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Abstract Tissue injury leads to early wound-associated reactive oxygen species (ROS)

production that mediate tissue regeneration. To identify mechanisms that function downstream of

redox signals that modulate regeneration, a vimentin reporter of mesenchymal cells was generated

by driving GFP from the vimentin promoter in zebrafish. Early redox signaling mediated vimentin

reporter activity at the wound margin. Moreover, both ROS and vimentin were necessary for

collagen production and reorganization into projections at the leading edge of the wound. Second

harmonic generation time-lapse imaging revealed that the collagen projections were associated

with dynamic epithelial extensions at the wound edge during wound repair. Perturbing collagen

organization by burn wound disrupted epithelial projections and subsequent wound healing. Taken

together our findings suggest that ROS and vimentin integrate early wound signals to orchestrate

the formation of collagen-based projections that guide regenerative growth during efficient wound

repair.

DOI: https://doi.org/10.7554/eLife.30703.001

Introduction
Wound repair requires the integration of cellular signaling networks to efficiently restore tissue

homeostasis. Response to tissue injury can lead to either scar formation or complete tissue regenera-

tion, which occurs in certain teleosts and amphibians (Wehner and Weidinger, 2015). Understand-

ing repair in regenerative animals can help inform these processes in humans and other species

where scar formation is the primary response to injury. Recent studies highlight the importance of

early signaling events after damage, including the role of reactive oxygen species (ROS), in tissue

regeneration in zebrafish and tadpoles (Gauron et al., 2013; Love et al., 2013; Yoo et al., 2012). In

tadpoles, injury induced ROS activate growth factor signaling pathways through Wnt and fibroblast

growth factor (fgf) that mediate regeneration (Love et al., 2013). Inhibiting early ROS signaling at

damaged epithelium for just 1 hr pre-and post-injury in larval zebrafish impairs subsequent fin regen-

eration 3 days post-injury (Yoo et al., 2012). Although a role for Src family kinase signaling has been

implicated as a pathway downstream of this early ROS signaling (Yoo et al., 2012), the redox-

dependent pathways that mediate full regeneration in zebrafish larvae remain unclear.
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Movement of epithelial cells is thought to play key roles in ensuring proper wound healing

(LeBert and Huttenlocher, 2014; Sonnemann and Bement, 2011). During this migration, epithelial

cells undergo a process known as epithelial to mesenchymal transition (EMT), a progression con-

served during normal development as well as the malignant transformation of epithelial cells

(De Craene and Berx, 2013). The intermediate filament protein vimentin is expressed during EMT

and provides a marker of EMT during cell transformation (De Craene and Berx, 2013). Although

well characterized as a marker of EMT, how vimentin regulates wound healing is still unclear. A

recent report demonstrated that vimentin regulates wound healing by affecting fibroblast prolifera-

tion and the differentiation of keratinocytes via transforming growth factor beta (TGFb) and Slug sig-

naling (Cheng et al., 2016). Additionally, vimentin has been implicated in regulating cell movements

during wound repair, as seen with vimentin’s role in the collective movements of lens epithelium

after damage (Menko et al., 2014). In glial cells, vimentin polarizes toward the wound edge, in col-

laboration with the microtubule network (Leduc and Etienne-Manneville, 2017). In recent studies,

vimentin was shown to orient actin filaments and traction stress during single cell migration

(Costigliola et al., 2017). These recent studies suggest an important role for vimentin in regulating

the movement of cells during wound repair.

In addition to cell movement, a critical stage of normal repair is the deposition of a collagen-rich

extracellular matrix (ECM) to provide the framework for regenerative growth. The transient ECM

that forms during wound healing is subsequently degraded during the remodeling phase of wound

healing (McCarty and Percival, 2013). Collagen accumulates in response to tissue injury and it

appears vimentin is required for this accumulation, likely indirectly as suggested by the deficiency of

wound-associated fibroblasts in vimentin null mice (Cheng et al., 2016; Eckes et al., 2000). In addi-

tion to the production of collagen, a key step in the repair process is the remodeling of wound-

induced collagen structures, probably through the action of proteases such as matrix metalloprotei-

nases (MMP). In zebrafish larvae we recently reported a central role for MMP9 in collagen reorgani-

zation and regeneration after tail transection (LeBert et al., 2015).

Here we sought to determine the pathways that function downstream of wound-associated ROS

that mediate wound healing and subsequent regrowth. We generated a reporter of mesenchymal

cells by driving GFP from the vimentin promoter and found that early redox signaling at the wound

was required for vimentin expression at the wound margin. We also found that inhibition of ROS,

NFkB or depletion of vimentin impaired both collagen expression at the wound and the dynamic

reorganization of collagen into projections. Live imaging demonstrated that these collagen projec-

tions guide epithelial regrowth during regeneration of the fin. Treatments that disrupt collagen orga-

nization, such as inhibition of cross-linking or destruction of collagen fibers by thermal injury,

diminished the formation of epithelial projections and subsequent wound healing was impaired.

These results provide a pathway linking early ROS signaling to the physical and mechanical pro-

cesses of healing and regrowth. This healing process is mediated by vimentin and its regulation of

collagen fiber/epithelial cell projections that promote the forward progression of the wound plane

and lead to the regeneration of the caudal fin.

Results

Generation of a vimentin reporter line in zebrafish
Previous studies demonstrated that loss of vimentin impaired wound healing in mice (Eckes et al.,

2000), suggesting that vimentin plays a role in tissue repair. To determine how vimentin is regulated

in response to tissue injury in zebrafish larvae, we generated a reporter of vimentin expression by

driving EGFP from the vimentin promoter, herein referred to as the Tg(�2vim:egfp) line (Figure 1).

Reporter activity was detected as early as the two somite stage (Figure 1A) and later observed in

early differentiating neurons in the head and in glial cells within the developing spinal cord

(Figure 1B). From 2–3 days post fertilization (dpf) the EGFP expression pattern was maintained in

the cranial ganglion cells, spinal cord neurons and opercle (Figure 1C,D,E,F). This expression pat-

tern is consistent with the vimentin expression pattern previously shown by in situ hybridization

(Cerdà et al., 1998). We also noted EGFP expression in developing fin mesenchymal cells at 3 dpf

(Figure 1C,G). It is known that vimentin expression increases with the induction of epithelial to mes-

enchymal transition (EMT) (Franke et al., 1982; Thiery, 2002; Vuoriluoto et al., 2011). To examine
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Figure 1. Characterization of the Tg(�2vim:egfp) zebrafish line. The Tg(�2vim:egfp) larvae express EGFP in cranial ganglion cells, spinal cord neurons,

the opercle and fin fibroblasts. Images depict lateral views of Tg(�2vim:egfp) larvae with anterior to the left of (A) two somite stage, (B) 2 dpf, arrow

indicating cranial ganglion cells, and (C) 4 dpf Tg(�2vim:egfp) larvae, arrow indicating EGFP positive cranial ganglion cells while boxes show regions

used for subsequent zoomed images. (D) EGFP expression in the opercle. (E) and (F) spinal cord neuron expression, enface and cross section,

Figure 1 continued on next page
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the expression of this reporter during EMT we transiently expressed either wild type (HRasG12) or

oncogenic RAS (HRasV12), tagged with RFP, from the krt4 promoter in the Tg(�2vim:egfp) line

(Figure 1H,I), thereby inducing EMT (Freisinger and Huttenlocher, 2014). Overexpression of onco-

genic HRasV12, but not wild type HRasG12, induced vimentin promoter activity and expression of

EGFP that co-localized in the same cells expressing HRasV12. Taken together, these data show that

the Tg(�2vim:egfp) line recapitulated previously published in situ vimentin expression data and

vimentin was expressed in cells undergoing EMT, thereby providing a powerful tool to report vimen-

tin promoter activity in larval zebrafish.

vimentin reporter activity is induced by tissue injury downstream of
redox signaling
Since vimentin plays a key role in wound healing (Cheng et al., 2016; Eckes et al., 2000;

Menko et al., 2014), we sought to determine if vimentin expression is increased at the wound. To

address this question, we performed whole mount in situ hybridization (WMISH) to probe vimentin

expression in unwounded and wounded larvae and found that tail transection induced localized

vimentin expression at the wound edge by 24 hr post wound (hpw), an outcome not observed with

the sense probe (Figure 2A–C, Figure 2—figure supplement 1A). To further characterize the popu-

lation of cells that express vimentin at the wound edge (vim+), we utilized long duration time-lapse

laser scanning confocal microscopy of living Tg(�2vim:egfp) reporter larvae. Interestingly, in the

unwounded fin, the reporter line labeled a population of elongated mesenchymal cells that extend

toward the tip of the fin (Figure 1G). Since the majority of these vim+ cells in the fin were removed

during the tail transection no clear signal was detected along the wound edge at 2 hpw (Figure 2D).

