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Abstract Many organisms—from bacteria to nematodes to insect larvae—navigate their

environments by biasing random movements. In these organisms, navigation in isotropic

environments can be characterized as an essentially diffusive and undirected process. In stimulus

gradients, movement decisions are biased to drive directed navigation toward favorable

environments. How does directed navigation in a gradient modulate random exploration either

parallel or orthogonal to the gradient? Here, we introduce methods originally used for analyzing

protein folding trajectories to study the trajectories of the nematode Caenorhabditis elegans and

the Drosophila larva in isotropic environments, as well as in thermal and chemical gradients. We

find that the statistics of random exploration in any direction are little affected by directed

movement along a stimulus gradient. A key constraint on the behavioral strategies of these

organisms appears to be the preservation of their capacity to continuously explore their

environments in all directions even while moving toward favorable conditions.

DOI: https://doi.org/10.7554/eLife.30503.001

Introduction
The trajectories of small organisms often involve stochastic transitions between distinct motor states.

A classic example is the swimming behavior of Escherichia coli (; Berg, 1993), which is characterized

by an alternating sequence of runs and tumbles. During runs, the bacteria swim in roughly straight

lines, while during tumbles, the bacteria move erratically in place, ultimately picking the direction of

a new run at random. The trajectories of larger animals like nematodes and insect larvae are qualita-

tively similar (Pierce-Shimomura et al., 1999; Luo et al., 2010). Caenorhabditis elegans alternate

periods of forward movement with either large angle reorientation maneuvers called pirouettes or

small angle turns. Crawling Drosophila larvae alternate periods of forward movement with turns

(Lahiri et al., 2011) where they pause forward motion and use the angle of head swings to pick a

new forward orientation.

C. elegans also modulates its random exploration in isotropic environments over time

(Wakabayashi et al., 2004; Chalasani et al., 2007). When a worm is placed in a new environment, it

first executes a local search, where runs are short. Over time, worms transition to a global search

with longer runs. It has been suggested that the transition between local and global searching is
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discontinuous (Calhoun et al., 2014), and that local search and global search represent two distinct

behavioral states.

In stimulus gradients, bacteria, nematodes, and insect larvae bias their random walks toward

favorable environments by modulating the statistics of transitions between forward-moving runs and

reorientation events. For example, all three organisms exhibit longer runs when pointed toward

favorable conditions. Worms and larvae further augment the time spent pointed toward favorable

directions by increasing the probability of ending reorientation events with a run pointed in a favor-

able direction or by gradually steering runs toward favorable directions.

The navigational dynamics of worms and larvae have some parallels with the complex dynamics

of a polypeptide chain navigating to the native structure of the protein to which it corresponds.

Both are examples of stochastic search processes: the protein needs to fold to the correct native

structure, while an organism needs to find food and favorable temperatures, for example. Neither

search can be purely random, because it would not be effective. For the protein folding case, it

would lead to the Levinthal paradox; that is, it would take an essentially infinite amount of

time to fold, while in fact it takes on the order of seconds to minutes (Zwanzig et al., 1992; Kar-

plus, 1997). The stochastic search of a protein is biased toward the native structure by the potential

energy, which is encoded in the sequence as the result of evolutionary selection. The stochastic com-

ponent of the biased search is necessary to avoid being trapped in local minima on the potential

energy surface. Trapping in such metastable states has been observed in protein folding trajectories,

where an escape is made possible only by the stochastic nature of the dynamics.

Analogous considerations apply to the navigation dynamics of worms and fly larvae. A purely ran-

dom search would by very inefficient due to the large size of the space accessible in their normal

environment. Thus, living organisms use cues to bias their search. An example is a temperature gra-

dient which plays the role of the potential energy. A purely deterministic search would not be effec-

tive here either, because there can be traps (local minima) in the accessible space. These minima

could have a physical origin or be due to a complex non-monotonic nature of the cues. A stochastic

component in the biased search allows the organisms to overcome the trapping problem. The actual

details of the navigational dynamics are specified by the neural circuitry that enervates the muscles.

This is optimized by evolution, in analogy to the amino acid sequence in proteins.

The correspondence outlined above suggests that it would be of interest to see whether

approaches developed for understanding protein folding dynamics can be used to study the naviga-

tional dynamics of worms and larvae. The folding dynamics can be quantitatively described as diffu-

sion (random walk) on a free-energy landscape. In particular, the free energy, F, defines the

equilibrium probability of the system to be found at a particular position P ~ expð�F=kTÞ, that is, the

system prefers regions with low free energy. The free-energy barrier between unfolded and folded

states defines the bottleneck of the folding reaction. The diffusion coefficient describes how quickly

the system—whether a worm, larvae, or peptide sequence—explores the configuration space.

