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Abstract As more people live longer, age-related neurodegenerative diseases are an

increasingly important societal health issue. Treatments targeting specific pathologies such as

amyloid beta in Alzheimer’s disease (AD) have not led to effective treatments, and there is

increasing evidence of a disconnect between traditional pathology and cognitive abilities with

advancing age, indicative of individual variation in resilience to pathology. Here, we generated a

comprehensive neuropathological, molecular, and transcriptomic characterization of hippocampus

and two regions cortex in 107 aged donors (median = 90) from the Adult Changes in Thought

(ACT) study as a freely-available resource (http://aging.brain-map.org/). We confirm established

associations between AD pathology and dementia, albeit with increased, presumably aging-related

variability, and identify sets of co-expressed genes correlated with pathological tau and

inflammation markers. Finally, we demonstrate a relationship between dementia and RNA quality,

and find common gene signatures, highlighting the importance of properly controlling for RNA

quality when studying dementia.

DOI: https://doi.org/10.7554/eLife.31126.001
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Introduction
The population of the United States is aging, with the fastest growth in the very oldest part of the

population where the number of nonagenarians and centenarians are expected to increase from 2

million to 10 million by 2050 (Corrada et al., 2012). This creates a significant public health challenge

due to the increased health issues related to age, most notably the debilitating effects of neurode-

generative diseases. Dementia is thought to affect 11% of the US population over the age of 65

overall, and the incidence of dementia onset roughly doubles every five years to ~40–60% after age

90 (Corrada et al., 2012; Gardner et al., 2013; Alzheimer’s Association, 2016). Approximately 2/3

of dementia cases are diagnosed as Alzheimer’s disease (AD), representing an estimated 13.8 million

cases by 2050 (Alzheimer’s Association, 2016), with most of the remaining cases diagnosed as vas-

cular dementia or mixed dementia from multiple etiologies. AD is characterized by stereotyped pro-

gressive neurodegeneration and accumulation of two misfolded proteins in brain regions important

for cognition and memory. Hyperphosphorylated tau is thought to form intracellular neurofibrillary

tangles (NFTs) initially in projection neurons of the entorhinal cortex, which then spread to the hip-

pocampus and neocortex (Braak and Braak, 1991). Similarly, Ab forms into extracellular plaques in

cortical and deep brain structures (Mirra et al., 1991). In addition, Lewy bodies can be identified in

cerebral cortex and deep nuclei as well as brainstem, and microvascular lesions can occur through-

out the brain. While diagnostic grading systems for these pathologies have been developed that var-

iably correlate with cognitive and behavioral function, there is no consensus on whether these

microscopically observed disease pathologies are causal or effects of other underlying processes.

Despite enormous efforts, no anti-tau or anti-amyloid therapies have been successful, and those lim-

ited treatment options targeting symptoms are based on acetylcholine or NMDA metabolism

(Allgaier and Allgaier, 2014).

To further complicated diagnosis and treatment, pathologies associated with dementia are wide-

spread in the aged brain even in the absence of dementia; for example, nearly half of non-demented

participants in the 90+ Autopsy Study met pathological criteria for AD (Corrada et al., 2012).

Among individuals with dementia, pathological phosphorylated tau (pTau) and amyloid beta (Ab)

pathology findings are actually lower in the 90+ year old age group than in the 60–80 year old group

(Haroutunian et al., 2008), whereas other neuropathological conditions such as Lewy bodies and

hippocampal sclerosis were only identified in individuals with dementia (Corrada et al., 2012).

Indeed, while the overall incidence of dementia increases with age, pathology becomes much more

variable, the relationship between disease pathologies and cognition weakens (Haroutunian et al.,

2008; Corrada et al., 2012), and the relevance of canonical risk factors for AD, including APOE

genotype, decreases with advancing age (Gardner et al., 2013). Identification of biological and

environmental factors critical to the etiology and progression of neurodegenerative processes will

be critical to developing preventive and therapeutic strategies in the aged brain.

Genome-wide gene expression analyses have been applied to identify molecular pathways

affected by aging and dementia. Transcriptomics shows robust and stereotyped gene expression

patterning in the brain, including spatial (brain region) (Hawrylycz et al., 2012) and temporal varia-

tion over the lifespan from development through adulthood into aging (Colantuoni et al., 2011)

(http://brainspan.org). The aged brain shows increased variability in this transcriptional patterning

compared to younger brains (Colantuoni et al., 2011). Comparing brains of people who died with a

clinical diagnosis of AD to brains of people who died with no dementia, a number of studies have

identified dysfunction of pathways and biological processes including synaptic transmission, energy

metabolism, inflammation, cytoskeletal dynamics, signal transduction, transcription factors, and cell

proliferation (Colangelo et al., 2002; Blalock et al., 2004; Webster et al., 2009; Miller et al.,

2013). Many of these same pathways show disrupted gene expression in older compared with youn-

ger individuals not diagnosed with dementia (Miller et al., 2008), although in many cases to a lesser

extent and in different brain regions (Avramopoulos et al., 2011). Since many of the gene expres-

sion studies to date focus on somewhat younger cohorts and have only limited information on dis-

ease pathologies, it is unclear whether robust relationships between gene expression and disease

pathology or cognition extend to older individuals.

To better understand the relationship between cognition, brain pathology and injury, and gene

expression in the aged brain, we created the Aging, Dementia, and Traumatic Brain Injury (TBI)

Study, which is a detailed neuropathological, molecular, and transcriptomic characterization of brains
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of 107 people from the Adult Changes in Thought (ACT) cohort. The ACT study was designed as a

population-based, prospective study of normal brain aging and dementia, and incorporates exten-

sive medical history and postmortem characterization (Kukull et al., 2002; Larson et al., 2006;

Crane et al., 2013). ACT participants entering the study are at least 65 years old and free of demen-

tia, and the median age at death of the cohort used for this study is 90. This freely available resource

(http://aging.brain-map.org/) presents a systematic and extensive dataset of study participant meta-

data, quantitative histology and protein measurements of neuropathology, and RNA sequencing

(RNA-seq) analysis of hippocampus and neocortex. Here we describe this resource and initial analy-

ses to understand features of the aged brain, the relationship between dementia and pathology,

and transcriptional signatures of dementia, neuropathology and aging. Code and additional files

required to reproduce all analyses are available in Github (https://github.com/AllenInstitute/aged-

brain; Miller, 2017; copy archived at https://github.com/elifesciences-publications/agedbrain).

Results

A multimodal atlas of aging and dementia
The Aging, Dementia, and TBI Study was initially designed to study the long term effects of mild-to-

moderate TBI, but we focus the current analysis on aging and dementia and present our results with

respect to TBI elsewhere. This study includes 55 participants of the ACT study self-reporting TBI

with loss of consciousness, along with 55 individuals matched for age, sex, and year of death who

did not report a TBI with loss of consciousness. Donors in the exposure cohort reported between 1–

3 lifetime TBIs with loss of consciousness ranging from <10 s to >1 hr (Figure 1A). Most participants

were male (63 males, 44 females), with a wide range of educational backgrounds, and quite old (77–

102 years old at time of death, median = 90), representing one of the oldest cohorts of its kind to

date. Around half of the donors were diagnosed with dementia, including 30 with AD, 12 with

dementia of multiple etiologies, and four with vascular dementia. More APOE e4-positive partici-

pants had dementia (65%) than APOEe4 negative participants (40%), consistent with the role of this

Figure 1. Experimental design and cohort characteristics. (A) Demographics for all 106 donors (after excluding one outlier; Materials and methods).

Histograms are shown for Age at death, Education (yrs), and Age at first TBI. All other metrics (except sex) are sorted from lowest to highest, with white

corresponding to none (or 0 or control), and red corresponding to the highest severity of the condition or pathology. (B) Summary of all data available

for each donor included in this study, including IHC on fresh and frozen tissue, RNA-seq analysis, and Luminex protein and isoprostane quantification.

(C) Examples of histology from fresh frozen temporal cortex of donor H14.09.075 using IHC for Ab6E10 and AT8 and ThioS labeling, showing severe Ab

and pTau pathology. Numbers indicate cortical layers. Descriptions of each metric (including abbreviations used) are included as a downloadable file

on http://aging.brain-map.org/download/index. See also Figure 1—figure supplements 1–2.

DOI: https://doi.org/10.7554/eLife.31126.002

The following figure supplements are available for figure 1:

Figure supplement 1. Example of FFPE pathology in donor H14.09.075.

DOI: https://doi.org/10.7554/eLife.31126.003

Figure supplement 2. Dominant gene expression signatures in RNA-Seq data are brain region and RIN.