In accordance with the in situ results, vim+ cells were detected by 20 hpw at the wound edge and

showed enhanced expression at 26 hpw (Figure 2E–G). To determine if this population of vim+ cells

at the wound edge resulted from the migration of distal vim+ cells, we performed long duration

time-lapse laser scanning confocal microscopy in a controlled environment using the zWEDGI plat-

form that is compatible with long term live imaging (Huemer et al., 2017). Surprisingly, the vim+

cells did not migrate to the wound from surrounding fin tissue but rather expression developed in

what appeared to be a non-motile population of cells at the wound edge (Figure 2—video 1). It

should be noted that these vim+ cells did not appear to arise from epithelial cells based on live

imaging (Figure 2—figure supplement 1B and C, Figure 2—video 2). However, these data do not

preclude the possibility that the vim+ cells are the result of an EMT event beyond the time resolution

of our studies. Additionally, the vim+ cells did not appear to colocalize with a macrophage marker

(Figure 2—figure supplement 1D) and their presence was not influenced by the depletion of leuko-

cytes using the pu.1 morpholino (MO) (Figure 2—figure supplement 1E), suggesting that immune

cells were not involved directly or indirectly in the vimentin expression. It is possible that a special-

ized population of cells, including a type of progenitor cell, migrates to the wound edge from the

surrounding tissue and subsequently activates the vimentin promoter, although our studies cannot

confirm this possibility. Regardless, our findings demonstrate that wounding induces a population of

vim+ cells along the wound edge.

Wound-induced release of ROS has been shown to be a key regulator of wound healing and

regeneration (Leisegang et al., 2016; Serras, 2016; Yoo et al., 2012). Our earlier work demon-

strated that early ROS signaling immediately before and after damage, mediated fin regeneration

three days later (Yoo et al., 2012). Therefore, we sought to determine whether early wound-induced

ROS mediate vimentin expression at the wound. Using a pharmacological inhibitor of NAD(P)H oxi-

dase enzyme activity, Diphenyleneiodonium (DPI), we found that inhibition of ROS for 1 hr before

and 1 hr after wounding was sufficient to impair the appearance of vim+ cells at the wound edge 1

dpw in the Tg(�2vim:egfp) line (Figure 2H,I). Reduced reporter activity after tail transection with

Figure 1 continued

respectively. (G) Mesenchymal cells of the caudal fin. (H) Mosaic RNA expression of HRasG12 in the Tg(�2vim:egfp) line did not induce vimentin

promoter activation. (I) Mosaic RNA expression of oncogenic HRasV12 in the Tg(�2vim:egfp) line resulted in a dramatic increase in vimentin promoter

activation, observed in two replicates. Scale bars represent 100 mm in A-G and 20 mm in H-I.

DOI: https://doi.org/10.7554/eLife.30703.002
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Figure 2. A population of vimentin-positive cells with a rounded morphology developed at the wound edge and associate with areas of collagen

misalignment. (A) Whole mount in situ hybridization for vimentin RNA in 4 dpf unwounded larvae. (B) Unwounded caudal fin and (C) 24 hpw caudal fin

indicates increased vimentin expression following amputation, observed in two experiments. (D-G) Confocal microscopy of a live larval caudal fin

showed that following amputation in the Tg(�2vim:egfp) line, in the wound region (box), a population of cells activated the vimentin promoter (arrow)

Figure 2 continued on next page
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early ROS inhibition was quantified by assessing the relative fluorescence intensity above back-

ground at the wound edge (Figure 2J, Figure 2—source data 1, Figure 2—source data 2). Similar

results were observed with morpholino depletion of Duox1 (Yoo et al., 2012), which is necessary for

the generation of wound-induced ROS (Figure 2—figure supplement 1F,G). Previous studies using

a transgenic nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) activation reporter

Tg(nfkb:egfp) line showed that early ROS signaling regulates NFkB activity following caudal fin

amputation (de Oliveira et al., 2014). This led us to investigate if ROS was regulating vimentin acti-

vation through NFkB. Using a pharmacological inhibitor of NFkB activation, Withaferin A (WA),

which has previously been shown to inhibit caudal fin wound healing (LeBert et al., 2015), we found

that early inhibition of NFkB was sufficient to block EGFP expression at 1 dpw in the Tg(�2vim:egfp)

line (Figure 2—figure supplement 1). It should be noted that WA can directly inhibit the vimentin

protein, and thus the influence of WA downstream of vimentin promoter activation must also be

considered. However, the findings suggest that early ROS signaling, likely at least in part through

NFkB activity, regulates vimentin promoter activation at 1 dpw following caudal fin amputation.

The radiating, elongated morphology of the vim+ cells in the unwounded fin was reminiscent of

the pattern previously reported for collagen fibers in the developing zebrafish fin using second har-

monic generation (SHG) imaging (LeBert et al., 2015). To address a possible association between

the vim+ cells and collagen fibers, we performed SHG imaging of the caudal fin in the Tg(�2vim:

egfp) line. We observed a tight association between the vim+ cells and the SHG fibers (Figure 2K,L)

in unwounded caudal fins (Figure 2—video 3). In wounded caudal fins we observed vim+ cells with

a more rounded morphology in regions of the fin characterized by mis-aligned SHG collagen fibers

and the elongated cells in regions of the fin with intact collagen fibers (Figure 2M,N, Figure 2—

video 4), indicating an association between vim+ cells and organization of the SHG detected colla-

gen fibers.

Vimentin is required for optimal caudal fin wound healing in zebrafish
The increased vimentin expression observed at the wound edge suggests that an increase in vimen-

tin may be necessary for optimal wound healing in the larval zebrafish. To determine whether

Figure 2 continued

by 26 hpw. (H,I) The activation of the vimentin promoter was regulated by ROS, as treatment with DPI reduced EGFP signal at the wound edge at 24

hpw as compared to control DMSO. (J) Ratio of the intensity of the vim:egfp expression at the central wound edge over background intensity of the fin

in DPI and DMSO treated larvae at 24 hpw. (p=0.0282; n = 12 total fins over three replicates, with 2 to 6 fins per treatment per replicate; DMSO 95% CI

= 1.18 to 1.33, DPI 95% CI = 1.07 to 1.21). (K) Spindle-shaped vim+ cells associate tightly with SHG fibers, as indicated by enface 3D reconstruction

of SHG images of unwounded caudal fins in the Tg(�2vim:egfp) line. (L) End on view of a 3D surface rendered reconstruction of the association of vim+

cells and SHG fibers in unwounded caudal fins. (M) Spindle shaped vim+ cells associate with intact SHG fibers following amputation (Arrowhead), but a

rounded vim+ cell population is observed in regions of collagen misalignment (Arrow) in the Tg(�2vim:egfp). (N) End on surface rendered

reconstruction of the association of vim+ cells and SHG fibers in amputated caudal fins at 2 dpw, assessed in two replicates including 24 live larvae.

Scale bar represents 100 mm in A-C, 50 mm in D-I, K and M and 30 mm in L and N. *p<0.05, error bars are standard deviation.

DOI: https://doi.org/10.7554/eLife.30703.003

The following video, source data, and figure supplement are available for figure 2:

Source data 1. Command sequence used in R for LSMeans analysis.

DOI: https://doi.org/10.7554/eLife.30703.005

Source data 2. Vimentin GFP intensity at the wound in DPI treated larvae.

DOI: https://doi.org/10.7554/eLife.30703.006

Figure supplement 1. Vimentin expression at the wound edge did not co-localize with epithelial or macrophage markers and was not influenced by

leukocyte depletion.

DOI: https://doi.org/10.7554/eLife.30703.004

Figure 2—video 1. vimentin promoter is activated following amputation in the Tg(�2vim:egfp) line.

DOI: https://doi.org/10.7554/eLife.30703.007

Figure 2—video 2. Vim(+) cells do not appear to co-localize with Krt4tdTom(+) cell.

DOI: https://doi.org/10.7554/eLife.30703.008

Figure 2—video 3. Vim(+) cells aligned along SHG fibers in an unwounded caudal fin.

DOI: https://doi.org/10.7554/eLife.30703.009

Figure 2—video 4. Vim(+) cells exhibit a rounded morphology in the presence of disrupted SHG fibers after tail transection.

DOI: https://doi.org/10.7554/eLife.30703.010
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vimentin is required for larval caudal fin regeneration, we used morpholino depletion of vimentin

expression (Figure 3—figure supplement 1A). We found that vimentin-deficient larvae had

impaired regenerate area and regenerate length at 3 dpw (Figure 3A,B, Figure 3—figure supple-

ment 1B, Figure 3—source data 1), indicating that vimentin is required for proper wound healing.

This defect was wound-specific, as unwounded morphants did not display a defect in fin length or

area compared to age matched controls during normal development (Figure 3—figure supplement

1F–H). These findings are consistent with the wound defect reported with VIM-/- mice (Cheng et al.,

2016; Eckes et al., 2000; Menko et al., 2014). It should also be noted that vimentin-deficient larvae

displayed no defect in the appearance of vim+ cells at the wound edge following amputation (Fig-

ure 3—figure supplement 2A), indicating that vimentin is not required for the activation of the

vimentin promoter along the wound edge. To determine if the regenerative defect was due to

effects on cell survival, we assessed apoptosis by TUNEL staining. No defect was observed in the

vimentin-deficient larvae at 1 hpw (Figure 3—figure supplement 2B), providing evidence that the

wound healing defect is likely not due to changes in cell survival. To confirm that the regeneration

defect was not due to off-target effects of the MO, we rescued vimentin expression using co-injec-

tion of vimentin MO1 and zebrafish vimentin RNA and also used a second MO (MO2) (Figure 3—fig-

ure supplement 1D,E). Co-injection was sufficient to rescue the regeneration defect observed in the

morphants, suggesting that vimentin is required for fin regeneration in zebrafish (Figure 3—figure

supplement 3A–C). As further confirmation that vimentin is required for optimal wound healing, we

used CRISPR-Cas9 mutagenesis to create mosaic F0 vimentin mutants. The CRISPR was validated by

TOPO cloning and sequencing of individual F0 larvae as well as by sequencing germline DNA iso-

lated from F0 adults (Figure 3C–E). The mosaic F0 mutants also displayed reduced regenerate

length and area at 3 dpw (Figure 3F,G, Figure 3—figure supplement 3D, Figure 3—source data

2) but had no developmental defect in fin length (Figure 3—figure supplement 3E–G). In accor-

dance with previous studies in other species (Cheng et al., 2016; Eckes et al., 2000; Menko et al.,

2014), these data show that vimentin is required for efficient wound healing.

