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Abstract 34 

Cognitive function relies on a dynamic, context-sensitive balance between 35 

functional integration and segregation in the brain. Previous work has proposed 36 

that this balance is mediated by global fluctuations in neural gain by projections 37 

from ascending neuromodulatory nuclei. To test this hypothesis in silico, we 38 

studied the effects of neural gain on network dynamics in a model of large-scale 39 

neuronal dynamics. We found that increases in neural gain directed the network 40 

through an abrupt dynamical transition, leading to an integrated network 41 

topology that was maximal in frontoparietal ȁrich clubȂ regions. This gain-42 

mediated transition was also associated with increased topological complexity, 43 

as well as increased variability in time-resolved topological structure, further 44 

highlighting the potential computational benefits of the gain-mediated network 45 

transition. These results support the hypothesis that neural gain modulation has 46 

the computational capacity to mediate the balance between integration and 47 

segregation in the brain. 48 
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The function of complex networks such as the human brain requires a trade-off 68 

between functional specialization and global communication (Deco et al., 2015a; 69 

Park and Friston, 2013; Tononi and Sporns, 1994). Contemporary models of brain 70 

function suggest that this balance is manifest through dynamically changing 71 

patterns of correlated activity, constrained by the brainsȂ structural backbone 72 

(Deco et al., 2013; Honey et al., 2007; Varela et al., 2001). This in turn allows 73 

exploration of a repertoire of cortical states that balance the opposing topological 74 

properties of segregation (i.e. modular architectures with high functional 75 

specialization) and integration (i.e. inter-connection between specialist regions; 76 

(Deco et al., 2015b; Ghosh et al., 2008). 77 

 78 

Recent work has demonstrated that the extent of integration in the brain is 79 

important for a range of cognitive functions, including effective task performance 80 

(Bassett et al., 2015; Shine et al., 2016a), episodic memory retrieval (Westphal et 81 

al., 2017) and conscious awareness (Barttfeld et al., 2015; Godwin et al., 2015). 82 

Furthermore, the topological properties of functional brain networks have been 83 

shown to fluctuate over time (Chang and Glover, 2010; Hutchison et al., 2013), 84 

both within individual neuroimaging sessions (Shine et al., 2016a; Zalesky et al., 85 

2014) and over the course of weeks to months (Shine et al., 2016b). While the 86 

extent of integration in the brain may relate to more effective inter-regional 87 

communication, perhaps via synchronous oscillatory activity (Fries, 2015; Lisman 88 

and Jensen, 2013; Varela et al., 2001), there are also benefits related to a relatively 89 

segregated network architecture, including lower metabolic costs (Bullmore and 90 

Sporns, 2012; Zalesky et al., 2014) and effective performance as a function of 91 

learning (Bassett et al., 2015). However, despite these insights, the biological 92 

mechanisms responsible for driving fluctuations between integration and 93 

segregation remain unclear. 94 

 95 

A candidate mechanism underlying flexible brain network dynamics is the 96 

global alteration in neural gain mediated by ascending neuromodulatory nuclei 97 

such as the locus coeruleus (Aston-Jones and Cohen, 2005a; Sara, 2009). This 98 

small pontine nucleus projects diffusely throughout the brain and releases 99 

noradrenaline, a potent modulatory neurotransmitter that alters the precision 100 

and responsivity of targeted neurons (Waterhouse et al., 1988). Alterations in this 101 

system are known to play a crucial role in cognition, as there is evidence for a 102 
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nonlinear (inverted-U shaped) relationship between noradrenaline concentration 103 

and cognitive performance (Robbins and Arnsten, 2009; Figure 1a). 104 

 105 

Mechanistically, the noradrenergic system has been shown to alter neural gain 106 

(Servan-Schreiber et al., 1990) Figure 1b), increasing the signal to noise ratio of 107 

afferent input onto regions targeted by projections from the locus coeruleus. A 108 

crucial question is how these local changes in neural gain influence the 109 

configuration of the brain at the network level. Recent work has linked 110 

fluctuations in network topology to changes in pupil diameter (Eldar et al., 2013; 111 

Shine et al., 2016a; Shine et al., 2018), an indirect measure of locus coeruleus 112 

activity (Joshi et al., 2016; Murphy et al., 2014; Reimer et al., 2014; 2016), 113 

providing evidence for a link between the noradrenergic system and network-114 

level topology. However, despite these insights, the mechanisms through which 115 

alterations in neural gain mediate fluctuations in global network topology are 116 

poorly understood. 117 

                   118 

Figure 1 – Manipulating Neural Gain: a) the Yerkes-Dodson relationship linking activity in the 119 

locus coeruleus nucleus to cognitive performance; b) neural gain is modeled by a parameter (σ) 120 

that increases the maximum slope of the transfer function between incoming and outgoing 121 

activity within a brain region; c) excitability is modeled by a parameter (γ) that amplifies the level 122 

of output; d) the approach presently used to estimate network topology from the biophysical 123 

model. 124 

 125 

Biophysical models of large-scale neuronal activity have yielded numerous 126 

insights into the dynamics of brain function, both during the resting state as well 127 

as in the context of task-driven brain function (Deco et al., 2009; Honey et al., 128 

2007) (for review, see (Breakspear, 2017). Whereas prior research in this area has 129 

examined the influence of local dynamics, coupling strength, structural network 130 

topology and stochastic fluctuations on functional network topology (Deco et al., 131 

2015b; Deco and Jirsa, 2012; Deco et al., 2017; Gollo et al., 2015; Woolrich and 132 