Together, the free-energy barrier and the diffusion coefficient determine the rate of the process.

Such a picture provides a simplified and intuitive, while quantitatively accurate, description of the

dynamics. We note also that the free-energy landscape framework is generic and has been success-

fully applied to many different types of complex dynamics, for example, the dynamics of the game

of chess (Krivov, 2011b) or patient recovery dynamics after kidney transplant (Krivov et al., 2014),

as well as to protein folding.

Detailed descriptions of worm or larva dynamics (i.e. how run — turn — run — . . . sequences are

chained together) are important to show how complex navigational dynamics are realized in a partic-

ular case. However, there are many variants of detailed motions, which are likely to result in very sim-

ilar larger scale navigational dynamics. Thus, it is of interest to understand and accurately

characterize the invariants of large-scale dynamics. It is precisely these invariants that are expected

to be optimized by evolution. Moreover, a description making use of the free-energy landscape

framework can provide an intuitive picture of the complex navigational dynamics as a whole, versus

the localized description of dynamics. It could be used, in particular, to locate equilibrium popula-

tions, biases, and bottlenecks during the navigation toward the target in complex environments.

The free-energy landscape of a protein can be determined from long equilibrium trajectories

(Krivov and Karplus, 2004; Krivov, 2011a; Banushkina and Krivov, 2016). However, the experi-

mental trajectories of the crawling animals treated here are too short to be considered to be at equi-

librium in comparison with those in the reversible folding/unfolding of proteins at equilibrium
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(Shaw et al., 2010). To determine the equilibrium properties, which are required for the construc-

tion of the free-energy landscape, we introduce another general approach to random dynamics, the

Markov state model (MSM). This exploits the information contained in a large number of short trajec-

tories measured under identical conditions (Lane et al., 2011; Rao and Caflisch, 2004;

Krivov et al., 2002). One refers to the dynamics as Markovian if the next crawling step of an animal

depends only on its current spatial position; that is, it quickly forgets the history of its motion. A col-

lection of short trajectories can then be used to determine a probability distribution of future posi-

tions of the animal starting from a current position. In particular, the steady state probability

distribution can be determined in this way. The analysis is based on the construction of the transition

probability matrix, as described in Materials and methods, where it is shown that the steady state

distribution is, in fact, the equilibrium distribution for the worms. This matrix provides a complete

description of the stochastic dynamics and can be used to determine long time scale behavior.

We first observed the power of this approach when investigating C. elegans trajectories in a ther-

mal gradient, with worms placed at their cultivation temperature. It had been thought that the

worms would equally avoid both lower and higher temperatures. The analysis of a large number of

trajectories with the MSM showed that worms do not strictly avoid warmer temperatures, potentially

uncovering a different interpretation of isothermal tracking behavior (see Results section). Encour-

aged by this result, we extend the protein folding approach for combining trajectories to a more

general study of C. elegans and Drosophila larvae. Specifically, we employ the diffusion coefficient,

DðtÞ, which represents the rate of change of the mean square displacement as a function of time for

the data set. For both species, in the presence of environmental gradients (e.g. thermal or chemical),

it is found that DðtÞ increases linearly with time for short times (ballistic dynamics), while it

approaches a constant value at longer times (stochastic dynamics).

In what follows we investigate the behavior of C. elegans and Drosophila larvae in the presence

of different environmental gradients within this framework. Given the recent interest in search strate-

gies in the absence of information (Polani, 2009; Calhoun et al., 2014), we also study the motion of

both species in a uniform environment (i.e. in the absence of applied gradients).

Results

Diffusion and search patterns under isotropic conditions
Navigation in C. elegans, Drosophila, and other organisms has been treated as a biased random

walk (Berg, 1993; Pierce-Shimomura et al., 1999; Ryu and Samuel, 2002), where animals repeat-

edly transition between bouts of relatively straight forward crawling (‘runs’) and distinct, often large

changes in heading (‘turns’). To investigate the relationship between trajectories built in this fashion

and more general phenomena of diffusion and Markovian processes, we first studied 2D free crawl-

ing behavior in both worm and larva systems in isotropic environments with no applied stimulus.

These trajectories (Figure 1A,A’) do exhibit diffusive behavior, but do not demonstrate active move-

ment in a particular direction, as demonstrated by their very small values for the dimensionless drift

velocity (see Materials and methods).

We observed that worm and larvae dynamics at small time scales are close to deterministic—that

is, the animals maintain direction and their trajectories are smooth. At longer time scales movement

becomes stochastic or diffusive; in other words, the dynamics in configuration space can be approxi-

mately described as Markovian. To estimate the time scale of the transition between these regimes,

we inspect the time dependence of the diffusion coefficient, DðtÞ, defined in Materials and methods

(Figure 1B,B’). For deterministic ballistic dynamics in the x direction, Dx ~ vxt and DxðtÞ increases line-

arly with time, while for diffusive dynamics, DxðtÞ is constant. Figure 1B,B’ suggest that the transition

from deterministic to diffusive regimes happens at t ~ 1000 s.

