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Abstract Age-related hearing loss (ARHL) is the most common sensory deficit in the elderly. The
disease has a multifactorial etiology with both environmental and genetic factors involved being
largely unknown. SLC7A8/SLC3A2 heterodimer is a neutral amino acid exchanger. Here, we
demonstrated that SLC7A8 is expressed in the mouse inner ear and that its ablation resulted in
ARHL, due to the damage of different cochlear structures. These findings make SLC7A8
transporter a strong candidate for ARHL in humans. Thus, a screening of a cohort of ARHL patients
and controls was carried out revealing several variants in SLC7A8, whose role was further
investigated by in vitro functional studies. Significant decreases in SLC7A8 transport activity was
detected for patient’s variants (p.Val302lle, p.Arg418His, p.Thr402Met and p.Val460Glu) further
supporting a causative role for SLC7A8 in ARHL. Moreover, our preliminary data suggest that a
relevant proportion of ARHL cases could be explained by SLC7A8 mutations.

DOI: https://doi.org/10.7554/eLife.31511.001

Introduction

Age-related hearing loss (ARHL) or presbycusis is one of the most prevalent chronic medical condi-
tions associated with aging. Indeed, more than 30% of people aged over 65 years suffer ARHL
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elLife digest Age-related hearing loss affects about one in three individuals between the ages of
65 and 74. The first symptom is difficulty hearing high-pitched sounds like children’s voices. The
disease starts gradually and worsens over time. Changes in the ear, the nerve that connects it to the
brain, or the brain itself can cause hearing loss. Sometimes all three play a role. Genetics, exposure
to noise, disease, and aging may all contribute. The condition is so complex it is difficult for
scientists to pinpoint a primary suspect or develop treatments.

Now, Guarch, Font-Llitjos et al. show that errors in a protein called SLC7A8 cause age-related
hearing loss in mice and humans. The SLC7AS8 protein acts like a door that allows amino acids — the
building blocks of proteins — to enter or leave a cell. This door is blocked in mice lacking SLC7A8
and damage occurs in the part of their inner ear responsible for hearing. As a result, the animals lose
their hearing. Next, Guarch, Font-Llitjos et al. scanned the genomes of 147 people from isolated
villages in Italy for mutations in the gene for SLC7A8. The people also underwent hearing tests.

Mutations in the gene for SLC7A8 that partially block the door and prevent the flow of amino
acids were found in people with hearing loss. Some mutations in SLC7A8 that allow the door to stay
open where found in people who could hear. The experiments suggest that certain mutations in the
gene for SLC7AS8 are likely an inherited cause of age-related hearing loss. It is possible that other
proteins that control the flow of amino acids into or out of cells also may play a role in hearing.

More studies are needed to see if it is possible to fix errors in the SLC7A8 protein to delay or
restore the hearing loss.
DOI: https://doi.org/10.7554/eLife.31511.002

(Gates and Mills, 2005; Huang and Tang, 2010, Van Eyken et al., 2007). Clinically, ARHL is
defined as a progressive bilateral sensorineural impairment of hearing in high sound frequencies
mainly caused by a mixture of 3 pathological changes: loss of the hair cells of the organ of Corti (sen-
sory), atrophy of the stria vascularis (metabolic) and degeneration of spiral ganglion neurons (SGN),
as well as the central auditory pathway (neural) (Gates and Mills, 2005; Schuknecht, 1955;
Yamasoba et al., 2013). ARHL has a complex multifactorial etiology with both genetic and environ-
mental factors contributing (Cruickshanks et al., 2010; Christensen et al., 2001). Although most
people lose hearing acuity with age, it has been demonstrated that genetic heritability affects the
susceptibility, onset and severity of ARHL (Wingfield et al., 2007, Cruickshanks et al., 2001,
Gates et al., 1999; Karlsson et al., 1997, Cruickshanks et al., 1998). Unfortunately, the complexity
of the pathology coupled with highly variable nature of the environmental factors, which cause
cumulative effects, increases the difficulty in identifying the genetic contributors underlying ARHL.
Most of the findings from genome-wide association studies (GWAS) performed into adult hearing
function could neither be replicated between populations, nor the functional validation of those can-
didates be confirmed (Dawes and Payton, 2016). Mouse models, including inbred strains, have
been essential for the identification of several defined loci that contribute to ARHL (Bowl and Daw-
son, 2015).