Stephan, 2013), the direct influence of neural gain has not been studied. Here, we 133 

used a combination of biophysical modeling and graph theoretical analyses 134 

(Sporns, 2013) to characterize the effect of neural gain on emergent network 135 

topology. Based on previous work (Shine et al., 2016a; Shine et al., 2018), we 136 

hypothesized that manipulations of neural gain would modulate the extent of 137 

integration in time-averaged patterns of functional connectivity. 138 
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 139 

Results 140 

To test this hypothesis, we implemented a generic 2-dimensional neuronal 141 

oscillator model (Fitzhugh, 1961; Stefanescu and Jirsa, 2011) within the Virtual 142 

Brain toolbox (Jirsa et al., 2010; Sanz Leon et al., 2013) to generate regional time 143 

series that were constrained by a directed white matter connectome derived from 144 

the CoCoMac database (Kötter, 2004) Figure 1d). The simulated neuronal time 145 

series were passed through a Balloon-Windkessel model to simulate realistic 146 

BOLD data. Graph theoretical analyses were then applied to time-averaged 147 

correlations of regional BOLD data to estimate the functional topological 148 

signatures of network fluctuations (see Methods for further details). 149 

 150 

To simulate the effect of ascending neuromodulatory effects on inter-regional 151 

dynamics, we systematically manipulated neural gain (σ; Figure ŗb) and 152 

excitability (γ; Figure ŗcǼ. These two parameters alter different aspects of a 153 

sigmoidal transfer function, which models the nonlinear relationship between 154 

presynaptic afferent inputs and local firing rates (Freeman, 1979). When the σ 155 

and γ parameters are both low, fluctuations in regional activity arise mainly due 156 

to noise and local feedback. “s the σ and γ parameters increase, the influence of 157 

activity communicated from connected input regions also increases, leading to 158 

non-linear cross-talk and hence, changes in global brain topology and dynamics. 159 

Here, we investigated the topological signature of simulated BOLD time series 160 

across a parameter space spanned by σ and γ in order to understand the 161 

combined effect of neural gain and excitability on global brain network 162 

dynamics. 163 

 164 

Neural gain and excitability modulate network-level topological integration 165 

We simulated BOLD time series data across a range of σ ǻŖ-ŗǼ and γ ǻŖ-1) and 166 

then subjected the time series from our simulation to graph theoretical analyses 167 

(Rubinov and Sporns, 2010). This allowed us to estimate the amount of 168 

integration in the time-averaged functional connectivity matrix across the 169 

parameter space (Figure 2a). Specifically, we used the mean participation 170 

coefficient (BA) of the time-averaged connectivity matrix at each combination of σ 171 

and γ. High values of mean ”A suggest a relative increase in inter-modular 172 

connectivity, thus promoting the diversity of connections between modules 173 
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(Bertolero et al., 2017) and increasing the integrative signature of the network 174 

(Shine et al., 2016a). The converse situation (i.e., segregation) can thus be indexed 175 

by low mean BA scores, or alternatively by the modularity statistic, Q. We 176 

observed a complex relationship between σ, γ and ”A, such that maximal 177 

integration occurred at high levels of σ but with intermediate values of γ. 178 

Outside of this zone, the time-averaged connectome was markedly less 179 

integrated. Similar patterns were observed for other topological measures of 180 

integration, such as the inverse modularity (Q-1) and global efficiency (Figure 2-181 

figure supplement 1). 182 

        183 

Figure 2 – a) mean participation as a function of σ and γ – greyed-out zones reflect parameter 184 

combinations that led to substantial differences between the functional and structural 185 

connectome (r < 0.2); b) phase synchrony (ρ) as a function of σ and γ; c): mean participation (BA) 186 

aligned to the critical point ǻrepresented here as a dotted lineǼ as a function of increasing σ; d) BA 187 

aligned to the critical point as a function of increasing γ – the left and right dotted lines depicts 188 

the synchrony change at low and high γ, respectively. The y-axis in c) and d) represents the 189 

distance in parameter space aligned to the critical point/bifurcation for either σ ǻΔσCB; mean 190 

across 0.2 ǂ γ ǂ 0.6) or γ ǻΔγCB; mean across 0.3 ǂ σ ǂ 1.0). Lines are colored according to the state 191 

of phase synchrony on either side of the bifurcation (blue: low synchrony; yellow: high 192 

synchrony).  193 

 194 

Neural gain transitions the network across a critical boundary 195 

The relative simplicity of our local neural model allows formal quantification of 196 

the inter-regional phase relationships that characterize the underlying neuronal 197 

dynamics. These fast neuronal phase dynamics compliment the view given by 198 

the slow BOLD amplitude fluctuations and give insight into their fundamental 199 

dynamic causes. We employed a phase order parameter, that quantifies the 200 

extent to which regions within the network align their oscillatory phase – high 201 

values on this scale reflect highly ordered synchronous oscillations across the 202 

network, whereas low values reflect a relatively asynchronous system 203 

(Breakspear and Heitmann, 2010; Kuramoto, 1984).  204 

 205 

Across the parameter space, we observed two clear states (Figure 2b): one 206 

associated with high (ρ ǃ 0.5; yellow) and one with low (ρ < 0.5; blue) mean 207 

synchrony, with a clear critical boundary demarcating the two states (dotted 208 

white line in Figure 2a/b) that was associated with a relative increase in the 209 

standard deviation of the order parameter (Figure 2-figure supplement 2a). This 210 
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strong demarcation between states is a known signature of critical behavior 211 