C. elegans crawling under isotropic conditions drastically reduce their turning rate (i.e. make lon-

ger runs) throughout an experiment (Figure 1B), as also noted in previous work (Calhoun et al.,

2014); here, it is studied over a substantially longer time of ~1 hr. We define the turning rate of a

population as the total number of turns made, divided by the total time all animals put together

spend in forward-crawling runs (i.e. the total time where animals could have turned, but did not—

see Materials and methods for details). In particular, the turning rate decreases exponentially with a

time constant of approximately 800 s (Figure 1B). Inspecting the run durations for individual worm
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trajectories (Figure 1—figure supplement 1), we do not see strong evidence of the turning rate

undergoing an abrupt transition from local to global searching, but rather a regular decline, which in

the population averages to steady exponential decay.

Turning rate has a clear connection to the dynamics, as frequent turns within a random walk will

reduce the diffusion rate. Noting the dramatic reduction in turning rate in Figure 1B, we determined

the diffusion coefficients in x and y from the first part of the experiment, 0 to 900 s, and then sepa-

rately for the next 900 s. As expected, the diffusion coefficients converge to different limiting values,

with diffusion during the second part of the experiments nearly double that during the first part.
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Figure 1. Diffusive searching in C. elegans and Drosophila larva. (A) Sample trajectories (left) from 18 worms under isotropic conditions, for 60 min.

Tracks have been shifted to all begin at the same location for clarity. A single track (red) is magnified (right) to show the abrupt changes in crawling

orientation, flagged as ‘turns’ (gray circles), with comparatively straight-crawling ‘runs’ in between. Runs are characterized by their duration Dt, and turns

by their change in heading D�. (B) Diffusion in the x- and y-directions and turning rate reduction over time. Worms diffuse in both directions (left), while

the rate of turning events steadily decreases over 3000 s (right); it fits an exponential decay (red) with a 765 s time constant. (C) Diffusion in the x- and y-

directions, splitting the time window into t<900 s (left) and 900<t<1800 s (right). (A’) Sample trajectories from 25 Drosophila larvae navigating under

isotropic conditions for 15 min. (B’) Diffusion and turning rate over time for crawling Drosophila. Dx and Dy reach similar values, substantially higher than

C. elegans (left), and the turning rate does not show a dramatic drop, instead increasing for the first ~2 min. before stabilizing. (C’) Split Dx and Dy

graphs covering the first (t<450 s) and second (450<t<900 s) halves of the trajectory time, converging to similar values in each. Results for (B,C) are

based on seven experiments, with 56 tracks and a total of 1608 turns. Results for (B’,C’) are based on 30 experiments, with 434 tracks and 11,294 turns.

The directions of overall population drift for (A,A’) are indicated by green arrows, with the numbers indicating the dimensionless drift velocity, in this

case extremely small (see Materials and methods). Error bars for (B,B’) are �s.e.m.

DOI: https://doi.org/10.7554/eLife.30503.002

The following source data and figure supplement are available for figure 1:

Source data 1. Values and s.e.m. for diffusion coefficient vs. time plots

DOI: https://doi.org/10.7554/eLife.30503.004

Figure supplement 1. Consecutive run durations for individual C. elegans tracks under isotropic conditions.

DOI: https://doi.org/10.7554/eLife.30503.003
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This dependence agrees with the simple mean free path estimate of the diffusion coefficient

D ~ v2=R, where v is the crawling speed, and the mean turn rate R in the first half of the trajectory is

approximately double of that in the second part. We note that Dx and Dy are essentially identical

throughout the experiments, only diverging slightly at longer times where the uncertainty has

increased (fewer individual tracks last up to 1000 s).

Drosophila larvae under isotropic conditions (Figure 1A’–C’) exhibit similar behavior in terms of

trajectory structure (Figure 1A’) and the transition to a diffusive regime, but they do not exhibit a

marked decline in turning rate (Figure 1B’), which stabilizes after only a few minutes and remains

constant throughout their searching behavior. Thus, the transition from local to global searching

does not appear on the ~15-min time scales we measured for larva behavior. Given the relatively

constant turning rate, it follows that diffusion coefficients calculated for the first (0 to 450 s) and sec-

ond (450 to 900 s) halves of the experiments converge to similar values. Further, in this larger data

set Dx and Dy are essentially identical throughout (Figure 1C’). We also note that while D and the

turning rate both increase in the first 100 s, the system has not entered a diffusive regime, and the

increase in D can be attributed to the ballistic character of the trajectories at this stage.

