm AP, -0.95mm900

ML, -4.30mm DV). A 0.6 mm diameter GRIN lens was implanted above the injection site within the901

BNST. As described above, images were acquired using a detachable miniature 1-photonmicroscope902

and nVistaHD Acquisition Software (Inscopix). Images were acquired at 20 frames per second while903

the animal was freely moving inside a sound-attenuated chamber equipped with a house light and904

a white noise generator (Med Associates). Unpredictable foot shocks were delivered through metal905

bars in the floor as an aversive stimulus during a 10-min session. Each unpredictable foot shock906

was 0.75 mA in intensity and 500 ms in duration on a variable interval (VI-60). As described above,907

images were motion corrected, downsampled and processed into TIFFs using Mosaic Software.908

These procedures were conducted in adult C57BL/6J mice (Jackson Laboratories) and in accordance909

with the Guide for the Care and Use of Laboratory Animals, as adopted by the NIH, and with910

approval from the Institutional Animal Care and Use Committee of the University of North Carolina911

at Chapel Hill (UNC).912

The parameters used in running CNMF-E were: 6 = 15 pixels, 68 = 23 pixels, A = 10, Emin = 0.9, and913

>min = 15. There were 149 components initialized and we detected 29more components from the914

residual after estimating the background. there were 127 components left after running the whole915

pipeline.916

Code availability917

All analyses was performed with custom-written MATLAB code. MATLAB implementations of918

the CNMF-E algorithm can be freely downloaded from https://github.com/zhoupc/CNMF_E (Zhou,919

2017a). We also implemented CNMF-E as part of the Python package CaImAn (Giovannucci et al.,920

2017b), a computational analysis toolbox for large scale calcium imaging and behavioral data921

(https://github.com/simonsfoundation/CaImAn (Giovannucci et al., 2017a)).922

The scripts for generating all figures and the experimental data in this paper can be accessed923

from https://github.com/zhoupc/eLife_submission(Zhou, 2017b).924

Supporting information925

S1 Video. An example of typical microendoscopic data. The video was recorded in dorsal926

striatum; experimental details can be found above.927

MP4928

S2 Video. Comparison of CNMF-E with rank-1 NMF in estimating background fluctuation in929

simulated data. Top left: the simulated fluorescence data in Figure 2. Bottom left: the ground930

truth of neuron signals in the simulation. Top middle: the estimated background from the raw931

video data (top left) using CNMF-E. Bottom middle: the residual of the raw video after subtracting932

the background estimated with CNMF-E. Top right and top bottom: same as top middle and bottom933

middle, but the background is estimated with rank-1 NMF.934

MP4935
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S3 Video. Initialization procedure for the simulated data in Figure 3. Top left: correlation936

image of the filtered data. Red dots are centers of initialized neurons. Top middle: candidate seed937

pixels (small red dots) for initializing neurons on top of PNR image. The large red dot indicates938

the current seed pixel. Top right: the correlation image surrounding the selected seed pixel or the939

spatial footprint of the initialized neuron. Bottom: the filtered fluorescence trace at the seed pixel940

or the initialized temporal activity (both raw and denoised).941

MP4942

S4 Video. The results of CNMF-E in demixing simulated data in Figure 4 (SNR reduction fac-943

tor=1). Top left: the simulated fluorescence data. Bottom left: the estimated background. Top944

middle: the residual of the raw video (top left) after subtracting the estimated background (bottom945

left). Bottom middle: the denoised neural signals. Top right: the residual of the raw video data (top946

right) after subtracting the estimated background (bottom left) and denoised neural signal (bottom947

middle). Bottom right: the ground truth of neural signals in simulation.948

MP4949

S5 Video. The results of CNMF-E in demixing the simulated data in Figure 4 (SNR reduction950

factor=6). Conventions as in previous video.951

MP4952

S6 Video. The results of CNMF-E in demixing dorsal striatum data. Top left: the recorded953

fluorescence data. Bottom left: the estimated background. Top middle: the residual of the raw954

video (top left) after subtracting the estimated background (bottom left). Bottom middle: the955

denoised neural signals. Top right: the residual of the raw video data (top right) after subtracting956

the estimated background (bottom left) and denoised neural signal (bottom middle). Bottom right:957

the denoised neural signals while all neurons’ activity are coded with pseudocolors.958

MP4959

S7 Video. The results of CNMF-E in demixing PFC data. Conventions as in previous video.960

MP4961

S8 Video. Comparison of CNMF-E with PCA/ICA in demixing overlapped neurons in Figure 7G.962

Top left: the recorded fluorescence data. Bottom left: the residual of the raw video (top left) after963

subtracting the estimated background using CNMF-E. Top middle and top right: the spatiotemporal964

activity and temporal traces of three neurons extracted using CNMF-E. Bottom middle and bottom965

right: the spatiotemporal activity and temporal traces of three neurons extracted using PCA/ICA.966

MP4967

S9 Video. The results of CNMF-E in demixing ventral hippocampus data. Conventions as in S6968

Video.969

MP4970

S10 Video. Extracted spatial and temporal components of CNMF-E at different stages (ven-971

tral hippocampal dataset). After initializing components, we ranmatrix updates and interventions972

in automatic mode, resulting in 32 components in total. In the next iteration, we manually deleted973

6 components and automatically merged neurons as well. In the last iterations, 4 neurons were974

merged into 2 neurons with manual verifications. The correlation image in the top left panel is975

computed from the background-subtracted data in the final step.976

MP4977

S11 Video. The results of CNMF-E in demixing BNST data. Conventions as in S6 Video.978

MP4979
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