Vimentin and early ROS signaling mediate the formation of SHG-fiber
containing projections during wound healing
To determine how vimentin regulates wound repair, we performed long duration laser scanning con-

focal microscopy of wound healing dynamics. During regeneration of the caudal fin following ampu-

tation, the wound edge formed an uneven border that contained growing epithelial cell extensions

(Figure 4—video 1). The formation of these epithelial extensions, herein referred to as projections,

was not present during normal development of the caudal fin, which occurred with the extension of

a smooth fin edge (Figure 4—figure supplement 1A). The first visible projections after tail transec-

tion could be identified at 18 hpw and became prominent by 24 hpw (Figure 4A). The projections

continued to extend and new projections formed throughout wound repair (Figure 4A). By contrast,

vimentin-deficient larvae possessed a smooth wound edge and relative absence of the epithelial pro-

jections for more than 24 hpw (Figure 4B, Figure 4—video 2). To quantify these effects, we

assessed the percentage of larvae that form visible projections. Following transection, more than 75

percent of control larvae had visible projections by 24 hpw while only about 40 percent of vimentin-

deficient larvae displayed projections (Figure 4C, Figure 4—source data 1). Since vimentin expres-

sion is dependent on early ROS signaling at the wound, we also characterized the effect of early

ROS inhibition on the formation of epithelial projections. Early pharmacological inhibition of ROS

resulted in a smooth wound edge (Figure 4—figure supplement 1B) and impaired the formation of

projections at 24 hpw (Figure 4D, Figure 4—source data 2). Similar effects were observed with inhi-

bition of NFkB using the small molecule WA (Figure 4—figure supplement 1C).

To further characterize the epithelial projections and the role of vimentin in this process, we per-

formed bright field imaging of the projections at high magnification. We observed thin finger-like

projections at the wound edge that extended around fibrillar proteins that protruded into the tips of

the projections (Figure 4E,F). This observation of fibrillar structures was supported by LC-PolScope

microscopy (Oldenbourg, 2005) suggesting that the fibrillar protein was a collagen structure

(Keikhosravi et al., 2017). LC-PolScope, although similar to traditional polarized light microscopy,

uses near circular polarized light that permits high sensitivity detection of fibers in all directions.

These fibers appeared to induce a physical stress on the epithelial projections since the epithelial

cells, whose membranes are also birefringent and can be detected with LC-PolScope microscopy,
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Figure 3. Vimentin expression was required for proper wound healing. (A) Morpholino knockdown (MO1) of vimentin caused a significant wound

healing defect in (B) regenerate area at 3 dpw (p<0.0001; n = 85 total larvae per treatment over four replicates, with 17 to 30 larvae per treatment per

replicate; Ctl MO 95% CI = 94604.23 to 101336.98; vim MO 95% CI = 60550.63 to 67369.68). (C) Schematic of single-site CRISPR-Cas9 targeting of

vimentin (top). Arrowhead indicates the presence of aberrant banding in the mosaic F0 mutant (bottom). Sequencing of the vim guide RNA target sites

was also performed (see Materials and methods) on single embryos to further validate. (D) One example of sequencing results shows a 7 bp deletion in

Exon 1, an early stop codon. (E) Amino acid alignment of vimentin from germline genomic DNA from adult F0 mosaic adults. (F) Mosaic F0 mutant

larvae (Vim) displayed a significant defect in (G) regenerate area at 3 dpw (p<0.0001; ctl n = 130 larvae total, Vim n = 119 larvae total over 3 replicates

with 36 to 45 larvae per treatment per replicate; ctrl 95% CI = 110643.20 to 115689.47, Vim 95% CI = 90275.48 to 95555.25). Scale bars in A and F

represent 100 mm. Statistical significance: ****p<0.0001, error bars are standard deviation.

DOI: https://doi.org/10.7554/eLife.30703.011

The following source data and figure supplements are available for figure 3:

Source data 1. Regenerate area measurements with vimentin knockdown.

DOI: https://doi.org/10.7554/eLife.30703.015

Source data 2. Regenerate area measurements with vimentin transient Crispr.

DOI: https://doi.org/10.7554/eLife.30703.016

Figure supplement 1. Vimentin depletion reduced vimentin expression but did not affect fin development.

DOI: https://doi.org/10.7554/eLife.30703.012

Figure supplement 2. Vimentin depletion did not affect vimentin promoter activation or apoptosis.

DOI: https://doi.org/10.7554/eLife.30703.013

Figure supplement 3. Vimentin morpholino regeneration defect was rescued by vimentin RNA and recapitulated in transient mutants.

DOI: https://doi.org/10.7554/eLife.30703.014
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Figure 4. Larval zebrafish regenerated the caudal fin following amputation and extended projections. (A) Time-lapse microscopy of caudal fin

regeneration revealed the formation of epithelial projections by 24 hpw. Projections extending from the amputated plane are indicated with an arrow

and arrowhead. (B, C) Morpholino knockdown of vimentin expression led to a significant reduction in the proportion of larvae forming projections at 24

hpw compared to control larvae (p=0.0348; n = 3 replicate percentages: for ctl MO 76 larvae total and for Vim MO 78 larvae total were scored over the

three replicates, with 18 to 34 larvae per treatment per replicate; Ctl MO 95% CI = 66.13% to 88.54%; vim MO 95% CI = 7.56% to 65.78%). (D) Inhibition

of early ROS signaling with DPI treatment also significantly reduced the proportion of larvae forming wound healing projections at 24 hpw (p=0.0129, n

= 3 replicate percentages: for DMSO 72 larvae total and for DPI 66 larvae total were scored over the three replicates, with 11 to 26 larvae per treatment

per replicate; DMSO 95% CI = 31.76% to 99.58%, DPI 95% CI = 8.79% to 41.87%). (E, F) Bright field microscopy of projections revealed the presence of

Figure 4 continued on next page
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appear elongated, with the cell membranes stretched outward around the fiber (Figure 4G). To fur-

ther characterize these projections, we used SHG microscopy. Live SHG imaging after tail transec-

tion confirmed the presence of fibers in the projections and indicated a close association between

the fibers and the projecting epithelial cells. Notably, the SHG fibers appeared to push the epithelial

cells outward during extension of the wound edge (Figure 4—video 3). These findings suggest that

the SHG fibers in the caudal fin, which we have previously shown are important for proper wound

healing (LeBert et al., 2015), play a guidance role in the formation of epithelial projections during

wound repair. This was more clearly shown by dual imaging of SHG fibers and cell borders, using

both phalloidin staining on fixed samples (Figure 4H) or by performing live imaging of the Tg(krt4:

egfp-caax) line (Figure 4I; Figure 4—video 4). Inhibition of projection formation in the vimentin-

deficient, DPI- and WA treated larvae resulted in a lack of SHG fiber-containing projections as indi-

cated by polarization imaging (Figure 4—figure supplement 1D, F and H) and SHG imaging in

combination with phalloidin staining (Figure 4—figure supplement 1E, G and I).

Wound projections associate with collagen fibers during wound repair
Since the depletion of vimentin reduced the appearance of epithelial projections (Figure 4B,C), we

investigated the effect of vimentin depletion on SHG fibers. We found that fiber projections at the

wound edge were reduced in vimentin-deficient larvae (Figure 5A,D, Figure 5—videos 1–4). To

quantify this, the length of the wound edge (contour) in SHG images of the region immediately adja-

cent to the end of the notochord was measured in control and vimentin-depleted larvae (Figure 5B

and E). The vimentin-deficient larvae had a reduced contour length at the wound edges as com-

pared to control larvae (Figure 5G, Figure 5—source data 1), supporting the hypothesis that the

fiber projections, as well as the epithelial projections, as assessed by bright field imaging, require

vimentin.

Because our previous work indicates that SHG fiber organization plays an important role in re-

growth of the transected tail fin (LeBert et al., 2015), we sought to further examine how vimentin

depletion impacts SHG fiber organization. Visual observation of the control MO and vimentin MO

wounded caudal fins suggested that fibers in the vimentin-depleted fins did not project perpendicu-

larly outward and were prone to be more tangential to the wound edge. To quantify this observation

we utilized CurveAlign analysis (Bredfeldt et al., 2014; Liu et al., 2017; Schneider et al., 2013) of

Figure 4 continued

fibrillar structures (box, black arrow). (G) Polarization microscopy was used to identify the fibers as organized structures, likely collagen, and by showing

the cell membranes, confirmed that the fibers extended to the tip of the projections (white arrow). (H) The association of the fibers and overlying cells

was further verified by combining SHG with phalloidin staining of actin. (I) 3D reconstruction surface rendering from time-lapse microscopy, collecting

SHG and fluorescence signals in the Tg(krt4:egfp-caax) line, showed extending SHG fibers pushing the healing plane forward. Scale bars represent 100

mm in A and B,10 mm in E-H and 30 mm in I. *p<0.05, error bars are standard deviation.