Taken together, these data show similarity between C. elegans and Drosophila in the makeup of

run — turn — run — . . . sequences in crawling behavior, and both conform to a model of diffusion at

longer times, but the two animals differ in their long time scale search strategies.

Diffusion persists alongside thermotaxis and chemotaxis
We next sought to determine what happens to the behavior as animals navigate while exposed to a

stimulus along one axis of the crawling surface. Is the diffusive behavior maintained along the axis

perpendicular to the stimulus gradient while motion along the parallel axis transforms into a new

mode? To investigate this, we observed both C. elegans and Drosophila navigating along a 1D spa-

tial temperature gradient. The apparatus (Figure 2A), as previously described (Klein et al., 2015),

maintains a stable linear gradient in x, and constant temperature in the y-direction for fixed x-values.

Worms cultivated at 15˚C and placed in a gradient centered at 20˚C exhibited negative thermotaxis

(also called ‘cryophilic’ behavior), while larvae placed at 17.5˚C in the same gradient crawled away

from cold conditions, exhibiting positive thermotaxis to a preferred range that is independent of cul-

tivation conditions.

Figure 2B,B’ shows significant diffusion in both x and y directions, even though both types of ani-

mals are migrating along the x-axis. This suggests that navigation does not eliminate stochasticity

along the axis of purposeful navigation. That is, the animals conduct a random search in all directions

irrespective of whether they have adopted a target direction. At the same time, the limiting values

of Dx and Dy are not equal, with diffusion in the y-direction greater than diffusion in the x-direction.

This suggests that there is a tradeoff between searching along an axis and purposeful travel in that

direction.

Both animals move along the x-direction toward more favorable environmental conditions by

biasing their turning rates. For example, worms undergoing negative thermotaxis reorient their

crawling direction more frequently when heading up the temperature gradient, and maintain longer

runs when heading down the gradient (Figure 2B, lower right). Thermotaxing larvae, similarly, have

a higher turning rate when crawling toward aversive colder conditions, and maintain longer runs

crawling up the gradient (Figure 2B’, lower right). As was true for isotropic conditions, worms

decrease their turning rate over time (and larvae maintain a stable level). However, both animals

maintain an approximately constant ratio between toward-warm turning rates and toward-cold turn-

ing rates. That is, the primary navigational bias that produces thermotaxis is not altered, even at

long time scales. Importantly, this supports the method of using early behavior to model long term

behavior.

When the dynamics are Markovian, as described in the Introduction, one can use short experi-

mental trajectories to determine the long term equilibrium probability distribution of worms and lar-

vae. Figure 2C,C’ shows the distribution of both types of animals along the x- and y-axes, as

determined using the Markov state model (see Materials and methods). Distributions are computed

using lag times near the transition to diffusive dynamics. As lag time increases, the dynamics become

more Markovian and the distributions converge to the limiting distribution( Figure 2—figure supple-

ment 1B). The remaining fluctuations are due to relatively small statistics at long times. The limiting
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Figure 2. Diffusion and navigation in C. elegans and Drosophila thermotaxis. (A) Schematic of the apparatus (left), where animals crawl atop an agar

substrate while exposed to a 1D linear temperature gradient. Sample thermotaxis trajectories (right) from 18 C. elegans crawling for 60 min and

25 Drosophila crawling for 15 min, where the red dots indicate the starting position for all trajectories. Worms start at 20˚C and exhibit negative

thermotaxis, moving toward their 15˚C cultivation temperature, while larvae start at 17.5˚C and crawl away from aversive cold temperatures. The wheel

indicates labels for crawling direction ranges, with octant 1 parallel to the gradient heading toward warmer temperatures and octant 5 heading

antiparallel towards cooler temperatures. (B) Diffusion over time (left) in the x- and y-directions for C. elegans. Dy>Dx throughout the experiment,

indicating diminished, but highly significant, diffusion along the navigation direction. The average turning rate (upper right) diminishes over time, as in

the Figure 1B,B’ isotropic case; the turning rate ratio R5 : R1 (lower right) remains below 1 and nearly constant throughout the experiment. (C)

Equilibrium probability distributions in the x (top) and y (bottom) directions (both use the same scale), extrapolated from empirical trajectories using the