SLC7A8/SLC3A2 is a Na*-independent transporter of neutral amino acids that corresponds to
system L also known as LAT2 (L-type Amino acid Transporter-2) (Pineda et al., 1999, Rossier et al.,
1999; Oxender and Christensen, 1963). SLC7A8 is the catalytic subunit of the heterodimer and
mediates obligatory exchange with 1:1 stoichiometry of all neutral amino acids, including the small
ones (e.g. alanine, glycine, cysteine and serine), which are poor substrates for SLC7A5 (18), another
exchanger with system L activity. Functional data indicate that the role of SLC7A8 is to equilibrate
the relative concentrations of different amino acids across the plasma membrane instead of mediat-
ing their net uptake (Pineda et al., 1999; Meier et al., 2002; Verrey, 2003). The SLC7A8/SLC3A2
heterodimer is primarily expressed in renal proximal tubule, small intestine, blood-brain barrier and
placenta, where it is thought to have a role in the flux of amino acids across cell barriers
(Rossier et al., 1999; Bauch et al., 2003; Kanai and Endou, 2001; del Amo et al., 2008). So far,
SLC7AS8 research has been focused mainly on amino acid renal reabsorption. However, in vitro stud-
ies demonstrated that SLC7A8 could have a role in cystine efflux in epithelial cells and the in vivo
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deletion of Slc7a8 in a mouse model showed a moderate neutral aminoaciduria (Braun et al., 2011),
suggesting compensation by other neutral amino acid transporters.

Therefore, in order to better understand the physiology of SLC7A8, we generated null Slc7a8
knockout mice (Slc7a8~/") (Font-LLitjés, 2009) and (Figure 1—figure supplement 1A). Here, we

describe the detection of a hypoacusic phenotype in the Slc7a8’/~ mouse model and demonstrate
that novel loss-of-function SLC7A8 mutations constitute a primary cause in the development of

ARHL in a cohort of elderly people from two isolated villages in Italy.

Results

Slc7a8 ablation causes ARHL

SLC7A8 is highly expressed in the kidney, intestine and brain, and neither full-length nor truncated
SLC7AS8 protein were detected in membrane samples of Slc7a8~'~ mice (Figure 1A). The Allen Brain
Atlas (Allen Institute for Brain Science, 2004) localizes mouse brain SLC7A8 to the cortical sub-
plate, cerebellum, thalamus and olfactory bulb. Our results showed that SLC7A8 protein was local-
ized to the plasma membrane of neuronal axons in different brain regions such as, the choroid
plexus, subfornical organ, cerebral cortex and hypothalamus by immunohistochemistry (Figure 1—
figure supplement 2A). This specific localization in the brain pointed to the possibility that the
absence of the transporter could potentially lead to neurological disorders. Behavioral screening
showed that absence of SLC7A8 in mice does not affect either learning or memory (Figure 1—fig-
ure supplement 3). In contrast, a significant reduction in latency was observed in the rotarod accel-
eration test indicating impairment in motor coordination in Slc7a8 '~ mice (Figure 1—figure
supplement 3G). Reaffirming poorer motor coordination performance in the Slc7a8~’~ mice, an
increased exposure to shock on the treadmill was also observed (Figure 1—figure supplement 3B).
Interestingly, a marked impairment was observed in the pre-pulse inhibition of acoustic startle
response, which assesses the response to a high intensity acoustic stimulus (pulse) and its inhibition
by a weaker pre-pulse. The response to a 120 dB single-pulse was significantly reduced in Slc7a8~/~
mice (Figure 1B). The higher threshold required for responding to the acoustic stimulus in the PPI
tests in Slc7a8 '~ animals could potentially be indicative of a hearing impairment or to a defect in
the stress response signaling.