DOI: https://doi.org/10.7554/eLife.31126.004
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gene as a primary genetic risk factor for AD. Deposition of the disease pathologies pTau, in the

form of NFTs (Braak stage), and Ab, in the form of neuritic plaque density (CERAD score), ranged

from absent through severe with relatively equal frequency (Figure 1A), and was generally higher in

donors with dementia compared to donors without dementia, as expected (Table 1). It should be

noted that this cohort is not representative of the ACT cohort as a whole (i.e., it is older, more

heavily male, and all deceased). Analyses can be extrapolated back to the entire ACT cohort using

weights (Haneuse et al., 2009) available on the online resource (http://aging.brain-map.org/down-

load/index); however, since we did not observe substantially different results using these weights

(data not shown) we choose not to use them in the analyses presented here.

For each donor, we collected tissue from four brain regions known to show neurodegeneration

and pathology as a result of AD and Lewy body disease (LBD; hippocampus and

temporal and parietal cortex) (Braak and Braak, 1991; McKeith et al., 1996; Hyman et al., 2012;

Montine et al., 2012), hippocampal sclerosis and phospho (p) TDP-43 pathology (hippocampus and

temporal cortex) (Nelson et al., 2016), chronic traumatic encephalopathy (CTE; temporal cortex and

parietal cortex and white matter) (McKee et al., 2016), and microvascular brain injury (multiple

regions) (Flanagan et al., 2016), and characterized each tissue in a highly standardized manner using

a broad set of informative data modalities (Figure 1B). We used immunohistochemistry (IHC) on

both fresh frozen and formalin fixed paraffin embedded (FFPE) tissue to stain and quantify proteins

marking dementia-related pathologic findings, including pTau, Ab, a-synuclein (Lewy bodies), and

pTDP-43, as well as microglia (IBA1) and astrocytes (GFAP). For example, donor H14.09.075 (78 year

old female with dementia) shows significant pathology of intracellular pTau (AT8) and extracellular

Ab plaques (Ab6E10 and ThioS) based on IHC of fresh frozen (Figure 1C) and fixed (Figure 1—fig-

ure supplement 1) tissue. Negligible amounts of a-synuclein were observed in these brain regions.

In addition, we used multiplexed Luminex assays for protein molecular quantification of tau and

pTau variants and Ab species, as well as for a-synuclein, inflammatory mediators (cytokines and che-

mokines), neurotrophic factors, and other targets. We determined free radical injury in parietal and

temporal cortex using GC/MS quantitation of isoprostanoids. We used in situ hybridization (ISH) to

detect expression for canonical marker genes for astrocytes (AQP4, GFAP), oligodendrocytes

(MOBP), and neuronal subtypes (RELN, SLC6A1, SLC17A7) to provide insight into the cellular

makeup of tissues used for neuropathological and transcriptomic analysis. Finally, we used RNA-Seq

to assess genome-wide expression levels of >50,000 coding and non-coding transcripts on macro-

dissected tissue sections from the same blocks used for fresh-frozen IHC and ISH. Brain region and

sample RIN represent the largest source of transcriptional variation (Figure 1—figure supplement

2), as shown previously (Preece and Cairns, 2003; Li et al., 2004; Tomita et al., 2004; Mexal et al.,

Table 1. Summary of demographics for donors with and without dementia.

P-values for upper seven and lower two metrics are uncorrected significance values from T-tests and

hypergeometric tests, respectively (*p<0.05 after Bonferroni correction for multiple comparisons).

Demographic summary includes 106 donors used in analysis (Materials and methods).

Category

Non-demented Demented

Mean SD Mean SD P-value

Age at death (yrs) 89 7 90 6 2.8E-01

Education (yrs) 15 3 14 3 4.9E-02

Number of TBIs 0.6 0.7 0.7 0.7 8.0E-01

Age at first TBI 23 31 24 32 8.2E-01

Braak stage 2.8 1.5 4.1 1.7 8.9E-05*

NIA Reagan 1.4 0.7 1.9 0.9 1.8E-03*

CERAD score 1.2 0.9 1.8 1.2 1.4E-02

Count Count P-value

Sex 20 F / 36 M 23 F / 27 M 1.0E-01

>0 APOE e4 alleles 47 No/7 Yes 32 No/13 Yes 2.1E-02

DOI: https://doi.org/10.7554/eLife.31126.005
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2006; Vawter et al., 2006; Hawrylycz et al., 2012); therefore, we treat RNA-seq data from each

brain region independently and correct for RIN. After excluding poor quality or otherwise unusable

tissue, data from 377 tissue blocks across four brain regions in 107 donors are available as part of

the resource.

Widespread tau and amyloid beta pathology in the aged brain
NFTs and amyloid plaques are thought to progress in a stereotyped anatomical pattern with

increased AD severity, but also appear to show a more general increased load in advanced aging

(Mungas et al., 2014). We assessed disease pathology in this resource using two approaches. First,

we used standard global metrics of disease severity by including NFT distribution (extent; i.e., Braak

stage) (Braak and Braak, 1991) and neuritic amyloid plaque cortical density (i.e., CERAD score)

(Mirra et al., 1991). Amyloid plaque distribution (Thal phase) (Thal et al., 2002) was not routinely

available in the ACT study until 2012 and therefore was not included in the analysis. In addition to

standard diagnostic neuropathological endpoints routinely assessed for each case, we used local

measurements in the blocks used for RNA-seq. These included soluble protein (Luminex) and histo-

logical (IHC) analysis on adjacent frozen sections, as well as more standard histology on FFPE tissue

sections from the same brain regions from the same or opposite hemisphere. To quantify pathology

load in IHC we calculated the fraction of labeled pixels in representative regions of interest for each

stain from each case, using a modification of a technique we previously developed for quantification

of ISH signal (Dang et al., 2007; Lein et al., 2007). Quantitative scores are consistent with qualita-

tive observations using this technique (Figure 2—figure supplement 1). Pathology quantifications

based on frozen and fixed tissue are highly correlated (r = 0.78 for pTau and r = 0.67 for Ab),

although in some cases the threshold and dynamic ranges showed some variation between the two

tissue preparations (Figure 2A and Figure 2—figure supplement 2). These quantified values also

show regional patterns consistent with Braak stage and CERAD scores (Figure 2—figure supple-

ment 3).

We observe a wide distribution of pTau and Ab pathology loads in this aged cohort ranging from

no pathology to extremely high (Figure 2A). As expected, pathological tau (AT8 IHC and pTau Lumi-

nex) tended to be higher in hippocampus while Ab (Ab6E10 IHC and Ab42 Luminex) is higher in cor-

tex, consistent with known AD pathological distributions and progression. Both pTau and Ab

pathologies (as measured by Braak stage and CERAD score) are found more widely distributed in

the brain among people who died at older ages compared to those who died at younger ages,

despite the relatively compressed age range of this cohort (Figure 2B). We find a statistically signifi-

cant relationship between dementia and pTau pathology, shown in Figure 2C as both an increased

anatomical distribution (Braak stage) and hippocampal pathology load based on multiple protein

quantification metrics (e.g., AT8 IHC). Despite the known differences in pathological signatures in

different disorders of dementia, we find the same results for all dementia cases and the subset of

cases diagnosed with probable or possible AD (Figure 2—figure supplement 4). This is likely due

to the predominance of AD cases in our cohort, particularly when including donors diagnosed with

dementia of multiple etiologies (only eight donors were diagnosed with vascular or other dementia

with no clinical diagnosis of AD). We also observed a correlation between pTau levels and age (but

not Ab) in donors without dementia (Figure 2—figure supplement 5). Phrased differently, there is a

significant difference in pTau pathology between donors with and without dementia in the younger

(<90 years) but not the older (90 + years) donors (Figure 2—figure supplement 6), consistent with a

general increase in pTau pathology with age (Haroutunian et al., 2008; Corrada et al., 2012).

These results provide support for the idea that different pathways and progressions may be involved

in pathological processes in the oldest old (i.e., individuals > 90 years old).

As part of the ACT Study, participants are assessed every other year for cognitive status using

the Cognitive Abilities Screening Instrument (CASI) to determine whether further assessment for

dementia is necessary (Teng et al., 1999). Tau is significantly correlated with an Item Response The-

ory version of CASI score (CASI_irt; Figure 2D) that accounts for the uneven distribution of CASI

item difficulty levels across the ability spectrum (Crane et al., 2008; Ehlenbach et al., 2010); further-

more, local metrics of pathology (AT8 IHC) associate more strongly with cognitive metrics than does

Braak stage, demonstrating the value of these quantitative metrics. Measures of Ab pathology show

nominally significant, but less robust associations with disease and cognitive status (Figure 2B–D,
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bottom row), aligning with previous reports that pTau may be a better indicator of AD severity than

Ab (Nelson et al., 2007).