Markov state model (MSM). The lag time used is 750 s. Red lines are smoothed traces to guide the eye. The free-energy picture of equilibrium

conditions (right), to place the analysis in context with the protein folding analysis tools employed here. Lower-free energy corresponds to higher

population as P~ expð�F=kTÞ, where here kT ¼ 1. (B’) Diffusion, and turning rates for Drosophila larvae, also showing Dy>Dx. The average turning rate

stabilizes early, and the turning rate ratio R5 : R1, the primary behavioral modulation underlying thermotaxis, remains nearly constant. (C’) Equilibrium

probability distributions for Drosophila larvae (left), and the corresponding free-energy landscape (right), determined from the MSM. Analysis is based

on 30 experiments, 131 tracks, and 3061 turns for worms, and 20 experiments, 303 tracks, and 7771 turns for larvae. The directions of overall population

drift for (A) are indicated by green arrows, with the numbers indicating the dimensionless drift velocity, approximately 10 times greater than for the

Figure 2 continued on next page
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distribution along the y axis, PeqðyÞ, is constant (up to fluctuations around the boundaries), in agree-

ment with absence of any stimulus along y. For worms, the limiting distribution along the x axis,

PeqðxÞ, is approximately constant for T<19:5�C and then decreases exponentially for T>19:5�C. For

larvae, the distribution is approximately constant for T>17:5�C and then decreases exponentially for

T<17:5�C. This demonstrates that the worms and larvae diffuse towards x values of their preference,

as well as remaining in the regions of their preference, if they are already there. We indicate a more

direct connection to the protein folding methods by showing the x-distributions in terms of the free

energy F=kT (Figure 2C,C’, right).

To confirm that these crawling dynamics are not unique to a temperature response, we examined

navigation of C. elegans exposed to a chemical stimulus corresponding to a 1D linear salt concentra-

tion gradient, previously described in Luo et al. (2014). Worms chemotax either up or down salt

gradients, depending on the baseline salt level (Figure 3A). At low baseline salt concentrations (25

mM), worms move toward higher salt levels, and at high concentrations (75 mM) they crawl down

the gradient toward lower salt levels. As with thermal navigation, worm behavior converges to diffu-

sive behavior at longer times (Figure 3B), and local searching transitions gradually to global search-

ing via a reduced turning rate (Figure 3C). The Markov state model predicts equilibrium population

distributions consistent with the net motion of the population (Figure 3D).

Despite relatively deterministic movement along one axis, the equilibrium distributions show that

the worms and larvae are dispersed over a significant range. This enables them to avoid local ’traps’

arising from chemical or thermal cues.

C. elegans diffuse towards warmer temperatures during isothermal
tracking
As noted in the Introduction, we applied our diffusion analysis to the distinctive C. elegans behavior

of isothermal tracking (Hedgecock and Russell, 1975; Luo et al., 2006). In this behavior, worms

placed near their original cultivation temperature (Tcult) will follow isotherms with extreme precision,

indicating a high degree of sensitivity in their thermal response. Since the temperature in our 1D

thermal gradient is approximately constant in the y-direction, we expect to observe qualitatively dif-

ferent trajectories, with more prominent movement in that direction, and very limited navigation in

the perpendicular x-direction.

Although we do observe greater diffusion and navigation in the y-direction (Figure 4B), an exami-

nation of x-direction navigation revealed a significant asymmetry. The long-term equilibrium position

probability distributions (Px and Py) are approximately constant in y, but not in x (Figure 4C). In par-

ticular, there is an extremely low probability for the worms to be in the T<Tcult region, and a substan-

tially higher probability for them to occupy warmer regions. This suggests either a mild preference

for T>Tcult, specific aversion to T<Tcult, or some other disruption of the traditional interpretation of

isothermal tracking behavior.

Discussion
We studied the navigation of C. elegans and Drosophila larvae in both isotropic environments and

stimulus gradients to assess the relationship between directed movement toward target conditions

and the diffusive properties of the overall search patterns. We also studied the negative thermotaxis

of C. elegans moving toward colder temperatures and the positive thermotaxis of Drosophila larvae

moving towards warmer temperatures. These behavioral modes represent the better studied forms

Figure 2 continued

isotropic navigation cases (see Materials and methods). Error bars are �s.e.m. where shown; in the other cases the error bar size is smaller than the line

thickness, and therefore not seen.

DOI: https://doi.org/10.7554/eLife.30503.005

The following source data and figure supplement are available for figure 2:

Source data 1. Values and s.e.m. for diffusion coefficient vs. time plots

DOI: https://doi.org/10.7554/eLife.30503.007

Figure supplement 1. Reversability, detailed balance, and sampling intervals in the Markov state model approach.

DOI: https://doi.org/10.7554/eLife.30503.006
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of thermotaxis in these animals. We then examined the ascent and descent of C. elegans moving

toward preferred salt concentrations.