DOI: https://doi.org/10.7554/eLife.30703.017

The following video, source data, and figure supplement are available for figure 4:

Source data 1. Proportion of larvae exibiting visible projections in vimentin-deficient larvae.

DOI: https://doi.org/10.7554/eLife.30703.019

Source data 2. Proportion of larvae exibiting visible projections in DPI treated larvae.

DOI: https://doi.org/10.7554/eLife.30703.020

Figure supplement 1. Pharmacological inhibition of early ROS and NFkB signaling disrupted the formation of SHG and epithelial projections.

DOI: https://doi.org/10.7554/eLife.30703.018

Figure 4—video 1. Wound healing progresses following caudal fin amputation with the formation of epithelial projections by 24 hpw

DOI: https://doi.org/10.7554/eLife.30703.021

Figure 4—video 2. Wound healing projections are impaired in vimentin-deficient larvae

DOI: https://doi.org/10.7554/eLife.30703.022

Figure 4—video 3. Time-lapse microscopy showing that SHG fibers form projections that push out cells thus promoting forward extension of the

wound edge during tail regrowth.

DOI: https://doi.org/10.7554/eLife.30703.023

Figure 4—video 4. 3D reconstruction of time-lapse microscopy showing SHG fibers pushing epithelial cells forward promoting forward extension of

the wound edge during tail regrowth.

DOI: https://doi.org/10.7554/eLife.30703.024
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Figure 5. Extension of collagen fibers required vimentin. SHG microscopy showed the formation of SHG projections in (A) control, and that the

projections were impaired in the (D) vimentin morphants. To quantify this observation, Z projections of the region posterior to the notochord, at 24

hpw, were used for analysis. (B, E) The contour of the wound edge was traced and measured, indicated by the blue line. To assess differences in fiber

angle relative the wound edge of fibers, the SHG images were quantified using CurveAlign software, which identified fiber segments using curvelet

transformation and calculated the angle of each of these segments, within 60 microns of the wound edge, relative to the nearest wound edge (see

Methods for further details). The identified segments are illustrated in (C) (control) and (F) (vimentin morphant) as dots with small linear extensions, with

green being the segments within 60 microns of the wound edge and included in the analysis, as shown in corresponding compass plot, in which the

blue arrows indicate the number of segments at a given angle, with 90˚ being perpendicular and 0o being parallel to the wound edge. The red double

arrow and corresponding red numeral indicate the mean angle of the fiber segments for that caudal fin. There was a decrease in (G) wound contour

(reduced fiber extensions) in the vimentin morphants at 24 hpw compared to controls (p=0.0009; ctl MO n = 33 total larvae, vim MO n = 32 total larvae

over 4 replicates with 7 to 9 larvae per treatment per replicate; ctrl MO 95% CI = 280.88 to 305.18, vim MO 95% CI = 250.32 to 275.1). (H) The fiber

angle measurement indicated a significant decrease in orientation, with fibers exhibiting angles more parallel rather than perpendicular, to the wound

edge, in the vimentin morphants at 24 hpw (p=0.0003; ctl MO n = 30 total larvae, vim MO n = 32 total larvae over 4 replicates with 6 to 9 larvae per

treatment per replicate; ctl MO 95% CI = 66.12 to 71.36, vim MO 95% CI = 59.21 to 64.31). Scale bars represent 100 mm in A and D. ****p<0..0001,

error bars are standard deviation.

DOI: https://doi.org/10.7554/eLife.30703.025

The following video, source data, and figure supplement are available for figure 5:

Source data 1. Wound contour length in vimentin-deficient larvae.

DOI: https://doi.org/10.7554/eLife.30703.027

Source data 2. Fiber angle relative to wound edge in vimentin-deficient larvae.

Figure 5 continued on next page

LeBert et al. eLife 2018;7:e30703. DOI: https://doi.org/10.7554/eLife.30703 11 of 26

Research article Cell Biology

https://doi.org/10.7554/eLife.30703.025
https://doi.org/10.7554/eLife.30703.027
https://doi.org/10.7554/eLife.30703


the SHG images of the transected tails to determine the angle of the fibers relative to the wound

edge (Figure 5C and F). This analysis revealed that the population of fibers with vimentin depletion

tended to be less perpendicular overall than their control counterparts (Figure 5H, Figure 5—souce

data 2).

To determine if early ROS signaling also affected SHG projections we performed a similar analysis

in the presence and absence of DPI. Inhibition of early ROS signaling impaired SHG fiber contour

length at 24 hpw (Figure 5—figure supplement 1A) as compared to controls. A similar outcome

was observed with WA treatment (Figure 5—figure supplement 1B). Taken together, these findings

suggest that early wound signaling through ROS regulates vimentin expression and the subsequent

formation of fiber projections during wound healing. These fibers support the movement of epithe-

lial cell projections to promote wound edge progression during the process of wound healing.

Vimentin and early wound signaling is required for normal wound-
induced expression of col1a1 and col2a1b
The caudal fin of the larval zebrafish contains structural components identified as actinotrichia

(Dane and Tucker, 1985) that are composed of both col1a1 and col2a1b (Durán et al., 2011). To

confirm that the fibers we observed were composed of multiple types of collagen, we performed

SHG to visualize type I/III collagen (Campagnola et al., 2002; Mohler et al., 2003) and antibody

labeling of type II collagen (Col II) by immunofluorescence. Unwounded fins displayed a highly struc-

tured organization exhibiting both SHG and Col II antibody label (Figure 6A). Following amputation,

this ordered orientation of fibers was lost in regions adjacent to the amputated plane (Figure 6B),

however both SHG fibers and Col II labeling still associated in projections and disrupted fibers. Inter-

estingly, we observed strong Col II labeling at the tips of broken SHG fibers (Figure 6B). Future

studies will be necessary to determine the function of these Col II caps. Regardless, the findings sug-

gest that the SHG fibers associate with Col II fibers during repair.

Since previous studies suggested that vimentin regulates collagen accumulation after wounding

in mouse models (Cheng et al., 2016), we wanted to determine whether the effects of vimentin on

collagen fibers were due, at least in part, to changes in collagen expression. The major fibrillar colla-

gens of the developing caudal fin are col1a1 and col2a1b (Durán et al., 2011). Therefore, we per-

formed quantitative real-time polymerase chain reaction (qRT-PCR) to assess expression of col1a1

and col2a1b following caudal fin amputation. To accurately assess the expression at the site of the

wound, an approximately 500 mm length of fin was collected from amputated and age-matched

unwounded larvae (Figure 6C). At 24 hpw, we found an increase in col1a1 and col2a1b expression

in the fins of wounded larvae (Figure 6D, Figure 6—source data 1). In vitro studies in mice show

that expression of collagen I is regulated by vimentin via stabilization of collagen I mRNA

(Challa and Stefanovic, 2011). To determine if vimentin regulates collagen expression in our in vivo

model as well, we performed qRT-PCR in vimentin-deficient larvae. At 24 hpw, vimentin-deficient lar-

vae displayed a reduction in col1a1 and col2a1b expression at 24 hpw compared to controls

(Figure 6E, Figure 6—source data 2). Furthermore, pharmacological inhibition of early ROS

Figure 5 continued

DOI: https://doi.org/10.7554/eLife.30703.028

Figure supplement 1. Extension of the SHG fibers after wounding was inhibited by DPI and withaferin A (WA) treatment.

DOI: https://doi.org/10.7554/eLife.30703.026

Figure 5—video 1. SHG fibers of the caudal fin of an unwounded 3 dpf control larvae were closely aligned, radiating out to a relatively smooth distal

edge.

DOI: https://doi.org/10.7554/eLife.30703.029

Figure 5—video 2. SHG fibers of the caudal fin of an unwounded 3 dpf vimentin-depleted larva resembled the closely aligned fibers of the control lar-

vae, with a similarly smooth distal edge.

DOI: https://doi.org/10.7554/eLife.30703.030

Figure 5—video 3. SHG fibers of the caudal fin of a 1 dpw control larvae were misaligned, with projections forming at the wound edge.

DOI: https://doi.org/10.7554/eLife.30703.031

Figure 5—video 4. SHG fibers of the caudal fin of a 1 dpw vimentin-depleted larvae were misaligned, with fibers more parallel to the projections form-

ing at the wound edge.

DOI: https://doi.org/10.7554/eLife.30703.032
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Figure 6. Projections contained both SHG fibers and Type II Collagen, and the expression of collagen at wounds was regulated by vimentin and ROS.