(Chialvo, 2010), which can occur at both the regional and network level. We 212 

observed evidence for both regional and network criticality in our simulation, 213 

whereby small changes in parameters ǻhere, σ and γǼ facilitated an abrupt 214 

transition between qualitatively distinct states. At the regional level, this pattern 215 

is observed as a transition from input-driven fluctuations about a stable 216 

equilibrium to self-sustained oscillations (Figure 2-figure supplement 3). At the 217 

network level, the combined influence of increased gain and structural 218 

connections manifest as a transition to high amplitude, inter-regional phase 219 

synchrony (Figure 2-figure supplement 2b). 220 

 221 

To further disambiguate the system-level dynamics, we studied the probability 222 

distribution of the fluctuations in the order parameter. Close to the boundary, we 223 

observed a truncated Pareto (i.e., power law) scaling regime, spanning up to two 224 

orders of magnitude (Figure 2-figure supplement 2b). This pattern is consistent 225 

with a critical bifurcation within a complex system consisting of many 226 

components (see Cocchi et al., 2017 and Heitman and Breakspear, 2017 for 227 

further discussion). After crossing the boundary, this relationship develops a 228 

ȁkneeȂ above the power-law scaling (Figure 2-figure supplement 2b), consistent 229 

with the emergence of a characteristic temporal scale in a super-critical system 230 

(Roberts et al. 2015). These observations suggest that the system undergoes a 231 

bifurcation across a critical boundary as the synchronization manifold loses 232 

stability. 233 

 234 

A host of contemporary neuroscientific theories hypothesize that temporal phase 235 

synchrony between regions underlies effective communication between neural 236 

regions (Fries, 2015; Lisman and Jensen, 2013; Varela et al., 2001), which would 237 

otherwise remain isolated if not brought into temporal lockstep with one 238 

another. As such, we might expect that the changes in neural gain that integrate 239 

the brain might do so through the modulation of inter-regional phase synchrony. 240 

Our results were consistent with this hypothesis. By aligning changes in the 241 

topological signature of the network to the critical point delineating the two 242 

states, we were able to demonstrate a significant increase in integration (mean BA; 243 

T798 = 2.57; p = 0.01) and decrease in segregation (Q; T798 = -17.44; p < 0.001) of 244 

network-level BOLD fluctuations in the highly phase synchronous state. 245 
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Specifically, global integration demonstrated a sharp increase in the zone 246 

associated with the high amplitude synchronous oscillations, particularly for 247 

intermediate values of γ ǻFigure 2c). In contrast, the transitions associated with 248 

manipulating γ ǻparticularly at high values of σ) led to an inverse U-shaped 249 

relationship: the network was relatively segregated at high and low levels of γ, 250 

but integrated at intermediate values of γ, albeit with a monotonic relationship 251 

when increasing σ for low levels of γ (Figure 2d). In addition, increases in 252 

between-hemisphere connectivity were more pronounced than within-253 

hemisphere connectivity in the ordered state (within: 0.010 ± 0.017; between: 254 

0.014 ± 0.013; T2,848 = 7.104; p = 10-12; see Figure 2-figure supplement 4). Together, 255 

these results suggest that neural gain and excitability act together to traverse a 256 

transition in network dynamics, maximizing inter-regional phase synchrony and 257 

integrating the functional connectome. 258 

 259 

Neural gain increases topological complexity and temporal variability 260 

Having identified a relationship between neural gain and network architecture, 261 

we next investigated the putative topological benefit of this trade-off. A measure 262 

that characterizes the topological balance between integration and segregation is 263 

communicability (Estrada and Hatano, 2008), which quantifies the number of 264 

short paths that can be traversed between two regions of a network ǻMišić et al., 265 

2015). In networks with high communicability, individual regions are able to 266 

interact with a large proportion of the network through relatively short paths, 267 

which in turn may facilitate effective communication between otherwise 268 

segregated regions. In contrast to the relationship observed between neural gain 269 

and network integration, communicability was maximal at the critical 270 

boundaries between synchronous and asynchronous behavior (Figure 3a-c). 271 

Thus, the topological signature of the network was most effectively balanced 272 

between integration and segregation as the system transitioned between disorder 273 

and order through the modulation of inter-regional synchrony by subtle changes 274 

in neural gain.  275 

 276 

Figure 3 – Topological and temporal relationships with phase regimen boundary: a-c) network 277 

communicability was maximal following the σ boundary (ΔσCP; mean across 0.2 ǂ γ ǂ 0.6) and the 278 

immediately prior to the abrupt phase transition at high γ (ΔγCP; mean across 0.3 ǂ σ ǂ 1.0); d-f) 279 

time-resolved between-module participation (BT) was maximally variable with increasing σ and 280 

across the critical boundary at high γ. 281 
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 282 

Another important signature of complex systems is their flexibility over time. In 283 

previous work, we showed that the ȁresting stateȂ is characterized by significant 284 

fluctuations in network topology, in which the brain traverses between states 285 

that maximize either integration or segregation (Shine et al., 2016a). This 286 

variability was diminished during a cognitively challenging task, and the extent 287 

of integration was positively associated with improved task performance (Shine 288 

et al., 2016a). To determine whether these alterations in topological variability 289 

may have been related to changes in neural gain, we estimated the time-resolved 290 

mean participation coefficient (BT) of the simulated BOLD time series and then 291 

determined whether the variability of this measure over time changed as a 292 

function of σ and γ. We found that the variability of time-resolved integration 293 

within each trial was maximized across the critical boundary, as the network 294 

switched between disordered and ordered phase synchrony (Figure 3d-f). These 295 

results support the hypothesis that changes in neural gain may control the 296 

temporal variability of network topology as a function of behavioral state. 297 

 298 

Gain-mediated integration is maximal in frontoparietal hub regions 299 

To determine whether the influence of neural gain on network dynamics was 300 

related to the underlying structural connectivity of the brain, we estimated the 301 