Treating the motion of small animals in isotropic environments as diffusive random walks is an

established method (Berg and Brown, 1972; Berg, 1993), even yielding analytic solutions under

certain conditions (Lovely and Dahlquist, 1975). Here, we have focused on diffusion along
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Figure 3. Diffusion and navigation in C. elegans salt chemotaxis. (A) Sample trajectories (25 worms each) of crawling on an agar substrate with a salt

concentration gradient increasing toward the right, under a low-salt concentration baseline (25 mM, left) and high-salt concentration baseline (75 mM,

right). The wheel indicates labels for crawling direction ranges, with octant 1 pointing directly to higher salt concentrations and octant 5 directly toward

low concentrations. The directions of overall population drift are indicated by green arrows, with the numbers indicating the dimensionless drift

velocity, approximately 10 times greater than for the isotropic navigation cases (see Materials and methods). (B) Diffusion over time in the x and y

directions for a low-salt baseline (left) and high-salt baseline (right). Error bars are �s.e.m. (C) Average turning rate across all crawling directions (top)

decays over time for both low and high baseline salt concentration gradients. The turning rate ratio between octant 5 (toward lower concentration) and

octant 1 (toward higher concentration) does not stabilize as clearly as for thermotaxis, likely indicative of a reduced level of movement toward preferred

salt conditions and a smaller data set. Error bars are �s.e.m. (D) Equilibrium probability distributions for worms in low- (left) and high (right)-salt

concentration environments, determined by using the Markov state model (MSM). Analysis is based on 14 experiments, 126 tracks, and 4422 turns for

low-salt concentration, and 16 experiments, 166 tracks, and 6159 turns for high-salt concentration.

DOI: https://doi.org/10.7554/eLife.30503.008

The following source data is available for figure 3:

Source data 1. Values and s.e.m. for diffusion coefficient vs. time plots

DOI: https://doi.org/10.7554/eLife.30503.009
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perpendicular axes, and used Markov analysis techniques to investigate the combination of explor-

atory diffusion and targeted navigation. We found that the general framework of diffusion and Mar-

kov processes can be used to combine a large number of short trajectories obtained under identical

conditions in both isotropic environments and in the presence of stimulus gradients. This approach

made it possible for the first time to quantify the statistics of a random search that is concurrent with

steady progression towards favorable environments. In both animals and across stimulus types, we

found importantly that random exploration in all directions and across all time scales is remarkably

robust to progression in a selected direction in a graded environment. That is, the animals undergo

diffusive motion (as opposed to ballistic) in both the x- and y-directions, even during persistent navi-

gation along the x-axis. The diffusion coefficients Dx and Dy are not equal during thermotaxis and

chemotaxis, but D vs. t plots become approximately constant, indicating a diffusive regime. When

nematodes and insect larvae encounter stimuli that bias their random walks in specific directions, the

effectiveness of random searching is largely unaffected either parallel or orthogonal to the direction

of motion. In these animals, a constraint on the mechanisms that generate navigation in a preferred

direction appears to be the preservation of the statistics of random exploration in all directions

across time scales. Analysis of the entropy of trajectory configurations, which avoids settling into

traps, provides information that is not readily apparent in conventional metrics of drift rates and

stimulus-evoked turn rates. Moreover, the approach makes possible large-scale and long time

descriptions of the navigational dynamics beyond those available from the standard localized run —

turn — run measurements.

We found, in both animal model systems investigated here, that the transition from ballistic to dif-

fusive motion during navigation occurs over a ~1000 s time scale, which is longer than most behavior

experiments in studies of these animals. Experiments are typically limited by animals leaving the

arena, especially for faster moving late instar Drosophila larvae. Combined with the observation, in

broad agreement with recent results from other experimenters (Calhoun et al., 2014), that the rate

of behavioral transitions changes over time (especially in worms), it is possible that further behavioral
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Figure 4. Isothermal tracking in C. elegans includes diffusion in the x-direction. (A) Experimental trajectories under temperature gradient conditions,

with worms initially placed at their cultivation temperature of 15˚C. Colors are used for the reader to distinguish between individual tracks. (B) The

diffusion constants along the x and y directions, with Dy dominating, but Dx highly significant. Error bars are �s.e.m. (C) MSM-generated equilibrium

probabilities along the temperature gradient (x axis) showing the long time scale distribution of the population of worms, and perpendicular to the

temperature gradient along isotherms (y axis). In x, worms avoid regions with low temperatures, but freely explore regions with higher temperature; in

y, worms explore the axis with approximately equal probability. Analysis based on 25 experiments, with 688 tracks.

DOI: https://doi.org/10.7554/eLife.30503.010

The following source data is available for figure 4:

Source data 1. Values and s.e.m. for diffusion coefficient vs. time plots

DOI: https://doi.org/10.7554/eLife.30503.011
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transitions at longer time scales have yet to observed. Experimental techniques that enable long-

time-scale measurements may be essential for uncovering a more complete picture of the behavior

in these animal systems. This would also enable further testing of the probability distributions pre-

dicted by the Markov state model.