(A) SHG and type II collagen fibers tightly associate in unwounded caudal fins and (B) within projections at 24 hpw as indicated by SHG imaging and

immunofluorescence as observed in two experiments. (C) Schematic of col1a1 and col2a1b expression analysis from the caudal fin. (D) col1a1 and

col2a1b expression increased in the wounded caudal fin by 24 hpw as assessed by qRT-PCR (col1a1 8 hpw p=0.0779, n = 5 replicates; 24 hpw

p=0.0153, n = 6 replicates; col2a1b 8 hpw p=0.9491, n = 3 replicates, 24 hpw p=0.0294, n = 5 replicates). (E) Morpholino knockdown of vimentin

expression reduced the expression of col1a1 and col2a1b in the wounded caudal fin compared to control (col1a1 p=0.004, n = 6 replicates; col2a1b

p=0.0404, n = 5 replicates). (F) Early inhibition of ROS using DPI significantly reduced expression of col1a1 and col2a1b at 24 hpw (col1a1 p=0.0464,

n = 4 replicates; col2a1b p=0.0126). *p<0.05. ****p<0.0001; error bars are standard deviation.

DOI: https://doi.org/10.7554/eLife.30703.033

The following source data and figure supplement are available for figure 6:

Source data 1. col1a1 and col2a1b expression following wounding.

Figure 6 continued on next page

LeBert et al. eLife 2018;7:e30703. DOI: https://doi.org/10.7554/eLife.30703 13 of 26

Research article Cell Biology

https://doi.org/10.7554/eLife.30703.033
https://doi.org/10.7554/eLife.30703


signaling was sufficient to cause a significant reduction in the rise of collagen expression following

amputation at 24 hpw (Figure 6F, Figure 6—source data 3). A similar result was also observed with

WA treatment (Figure 6—figure supplement 1A), which may be working either through NFkB inhi-

bition or by affecting vimentin directly.

In vitro analysis of vimentin regulation of collagen expression has suggested that vimentin regu-

lates col1 expression through an interaction with La Ribonucleoprotein Domain Family Member 6

(Larp6) (Challa and Stefanovic, 2011). To determine whether this interaction also occurred in our in

vivo model, we performed morpholino knockdown of larp6 (Figure 6—figure supplement 1B) fol-

lowed by qRT-PCR analysis at 24 hpw. We determined that Larp6-deficient larvae have reduced

col1a1 expression but no defect in col2a1b expression, consistent with the published in vitro data

(Figure 6—figure supplement 1C). Furthermore, Larp6-deficient larvae displayed a significant

defect in regenerate area at 3 dpw, although no defect in regenerate length (Figure 6—figure sup-

plement 1D), suggesting that vimentin is influencing wound healing through multiple pathways.

Disrupting collagen stability reduced projections and resulted in wound
healing defects
Our findings suggest that vimentin affects wound healing, at least in part through affecting collagen

fiber extensions and the formation of epithelial projections at the wound edge. To determine if per-

turbing collagen cross linking affects the formation of projections and wound repair, we used a phar-

macological inhibitor of lysyl oxidase, beta aminopropionitrile (BAPN) to inhibit collagen I cross-

linking and the formation of collagen I fibrils (Kagan and Li, 2003; Pinnell and Martin, 1968;

Tang et al., 1983; Wilmarth and Froines, 1992). Constant inhibition of lysyl oxidase throughout the

wound healing process caused a significant reduction in regeneration of the larval fin at 2 dpw (Fig-

ure 7—figure supplement 1A–C). Experiments to 3 dpw were not possible as the inhibitor caused

lethality in both wounded and un-wounded larvae between 4 and 5 dpf (data not shown). It is possi-

ble that the observed effects on regeneration were in part due to toxicity but it should be noted

that no effect on developmental fin length was observed at the concentration that impaired regener-

ation. We next performed SHG imaging to determine if a defect in collagen fiber projections was

also present. Interestingly, BAPN treatment caused an increase in contour length over control (Fig-

ure 7—figure supplement 1D,E). We believe this to be a consequence of the measurement tech-

nique, as the V-shaped fin in the BAPN treated larvae created more contour to measure. However,

the BAPN treatment caused a significant decrease in SHG fiber mean angle, consistent with vimen-

tin-deficient larvae (Figure 7—figure supplement 1F) and indicates a disruption in fiber organiza-

tion. Taken together, these findings suggest that collagen cross-linking mediates regeneration of the

fin and reorganization of collagen at the wound edge.

Burn injury impaired collagen projections and wound repair
To further study the connection between the formation of epithelial projections, collagen fiber

extensions and healing outcome, we utilized a new zebrafish burn wound assay. Using short bursts

of stimulation from a cauterizing wire, we generated a wound to the caudal fin epithelium that also

caused significant damage to the integrity of the SHG fibers near the wound edge (Figure 7A) such

that fibers were absent from the region adjacent to the wound. We performed SHG imaging on

phalloidin labeled samples 24 hr post burn (hpb) and again observed a striking absence of fibers in

the region near the wound edge in the burned caudal fins (Figure 7B). To determine if fins

experiencing a burn wound and subsequent loss of collagen fiber integrity along the wound edge

impacted healing dynamics, we compared burned caudal fins to age-matched, caudal fin-amputated

Figure 6 continued

DOI: https://doi.org/10.7554/eLife.30703.035

Source data 2. col1a1 and col2a1b expression following wounding in vimentin-deficient larvae.

DOI: https://doi.org/10.7554/eLife.30703.036

Source data 3. col1a1 and col2a1b expression following wounding with DPI treatment.

DOI: https://doi.org/10.7554/eLife.30703.037

Figure supplement 1. Larp6-deficient larvae displayed reduced wound induced collagen expression.

DOI: https://doi.org/10.7554/eLife.30703.034
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Figure 7. Burn wounding impaired the formation of epithelial and collagen projections and wound healing. (A) Burning of the caudal fin resulted in a

striking absence of SHG fibers near the wound edge. (B) In contrast to the amputation assay, a large gap between the edge of the burned fin and the

edge of the intact SHG fibers was observed at 24 hpw using a combination of SHG imaging and phalloidin staining, observed in two experiments. (C)

Schematic of burn wound experiments and analysis. (D) Burn wounds displayed a significant reduction in epithelial projections at 24 hpw compared to

transection wounds (p=0.0116; n = 3 replicate percentages: for amputation 108 larvae total and for burn 62 larvae total were scored over the three

replicates, with 17 to 24 larvae per treatment per replicate; amputation 95% CI = 48.66% to 98.67%, burn 95% Ci = 2.21% to 30.46%). (E) Healing area

was significantly reduced in the burn wounded larvae compared to amputated fins (p<0.0001, amputation n = 65 larvae, burn n = 58 larvae over three

replicates, with 16 to 22 larvae per treatment per replicate; amputation 95% CI = 1750.47 to 2166.58, burn 95% CI = 497.69 to 939.76). (F) vim+ cells are

present at the wound edge at 24 hpb, but the morphology is different compared to tail transection, as observed in two experiments. Scale bars

represent 100 mm. *p<0.05, ****p<0.0001, error bars are standard deviation.

DOI: https://doi.org/10.7554/eLife.30703.038

The following source data and figure supplement are available for figure 7:

Source data 1. Proportion of larvae exibiting visible projections with amputation or burn wound.

DOI: https://doi.org/10.7554/eLife.30703.040

Source data 2. Change in caudal fin regenerate area with amputation or burn wound.

DOI: https://doi.org/10.7554/eLife.30703.041

Figure supplement 1. Collagen disruption impaired regeneration following amputation of the caudal fin.

DOI: https://doi.org/10.7554/eLife.30703.039
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larvae (Figure 7C). Compared to amputated fins, burn wounds resulting in a loss of SHG fiber integ-

rity led to a significant reduction in the percentage of larvae displaying epithelial projections at 24

hpb (Figure 7D, Figure 7—source data 1). Furthermore, when we assessed the wound healing

(length and area) of individual larvae between 24 and 48 hr post burn or post amputation, the burn

wound had significant defects in healing as compared to tail transection (Figure 7E, Figure 7—

source data 2, Figure 7—figure supplement 1G). Interestingly, vim+ cells also appeared at the

wound edge in the burn wound, although the morphology of the cells were different compared to

tail transection (Figure 7F). It is particularly intriguing that a mechanical mode of collagen disruption

using the burn model had such a dramatic effect on collagen reorganization after injury and subse-

quent regeneration. Taken together, these data suggest that the formation of collagen projections

at the wound edge is necessary for the formation of epithelial extensions and efficient wound repair.

Discussion
In this study, we demonstrated that vimentin functions downstream of wound-induced redox signal-

ing and regulates collagen expression and reorganization during wound repair. Using live imaging,

our work uncovered a previously unknown mechanism whereby collagen projections at the wound

edge guide epithelial growth during fin regeneration, a process dependent on vimentin. In response

to wounding, cells at the wound edge turn on vimentin expression and are critical for an increase in

collagen expression and subsequent collagen reorganization at the wound that promotes proper tis-

sue repair. This finding suggests that vim+ cells affect the behavior of adjacent tissues by regulating

the scaffold needed for regenerative outgrowth through the polarized formation of epithelial mem-

brane extensions. Further, direct disruption of collagen organization by burn wound impairs the for-

mation of the projections and subsequent regrowth.