ȃrich clubȄ architecture of the structural connectome (Figure 4a). Compared to 302 

low-degree nodes, rich club regions demonstrated an increase in ȁrealizedȂ mean 303 

gain adjacent to the critical boundary (Figure 4b). In short, this means that 304 

activity within frontoparietal ȁhubȂ regions ǻred in Figure Śa) was more strongly 305 

affected by the interaction between neural gain and network topology than in 306 

non-hub regions (blue/green in Figure 4a). Indeed, this result demonstrates that 307 

the ȁrealizedȂ gain of individual regions is not simply related to the applied gain 308 

(i.e. input from the ascending noradrenergic system; (Aston-Jones and Cohen, 309 

2005b), but also non-linearly depends on afferent activity from topologically 310 

connected regions (Figure 4c/d). The observed effect was particularly evident for 311 

intermediate values of γ, suggesting that the hub regions were differentially 312 

impacted by neural gain at the critical boundary between the asynchronous and 313 

synchronous states. Interestingly, similar dissociations were observed when 314 

comparing regions with high and low diversity (Figure 4-figure supplement 1), 315 

suggesting a role for future experiments to disambiguate the importance of 316 
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degree and diversity in the mediation of global network topology (Bertolero et 317 

al., 2017). However, given the substantial overlap between regions in the ȁrichȂ 318 

and diverseȂ clubs ǻ7ř% of regions were found in both groupsǼ, our results 319 

confirm a crucial role for frontoparietal regions in the control of network-level 320 

integration as a function of ascending neuromodulatory gain. 321 

          322 

Figure 4 – Regional clustering results: a) regions from the CoCoMac data organized according to 323 

rich club (red), feeder (blue) or local (green) status, along with a force-directed plot of the top 10% 324 

of connections (aligned by hemisphere), colored according to structural hub connectivity status; 325 

b) the rich club cluster demonstrated an increase in realized mean gain (the relative output as a 326 

function of itsȂ unique topologyǼ at the bifurcation boundary, compared to feeder and local 327 

nodes, which showed higher realized gain at high levels of σ and γ; c) the three clusters of 328 

regions also demonstrated differential responses to neural gain; and d) excitability. The black 329 

lines in c) and d) denote significant differences in BA between the two groups. 330 

 331 

Discussion 332 

We used a combination of computational modeling and graph theoretical 333 

analyses, quantifying the relationship between ascending neuromodulation and 334 

network-level integration in order to test a direct prediction from a previous 335 

neuroimaging study (Shine et al., 2016a). We found that increasing neural gain 336 

transitioned network dynamics across a bifurcation from disordered to ordered 337 

phase synchrony (Figure 2b) with a shift from a segregated to integrated neural 338 

architecture (Figures 2e and Figure 2-supplement 1). The critical boundary 339 

between these two states was associated with maximal communicability and 340 

temporal topological variability (Figure 3). Finally, the effect of neural gain was 341 

felt most prominently in high-degree frontoparietal network hubs (Figure 4 and 342 

Figure 4-supplement 2). Together, these results confirm our prior hypothesis and 343 

complement an emerging view of the brain that highlights a mechanistic bridge 344 

between ascending arousal systems and cognition (Shine et al., 2016a), providing 345 

a potential mechanistic explanation for the long-standing notion that 346 

noradrenergic activity demonstrates an inverted U-shaped curve with cognitive 347 

performance (Robbins and Arnsten, 2009) Figure 1a).  348 

 349 

The major result from our study is that network-level fluctuations between 350 

segregation and integration in functional (BOLD) networks reflect an underlying 351 

transition in synchrony of faster neuronal oscillations, thus providing a 352 

previously unknown link between temporal scales in the brain (Figure 2b). At 353 
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low levels of γ and σ, the governing equations are strongly stable (damped), so 354 

that all excursions from equilibrium must be driven by local noise – that is, 355 

regions are relatively insensitive to incoming inputs (Figure 1b/c). As γ and σ 356 

increase, local activity approaches an instability, and consequently incoming 357 

activity is able to substantially influence activity in target regions. This causes 358 

changes in the emergent whole-brain dynamics evident at both the short time 359 

scale of brain oscillations and the long time scale of BOLD correlation. A stark 360 

transition occurs at a critical point in the parameter space (denoted by the 361 

boundary between blue and yellow in Figure 2b), whereby small increases in σ 362 

lead to substantial alterations in the phase relationships between regions. 363 

Specifically, the network abruptly shifts from stable equilibrium to high-364 

amplitude synchronized oscillation, facilitating an increase in effective 365 

communication between otherwise topologically distant regions (Fries, 2005; 366 

Varela et al., 2001). This same transition point is associated with a peak in 367 

informational complexity (Figure 3), further suggesting the importance of 368 

criticality in maximizing the information processing capacity of global network 369 

topology. Notably, the transition is also accompanied by a peak in the 370 

topological variability over time: hence a dynamic instability amongst fast 371 

neuronal oscillations yields increased network fluctuations at very slow time 372 

scales, again highlighting the crucial role of criticality to multi-scale neural 373 

phenomena (Cocchi et al., 2017). 374 

   375 

The effect of neural gain on topology was greatest in a bilateral network of high-376 

degree frontoparietal cortical regions (Figure 4). This suggests that the 377 

recruitment of these hub regions at intermediate levels of excitability and neural 378 

gain shifts collective network dynamics across a bifurcation, increasing effective 379 

interactions between otherwise segregated regions. This result underlines the 380 

effective influence of the structural ȁrich clubȂ (Figure 4), which in addition to 381 

providing topological support to the structural connectome (van den Heuvel and 382 