While pTau and Ab pathologies were more common in people with dementia than cognitively

normal older adults, these pathologies were highly variable across this cohort among those with and

without dementia. For example, eight of the 32 donors (25%) with severe NFT pathology (Braak

stage >= 5) and six of the 25 donors (24%) with severe amyloid pathology (CERAD score = 3) did

not have dementia. This disconnect is dramatic in individual cases where extremely high or low pTau

(AT8) pathology is found in donors with and without dementia (Figure 3A). Similar cases are found

with Ab pathology in the cortex (Figure 3B). These findings are consistent with and extend previous

observations in the ACT cohort (Sonnen et al., 2007; Sonnen et al., 2011) and other community-

Figure 2. Amyloid beta and tau pathologies show a relationship with age, but with high variability. (A) Distributions of values for quantitative pathology

metrics, separated by brain region (colors in legend). Lines are density plots (y-axis) of distributions of each metric (specified in x-axis label), with

triangles indicating the average value. Note that several metrics have higher values in cortex than hippocampus, or vice versa. (B) Donors with higher

levels of tau pathology (defined as Braak stage; top row) and of Ab (defined as CERAD score; bottom row) were older on average (y-axis) than donors

with lower measures of pathology. (C) Donors with dementia have higher levels of tau and Ab pathology on average than donors without dementia, as

measured both by global metric (Braak stage, CERAD score; left column), and local IHC quantifications in hippocampus (AT8, Ab6E10; right column).

(D) Donors with higher levels of dementia pathology (x-axes; same metrics as in C) also tend to have lower cognitive scores (y-axes). For bar plots in B-

D, dots indicate specific donors, and boxes and whiskers represent 25%/75% and 5%/95%, respectively. For scatterplots, dots indicate donors, with

specific metrics shown on axes. See also Figure 2—figure supplements 1–6.

DOI: https://doi.org/10.7554/eLife.31126.006

The following figure supplements are available for figure 2:

Figure supplement 1. Quantitative measures of pTau and Ab generally match qualitative observations.

DOI: https://doi.org/10.7554/eLife.31126.007

Figure supplement 2. Quantitative measures of pTau and Ab are consistent between frozen and FFPE tissue.

DOI: https://doi.org/10.7554/eLife.31126.008

Figure supplement 3. Consistent measures of pathology across metrics.

DOI: https://doi.org/10.7554/eLife.31126.009

Figure supplement 4. Consistent measures of pathology for the subset of dementia donors with AD.

DOI: https://doi.org/10.7554/eLife.31126.010

Figure supplement 5. Tau pathology increases with age in hippocampi of non-demented donors.

DOI: https://doi.org/10.7554/eLife.31126.011

Figure supplement 6. Younger donors show more significant relationships between dementia status and pathology than older donors.

DOI: https://doi.org/10.7554/eLife.31126.012
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based samples (Sonnen et al., 2011), and suggest that some individuals with very AD pathology are

resilient to the effects of these pathologies, while others may develop dementia through other

mechanisms. Identifying gene expression signatures of resilience and tolerance will be an important

area of future study.

Global and regional molecular signatures of inflammation do not
correlate with age or dementia status
Inflammation occurs across a wide range of brain dysfunction, including acute TBI (Lu et al., 2009),

AD (Akiyama et al., 2000) and normal aging (Franceschi and Campisi, 2014), due at least in part to

disruption of the blood brain barrier (Popescu et al., 2009). We took several strategies to assess the

range of inflammation across this cohort and the extent to which inflammation is generalized or

shows regional specificity, including IHC for microglia (IBA1) and reactive and other types of astro-

cytes (GFAP), Luminex for cytokines and chemokines, and transcriptome data. Donors showed a con-

tinuous range of expression for IBA1 and GFAP, as well as inflammatory proteins based on Luminex

assays (Figure 4A). A small number of cases (2–5 per region) showed exceptionally high levels, but

the majority of cases showed continuous variation across a lower range (high cases excluded from

Figure 4A to better show the distribution of lower values). Interestingly, individual inflammatory pro-

teins showed regional specificity; for example, some proteins were enriched in hippocampus

Figure 3. Disconnect between pathology and dementia status. AT8 (tau; A) and Ab6E10 (Ab; B) IHC in high and low pathology donors with and without

dementia, demonstrating individual variation in the relationship between pathology and dementia status. AT8 images of tau pathology are from the

hippocampus (with matching Nissl-stained section below), while Ab6E10 images of Ab pathology are from the parietal cortex. CA1, CA3: hippocampal

subfields; DG: dentate gyrus. Numbers in B indicate cortical layers. Donor labels are indicated. Scale bar: 1 mm.

DOI: https://doi.org/10.7554/eLife.31126.013
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compared to cortex (TNF-A, IL-6, MIP-1A) or vice versa (MCP1, IL-7, RANTES) (Figure 4A). Regional

heterogeneity in microglial gene expression has been described elsewhere, such as enrichment in

TNF-A expression in rat hippocampus compared to cortex (Ren et al., 1999).

Despite this heterogeneity at the individual gene level, there is likely to be a generalized molecu-

lar pathway associated with inflammation that can be used to assess the degree of inflammation

across regions. Indeed, previous genome-wide transcriptome studies have identified gene networks

associated with microglia and inflammation in adult human brain (Oldham et al., 2008;

Hawrylycz et al., 2012; Miller et al., 2013; Zhang et al., 2013). To identify similar networks in the

current cohort we performed weighted gene co-expression network analysis (WGCNA) (Zhang and

Horvath, 2005; Langfelder and Horvath, 2008) separately in each brain region (Materials and

methods; see Figure 4—source data 1 for module assignments). This strategy identifies groups of

genes with similar expression patterns in an unbiased manner, whose functional significance can be

assigned by searching for overrepresented gene ontology (GO) terms. Here, we identified a network

of genes in each region highly overlapping for markers of the GO term ‘inflammatory response’

(Benjamini and Hochberg corrected p<10�13 in all regions; ToppGene) and for cell-type specific

Figure 4. Gene expression signatures of inflammation. (a) Distributions of values for glia and for each Luminex variable marking inflammation,

separated by brain region (labeling as in Figure 2A). (B) Correlation between gene metrics of inflammation (x-axis) and protein metrics of inflammation

(y-axis) in each brain region. Gene signatures are defined as the module eigengene (ME) of the module with the largest enrichment for the GO term

‘inflammatory response’, and protein metrics are the truncated quantifications of the Luminex protein most highly correlated with each ME. (C) Gene

(lower left) and protein (upper right) expression markers of inflammation are highly correlated between brain regions. Dots represent donors with x- and

y-axes corresponding to the gene and protein values in B. Pairwise brain region correlations are shown below in each box. Blue circle and orange box

correspond to donors in D. (D) IHC for IBA1 in a donor showing inflammation across regions (left, orange), and in a donor showing higher levels of

inflammatory marker genes in hippocampus than cortex (right; blue). See also Figure 4—source datas 1–3.

DOI: https://doi.org/10.7554/eLife.31126.014

The following source data is available for figure 4:

Source data 1. Module assignments and associated module eigengene correlations for each gene in the four regional WGCNA networks.

DOI: https://doi.org/10.7554/eLife.31126.015

Source data 2. Module annotation for cell types.

DOI: https://doi.org/10.7554/eLife.31126.016

Source data 3. Module comparison with demographic and pathology metrics.

DOI: https://doi.org/10.7554/eLife.31126.017
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markers of ‘microglia’ (Bonferroni corrected p<10�35 in all regions) (Zhang et al., 2014) or ‘Micro-

glial activation’ (Bonferroni corrected p<10�12 in all regions) (Mancarci et al., 2016) (Figure 4—

source data 2). As expected, these region-specific inflammation gene networks (HIP_M18,

TCx_M18, PCx_M18, FWM_M13) show highly significant gene overlap (hypergeometric test,

p<10�100), despite being generated independently.