Additionally, we note that the transition to more global searching (lower turning rate) occurs at

very different times in the two model systems under consideration here. We speculate that the much

greater mass of the second instar Drosophila larva would allow it to delay the transition, as it can

afford more time without food. While the global search transition in larvae was not observed on the

time scales used here, further experiments could illuminate the issue, such as comparisons in turning

rates between fed and starved larvae of the same age—starved animals effectively perform searches,

even if not placed in a behavioral arena.

By drawing distinctions between the behavioral transition rates in different crawling directions,

we note that the overall changes in the average turning rate (Figure 2) are not accompanied by

changes in the ratios of the turning rates. This means the navigational bias is preserved, while other

aspects of search strategy are modulated. However, the navigational dynamics studied in the cases

presented here are rather simple. Consequently, this work may be considered a proof of principle of

the utility of employing methods developed for protein folding to understand the behavior of worms

and larvae. It will be of interest to study their navigational dynamics in complex conditions with vari-

ous obstacles, which in the language of protein folding give rise to both enthalpic and entropic bar-

riers. It is important to know where the bottlenecks are in the navigational dynamics towards the

target. How the dynamics changes with time (i.e. learning or habituation) in response to different

stimuli and different cultivation conditions should also be examined. We expect that to study such

questions the description of the dynamics as diffusion on a free-energy landscape will be useful for

obtaining a global understanding of the processes involved.

Materials and methods

Worm and larva handling
Adult N2 wild-type worms were raised on agar plates (2% wt./vol) with NGM food. For each experi-

ment, around 20 worms (each approximately 1 mm long) were selected under a dissection micro-

scope, rinsed, and placed with a pipette onto the behavior arena in small water droplets. Upon

evaporation of the water droplets, the worms began crawling and their movement was recorded.

Wild-type (Canton-S) adult flies were kept in cages (Genesee Scientific) with 6 cm Petri dishes

with grape juice and yeast food, with new plates exchanged every 24 hr. Larvae were collected from

the plates, with second instar larvae selected by age (24-72 hr AEL) and spiracle development of

each individual. The typical larva size at this instar is 1-2 mm in length. For each experiment,

between 20 and 30 larvae were rinsed in distilled water, allowed to crawl on agar gel (3% wt./vol)

for 5 min, then placed in the behavior arena for video tracking of navigation.

For both worms and larvae, all animals for the experiment are placed on the agar surface

together, near the center, with approximately 1 cm separating each animal. Given the small fraction

of the available space taken up by the animals, collisions are infrequent. Importantly, when a collision

does occur, the event is not flagged as a turn for the purposes of turning rate computation (see

below), so if the collision rate decreases over time as animals spread out, the extracted turning rate

is not affected.

Video acquisition and behavioral analysis
A 5 MP CCD camera placed above the arena recorded crawling, with images acquired at 5 Hz. Mov-

ies were processed using the MAGAT Analyzer software (Gershow et al., 2012), which extracts the

position and shape of each animal. Subsequent analysis using custom MATLAB scripts (source code

download available, Source code 1) segmented the path of each crawling animal into tracks com-

prised of a sequence of runs (periods of straight crawling) and turns (cessation of forward movement

and orientation to a new direction). The run-turn-run-. . . sequences were used for navigation analysis,

and the raw trajectories used for diffusion and Markov state model distributions.

The turning rate describes how often animals alter their crawling direction, and changing turning

rate as a function of crawling direction is the primary behavioral modulation that leads to navigation.
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We compute the turning rate in the following way. In a given time window, animal i makes ni turns,

with periods of forward crawling (‘runs’) in between, each run j of duration Dtj (see Figure 1A,A’).

The total time spent during runs for this animal is Ti ¼
P

Dtj. The turning rate for the individual ani-

mal i is ri ¼ ni=Ti, and the total turning rate for the population during this window is R ¼ N=T, where

N ¼
P

ni and T ¼
P

Ti. In particular, T is the total time where an animal could have turned but failed

to do so. In Figures 2 and 3 turning rates R� are computed for different crawling directions, where

only turns and runs that occur within the specified cone of crawling direction are counted.

For a navigation strength metric, we used the dimensionless drift velocity, <vx>=<v>, the average

velocity of the population in the x-direction, normalized by the overall average speed during runs.

This serves as a dimensionless measure of navigation strength. A value of +1 would correspond to

every animal crawling directly along the þx direction for the entire experiment; a value of �1 would

correspond to �x direction crawling; and a value of 0 would indicate no movement at all, or no bias

in crawling direction. For both worms and fly larvae, isotropic conditions result in a very small (order

0.01) navigation strength, while in thermal or chemical gradient environments the navigation

strength is of order 0:1. This metric is also employed in (Luo et al., 2010; Gershow et al., 2012;

Klein et al., 2015). Green arrows in Figure 1A,A’, Figure 2A, and Figure 3A indicate the navigation

strengths for the full population measured.