Sporns, 2013), may also facilitate the transition between distinct topological 383 

states. This relationship has been demonstrated previously in other studies, 384 

either by manipulating the excitability parameter alone (Deco et al., 2017; 385 

Zamora-López et al., 2016), or through the alteration of the intrinsic dynamics of 386 

the 2d oscillator model (Curto et al., 2009; Safaai et al., 2015), thus providing a 387 

strong conceptual link between structural topology and emergent dynamics. 388 



 12 

Crucially, the integrated states facilitated by gain-mediated hub recruitment 389 

have been shown to underlie effective cognitive performance (Shine et al., 2016a), 390 

episodic memory retrieval (Westphal et al., 2017) and conscious awareness 391 

(Barttfeld et al., 2015; Godwin et al., 2015), confirming the importance of 392 

ascending neuromodulatory systems for a suite of higher-level behavioral 393 

capacities. 394 

 395 

Overall, our findings broadly support the predictions of the neural gain 396 

hypothesis of noradrenergic function (Aston-Jones and Cohen, 2005b). For 397 

instance, manipulating neural gain, a plausible instantiation of the effects of 398 

ascending noradrenergic tone in the brain (Servan-Schreiber et al., 1990), led to 399 

marked alterations in network topology. Given the demonstrated links between 400 

network topology and cognitive function (Cohen and D'Esposito, 2016; Hearne et 401 

al., 2017; Shine et al., 2016a; Shine and Poldrack, 2017), our work thus provides a 402 

plausible mechanistic account of the long-standing notion of a nonlinear 403 

relationship between catecholamine levels and effective cognitive performance 404 

(Robbins and Arnsten, 2009; Shine et al., 2016a; Figure 1a). However, it bears 405 

mention that our model highlighted a relationship between neural gain, 406 

excitability and network topology, in which there was an inverted-U shaped 407 

relationship observed between excitability and integration that was related to 408 

two separate bifurcations (Figure 2-figure supplement 2). In contrast, the effect of 409 

neural gain on topology was demonstrably more linear, particularly at 410 

intermediate levels of γ (Figure 2). Importantly, although noradrenaline has been 411 

directly linked to alterations in gain (Servan-Schreiber et al., 1990), there is also 412 

reason to believe that noradrenergic tone should have a demonstrable effect on 413 

excitability (Curto et al., 2009; Safaai et al., 2015; Stringer et al., 2016). Combined 414 

with our observation of the importance of the interaction between neural gain 415 

and high-degree (Figure 4), diverse (Figure 4-figure supplement 1) hub regions, 416 

our results thus represent an extension of the neural gain hypothesis that 417 

integrates the ascending arousal system with the constraints imposed by 418 

multiple order parameters and structural network topology. 419 

 420 

In addition, our results also align with previous hypotheses that highlighted the 421 

importance of α2-adrenoreceptor mediated hub recruitment with increasing 422 

concentrations of noradrenaline, particularly in the frontal cortex (Robbins and 423 
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Arnsten, 2009; Sara, 2009). However, our findings are inconsistent with the 424 

hypothesis that neural gain mediates an increase in tightly clustered patterns of 425 

neural interactions (Eldar et al., 2013). In contrast to this prediction, our 426 

simulations showed that measures that reflect an increase in local clustering, 427 

such as modularity and the mean clustering coefficient (Figure 4-figure 428 

supplement 2), did not increase as a function of neural gain in the same manner 429 

as other measures, such as the mean participation coefficient. Therefore, our 430 

results suggest that an increase in functional integration (and hence, a 431 

concomitant decrease in local clustering) is a more effective indicator of the 432 

topological influence of increasing neural gain. However, it bears mention that 433 

the hypothesized relationship between clustering and neural gain was presented 434 

in the context of a focused learning paradigm (Eldar et al., 2013), whereas our 435 

data were not modeled in an explicit behavioral context. As such, future studies 436 

are required to disambiguate the relative relationship between neural gain and 437 

network topology as a function of task performance. 438 

 439 

Prior computational studies have demonstrated a link between the structural and 440 

functional connectome, with the broad repertoire of functional network 441 

dynamics bounded by structural constraints imposed by the white-matter 442 

backbone of the brain (Deco and Jirsa, 2012; Honey et al., 2007; 2009). While the 443 

targeted role of gain modulation on local neuronal dynamics have been studied 444 

(Freeman, 1979), the impact of gain on functional network organization has not 445 

been pursued. Here, we have demonstrated a putative mechanism by which a 446 

known biological system (namely, the ascending noradrenergic system) can 447 

mediate structural-functional changes, essentially by navigating the functional 448 

connectome across a topological landscape characterized by alterations in 449 

oscillatory synchrony. However, the direct relationship between neural gain 450 

manipulation and the ascending noradrenergic system is likely to represent an 451 

oversimplification. Indeed, given the complexity and hierarchical organization of 452 

the brain, it is almost certain that other functional systems, such as the thalamus 453 

(Hwang et al., 2016) and fast-spiking interneurons (Stringer et al., 2016), play 454 

significant roles in mediating neural gain and hence, the balance between 455 

integration and segregation. Further studies are required to interrogate these 456 

mechanisms more directly.  457 

 458 
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A somewhat surprising result of our simulation is the link between phase- and 459 

amplitude-related measures of neuronal coupling. It has been known for some 460 

time that the BOLD signal is insensitive to the relative phase of underlying 461 

neural dynamics (Foster et al., 2016), relating more closely to changes in the local 462 

oscillator frequency and fluctuations in the relative amplitude of neural firing. 463 

Indeed, each of the model parameters used in our experiment (i.e., gain and 464 

coupling) exerts a complex influence on both the oscillator frequencies (and 465 

hence, the BOLD activity) and the global synchrony (and hence, the BOLD 466 

correlations). Moreover, in coupled oscillator systems such as this, the order 467 

parameter acts as a ȃmean fieldȄ that feeds back and influences local dynamics 468 