Coordinated gene expression levels within gene networks can be summarized by a module eigen-

gene (ME). MEs of these gene networks are highly correlated with specific protein markers of inflam-

mation in specific regions (Figure 4B; Figure 4—source data 3; p<10�5 in all regions; BH-corrected

SVA p-values). For example, MIP-1a (gene CCL3) shows the best agreement between genes and

protein in hippocampus, and IL-6 shows the most consistent patterning in cortex (despite having

much higher protein levels in hippocampus). Furthermore, the well-known inflammatory gene

STAT3, which is activated in mouse brain after induction of inflammatory responses using lipopoly-

saccharide (LPS) (Beurel and Jope, 2009), is one of the genes most highly correlated with the ME in

each of these modules (Figure 4—source data 1). Using inflammation-related MEs as generalized

measures of inflammation, we find high correlations (0.69–0.83; p<10�12 for all comparisons)

between regions indicating that inflammation is largely a global phenomenon (Figure 4C, lower

panel). These correlations were significant but lower (0.45–0.88; p<4�10�4 for all comparisons)

when correlating individual protein markers across regions (Figure 4C, upper panels). We also find

some individual cases where inflammation shows regional specificity, both by MEs and using micro-

glial immunohistochemical labeling with IBA1 (Figure 4D). This is not unexepcted, as several dis-

eases show region-specific inflammatory responses: for example, the substantia nigra pars compacta

is particularly susceptible to neurodegeneration due to inflammation in Parkinson’s disease (Ji et al.,

2008).

None of these inflammation-related gene networks have ME expression significantly correlated

with any metrics for aging, cognition, dementia, or associated pathology in this cohort (Figure 4—

source data 3; p=1 for all comparisons), although a link between inflammation and AD has been

described in the literature (Akiyama et al., 2000). This discrepancy may be due to the advanced

age of this cohort, as there is currently no consensus on the relationship between inflammation and

dementia in the oldest old (Gardner et al., 2013).

Transcriptional markers of dementia-related pathology
Gene expression studies have identified dysfunction related to dementia phenotypes in a variety of

biological pathways including synaptic transmission, energy metabolism, inflammation, myelin-axon

interactions, protein misfolding, and transcription factors (Colangelo et al., 2002; Blalock et al.,

2004; Webster et al., 2009; Miller et al., 2013), although most of these studies evaluated data

from somewhat younger cohorts. In contrast with previous transcriptional studies of AD, we did not

find any genes with significant differential expression between control and dementia (or AD) cases in

any brain region (SVA, p<0.05, Bonferroni corrected; Figure 5A and Figure 5—figure supplement

1). We performed several sensitivity analyses that reinforced our conclusion that methodological

details were not driving this result (see Materials and methods for details). In addition, none of the

gene network MEs described above distinguish dementia cases from controls (Figure 4—source

data 3).

We extended our analysis to instead search for MEs significantly associated with transcriptional

correlates of dementia-related pathologies. No MEs corresponded to any measure of Ab or a-synu-

clein pathology, or to age. While the lack of gene expression differences in the brain with age may

seem surprising, this result is in line with previous studies that have found a much larger difference

in gene expression during middle age (approximately 40–70) than in aged adults (Lu et al., 2004;

Berchtold et al., 2008). However, one gene network (M16, consisting of 660 genes) was significantly

correlated with pTau burden in hippocampus (AT8 IHC levels; Figure 5B), and showed similar but

not statistically significant trends to other pTau metrics (Figure 4—source data 3). This set of genes

is expressed predominately in astrocytes (Bonferroni corrected p<10�7) and microglia (p<10�15),

potentially marking increased gliosis in hippocampus with increasing tau pathology (Figure 4—

source data 2); it should be noted that this is not the same gene module associated with inflamma-

tion and activated microglia discussed above. Interestingly, several of the hub genes of M16 (genes

most highly correlated to the module eigengene) are known to be involved in Ab processing. For

example, ITPKB shows higher expression in human AD than control brain and increases apoptosis
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and Ab peptide production in mouse Neuro-2a neuroblastoma cells (Stygelbout et al., 2014). Simi-

larly, SNX33 increased cleavage of APP alpha-secretase in cultured cells at the cell surface

(Schöbel et al., 2008), while LRP10 overexpression diverts accumulation of mature APP from the cell

surface to the Golgi apparatus, reducing Ab production (Brodeur et al., 2012). Why genes associ-

ated with tau metrics would be related to Ab processing is unclear, but it provides an interesting link

between these two pathologies.

Quantifications of IHC for GFAP protein are correlated with pTau burden in temporal cortex, sup-

porting a relationship between tau pathology and reactive astrocytes in this region (Figure 5C). Sev-

eral other modules show significant enrichment for markers of astrocytes, neurons, oligodendrocytes

and microglia (Figure 4—source data 2), but the MEs of these modules are not associated with

Figure 5. Gene expression signatures of dementia and related pathology. (A) No significant gene expression differences between donors with and

without dementia in hippocampus. The histogram shows the distribution of log2(fold difference) expression levels (x-axis) between control and

dementia donors. Numbers indicate how many genes have a fold change > 1.3 (red lines) and p<0.05. (B) Significant correlation between the ME of

M16 (y-axis) and measures of tau (AT8 IHC) in hippocampus. (C) Significant correlation between protein quantification of IHC for GFAP (y-axis) and

measures of pTau (AT8 IHC) in temporal cortex. (D) Genes show comparable relationships with tau in this and an earlier study of dementia. X-axis

shows the correlation between gene expression and AT8 IHC in this study. Y-axis shows the correlation between quantifications of NFTs and gene

expression in (Blalock et al., 2004). Dots represent genes, with black dots corresponding to genes in module M16. See also Figure 5—figure

supplement 1.

DOI: https://doi.org/10.7554/eLife.31126.018

The following figure supplement is available for figure 5:

Figure supplement 1. No significant gene expression differences between donors with and without AD diagnosis in RIN-corrected data.

DOI: https://doi.org/10.7554/eLife.31126.019
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dementia or any related pathology (Figure 4—source data 3), in contrast to previously published

studies (e.g., [Miller et al., 2013]).

To assess whether the gene-pTau trends observed here match prior reports, we calculated the

correlation between each gene and AT8 IHC levels, and compared these values with correlations

between gene expression and reported levels of pTau in the hippocampal CA1 region

(Blalock et al., 2004). The two studies agree well, with a correlation over all genes of R = 0.49

(Figure 5D, genes in M16 in black). Together, these results recapitulate the reported relationship

between astrocyte and microglia-related gene expression and pTau pathology in hippocampus,

but fail to identify genes related to dementia status.

Dementia-related gene expression associated with variation in RNA
quality
Our failure to identify genes significantly related to dementia status was surprising, given that many

studies have shown differential gene expression with AD (Colangelo et al., 2002; Blalock et al.,

2004; Liang et al., 2008; Webster et al., 2009; Avramopoulos et al., 2011; Miller et al., 2013;

Zhang et al., 2013; De Jager et al., 2014; Satoh et al., 2014; Allen et al., 2016). However, we

found an inconsistency in how these studies normalized for tissue quality as measured by the pH or

RIN scores of the tissues analyzed; in fact, only a few of them corrected for RIN at all. Repeating our

analysis without accounting for RIN, we find a large fraction of genes (11%) to be differentially

expressed between dementia cases and controls in at least one region (B & H corrected p<0.05,

log2(FC) >1.3; Figure 6—source data 1), leading to apparently larger fold changes between condi-

tions (Figure 6A; compare with Figure 5A). We once again find very few genes significantly associ-

ated with dementia when we perform this analysis on a subset of 70 donors in our cohort matched

for RIN, sex, and dementia status (Materials and methods; two or fewer in each region). This result

suggested a direct link between RNA quality and dementia status. Indeed, we find a substantially

lower RNA quality in dementia cases vs. controls in all four brain regions (Figure 6B; Figure 6—fig-

ure supplement 1B), and this difference was not related to the time between death and autopsy

(PMI <8 hr, all donors).

We next repeated this comparison on data from four additional population-based cohorts as part

of the AMP-AD knowledge portal (https://www.synapse.org/ampad; (Bennett et al., 2012a;

Bennett et al., 2012b; Allen et al., 2016)), and compared these with previous reports

(Colangelo et al., 2002; Preece and Cairns, 2003; Durrenberger et al., 2010; Zhang et al., 2014).

In five of the eight additional data sets assayed, donors with AD had significantly lower RIN than

donors without dementia (Table 2). Donors with AD had significantly higher RNA quality in only one

study (Allen et al., 2016). Thus the link between dementia status and RNA-quality is a broader phe-

nomenon that is not unique to the ACT cohort, but is also not ubiquitous.