Our findings suggest that vim+ cells are critical to generate a wound microenvironment that opti-

mizes for efficient wound healing in zebrafish larvae. It was an unexpected finding that the vim+ cells

in the fin did not migrate to the wound margin, but rather remained stationary while a population of

cells at the wound turned on expression of vimentin. This population of cells was also not particularly

motile but appeared to be critical for regulating the collagen scaffold for epithelial projections that

ultimately led to efficient wound repair. The idea that vimentin regulates cell migration has been

long established, however, recent studies have also highlighted the role of vimentin in regulating

ECM production (Cheng et al., 2016; Darby et al., 2014; Eckes et al., 2000). Vimentin regulates

collagen mRNA through Larp6 (Challa and Stefanovic, 2011) and was also shown to regulate colla-

gen accumulation at the wound in mouse models (Cheng et al., 2016). Herein, we support, and

extend, the evidence of these previous studies by showing a critical role for vimentin in both colla-

gen expression and its dynamic reorganization during the repair process in zebrafish larvae.

Substantial evidence implicates injury-induced ROS as a key player in modulating tissue regenera-

tion. Prior studies indicate ROS regulates growth factor pathways such as Wnt/fgf signaling after

amputation in Xenopus tadpoles (Love et al., 2013). Our findings identify a new pathway through

which ROS can regulate regeneration through a population of vim+ cells at the wound margin. We

propose that ROS stimulates vimentin expression in a population of cells at the wound through its

effects on NFkB activity. NFkB is known to be a redox sensitive transcription factor (Nakajima and

Kitamura, 2013). Moreover, wound induced activation of DUOX1 and the generation of hydrogen

peroxide appears to be critical for the activation of NFkB reporter activity in zebrafish larvae

(de Oliveira et al., 2014). Taken together, these findings provide a link between ROS, NFkB and

the organization of collagen at the wound margin to promote healing. Moreover, these findings, in

combination with published work, suggest that redox signaling may have beneficial effects on the

ECM in the wound microenvironment to promote wound healing in zebrafish. It is interesting to

speculate that this may also be the case in humans, rather than just having the detrimental effects

suggested by some clinical studies (Dhall et al., 2014).

Long-term time-lapse imaging of SHG and epithelial cell dynamics demonstrated a close associa-

tion between the extending SHG filaments and the epithelial cell projections. This imaging supports

a role for these collagen projections in guiding the epithelial membrane extensions. As the collagen

projections progressed the epithelial cells showed close apposition to these ECM structures. In

future studies, it will be intriguing to investigate the adhesion sites that form in these projections

and if integrin-containing focal contact sites are critical for this guidance. The absence of projections
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when collagen cross-linking was impaired supports a key role for these structures in tissue guidance.

A caveat is that this treatment was ultimately toxic at later developmental stages, preventing longer

term analysis of these effects.

Further support for a role of these SHG fibers in tissue guidance and wound healing was based

on our findings with caudal fin burn wounds. The localized caudal fin burn wound led to a complete

loss in SHG signal in the wound margin. This burn wound response was surprisingly different from

the wound ECM response in the well-studied tail transection model and makes it a unique model for

future studies. This type of thermal damage abrogated epithelial projections and significantly

impaired regeneration and repair of the fin in the time frame examined. It is also relevant to high-

light that fin growth during normal development does not exhibit this type of collagen guidance,

but rather progresses as a smooth surface without projections. These findings highlight the key role

for collagen as a guidance cue that can promote wound healing in some contexts. In agreement

with this idea substantial clinical efforts have focused on utilizing collagen scaffoldings with promis-

ing results (Kim et al., 2016; Reilly et al., 2017; Tracy et al., 2016).

Taken together, our findings suggest that caudal fin transection induces a ROS mediated pro-

gram leading to a collagen matrix organization that guides epithelial behavior and wound repair.

Key to this work was the ability to live image the process of wound healing over extended durations.

Using a new reporter of vim+ mesenchymal cells our findings revealed that this cell population did

not migrate during wound healing but rather regulated the wound microenvironment to promote

efficient regeneration. To our knowledge, this was the first time that collagen structure using SHG

and epithelial cell membranes were imaged long term in vivo, allowing the identification of these

dynamic cell projections that occur during fin growth after injury. This type of study highlights the

power of zebrafish for imaging dynamic processes over time in vivo to uncover new mechanisms of

regulation. However, a caveat is that it remains unclear how these observations translate to mamma-

lian wound healing. As cutaneous wounds are a worldwide clinical problem, the findings suggest the

possibility that zebrafish may be a powerful tool to identify new mechanisms that regulate collagen

re-organization, guiding future development of therapeutics focused on optimal repair of different

types of wounds, including mechanical injury and burn wounds.

Materials and methods

Key resources table

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Genetic reagent (Danio Rerio) vimentin(vim) this paper crispr RNA targeting exon 1
(5’- CAAAGGAGCGTCCCGGGT – 3’)

Strain (D. Rerio) Tg(�2vim:EGFP) this paper

Chemical compound DPI Tocris 100 uM

Chemical compound BAPN Sigma 140 uM

Chemical compound Withferin A (WA) Santa Cruz 30 uM

Sequence-based reagent (D.Rerio) duox Niethammer et al. (2009) MO

Sequence-based reagent (D.Rerio) p53 MO

Sequence-based reagent (D.Rerio) vim1 this paper MO 80 uM
GTAATAGTGCCAGAACAGACCTTCTC

Sequence-based reagent (D.Rerio) vim2 this paper MO 110 uM
TCTTGAAGTCTGGAAATGAGATGCA

Sequence-based reagent (D.Rerio) larp6 MO 80 uM
GGGTGTTGGTCTTACCTTCTTGAA

Gene(D. Rerio) vimentin ENSDARG00000010008

Actin label phalloidin Invitrogen 1:100

Antibody col2a PAb, II-II6B3-s; DHSB 1:200

Strain (D. Rerio) krt4:EGFP-CAAX Krens et al. (2011)

Strain (D. Rerio) krt4:TdTomato Yoo et al. (2010)

Continued on next page
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Continued

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Sequence-based reagent (D.Rerio) vimentin this paper ISH probes
F: CTTCAACAATAACCCGCAAA
R:TAATACGACTCACTATAGGGGG
TCAGGTTTGGTCACTTCC

Sequence-based reagent (D.Rerio) col1a1 this paper RT primers
F:TGTCACTGAGGATGGTTGCAC
R:GCAGACGGGATGTTTTCGTTG

Sequence-based reagent (D.Rerio) col2a1b Durán et al. (2011) RT primers
F:AACAGAAGTGCTTCCGAACG
R:TGCTCTGGTTTCTCCCTCAT

Sequence-based reagent (D.Rerio) vimentin this paper RT primers
F:ACCGGGGAAAAGAGCAAAGT
R:CGAGCCAGAGAGGCGTTATC

Sequence-based reagent (D.Rerio) larp6 this paper RT primers
F:CAAACTGGGCTTCGTCAGTG
R:TCCGTTGTTGGAATCTCCGC

Recombinant DNA reagent(D.Rerio) tol2:krt4-hras-g(v)12-rfp Freisinger and Huttenlocher (2014)

Software CurveAlign Liu et al., 2017 https://loci.wisc.edu/
software/curvealign

Software FIJI, ImageJ Schindelin et al. (2012); https://fiji.sc/

Software Imaris Bitplane

Zebrafish maintenance and handling
All protocols using zebrafish in this study were approved by the University of Wisconsin-Madison

Research Animals Resource Center. Adult zebrafish and embryos were maintained as described pre-

viously (Yoo et al., 2010). For wounding assays, 2 or 3 day post-fertilization (dpf) larvae were anes-

thetized in E3 medium containing 0.2 mg/ml Tricaine (ethyl 3-aminobenzoate; Sigma-Aldrich). To

prevent pigment formation, some larvae were maintained in E3 medium containing 0.2 mM N-phen-

ylthiourea (Sigma-Aldrich). Adult AB strain fish, including transgenic zebrafish lines, Tg(krt4:egfp-

caax) (Krens et al., 2011), Tg(mpeg1:dendra2) (Harvie et al., 2013), Tg(krt4:tdtom), and the casper

mutant line (White et al., 2008) were utilized.

Generation of Tg(�2vim:egfp) transgenic zebrafish
The 2 kb upstream region of the putative translational start site of the zebrafish vimentin gene was

PCR amplified from BAC CH211-48N12 (BACPAC) using the following primers:

XhoI-Forward Primer (5’-GATCTCGAGTGTTGCCGTACGTTATTTGC-3’)

KpnI-Reverse Primer (5’-GATGGTACCCTAAATATCGCACCTGTCCA-3’)

The resulting 2 kb PCR product was gel purified, sequentially digested (XhoI and KpnI) and

cloned into an expression vector containing EGFP, minimal Tol2 elements for efficient integration

(Urasaki et al., 2006) and an SV40 polyadenylation sequence (Clontech Laboratories, Inc.). F0 larvae

were obtained by injecting 3 nL of 12.5 ng/mL DNA plasmid and 17.5 ng/mL in vitro transcribed

(Ambion) transposase mRNA into the cytoplasm of one-cell stage embryo. F0 larvae were raised to

breeding age and crossed to adult AB zebrafish. F2 founders were screened for EGFP expression

using a Zeiss Axio Zoom stereo microscope (EMS3/SyCoP3; Zeiss; Plan-NeoFluar Z objective).