(see e.g. Breakspear et al., 2010). Based on this knowledge, we can infer that 469 

estimates of connectivity using BOLD time series relate to covariance in 470 

amplitude fluctuations among pairs of regions, rather than alterations in phase 471 

synchrony. This clarification is important for modern theories of functional 472 

neuroscience, as synchronous relationships between regions in the phase domain 473 

have been used to explain effective communication between neural regions 474 

(Fries, 2015; Lisman and Jensen, 2013; Siegel et al., 2009), in which the precise 475 

timing between spiking populations determines the efficacy of information 476 

processing. Our results suggest a surprisingly robust link between these two 477 

measures, such that an integrated network with increased inter-modular 478 

amplitude correlation coincides with a peak in ordered phase synchrony 479 

between regions. In our model, the peak of network variability occurs at the 480 

critical transition between disordered and ordered phases, where the local 481 

dynamic states shows the most variability and where fast stochastic 482 

perturbations are most able to influence slow amplitude fluctuations. However, 483 

while our model provides evidence linking neural gain to functional integration, 484 

advanced models that display a broader variety of non-linear dynamics 485 

(Breakspear, 2017) are required to test these hypotheses more directly. 486 

 487 

Together, our results suggest that the balance between integration and 488 

segregation relates to alterations in neural gain that exist within a ȁzoneȂ of 489 

maximal communicability and temporal variability. Our findings thus highlight 490 

important constraints on contemporary models of brain function, while also 491 

providing crucial implications for understanding effective brain function during 492 

task performance or as a function of neurodegenerative or psychiatric disease. 493 
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 495 

 496 

Methods 497 

Dynamical Network Modeling 498 

The Virtual Brain software (Sanz Leon et al., 2013) was used to simulate neural 499 

activity across a lattice of parameter points in which we manipulated the inter-500 

regional coupling between regions using both a gain parameter and an 501 

excitability parameter. Specifically, we used a generic 2-dimensional oscillator 502 

model (Equations 1 and 2) to create time series data that represents neural 503 

activity via two variables (the membrane potential and a slow recovery variable). 504 

This equation is based upon a modal approximation (Stefanescu and Jirsa, 2008) 505 

of a population of Fitzhugh-Nagumo neurons (Izhikevich and Fitzhugh, 2006).  506 

The neuronal dynamics are given by, 507 

 508 �ܸ̇ሺ�ሻ =  ʹͲሺ ௜ܹሺ�ሻ + ͵ ௜ܸሺ�ሻଶ − ௜ܸሺ�ሻଷ + ௜ሻ�ߛ + �௜ሺ�ሻ,   [1] 509 

 510 ܹ̇௜ሺ�ሻ = ʹͲ(− ௜ܹሺ�ሻ − ͳͲ ௜ܸሺ�ሻ) + �௜ሺ�ሻ,       [2] 511 

 512 

where Vi represents the local mean membrane potential and Wi represents the 513 

corresponding slow recovery variable at node i. Stochastic fluctuations are 514 

introduced additively through the white noise processes �௜  and �௜ , drawn 515 

independently from Gaussian distributions with zero mean and unit variance. 516 

The synaptic current Ii arise from time-delayed input from other regions 517 

modulated in strength by the global excitability parameter ·. This input arises 518 

after the mean membrane potential V in distant nodes is converted into a firing 519 

rate via a sigmoid-shaped activation function S, and then transmitted with 520 

axonal time delays through the connectivity matrix. Hence the synaptic current 521 

at node i is given by, 522 

 523 �௜ = ∑ �)௜௝ S௝ܣ − �௜௝)௝        [3] 524 

 525 

where Aij is the directed connectivity matrix derived from the 76 region 526 

CoCoMac connectome (Kötter, 2004), and �௜௝  is the corresponding time delay 527 

computed from the length of fiber tracts estimated by diffusion spectrum 528 
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imaging (Sanz Leon et al., 2013). The conversion from regional membrane 529 

potential to firing rate is given by a sigmoid-shaped activation function, 530 

  531 

  �௜ሺ�ሻ = ଵଵ+ ௘−�(�೔ሺ೟ሻ−�),              [4] 532 

 533 

where � is the (global) gain parameter and the sigmoid activation function is 534 

shifted to center at m. These equations were integrated using a stochastic Heun 535 

method (Rüemelin, 1982). 536 

 537 

The simulated neuronal data were fed through a Balloon-Windkessel model to 538 

simulate realistic Blood Oxygen Level Dependent signals (Friston et al., 2000). 539 

The simulated BOLD time series were band-pass filtered (0.01 – 0.1 Hz) and the 540 

PearsonȂs correlation was then computed ǻand normalized using FisherȂs r-to-Z 541 

transformation). 542 

 543 

We manipulated the inter-regional neural gain parameter σ and the regional 544 

excitability γ through a range of values (between 0-1). After aligning the sensitive 545 

region of the sigmoid function with its mean input (m = 1.5). Consistent with the 546 

effects of relatively diffuse projections from the locus coeruleus to cortex, all 547 

regions were given the same values of the σ and γ parameter for each trial. All 548 

code is freely available at https://github.com/macshine/gain_topology (Shine et 549 

al., 2018). 550 

  551 

Integration and Segregation 552 

The Louvain modularity algorithm from the Brain Connectivity Toolbox 553 

(Rubinov and Sporns, 2010) was used to estimate time-averaged community 554 

structure. The Louvain algorithm iteratively maximizes the modularity statistic, 555 