To assess the impact of RNA quality on gene expression levels, we compared gene expression to

RIN. We find that 47% of expressed genes are correlated with RIN (Benjamini and Hochberg cor-

rected p<0.05, RIN correlation >0.5; Figure 6C; Figure 6—source data 2)—in some cases account-

ing for 80% of the variation in gene expression—and that failure to account for RNA quality reduces

our ability to separate samples by brain region (Figure 6—figure supplement 2). This result mirrors

other studies that have shown RNA quality dramatically impacts measured gene expression levels

(Preece and Cairns, 2003; Li et al., 2004; Tomita et al., 2004; Mexal et al., 2006; Vawter et al.,

2006; Atz et al., 2007). However, we extend this result to show that the set of genes positively cor-

related with RIN are enriched for pathways found to be disrupted with AD in prior gene expression

studies (Colangelo et al., 2002; Blalock et al., 2004; Webster et al., 2009; Miller et al., 2013),

including the GO terms ‘mitochondrion organization’ and ‘RNA processing’ (Benjamini and Hoch-

berg corrected p<10�30; Figure 6—source data 3). But is the entire relationship of genes to demen-

tia a function of RIN? To test this, we rank ordered genes by fold change difference between

controls and dementia cases with and without correcting for RIN. In all regions, we found a signifi-

cant correlation (R ~ 0.8) between RIN-corrected and uncorrected rankings (Figure 6D), indicating

that much of the variance is not explained by RIN.

These results suggest that differential gene expression in neurodegeneration may include both

the contributions of chronic conditions (e.g., dementia) and acute conditions (e.g., agonal stress),

and/or other factors impacting RNA quality. To test whether previously published studies of AD

could show similar effects, we compared gene measures of RNA quality (RIN) and of dementia status
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Figure 6. Differences in RNA quality between dementia and controls greatly impact gene expression results. (A) Gene expression differences between

donors with and without dementia in uncorrected data. Histograms show the distribution of log2(fold difference) expression levels (x-axis) between

control and dementia donors in two brain regions (hippocampus, left; temporal cortex, right). Numbers indicate how many genes have a fold

change > 1.3 (red lines) and p<0.05. (B) RNA quality in donors with dementia (Dem.; right bars) is significantly lower than in non-demented controls (CT;

left bars) in all four brain regions. Y-axes are RIN values. Plots as in Figure 2B–D. (C) Gene expression levels for many genes are highly correlated with

RIN, with more showing lower expression with lower RNA quality (positive values) than with higher RNA quality (negative values). Histograms show the

distribution of RIN correlations in two brain regions. Numbers indicate how many genes have R > 0.5 (red lines) and p<0.05. (D) Rank order of fold

differences between controls and dementia cases is largely unchanged after controlling for RNA quality. Ranked fold differences on the x- and y-axes

correspond to Figure 6A and Figure 5A, respectively. Dots indicate genes and are color-coded by density. (E) Genes with higher or lower expression

levels in people with dementia compared with cognitively normal older adults from 12 brain regions in eight previous studies (rows) are related to

Figure 6 continued on next page
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(before and after accounting for RIN) in our data set with AD-related genes from nine previous stud-

ies (Figure 6—source datas 4–5) (Colangelo et al., 2002; Blalock et al., 2004; Liang et al., 2008;

Webster et al., 2009; Avramopoulos et al., 2011; Miller et al., 2013; Zhang et al., 2013;

Satoh et al., 2014; Allen et al., 2016). First and foremost, we found that many of the genes most

highly associated with dementia status were shared between studies, whether we controlled for RIN

or not (Figure 6E, green and blue), confirming previous reports. However, genes that had lower lev-

els of expression among people with AD tended to also have lower expression in donors with low

Figure 6 continued

dementia diagnosis and RNA quality in this study. Horizontal tics show the 25th percentile, median, and 75th percentile rank of the indicated dementia-

related list in our current data set. Gene expression levels from genes lower in low RIN samples are also lower in AD samples from the comparison

studies (red, solid lines are shifted towards 1), while gene expression levels from genes higher in high RIN samples are also higher in AD samples from

the comparison studies (red, dotted lines are shifted towards 0). Gene expression results accounting for RIN (green) generally agree less well between

studies than results not accounting for RIN (blue). See also Figure 6—figure supplements 1–2 and Figure 6—source datas 1–6.

DOI: https://doi.org/10.7554/eLife.31126.020

The following source data and figure supplements are available for figure 6:

Source data 1. Log2 fold changes between AD vs. control and dementia vs. control for each gene in all four brain regions, along with associated SVA

p-values.

DOI: https://doi.org/10.7554/eLife.31126.023

Source data 2. Correlations between each gene and RNA quality (RIN) with associated SVA p-values in all four brain regions.

DOI: https://doi.org/10.7554/eLife.31126.024

Source data 3. Significant GO terms for genes increasing or decreasing expression with decreasing RNA quality.

DOI: https://doi.org/10.7554/eLife.31126.025

Source data 4. Description of nine previous studies comparing AD vs. control, including details of how gene lists used in paper were derived.

DOI: https://doi.org/10.7554/eLife.31126.026

Source data 5. List of 26 gene lists from the nine above publications that are used in Figure 6E.

DOI: https://doi.org/10.7554/eLife.31126.027

Source data 6. Significance of association between each of the first 25 principal components and every assessed metric in the un-normalized and RIN-

normalized data.

DOI: https://doi.org/10.7554/eLife.31126.028

Figure supplement 1. Differences in RNA quality between AD and controls greatly impact gene expression results.

DOI: https://doi.org/10.7554/eLife.31126.021

Figure supplement 2. Decreased separation of brain region in principal component space without RIN correction.

DOI: https://doi.org/10.7554/eLife.31126.022

Table 2. RNA quality assessment for donors with and without AD in multiple studies.

Data set Brain region
Count
(Control|AD) RIN/pH in control RIN/pH in AD P-value

ACT cohort (current data set) TCx 50|29 6.87 ± 0.92 6.18 ± 1.27 p=1.48�10�2

ROS (Bennett et al., 2012a) TCx 107|136 7.21 ± 1.01 7.06 ± 0.95 p=0.23 (ns)

MAP (Bennett et al., 2012b) TCx 94|120 7.25 ± 1.07 6.79 ± 0.96 p=1.18�10�3

MSBB * BA36 98|169 6.51 ± 1.30 5.86 ± 1.59 p=1.10�10�3

Mayo Study (Allen et al., 2016) † TCx 31|82 7.64 ± 1.21 8.59 ± 0.55 p=1.98�10�4

(Colangelo et al., 2002) CA1 6|6 6.75 ± 0.1 6.76 ± 0.1 ns

(Preece and Cairns, 2003) $ Cortex 81|90 ~6.5 ~6.4 p<10�2

(Durrenberger et al., 2010) ‡,$ Brain 72|12 ~7.1 ~5.9 p<10�4

(Zhang et al., 2014) PFc 101|129 7.31 ± 0.47
6.55 ± 0.34

7.12 ± 0.56
6.37 ± 0.32

p=6.78�10�3

p=1.22�10�4

*=we are defining AD as CDR >1 in this data set, but note that the result holds for other cutoffs, †=only control donors from the Mayo Brain Bank Dickson

were considered, ‡=Tissue collected from multiple brain regions and multiple brain banks. RNA quality is assessed with either RIN (black text) or pH (blue

text) in each study. $=RIN/pH values are estimated from plots. Calculated p-values in this table are two tailed student t-tests uncorrected for multiple com-

parisons, and p-values from previous studies are as reported.

DOI: https://doi.org/10.7554/eLife.31126.029
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RNA quality (Figure 6E, red), in some cases agreeing better with RIN reported herein than with

dementia status reported herein. The converse was also true, although the effect was less robust.

Furthermore, in nearly every case, our dementia-related genes identified without accounting for RIN

agree better with gene lists from previous studies than those identified when we did account for

RIN. The same results hold when we repeat this entire analysis considering only the subset of

dementia cases with AD (Figure 6—figure supplement 1). These results, which were consistent

across studies implementing a wide variety of experimental designs and strategies for controlling for

RNA quality (or not), demonstrate a strong relationship between transcriptional changes in neurode-

generative disease and RNA quality, although it is important to note that at least two of these stud-

ies (Zhang et al., 2013; Allen et al., 2016) identified several hundred dementia-related genes after

controlling for RIN, indicating that relative contribution of neurodegenerative disease and RNA qual-

ity to gene expression may differ between studies. Finally, we note that all our results hold when

considering the top 25 principal components instead of differential genes or WGCNA modules (Fig-

ure 6—source data 6). For example, exactly one PC (PC1 or PC2 for all regions) is significantly asso-

ciated with dementia status in the unnormalized data, while none are associated with dementia in

the RIN-normalized data.

Discussion
The Aging, Dementia and TBI Study aims to provide the research community with an open access

multimodal resource for studying relationships between cognition, neurodegeneration, inflamma-

tion, and injury in the aged brain (http://aging.brain-map.org/). This resource includes gene expres-

sion, protein quantification of neuropathology and inflammatory molecules, and histology on

markers for cell type and neuropathology in four brain regions from 107 well-characterized donors

from the ACT cohort. This unusually broad and systematic study allows a variety of analyses to corre-

late these features and identify associated molecular pathways. We confirm known associations

between pTau and Ab pathologies and dementia, and identify sets of co-expressed genes correlated

with tau pathology and inflammation. The advanced age of the ACT cohort presented much higher

variability than is seen in somewhat younger cohorts, which may have led to our difficulties in identi-

fying significant gene signatures associated with aging, dementia and neuropathological markers,

since these relationships appear to be stronger in younger individuals. Furthermore, we confirm a

systemic relationship between dementia and RNA quality, showing a strong overlap between genes

whose levels are affected by RNA quality and genes previously reported to be associated with AD.