Response to stress is modulated by the hypothalamic-pituitary-adrenal axis via the release of cor-
ticosterone from the adrenal cortex (Smith and Vale, 2006). As SLC7A8 is expressed in the murine
pituitary gland (Figure 1—figure supplement 2A and S3H), plasma corticosterone levels under
stressing conditions were analyzed. No differences were observed in corticosterone levels at either
basal conditions, nor under restraint stress in the Slc7a8’~ group, indicating a normal stress
response in the absence of SLC7A8 (Figure 1—figure supplement 3I). Thus, a hearing impairment
in Slc7a8/~ animals was considered the most probable cause of the differences observed in the
acoustic startle response test (Figure 1B). The impact of the ablation of SLC7A8 on the auditory sys-
tem was tested initially on mice with a mixed C57BL6/J-129Sv genetic background.

Auditory brainstem response (ABR) recording, which evaluates the functional integrity of the audi-
tory system, was performed in Slc7a8~/~ mice. Reinforcing our hypothesis, adult 4- to é-month-old
Slc7a8 '~ mice showed significantly higher (p<0.01) ABR thresholds in response to click stimulus,
compared with age matched Slc7a8"~ and wild type mice, which maintain normal hearing thresh-
olds (Figure 1C-E). The hearing loss observed in Slc7a8/~ mice affected the highest frequencies
tested (20, 28 and 40 kHz) (Figure 1F). The analysis of latencies and amplitudes of the ABR waves in
response to click stimuli, showed increased latency and decreased amplitude of wave |, but similar II-
IV interpeak latency, in the Slc7a8/~ mice when compared with the other genotypes, pointing to a
hypoacusis of peripheral origin without affectation of the central auditory pathway (Figure 1—figure
supplement 4A to D).

Mice were grouped according to genotype, age and ABR threshold level and descriptive statistics
calculated, showing that the penetrance of the hearing phenotype in the Slc7a8~/~ mice is incom-
plete (Figure 1D and E). Therefore, mice were classified according to their hearing loss (HL) pheno-
type, defining normal hearing when ABR thresholds for all frequencies were <45 dB SPL, mild
phenotype when at least two thresholds were between 45 and 60 dB SPL and severe hypoacusis
when at least two thresholds were >60 dB SPL. At 4-6 months of age, Slc7a8~/~ mice showed either
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Figure 1. Hearing phenotype of C57BL6/J-129Sv Slc7a8 knockout mice. (A) Representative image of western bloting of total membranes from kidney,
brain and intestine of wild-type (+/+) and Slc7a8 knock out (-/-) mice in the absence (-) or presence (+) of 100 mM dithiothreitol reducing agent (DTT) of
three independent biological samples for both sexes (male and female). Protein (50 nug) were loaded in 7% acrylamide SDS-PAGE gel. Molecular mass
standard (KDa) are indicated. Red arrows point SLC7A8/CD9%8hc heterodimer band as well as the light subunit SLC7A8. Upper panel: Rabbit anti-

Figure 1 continued on next page
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Figure 1 continued

SLC7A8. Bottom panel: Mouse anti-Bactin. (B) Pre-Pulse Inhibition of the acoustic startle response (PPl). Mean and SEM are represented. Pulse: 120 dB
single pulse. Pre-pulse inhibition test: six different pre-pulse intensities (70 to 90 dB) in pseudo random order with 15 s inter-trial intervals. Wild type
(white circles, n = 19) and Slc7a8 ~/~ (blue circles, n = 15) from 4- to 7-month-old are represented. Significant differences were determined using paired
Student’s t-test, ***p<0.001 (C-F) Hearing phenotype in wild-type (Slc7a8*"*, white, n = 11), heterozygous (Slc7a8*~, green, n = 12) and knockout
(Slc7a87~, blue, n = 14) mice, grouped by age (4-6 and 7-13 month old). (C,D) Auditory Brainstem Response (ABR) threshold in response to click,
expressed as mean standard error (C), individual value (scatter plot, (D) and median (boxplot, (D). The significance of the differences was evaluated
using ANOVA test, *p<0.05, **p<0.01 (Slc7a8~"~ versus Slc7a8%"*) and # p<0.05 (Slc7a8~/~ versus Slc7a8""). (E) Pie plot showing the percentage of
normal hearing (all thresholds <45 dB SPL, white) mice and mice with mild (at least two tone burst threshold >45 dB SPL, orange) and severe (at least
two tone burst threshold >60 dB SPL, red) hearing loss (HL), within each genotype and age group. (F) ABR thresholds in response to click and tone
burst stimuli (8, 16, 24, 32 and 40 kHz) in mice from three genotypes separated by age group and hearing phenotype (normal hearing or hearing loss).
Significant differences were determined using ANOVA test, *p<0.05, **p<0.01, ***p<0.001 (hearing impaired Slc7a8/~ versus normal hearing Slc7a8"
*) and # p<0.05 (hearing impaired Slc7a8™"~ versus Slc7a8"").