Q, for different community assignments until the maximum possible score of Q 556 

has been obtained (Equation 5). The modularity estimate for a given network is 557 

therefore a quantification of the extent to which the network may be subdivided 558 

into communities with stronger within-module than between-module 559 

connections. Here, we used the Q parameter to estimate the extent of segregation 560 

within each graph,  561 

 562 

  � = ଵ�+ ∑ (�௜௝+ − �௜௝+)ߜெ೔ெೕ௜௝ − ଵ�++�− ∑ (�௜௝− − �௜௝−)ߜெ೔ெೕ௜௝   [5] 563 
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 564 

where v is the total weight of the network (sum of all negative and positive 565 

connections), wij is the weighted and signed connection between regions i and j, 566 

eij is the strength of a connection divided by the total weight of the network, and 567 

ΈMiMj is set to 1 when regions are in the same community and Ŗ otherwise. ȁ+Ȃ and 568 

ȁ–ȁ superscripts denote all positive and negative connections, respectively.  569 

Consistent with previous work (Eldar et al., 2013), the mean clustering 570 

coefficient, which reflects the proportion of closed ȁtrianglesȂ in the binarized 571 

graph, was also used as a measure of segregation (Rubinov and Sporns, 2010). 572 

 573 

For each level of neural gain, the community assignment for each region was 574 

assessed 100 times and a consensus partition was identified using a fine-tuning 575 

algorithm from the Brain Connectivity Toolbox (http://www.brain-connectivity-576 

toolbox.net/). All graph theoretical measures were calculated on weighted and 577 

signed connectivity matrices (Rubinov and Sporns, 2010), and weak connections 578 

were retained using a consistency thresholding technique that identifies weak, 579 

yet consistent connections by identifying edges with minimal variance across 580 

multiple iterations (Roberts et al., 2016). In order to assess global, large-scale 581 

communities, the resolution parameter was set to 1.0 (higher values tune the 582 

algorithm to detect smaller communities, which instead reflect local, rather than 583 

global, clustering). This parameter was chosen by calculating the resolution value 584 

which maximized the Surprise (Aldecoa and Marín, 2013) between the 585 

community structure of the network at each level of gain and resolution and a 586 

random network defined using a cumulative hypergeometric distribution (see 587 

(Aldecoa and Marín, 2013)).  588 

 589 

The participation coefficient, BA (Equation 6) quantifies the extent to which a 590 

region connects across all modules (i.e. between-module strength). As such, the 591 

mean participation coefficient can be used to estimate the extent of integration 592 

within a graph. The participation coefficient, BAi, for a given region i is, 593 

 594 

௜�ܤ   = ͳ − ∑ ቀ�೔ೞ�೔ ቁଶ��௦=ଵ               [6] 595 

 596 

where κis is the strength of the positive connections of region i to regions in 597 

module s, and κi is the sum of strengths of all positive connections of region i. 598 
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The participation coefficient of a region is therefore close to 1 if its connections 599 

are uniformly distributed among all the modules and 0 if all of its links are 600 

within its own module. Finally, the global efficiency (mean inverse characteristic 601 

path length) and inverse modularity (Q-1) were estimated for each element of the 602 

parameter space as adjunct measures of integration. 603 

 604 

Phase Synchrony Order Parameter 605 

To estimate the degree of phase synchrony at different points in the parameter 606 

space, we extracted the raw signal (Vi) from each region in the simulation and 607 

subtracted the least squares linear trend from each channel. We then computed 608 

the phase of the analytic signal for each channel using the Hilbert transform and 609 

then estimated the phase synchrony order parameter (across all channels), OP, 610 

which is given by, 611 

 612 

 � =  |ଵே ∑ �௜�ೕே௝=ଵ |                  [7] 613 

 614 

where i = √−ͳ and θj represents the oscillation phase of the jth region. Large 615 

values of ρ denote phase alignment between regions (Breakspear and Heitmann, 616 

2010; Kuramoto, 1984). The value of ρ for each parameter combination was 617 

subsequently averaged over time and across sessions. By designating each 618 

parameter combination as resulting in either a synchronized (ρ ǃ 0.5) or 619 

unsynchronized (ρ < 0.5) regime, we were able to determine whether network 620 

topology changes as a function of neural gain and excitability estimated from 621 

BOLD data coincided with changes of underlying phase synchrony. Specifically, 622 

we then separately grouped topological variables and within- and between-623 

hemisphere connectivity according to their underlying ρ value and then 624 

estimated an independent-samples t-test between the two groups. The standard 625 

deviation of the order parameter, ρ, was also calculated and averaged across 626 

sessions. Finally, the dwell times for regional fluctuations were estimated for a 627 

number of characteristic parameter choices and analyzed for evidence of Pareto 628 

(i.e. power law) scaling. 629 

 630 

 631 

Communicability 632 
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The communicability, C, between a pair of nodes i and j is defined as a weighted 633 

sum of the number of all walks connecting the pair of nodes (within weighted 634 

connectivity matrix, A) and has been shown to be equivalent to the matrix 635 

exponent of a binarized graph, eA (Estrada and Hatano, 2008). For ease of 636 

interpretation, we calculated the log10-transformed mean of communicability for 637 

each graph across iterations and values of neural gain. 638 

௜௝ܥ   = ∑ (�ೖ)೔ೕ௞!∞௞=଴ =  ��             [8] 639 

 640 

Topological Variability 641 

To estimate time-resolved functional connectivity between the 76 nodal pairs, we 642 

used a recently described statistical technique (Multiplication of Temporal 643 

Derivatives; (Shine et al., 2015); http://github.com/macshine/coupling), which is 644 

computed by calculating the point-wise product of temporal derivative of 645 

pairwise time series (Equation 7). To reduce the contamination of high-frequency 646 

noise in the time-resolved connectivity data, Mij was averaged over a temporal 647 

window (w = 15 time points). Individual functional connectivity matrices were 648 

calculated within each temporal window, thus generating an unthresholded 649 

(signed and weighted) 3D adjacency matrix (region × region × time) for each 650 

participant. These matrices were then subjected to time-resolved topological 651 

analyses, which allowed us to estimate the participation coefficient for each 652 

region over time (BT). We used the mean regional standard deviation of this 653 

measure to estimate time-resolved topological variability in the simulated data. 654 