This study illustrates the challenges posed by the high degree of biological variation in the aged

brain, and provides a resource that will facilitate future efforts to understand the nature of this

variation.

We find a relationship between pTau (and to a lesser extent Ab) neuropathology and cognitive

status, based both on global pathology metrics (e.g. Braak score) and local hippocampal and cortical

quantification of pathological tau (e.g., AT8 IHC), even in patients older than 90 years old. Interest-

ingly, the strongest correlations between tau pathology and cognitive scores, dementia status and

gene expression were observed with pTau protein quantification based on automatic image analysis

of IHC data. This strategy for image quantification, which has been successfully applied at a large

scale to study gene expression patterns in mouse (Lein et al., 2007), has the potential to provide an

unbiased and informative method for studying pathology. A prior study of 390 donors also found a

strong relationship between antemortem global cognitive ability (MMSE score) and counts of NFTs,

and a weaker correlation with neuritic plaques (Nelson et al., 2007). However, the connection

between neuropathology and cognitive status was weaker in the current cohort and there were

many cases with a striking disconnect. For example, 25% of donors with Braak stage >= 5 did not

have dementia. A major reason for the weaker relationship between pTau pathology and cognitive

status appears to be higher levels of tau pathology associated with advanced age that is not related

to dementia (Haroutunian et al., 2008; Corrada et al., 2012). This finding could be related to pri-

mary age-related tauopathy (PART), a recently described age-associated pathologic entity, usually in

non-demented individuals, characterized by pTau-related neurofibrillary degeneration in the absence

or paucity of Ab pathology (Crary et al., 2014). As a new entity, PART has not been widely assessed

in the ACT study autopsy cohort, and the co-existence of PART and AD, particularly in the oldest

old, is poorly characterized, although there is some evidence of co-occurrence of these diseases
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(Mungas et al., 2014). The influence of mixed pathologies on cognition is poorly understood and an

area of active investigation. The relationship between tau pathology and dementia status in our

study was not observed in donors > 90 years old, highlighting the complexities of neuropathological

processes in the oldest old and demonstrating resilience to the effects of pathology (‘tolerance’) in a

substantial subset of aged individuals.

Neuroinflammation, predominantly in the form of innate immune activation via microglia, has

been reported to occur across normal aging and in many neurodegenerative disorders, including AD

(Akiyama et al., 2000; Franceschi and Campisi, 2014). Here, we took advantage of the wide range

of molecular analyses to search for such correlations in the aged brain. A challenge we found is that

individual protein markers of inflammatory pathways behave differently in different structures and

differently from each other (Ren et al., 1999; Ji et al., 2008; Wang et al., 2015). To identify more

global signatures of inflammatory pathways we used gene network analysis to identify sets of co-

expressed genes enriched for inflammatory genes. This approach identified inflammatory gene net-

works in each brain region that were correlated with the most informative individual protein markers

in those regions. The gene expression levels of these networks were highly correlated across brain

regions, indicating that neuroinflammation is in many cases largely a global phenomenon across

brain regions, although there were individuals with regional enrichment of inflammatory signatures.

Neither the individual inflammatory markers nor gene expression levels of the inflammatory gene

network correlated with either aging or dementia status.

We identified important variation in the RNA quality of tissues analyzed. Surprisingly, we found a

statistically significant relationship between RNA quality and dementia status in donors from several

independent cohorts. Why might RNA quality vary with dementia status? One possibility is that RNA

quality reflects antemortem conditions, and control donors are more likely to expire from sudden,

unexpected causes than donors with neurodegenerative conditions requiring long-term care

(Monoranu et al., 2009; Mills et al., 2014). A number of studies have shown that gene expression

levels can vary dramatically based on end-of-life conditions (Li et al., 2004; Tomita et al., 2004;

Atz et al., 2007; Monoranu et al., 2009; Durrenberger et al., 2010). For example, Li and col-

leagues used unbiased clustering of brain tissue from multiple regions to group donors into two

types differing by brain pH and agonal duration (Li et al., 2004). Remarkably, 30–50% of all genes

differentiated these two types, including many markers for oxidative stress which have lower expres-

sion in donors with lower RNA quality (Vawter et al., 2006). We find similar results: 47% of

expressed genes are correlated with RIN, including many in mitochondrial-related pathways whose

levels decrease with RIN, although information regarding end of life conditions is unavailable for

ACT cohort donors.

Relationships between gene expression, RNA quality, and agonal state markedly complicate stud-

ies of neurodegenerative diseases (Monoranu et al., 2009; Mills et al., 2014). Here we find a strong

overlap between signatures of AD and RNA quality, with most (but not all) of the transcriptional vari-

ability accounted for by RIN rather than disease status. To the best of our knowledge, this is the first

study directly comparing genes associated with RNA quality and dementia status. Furthermore, we

find that nearly all reported AD gene lists (regardless of treatment for RNA quality) are strongly

enriched for gene expression in genes associated with both RIN and AD status in this study, and

that accounting for RNA quality in this study markedly decreases the agreement between studies.

Importantly, all previous studies included in our analysis that did control for RNA-quality identified

many dementia-associated genes, suggesting that the relative impact of RNA-quality in our data set

may be exaggerated. Nevertheless, these results suggest a potential convergence of gene pathways

involved in agonal state and dementia, and highlight the importance of carefully accounting for tech-

nical variables—particularly RNA quality—when studying neurodegenerative diseases.

Materials and methods

Participant information and consent
All work was performed according to guidelines for the research use of human brain tissue. Partici-

pants signed informed consent forms at enrollment that includes permission for sharing de-identified

data, and signed additional consent forms for the autopsy that included data and tissue sharing.

Autopsy consents were updated for all subjects with the legal next of kin after death. All study
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procedures were reviewed and approved by Institutional Review Boards at Kaiser Permanente Wash-

ington and the University of Washington. Non-identifying information about each 107 participants (i.

e., age, sex, etc.) is publicly available under the ‘Specimens’ tab at http://aging.brain-map.org/.

ACT cohort
ACT is a prospective, longitudinal study of randomly-selected, cognitively normal participants of Kai-

ser Permanente Washington in the Seattle area that were willing to volunteer for the study

(Kukull et al., 2002; Larson et al., 2006; Crane et al., 2013). Kaiser Permanente Washington is an

integrated staff-model Health Maintenance Organization (HMO). At enrollment and at follow-up vis-

its every two years, ACT research staff members administer the Cognitive Abilities Screening Instru-

ment (CASI) (Teng et al., 1999) and participants with CASI �85 receive secondary follow-up with a

clinical evaluation and a comprehensive neuropsychological battery. Results of these evaluations and

clinical data are reviewed in a multidisciplinary consensus conference which uses standardized crite-

ria to diagnose incident dementia (American Psychiatric Association, 1994) and AD as well as other

neurodegenerative diseases when applicable (McKhann et al., 1984). Total enrollment as of Decem-

ber 2015 was approximately 5100 people, including more than 600 participants who have donated

their brains. Requests to access other data from the ACT cohort should be addressed to KPWA.act-

proposals@kp.org.

Tissue collection and utilization
A team from the University of Washington (UW) Neuropathology (NP) Core is contacted soon after

death to perform brain autopsies of ACT subjects. ACT study staff ask participants at enrollment

and every study visit whether they have experienced a loss of consciousness (LOC) and, if so, what

caused it, such as electrocution, near drowning, or head injury (TBI). If updated autopsy consent is

obtained and the brain can be removed and dissected with a postmortem interval (PMI) <8 hr, a

rapid autopsy is performed. During a rapid autopsy, ventricular cerebrospinal fluid (CSF) is taken,

the brain is hemisected along the mid-sagittal plane and dissected and ~60 flash frozen tissue sam-

ples from at least 12 brain regions are collected, flash-frozen in liquid nitrogen, and stored at �80˚C.
The unsampled hemibrain, and all remaining non-frozen tissue from the contralateral hemisphere is

then fixed in 10% normal buffered formalin for approximately 2–3 weeks. Fixed tissue from every

brain undergoes a thorough neuropathological examination where 22 standard samples, in addition

to samples of any focal lesions or abnormalities, are dissected and submitted for routine processing

for formalin-fixed paraffin-embedded (FFPE) sections.