Tg(�2vim:egfp) expression with EMT induction (HRasG12 and HRasV12

overexpression)
Either tol2:krt4-hras-g12-rfp or tol2:krt4-hras-v12-rfp was injected into Tg(�2vim:egfp) embryos at

the one cell stage (Freisinger and Huttenlocher, 2014). At 2 dpf, fluorescence images were

acquired with a confocal microscope (FluoView FV1000; Olympus) using a NA 0.75/20x objective.

Each fluorescence channel was acquired by sequential line scanning. Z series were acquired using

180–280 mm pinhole and 0.5–5 mm step sizes. Z series images were stacked or 3D reconstructed by

the FluoView FV1000 software.
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Whole mount In situ hybridization
For whole mount in situ hybridization, larvae were fixed in 4% paraformaldehyde in PBS and mRNA

was labeled by in situ hybridization as previously described (Long and Rebagliati, 2002). In short,

both Dig-labeled antisense probes were hybridized using a 55˚C hybridization temperature. Purple

color was developed with AP-conjugated anti-DIG and BM purple (Roche Applied Science). Reac-

tions were stopped in PBS. Imaging was performed with a Nikon SMZ-1500 stereoscopic zoom

microscope. The T7 promoter was attached 3’ of the coding sequence of primers to make the DNA

template for the vimentin probe. After sequence confirmation of the DNA template, labeled RNA

was transcribed with the use of T7 RNA polymerase (Ambion).

Oligo sequences used for PCR were as follows:

Vimentin F: 5’-CTTCAACAATAACCCGCAAA-3’

T7 Vimentin R: 5’-TAATACGACTCACTATAGGGGGTCAGGTTTGGTCACTTCC-3’

T7 Vimentin Sense F: 5’-TAATACGACTCACTATAGGGCTTCAACAATAACCCGCAAA-3’

Vimentin Sense R: 5’-GGTCAGGTTTGGTCACTTCC-3’

Regeneration assays and drug treatments
For regeneration assays, tail transection was performed on 2–2.5 dpf larvae using a surgical blade

(Feather, no. 10). Regenerate length was quantified by measuring the distance between the caudal

tip of the notochord and the caudal edge of the tail fin at 3 days post-wounding (dpw). Regenerate

area was measured using the FIJI (Schindelin et al., 2012) image analysis software to assess the total

fin area posterior to the notochord. Diphenyleneiodonium (DPI) (Tocris) (100 mM) or Withaferin A

(WA) (Santa Cruz) (30 mM) was applied for 1 hr before and after wounding. b-aminopropionitrile

(BAPN) (Sigma Aldrich), at a concentration of 140 mM, was maintained from the time of wounding

through the duration of the healing process assessed (2 dpw). The treatment was replenished at 24

hpw. Larvae were imaged at 2 or 3 dpw for regeneration studies on a Zeiss Zoomscope (EMS3/

SyCoP3; Zeiss; Plan-NeoFluar Z objective).

Live imaging in zWEDGI device
To minimize larval movement without impinging on caudal wound healing, larvae were mounted in a

zWEDGI device, as previously described (Huemer et al., 2017). Briefly, an anesthetized larva was

loaded into the zWEDGI chamber such that the head remained in the loading chamber while the tail

passed through the restraining tunnel and protruded into the wounding chamber. 1% low melting

point agarose (Sigma-Aldrich) in Tricaine/E3 was placed over the larva’s head, filling the loading

chamber and allowed to solidify with the larva in the proper position. Additional Tricaine/E3 was

added as needed. The tail, freely suspended in the Tricaine/E3 could then be imaged through the

cover glass bottomed dish, using either confocal or multiphoton SHG microscopy (described below).

For time-lapse imaging of projection formation, larvae were imaged every 15–20 min (depending on

slice number) with a confocal microscope (FluoView FV1000; Olympus) using a NA 0.75/20x objec-

tive from 20 mpw through 48 hpw. For time-lapse imaging of Tg(�2vim:egfp) following amputation,

images were acquired every 15–25 min for up to 70 hpw with a confocal microscope (FluoView

FV1000; Olympus) using a 20X NA 0.75 objective. At roughly 48 hpw, larvae were removed from the

zWEDGI device and re-inserted to maintain viability. Images were the processed into videos using

FIJI.

Quantification of EGFP intensity
To assess EGFP expression in the Tg(�2vim:egfp) line following amputation, quantification of EGFP

expression at the wound edge was performed in FIJI on Sum intensity z-projections. The mean fluo-

rescence intensity was measured in 100 micron long by 30 micron wide rectangular region aligned

along the wound edge and centered at the level of the notochord. In the same fin, as an assessment

of the background fluorescence, a 40 micron diameter circle was used to measured in an area of the

fin anterior to the wound edge and devoid of obvious cellular EGFP expression. The ratio of the

mean intensity at the wound edge to the mean intensity of the background in the fin was used as an

indicator of the proportional signal intensity of the wound edge above background.

LeBert et al. eLife 2018;7:e30703. DOI: https://doi.org/10.7554/eLife.30703 19 of 26

Research article Cell Biology

https://doi.org/10.7554/eLife.30703


Immunofluorescence and phalloidin label
Larvae at 2.5–3.5 dpf were fixed with 1.5% paraformaldehyde in 0.1 M Pipes (Sigma-Aldrich), 1.0

mM MgSO4 (Sigma-Aldrich), and 2 mM EGTA (Sigma-Aldrich) overnight at 4˚C and immunolabeled

as previously described (Yoo and Huttenlocher, 2011). Mouse anti-collagen type II (PAb, II-II6B3-s;

DHSB) was used at 1:200 in PBS. Dylight 488-conjugated donkey anti-mouse IgG antibodies (Jack-

son ImmunoResearch Laboratories, Inc.) were used as secondary antibodies at 1:250. Immunofluo-

rescence images were acquired with a confocal microscope (FluoView FV1000; Olympus) using a NA

0.75/20x objective. Each fluorescence channel was acquired by sequential line scanning. Z series

were acquired using 180–280 mm pinhole and 0.5–5 mm step sizes. Z series images were stacked or

3D reconstructed by the FluoView FV1000 software. For phalloidin staining of actin, larvae were

fixed in 4% PFA for a minimum of 4 hr at RT or O/N at 4˚C. Larvae were washed three times in PBS-

Tween20 (0.1%) and permeabilized for 1 hr at RT in PBS-Triton (2%). Larvae were then incubated O/

N at 4˚C in rhodamine-Phalloidin (Invitrogen) or Alexa Fluor 488-Phalloidin (Invitrogen) diluted 1 to

100 in PBS-Triton (2%). Imaging was performed after 3X washes in PBS-Tween (0.1%).

Multiphoton microscopy of second harmonic generation (SHG),
collagen type two antibody label and phalloidin label
Fixed caudal fin samples were prepared as previously described (LeBert et al., 2016; LeBert et al.,

2015) and imaged on a custom-built multiphoton microscope (Conklin et al., 2011; LeBert et al.,

2016) at the Laboratory for Optical and Computational Instrumentation using either a 40X long

working distance water immersion lens (1.2 NA, Nikon) for projection analyses or a 60X VC water

immersion lens (1.20 NA, Nikon) for antibody and phalloidin label experiments, with the laser

(Coherent Chameleon) tuned to 890 nm. Backwards SHG was collected using a 445/20 nm emission

filter (Semrock, Rochester NY) while the fluorescent signal from the collagen type two antibody label

was sequentially collected using a 520/35 nm emission filter (Semrock) and both signals were

detected using a H7422P-40 GaAsP Photomultiplier Tube (PMT) (Hamamatsu, Japan). Rhodamine-

phalloidin label was collected sequentially with the SHG images using a 542/27 nm bandpass emis-

sion filter (Semrock). Bright field images were simultaneously collected using a separate photodiode

based transmission detector (Bio-Rad, Hercules CA). Imaging parameters remained constant across

imaging days for a given experiment. For projection analyses data were collected as z-stacks with

optical sections two microns apart, at 512 � 512 resolution. For SHG with collagen type two anti-

body label, images were collected as z-stacks with optical sections one micron apart, at 1024 �

1024 resolution. For SHG with phalloidin label, images were collected as z-stacks with optical sec-

tions one micron apart, at 512 � 512 resolution. Z projections were generated using FIJI software

while 3D reconstructions and surface renderings were constructed using Imaris software (Bitplane,

Zurich, Switzerland).

Time-Lapse multiphoton microscopy of projections
To observe the dynamic interaction of SHG projection and epithelial cells, either casper mutants

(White et al., 2008) or Tg(krt4:egfp-caax)(Krens et al., 2011) larvae were wounded at 2 dpf and

mounted into zWEDGI device at 20 to 25 hpw. The wound region was imaged using multiphoton

microscopy, as described above. Images were collected using a 20X VC air objective (NA = 0.75,

Nikon) as z-stacks, two micron optical sections, approximately every 15 min for 20 to 23 hr at 512 �

512 resolution, with 890 nm excitation. SHG and bright field images were collected simultaneously

while the SHG and GFP z-stacks were collected sequentially, with the GFP emission collected using

a 520/35 emission filter (Semrock). Z projections were generated using FIJI software while 3D recon-

structions and surface renderings were constructed using Imaris software (Bitplane, Zurich,

Switzerland).