 655 �௜௝௧ = ଵ� ∑ (ௗ௧೔೟×ௗ௧ೕ೟)ቀ��೟೔×��೟ೕቁ௧+�௧              [9] 656 

 657 

for each time point, t, Mij is defined according to equation 1, where dt is the first 658 

temporal derivative of the ith or jth time series at time t, σ is the standard 659 

deviation of the temporal derivative time series for region i or j and w is the 660 

window length of the simple moving average. This equation can then be 661 

calculated over the course of a time series to obtain an estimate of time-resolved 662 

connectivity between pairs of regions.  663 

 664 

Structural Rich Club 665 
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To test whether changes associated with neural gain were mediated by highly-666 

interconnected high-degree hubs, we identified a set of ȁrich clubȂ regions using 667 

the structural white matter connectome from the CoCoMac database (Kötter, 668 

2004). Briefly, the degree of each node i in the network was determined by 669 

calculating the number of links that node i shared with k other nodes in the 670 

network. All nodes that showed a number of connections of ǂk were removed 671 

from the network. For the remaining network, the rich-club coefficient (Φk) was 672 

computed as the ratio of connections present between the remaining nodes and 673 

the total number of possible connections that would be present when the set 674 

would be fully connected. We then normalized Φk relative to a set of random 675 

networks with similar density and connectivity distributions. When ΦZ is greater 676 

than ŗ, the network can be said to display a ȁrich clubȂ architecture. Individual 677 

regions that are interconnected at the value of k at which the network 678 

demonstrates a ȁrich clubȂ architecture are thus designated as ȁrich clubȂ nodes (n 679 

= 22). Any nodes outside of this group but still sharing a connection are labeled 680 

as ȁfeederȂ nodes (n = 44), and regions disconnected from the rich club are 681 

designated as ȁlocalȂ nodes (n = 10). The results were projected onto a standard 682 

surface representation of the macaque cortex (Figure 4). After segmenting the 683 

network in this fashion, we were able to estimate the realized mean gain and BA 684 

across the parameter space for regions according to their structural topology. 685 

 686 

Realized Neural Gain 687 

While the neural gain parameter σ controls the maximum gain in each region 688 

within the simulation by setting the maximum slope of the sigmoid, the realized 689 

gain (mean ratio of sigmoid output to input) for each brain region depends upon 690 

the distribution of its input, and is greater when the input level is concentrated 691 

near the center of the sigmoid. We estimated the regional variation in effective or 692 

ȁrealizedȂ neural gain by calculating the integral of the instantaneous sigmoid 693 

slope over its complete input range, weighted by the probability of each input 694 

level. We then compared these values as a function of nodal class (rich club vs 695 

other nodes) at each aspect of the parameter space. 696 

 697 

Reliability 698 

We ran a number of subsequent tests to ensure that any observed changes in 699 

network topology were robust to the processing steps utilized in the analysis. 700 
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Firstly, we re-analyzed data across a range of network thresholds (1-20%) and 701 

observed robust results (i.e. r > 0.75) for Q, mean BA, mean communicability and 702 

the standard deviation of BT on graphs estimated between the 9-20% threshold 703 

range. Secondly, as the number of modules estimated from graphs can change as 704 

a function of network topology, we re-examined the topological characteristics of 705 

networks that were matched for the number of modules (N = 4) and found no 706 

significant differences to the topological signatures estimated on the whole 707 

group.  708 

 709 

 710 

 711 

 712 

 713 

 714 

715 
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Supplementary Figure Legends 716 

 717 

Figure 2-figure supplement 1 – Relationship between phase regimen boundary and alternative 718 

measures of network integration: a-c) the inverse modularity (Q-1) was maximal following the σ 719 

boundary (ΔσCP; mean across 0.2 ǂ γ ǂ 0.6) and the immediately prior to the abrupt phase 720 

transition at high γ (ΔγCP; mean across 0.3 ǂ σ ǂ 1.0); d-f) global efficiency (G.E.) was maximally 721 

variable with increasing σ and across the critical boundary at high γ. 722 

 723 

Figure 2-figure supplement 2 – a) standard deviation of order parameter across the parameter 724 

space; b) fluctuation scaling pre-boundary (σ  = 0.375 & γ = 0.50); and c) post-boundary (σ  = 0.50 725 

& γ = 0.575) – the thin blue line denotes a Pareto (i.e., power law) scaling effect. 726 

 727 

Figure 2-figure supplement 3 – Transition to self-sustained oscillations in a single brain region. 728 

For the generic 2D oscillator model this shows the real parts of eigenvalues at equilibrium as the 729 

level of input (Iapp) to a region is increased. A transition to self-sustained oscillations in a local 730 

region occurs where this curve crosses zero. That regime is bounded by supercritical Hopf 731 

bifurcations at Iapp = 2.0 and  Iapp = 14. 732 

 733 

Figure 2-figure supplement 4 – Average time-averaged connectivity matrix in regions of the 734 

parameter space associated with high (yellow) or low (blue) ordered phase synchrony. 735 

 736 

Figure 4-figure supplement 1 – Diverse Club: a) regional differences in integration (BA) as a 737 

function of changes in neural gain; and b) excitability, separated into regions within or outside 738 

the diverse club. 739 

 740 

 Figure 4-figure supplement 2 – Clustering coefficient: a) clustering coefficient across the 741 

parameter space; b) as a function of changes in neural gain; and c) excitability. 742 

 743 

 744 

 745 

 746 

 747 
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