This project was initially designed to study the long-term effects of TBI exposure, and participants

were selected on the basis of exposure or lack of exposure to TBI. All ACT subjects with a TBI with

loss of consciousness (LOC) and rapid autopsy with available banked frozen tissue were identified,

and then each TBI with LOC donor was matched for sex, age, year of death, and finally PMI to an

individual in the ACT autopsy sample without a history of TBI with LOC. Once a subject was included

in this study, two adjacent flash frozen tissue blocks from parietal lobe, temporal lobe, and hippo-

campus were removed from the NP Core repository; one was sent to the Allen Institute for IHC, ISH

and RNA -seq, and the other processed at the University of Washington (UW) for immunoassays

(Luminex) and gas chromatography-mass spectrometry (GC/MS). If two blocks were not available,

the remaining block was either divided (cortex) or prioritized for Allen Institute studies

(hippocampus).

Tissue processing for histology and immunoassays
Frozen tissue at UW was divided evenly (while frozen, in the sagittal plane through the long axis of

the gyrus) for GC/MS (isoprostanes), where the entire piece was used, and for immunoassays (Lumi-

nex), which was run on 1 cm punch biopsies from the depth of sulcus cortex (gray matter) in parietal

and temporal lobe and through deepest subcortical white matter (in the parietal lobe sample). Due

to relative paucity of available tissue, the entire hippocampus tissue block was submitted for immu-

noassays. For IHC of FFPE tissues, blocks were taken from either the same (cortex) or the opposite

(hippocampus) side of the brain that was sampled for frozen tissues (although not from adjacent

blocks), and were submitted for sectioning, histochemical, and immunohistochemical staining. Slides

were then sent to the Allen Institute for scanning and image analysis as described below. Frozen
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tissue sent to the Allen Institute was cryosectioned into a series of 25-micron-thick sections that

were designated for histological staining (Nissl, ISH, IHC, and Thioflavin-S) and for RNA-seq (see

below). Following sectioning, histological stains were processed according to standard protocols as

previously described (Sun et al., 2002; Lein et al., 2007). GC/MS was quantified as described previ-

ously (Montine et al., 2005). Specific assays run for GC/MS, Luminex, ICH, and ISH are presented in

Figure 1. IHC markers for paired helical filament pTau (AT8) and Ab (Ab6E10) were processed on

both fresh frozen and FFPE tissue. Note that a broader marker for pTau, Tau2, was processed only

for FFPE tissue (see Figure 1—figure supplement 1 for an example staining).

Image processing and quantification
Nissl, H&E-LFB, ISH and IHC slides were scanned at 10x full resolution using a Leica ScanScope scan-

ner, while Thioflavin-S slides were scanned at 10x full resolution using an Olympus VS110 scanner.

An Informatics Data Pipeline (IDP) managed image preprocessing, image QC, IHC expression detec-

tion and measurement, Nissl processing, annotation QC and public display of information via the

web application, as described previously (Dang et al., 2007), with some modifications and additions

for processing images for this project. For ISH and IHC slides, respectively, masks highlighting areas

with enriched gene expression or immunoreactivity were generated using adaptive detection/seg-

mentation image processing algorithms. Images that were out of focus after rescanning or with tech-

nical or tissue artifacts obscuring the target anatomical region were then failed and excluded from

public release. For each set of gene images available in the online viewer, the nearest set of Nissl-

stained sections (and other histological data) can be accessed and viewed. To generate quantitative

image metrics for IHC, macrodissection sites as delineated on the Nissl images were used to anno-

tate regions of interest (ROIs) on each of the near-adjacent IHC images. The ROI was then adjusted

if there were technical artifacts that would affect the evaluation of pathology. The expression den-

sity, defined as the percentage of area within the ROI that was occupied by the IHC reaction prod-

uct, was then assessed using an adaptive detection/segmentation technique which algorithmically

determines whether each pixel in an ROI contains the IHC stain (see the Expression Detection Mod-

ule section in the Informatics Data Processing paper in the Allen Mouse Brain Atlas Documentation

tab for more details; http://mouse.brain-map.org/static/docs). For stains with very low expression

densities, ROIs that were identified as outliers were visually inspected and then adjusted or excluded

as necessary. Good correlations were seen between quantifications of antibodies for amyloid beta

and pTau in FFPE and fresh frozen tissue, indicating good agreement between these two measures

of pathology (Figure 2—figure supplement 2).

RNA-Seq tissue and RNA processing
Collection of tissue samples from temporal and parietal neocortex, parietal white matter, and hippo-

campus was done by manual macrodissection. Specific areas for macrodissection were identified by

neuroanatomists using images of Nissl-stained tissue sections immediately adjacent to the sampled

tissue, and were excised from the remaining tissue frozen tissue block using a scalpel. Tissue was

immediately transferred to prepared tubes where RNA was isolated using the RNeasy Lipid Tissue

Mini Kit (Qiagen #78404) as per manufacturer’s instructions. RNA was then quantified on a Nano-

drop 8000 spectrophotometer (Thermo Scientific, Wilmington, DE) and normalized to 5 ng/ml before

RNA QC was performed using a Bioanalyzer (Agilent Technologies) and RNA Integrity Number (RIN)

was recorded. Total RNA (250 ng) was used as input into the Illumina TruSeq Stranded Total RNA

Sample Prep Kit (RS-122–2203), which uses random hexamer first strand cDNA synthesis and

includes rRNA depletion (Ribo-Zero Gold rRNA depletion kit to remove both cytoplasmic and mito-

chondrial rRNA) and fragmentation. At the time of project inception, this sequencing strategy pro-

vided the most reliable option for quantification of transcriptomic reads from tissue of widely

varying quality, allowing the broadest inclusion of donors from the ACT cohort. External RNA Con-

trols Consortium (ERCCs) (Baker et al., 2005) at a 1:10,000 dilution were spiked into each sample.

RNA sequencing was done on Illumina HighSeq 2500 using v4 chemistry, producing a minimum of

30M 50 bp paired-end clusters per sample. Expression Analysis, Inc. (Morrisville, NC) performed

both the TruSeq Stranded Sample Prep as well as the Illumina sequencing. All samples, regardless

of RNA quality, were sent for sequencing. In total 377 samples from 107 donors passed all QC met-

rics and are included as part of the resource. Nearly all of the missing 51 samples were excluded
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because tissue was unavailable from the brain bank or because it completely failed in sequencing. A

few samples were failed because their average inter-array correlation across all genes was several

(usually but not always 3) standard deviations below the mean of all other samples from the same

brain region. This strategy has been used to fail samples in other Allen Brain Atlases and is useful for

ensuring that results are not driven by outliers. For this analysis, we removed one additional sample

from the data set that showed high expression of Y chromosome genes but that was collected from

a genetically-confirmed female who was documented to have previously given birth (donor

H14.09.011).

RNA-Seq data alignment and normalization
Raw read (fastq) files were aligned to the GRCh38.p2 human genome (current as of 01/15/2016). Illu-

mina sequencing adapters were then clipped using the fastqMCF program (Aronesty, 2011), and

then mapped to the transcriptome using RNA-Seq by Expectation-Maximization (RSEM) (Li et al.,

2010) using default settings except for two mismatch parameters: bowtie-e (set to 500) and bow-

tie-m (set to 100). RSEM aligns reads to known isoforms and then calculates gene expression as the

sum of isoform expression for a given gene, assigning ambiguous reads to multiple isoforms using a

maximum likelihood statistical model. Reads that did not map to the transcriptome were then

aligned to the hg38 genome sequence using Bowtie with default settings (Langmead et al., 2009),

after which remaining unmapped reads were mapped to ERCCs. Anonymized BAM files (where

sequence-level information has been removed) for both transcriptome- and genome-mapped reads,

and gene-level quantification (transcripts per million (TPM), fragments per kilobase per million

(FPKM), and number of reads) are available as part of the resource (see Download tab).

For analysis, the FPKM data matrix was first adjusted for the total transcript count using TbT nor-

malization (Kadota et al., 2012), which scales each sample based on the summed expression of all

genes that are not differentially expressed. The differential expression vector was defined as TRUE if

a sample was from either temporal or parietal cortex, and FALSE otherwise. Sample data were then

log-transformed and scaled such that the total log2(FPKM + 1) across the entire data set remained

unchanged after normalization. The result was that all expression levels for a particular sample were

multiplied by a scalar close to 1 (in most cases between 0.9–1.2).

The amount of variation explained by each demographic and tissue source was estimated using

MDMR (Zapala and Schork, 2012). Specifically, Pearson correlation-based distances were calculated

between each pair of samples (Dxy = 1-corr(x,y)), and a matrix of these values and of each demo-

graphic and tissue source variable was input into the MDMR R function as a univariate model with

100 permutations. Resulting percent variance explained and associated p-values are presented in

Figure 1—figure supplement 2.