LC-PolScope microscopy
Fixed wounded caudal fin samples were prepared in a similar method as described above for SHG

microscopy in that tails were removed from the body and mounted in PBS in a glass bottomed imag-

ing dish. For LC-PolScope (Oldenbourg, 2005) imaging, a glass coverslip was placed over the open-

ing of the imaging dish, allowing the condenser to approach the sample without contacting the

mounting fluid while not compressing the sample. Images were collected using either a 20x
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(NA = 0.4) or a 40X (NA = 0.95) air objective (Nikon) on a Nikon Eclipse TE200 microscope with 549/

15 nm interference filter and a dry condenser (NA = 0.85). The camera was an ORCA-Flash4.0 V2

digital CMOS (Hamamatsu, Japan). The system was controlled using the OpenPolScope hardware

and software for birefringence imaging (openpolscope.org) (Keikhosravi et al., 2017).

Analysis of projections at the wound edge
Larvae were fixed at 1 dpw (3 dpf) as described above. Caudal fins were imaged using a Zeiss Zoom-

scope microscope using a Zeiss PlanNeoFluar Z 1X:0.25 FWD 56 mm lens. Images were then

assessed for the presence or absence of projections along the amputated plane.

Analysis of SHG projections at the wound edge
Because of the three dimensional nature of the caudal fin, for ease of analysis sum z-projections of

SHG images were generated in FIJI (Schindelin et al., 2012). In FIJI, a 512 pixel (215 micron) region,

at the wound edge distal to, and centered on, the tip of the notochord was used as the region of

interest (ROI). Contour length was determined by a freehand line tracing the detailed contour of the

fibers at the wound edge. Analysis of SHG fiber angle relative to the wound edge was conducted

using CurveAlign open source software (Bredfeldt et al., 2014); liu et al., 2007; Schneider et al.,

2013). SHG and bright field z-stacks were z-projected using FIJI (https://fiji.sc/), and the resulting 2D

images were used for analysis. Within the CurveAlign software, the wound edge was drawn on the

bright field image and then applied as a boundary for the CurveAlign analysis. In CurveAlign, curve-

lets fiber representation (CFR) mode was used to track individual fibers and each fiber was repre-

sented as a group of curvelets that have localized fiber orientation information. The angle of each

curvelet, relative to the wound boundary and within a 60 micron distance from that boundary, was

determined. The mean value of these angles was used as the overall orientation value for each tail.

RNA extraction for qRT-PCR
RNA was extracted from an approximately 500 mm length portion of the fin using the miRvana RNA

purification kit (Ambion). First strand cDNA synthesis was performed using super script III (Invitro-

gen). Resulting cDNA was diluted 1:10 in RNAse free water before qRT-PCR was performed in a

minimum of triplicate using Roche green master mix (Roche) for rps11, col1a1 and col2a2 from puri-

fied fin RNA. Fold change was determined using efficiency-corrected comparative quantitation. Data

were normalized to no wound age matched control samples. Primers:

Rps11:

F-5’-TAAGAAATGCCCCTTCACTG-3’ R-5’-GTCTCTTCTCAAAACGGTTG-3’

Col1a1:

F-5’-TGTCACTGAGGATGGTTGCAC-3’ R-5’-GCAGACGGGATGTTTTCGTTG-3’

Col2a1b (Durán et al., 2011):

F- 5’-AACAGAAGTGCTTCCGAACG-3’ R- 5’-TGCTCTGGTTTCTCCCTCAT-3’

Morpholino and RNA injections
Morpholino oligonucleotides (Gene Tools) were re-suspended in water to a stock concentration of

0.5 mM. Final morpholino concentrations were injected into 1–2 cell stage embryos in 3 nl amounts

and embryos were maintained at 28.5˚C. The DUOX morpholino was used as published (Yoo et al.,

2012). The vimentin and Larp6 splice blocking morpholinos used were as follows:

vim MO1 targeting Exon 1- Intron 1 (80 mm):

5’-GTAATAGTGCCAGAACAGACCTTCTC-3’

vim MO2 targeting Intron 1-Exon 2 (110 mm):

5’-TCTTGAAGTCTGGAAATGAGATGCA-3’

larp6 MO targeting Exon 2-Intron 2 (80 mm):

5’-GGGTGTTGGTCTTACCTTCTTGAA-3’ control MO

5’-CCTCTTACCTCAGTTACAATTTATA-3’

To analyze knockdowns, RT-PCR was performed on RNA isolated from single larvae at 2 dpf. The

following primers were used to assess knockdown:

Vim MO 1 and 2:

F-5’-ACCGGGGAAAAGAGCAAAGT-3’ R-5’-CGAGCCAGAGAGGCGTTATC-3’
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Larp6 MO:

F-5’-CAAACTGGGCTTCGTCAGTG-3’ R-5’-TCCGTTGTTGGAATCTCCGC-3’

Rescue experiments were performed using zebrafish vim RNA. In short, a gene block (IDT) for

vimentin was used as the template. The sequence was cloned into the PCS2 +vector from which in

vitro transcription was performed (Ambion). RNA was purified with the miRvana RNA purification kit

(Ambion). RNA was injected at 125 ng/ml at the 1–2 cell stage in 3 nl amounts.

Whole mount terminal deoxynucleotidyl transferased UTP Nick-End
labeling (TUNEL)
In brief, caudal fins from 2 dpf larvae were amputated and larvae were fixed in 4% PFA-PBS at 4˚C
overnight. The larvae were washed three times in PBS and stored overnight at �20˚C in MeOH. The

TUNEL labeling was performed as instructed by the manufacturer (Roche). Analysis was performed

using a Zeiss Zoomscope. Label bleaches quickly, so acquiring images was not always possible.

Vimentin CRISPR-Cas9
CRISPR guide RNA was designed using crisprscan: http://www.crisprscan.org

Exon 1 target sequence: 5’- CAAAGGAGCGTCCCGGGT – 3’

The pT7 gRNA vector (Addgene 46759) was digested with BsmBI, BglII and SalI (New England

Biolabs) and diluted to 5 ng/ml in ddH2O. Annealed oligos were ligated into the vector using quick

ligase (New England Biolabs). Single colonies were selected following transformation and digest

confirmed with BglII. Candidate plasmids were sequenced using M13 primer. Sequence confirmed

plasmids were linearized with BamHI (New England Biolabs) and in vitro transcribed using MAXI-

Script T7 kit (Ambion, Life Technologies). The resulting guide RNA was injected into the yolk at the

one cell stage at a volume of 2 nl. The final concentrations of the injection mixes were as follows:

gRNA at ~40 ng/ml and Cas9 protein (New England Biolabs) at ~55 ng/mL. To confirm, 2–5 dpf larval

zebrafish were individually digested overnight at room temperature in 100 ml DNAzol plus 200 mg/ml

proteinase K. PCR was performed on gDNA, diluted 1:10 to confirm CRISPR cuts with the following

primers for vim1c:

Vim1c Forward: 5’ – GACAAAGTGCGCTTTCTGGA–3’

Vim1c Reverse: 5’ – TCCACCTCCACTTTGCTCTT–3’

The F0 mosaic larvae amplicon was then TOPO-cloned and sequenced to verify the presence of

mutations. Clutches containing larvae positive for CRISPR cuts were grown to adulthood. At breed-

ing age, sperm or eggs were collected and gDNA was isolated as described above. The target

sequence was amplified by PCR and analyzed by Indel Detection by Amplicon Analysis (IDAA) as

previously described (Yang et al., 2015). Samples were analyzed using PeakScanner2.0 (Applied

Biosystems). Potential heterozygous mutants were then TOPO-cloned and sequenced to determine

the germline mutation. PCR primers for IDAA PCR amplification were as follows:

FAM Vim1c Forward:

5’-GTAAAACGACGGCCAGTGGCGCACGTCCTACAACTACA-3’

Vim1c Reverse: 5’-TCGATGTCCTCCCCTAGGTT-3’

Caudal fin burn
At 2 dpf zebrafish were placed into a 60 mm dish in E3 +0.2 mg/ml Tricaine. A fine tip cautery (BVI

Accu-Temp; cat #8442000) was used to burn the caudal fin. The cautery was turned on after being

placed into the water and was held on the posterior tip of the caudal fin for 1–2 s, until a slight bend

in the fin was apparent. After the burn, fish were placed into a clean milk-treated 35 mm petri dish

with fresh E3 and held in an incubator at 28.5 degrees. For regeneration assessment, embryos were

imaged at 1 and 2 dpw on a Zoomscope (EMS3/SyCoP3; Zeiss; Plan-NeoFluar Z objective). Images

were taken on an Axiocam MRm CCD camera using ZEN pro 2012 software (Zeiss).

Statistical analyses
Statistical parameters are included in the figure legends including the number of experimental repli-

cates and total ‘n’. For projection analyses or representative single experiment graphs, assuming a

Gaussian distribution of the overall population of values, p-values were determined by two-tailed

paired t test (two comparisons) or one-way analysis of variance (ANOVA) (multiple comparisons)
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comparing means of each sample (GraphPad Prism, GraphPad Software, San Diego CA). For analysis

of experiments consisting of values from multiple replicates, such as the contour length and fiber ori-

entation measurements, as well as relative intensity and regenerate area and length measurements,

Least Squared Means analysis in R (www.r-project.org) (Vincent et al., 2016) was performed on mul-

tiple replicate experiments, using Tukey method when comparing more than two treatments.
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