Stimulus delivery
For both Drosophila larvae and adult C. elegans, a temperature-controlled 2D platform established

a 1D linear spatial gradient. A large aluminum metal block one each side was maintained at a con-

stant temperature. The cold side was maintained with two thermoelectric coolers (TECs) under PID

control, with chilled circulating liquid (a water and anti-freeze mixture) acting as a dissipation reser-

voir. The hot side was maintained using resistive heaters under PID control. A thin aluminum slab

connected the two blocks, which established a smooth linear gradient in the x-direction and constant

temperature for fixed x in the y-direction. An agar gel (3% wt./vol. for larvae, 2% wt./vol. for worms)

was placed on the slab. For larva experiments, the temperature across the gel ranged from 13˚C to

21˚C (17˚C in the center, 0.36˚C/cm gradient); for worm experiments, the temperature range was

18˚C to 22˚C (20˚C in the center, 0.19˚C/cm gradient).

For C. elegans experiments using salt concentration gradients, agar gels were poured in two

stages to establish a stable, linear salt concentration gradient. We followed the procedure outlined

in Luo et al. (2014).

Determination of steady state and equilibrium probabilities
The equilibrium probabilities (PeqðxÞ and PeqðyÞ) were computed using the Markov state model

(MSM) formalism. To this end, the coordinate (either x or y) was partitioned into bins with size D ¼ 1

and the numbers of transitions from bin i to bin j after time interval Dt (njiðDtÞ) were computed. The

transition probability matrix PjiðDtÞ, the probability to move to bin j from bin i after time interval Dt

was estimated as PjiðDtÞ ¼ njiðDtÞ=
P

j njiðDtÞ. This matrix describes the time evolution of the probabil-

ity vector as Piðt þ DtÞ ¼
P

j PijðDtÞPjðtÞ. The stationary, steady state probability distribution Pst is

computed as the solution of equation Pst
i ¼

P
j PijðDtÞP

st
j .

We have also checked whether reversibility and detailed balance are satisfied. First, we computed

the steady state fluxes in positive JþðxÞ ¼
P

j<x<i Jij and negative J�ðxÞ ¼
P

i<x<j Jij directions, where

Jij ¼ PijðDtÞP
st
j is the steady state flux from bin j to bin i. The fluxes agree with high accuracy (Fig-

ure 2—figure supplement 1A), meaning that the net flux is zero and we can consider the steady

state probability as the equilibrium probability.

The detailed balance, is a more stringent condition, where the fluxes between any two bins must

be equal Jij ¼ Jji. Due to the limited statistics, and thus higher noise, direct comparison of the fluxes

between bins is not informative. We compared a related quantity —the steady state fluxes in posi-

tive Jþa ðxÞ ¼
P

i;a<x<i Jia þ
P

i;i<x<a Jai and negative J�a ðxÞ ¼
P

i;a<x<i Jia þ
P

i;i<x<a Jai directions,

restricted to transitions to or from a particular node (a). The fluxes between bin x and bin a are pro-

portional to the derivatives d=dx Jþa ðxÞ and d=dx J�a ðxÞ and hence from Jþa ðxÞ ~ J
�
a ðxÞ it follows that

Jxa ~ Jax. Figure 2 supplemental A compares Jþa ðxÞ and J�a ðxÞ for e.g., a ¼ 2. Increasing statistics by

considering all the bins in 1:5<a<2:5 improves the agreement.
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The sampling interval (the lag time) Dt should be chosen sufficiently large so that the dynamics

become Markovian. Figure 2 supplemental B shows how with increasing lag time the determined

equilibrium probabilities converge to the limiting one.

Inclusion of other parameters such as the body angle and whether the animals were stationary or

moving did not significantly change the results.

Determination of diffusion coefficients
For flat free-energy profiles, with no drift term, FðxÞ~ const, the diffusion coefficient can be esti-

mated as DxðtÞ ¼
1

2
hDx2ðtÞi=t. For free-energy profiles with constant drift term, FðxÞ ~ ax,

DxðtÞ ¼
1

2
hðDx� DxavgÞ

2i=t, where Dxavg ¼ hDxi is the averages of the corresponding displacements

after the time interval t. The statistical uncertainties were estimated by bootstrapping.

Change-point detection in C. elegans trajectories
The change points in Figure 1 (supplemental) were computed using the ‘findchangepts’ function in

MATLAB, which detects the point in a sequence with the maximum difference between the means

of values below the point and the mean of the values above the point.
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