As brain region and RIN were identified as the largest sources of variability, log-normalized quan-

tifications of each gene were corrected for RNA quality independently within each brain region. This

was done as follows: (1) exclude outliers (>3 standard deviations from the mean) and zero values, (2)

determine whether expression data is best fit by one or two Gaussians using Mclust (Fraley and Raf-

tery, 2002), (3) model RIN as a quadratic variable in each of the one or two groups, taking the sum

of the residual and the mean as the normalized value, and then setting any negative values to 0. In

most cases this normalization is equivalent to correcting the log-transformed data for

RIN + adjusted RIN, and in other cases can additionally account for bimodalities in the data (e.g.,

gender) that are unrelated to RNA quality. This strategy of regressing out RIN is conceptually similar

to one previously published (Gallego Romero et al., 2014). Other strategies accounted for RNA

quality in RNA-seq data assume cDNA synthesis based on poly-A priming (Wan et al., 2012;

Sigurgeirsson et al., 2014); these models break down in our data set where cDNA synthesis is

based on a random hexamer method.

We note that this is a different final normalization step from that performed in the online data

resource, where data were corrected for RIN + adjusted RIN + batch in linear space. The current

strategy of excluding outliers from the normalization retains realistic expression values for biologi-

cally-relevant processes such as inflammation, and accounting for bimodalities removes effects of

sex (which we sought to retain on the web resource). Similarly, batch correction is not included in

this analysis as donors with the most severe TBIs were front loaded in the first two batches due to

experimental constraints. Using data normalized on the website to assess differential gene expres-

sion between donors with and without dementia (as described below) produced comparable results.
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Assessment of differential and co-expression
For pathology and demographic information, significance of differential expression between groups

was assessed with analysis of variance (ANOVA) tests using the ‘aov’ function in R (Chambers et al.,

1992). Correlations between continuous variables were calculated using the ‘cor’ function in R and

are Pearson correlations with Bonferroni-corrected p-values of p<0.05, unless otherwise specified.

Distributions of quantitative metrics are displayed using a smoothed density curve, with no associ-

ated statistical tests performed. Two tailed student t-tests were used to compare RIN between con-

trol and AD donors from multiple studies. We used surrogate variable analysis (SVA) (Leek and

Storey, 2007) to quantify significance of gene expression with respect to dementia status (in combi-

nation with fold-difference thresholds) and RNA quality (in combination with correlation thresholds).

P-values of p<0.05, after Benjamini and Hochberg correction, were considered significant unless oth-

erwise noted. SVA was also used for assessing significance in gene clusters, as discussed below.

To assess the robustness of our result that few if any genes are significantly associated with

dementia (or AD) status after controlling for RIN, we performed additional analyses to quantify sig-

nificance of gene expression with respect to dementia status, in all cases defining significance as

p<0.05 after Bonferroni correction. First, we repeated our analyses using additional statistical tests

including 1) two tailed student t-tests, 2) ANOVA, 3) and limma (Ritchie et al., 2015), in all cases

defining two groups based on dementia (or AD) status. Second, we repeated the SVA analysis

described above on the RIN-normalized RNA-Seq data available for download from the website

(which uses a slightly different normalization schema, as described above). Third, we performed prin-

cipal component analysis (PCA) independently on each region using all genes, and used SVA to

assess whether any of the top 25 PCs showed significant associate with dementia. Finally, we sub-

sampled our data set to 70 donors who are matched for RIN, sex, and dementia status and repeated

the SVA analysis using data that is not RIN-corrected to determine whether our particular RIN-nor-

malization strategy could be biasing our ability to identify genes associated with dementia. In all

cases we found two or fewer total genes associated with dementia or AD, indicating that our nega-

tive result is not due to improper statistical assessment.

We used weighted gene co-expression network analysis (WGCNA) (Zhang and Horvath, 2005;

Langfelder and Horvath, 2008) to generate unbiased gene co-expression networks separately for

each brain region. Initial networks were generated using an automated strategy with the following

function call in R: blockRun = blockwiseModules(datExprRun, checkMissingData = TRUE, maxBlock-

Size = 17500, power = 14, networkType = ‘signed’, deepSplit = 2, minModuleSize = 20, minCoreK-

MESize = 7, minKMEtoStay = 0.4, mergeCutHeight = 0.1, numericLabels = TRUE, verbose = 1)

where datExprRun is the log2 normalized RNA-seq data from the top 9615 (50%) most variable

genes (in each region). We then calculated module eigengenes (ME), defined as the first principal

component of genes in the module. If the resulting network contained more than 20 modules, the

module pairs with the most highly correlated ME were iteratively merged until 20 modules

remained. Each expressed gene was then reassigned to the module to which it is most highly corre-

lated to the ME (referred to as the gene’s module membership, or kME). Genes with maximum

kME <0.4 were left unassigned (defined as module 0), as we have done in previous analyses

(Hawrylycz et al., 2012). Since networks are unaffected by changes in labelling, we then re-labeled

modules by percent of neuron-enriched genes so that those with the highest percentage of neuronal

markers (Zhang et al., 2014) have lower numbers and those with the lowest percentage have higher

numbers, as described previously (Hawrylycz et al., 2012).

We compared ME expression with 24 pathological and demographic measures, and used SVA to

assess significance, defined here as Bonferroni-corrected p<0.05. In addition to the modules dis-

cussed in the Results, we found a single module of Y-chromosome genes in each network with nearly

exclusive expression in males, as expected.

Gene set comparison between studies
In order to compare our differential expression results with prior work, we first assembled lists of

genes differentially expressed between donors diagnosed with AD and matched controls from

nine previous studies (Colangelo et al., 2002; Blalock et al., 2004; Liang et al., 2008;

Webster et al., 2009; Avramopoulos et al., 2011; Miller et al., 2013; Zhang et al., 2013;

Satoh et al., 2014; ). Figure 6—source data 4 describes in more detail specifically how we derived
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each gene list. Figure 6—source data 5 includes all gene lists. We then sorted and ranked all genes

in our analysis with respect to fold difference (for dementia vs. control) or correlation with RIN in hip-

pocampus and temporal cortex, scaling from 0 to 1. We then noted the ranks of external gene lists

in our sorted lists, including the 25th, 50th, and 75th percentile values. We calculated p-values using

a two-sided Wilcoxon rank sum test to measure divergence from a random distribution, with the R

function ‘wilcox.test’ (Bauer, 1972). This schema is a modification of one previously described

(Miller et al., 2013).

We compared the relationships between gene expression and local quantifications of tau pathol-

ogy in our study with one previous study (Blalock et al., 2004). Correlations between gene expres-

sion (defined by the probe for each gene with maximal expression) and ‘NFT Score’ were calculated

for the comparison study using publicly available data (GEO: GSE1297). Correlations between gene

expression and AT8 IHC quantification from fresh frozen tissue were calculated in this study and the

resulting correlations were themselves correlated for comparison.

Enrichment for gene ontology (GO) categories was performed using ToppFun with default

parameters, which is available as part of the ToppGene Suite (Chen et al., 2009) (https://toppgene.

cchmc.org/). Cell type-specific expression levels were collected from a published data set of selec-

tive expression in human neurons, astrocytes, microglia, and oligodendrocytes (Zhang et al., 2014)

(http://web.stanford.edu/group/barres_lab/brain_rnaseq.html). Cell type enrichment was calculated

by comparing gene lists in this study against genes with 2-fold enrichment in one verses all other cell

types and FPKM >1. Cell type enrichment was largely confirmed by comparison with mouse-derived

gene sets downloaded from NeuroExpresso (neuroexpresso.org) (Mancarci et al., 2016) using the

same strategy.

Data and software availability
All images and most data presented in this manuscript are freely available from the resource web-

site, http://aging.brain-map.org/. Code and remaining files required to reproduce all analyses and

associated figure panels are available as part of the Github repository (https://github.com/AllenInsti-

tute/agedbrain; Miller, 2017; copy archived at https://github.com/elifesciences-publications/aged-

brain). Raw RNA-Seq data (FASTQ) and the output files after alignment (bam/FASTQ) are available

for controlled access at NIAGADS: https://www.niagads.org/datasets/ng00059. TbT-normalized

data (both before and after controlling for RIN) are also available through GEO (GSE104687).

Additional resources
Technical documentation describing the ACT cohort, all experimental procedures (i.e., tissue collec-

tion, tissue processing, quantitative data generation), and weighted analysis in more detail are freely

available at http://help.brain-map.org/display/aging/Documentation.
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