DOI: https://doi.org/10.7554/eLife.31511.003

The following figure supplements are available for figure 1:

Figure supplement 1. Scheme of Slc7a8 knockout mouse generation.

DOI: https://doi.org/10.7554/eLife.31511.004

Figure supplement 2. SLC7A8 expression in mouse brain.

DOI: https://doi.org/10.7554/eLife.31511.005

Figure supplement 3. Behavior phenotype.

DOI: https://doi.org/10.7554/eLife.31511.006

Figure supplement 4. ABR latencies and amplitudes of C57BL6/J-129Sv Slc7a8 knockout mice.
DOI: https://doi.org/10.7554/eLife.31511.007

Figure supplement 5. Hearing phenotype of C57BL/6J Slc7a8 knockout mice.

DOI: https://doi.org/10.7554/eLife.31511.008

severe (37.5%) or mild (25%) hearing loss, whilst mice from the other genotypic groups did not show
hearing loss (Figure 1E). Next we studied 7-13 month-old mice, 50% of Slc7a8'~ mice presented
severe hypoacusis and the hearing loss spread to lower frequencies with age. Slc7a8~/~ mice with
hearing loss showed statistically significant differences in ABR parameters when compared to the
other genotypes (Figure 1F). Moreover, 43% of Slc7a8""~ mice developed mild hearing loss at 7-13
months, whereas the age-matched wild-type mice maintained intact hearing indicating a predisposi-
tion toward hearing loss in aged Slc7a8"'~mice (Figure 1E).

The onset and severity of ARHL is attributed to both environmental and genetic factors
(Cruickshanks et al., 2010). As the environmental factors were well controlled in all the experiments,
thus the phenotypic variability could be attributed as the consequence of individual genetic differen-
ces. Indeed, it has been described that several strains of inbred mice present a predisposition to suf-
fer ARHL dependent on multiple genetic factors (Kane et al., 2012; Murillo-Cuesta et al., 2010).
Here, the hearing loss phenotype was confirmed in a second mouse strain, the inbread C57BL6/J
genetic background (Figure 1—figure supplement 5). Additionally, longitudinal study of Slc7a8 "/~
mice into the inbred C57BL6/J genetic background showed higher penetrance than the mixed back-
ground throughout the ages studied (Figure 2—figure supplement 2).

Localization and quantification of SLC7AS8 in the inner ear

The presence of SLC7A8 has previously been reported in the mouse cochlea (Yang et al., 2011;
Uetsuka et al., 2015; Sharlin et al., 2011), and specifically localized to the stria vascularis by liquid
chromatography tandem mass spectrophotometry and by Western blotting (Uetsuka et al., 2015).
Here, SLC7A8 was detected in wild-type mouse cochlea by immunofluorescence supporting its local-
ization to the spiral ligament and spiral limbus from the basal to the apical regions of the cochlea
(Figure 2A and B). SLC7A8 immunolabeling was not observed in the stria vascularis. We observed
an intense expression of SLC7A8 in the spiral ligament surrounding the stria indicating that the
SLC7AS8 epitope (Figure 1—figure supplement 1B) is either hidden or absent in the stria vascularis.
Quantification of SLC7A8 expression in the cochlea showed half a dose of the transporter in the
Slc7a8*'"than in wild-type mice, and its ablation in Slc7a8~'~ mice (Figure 2C). A closer study of
SLC7A8 immunofluorescence showed that the transporter is also expressed in the spiral ganglia neu-
rons area (SGN) (Figure 1—figure supplement 2B).
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Figure 2. Immunolocalization of SLC7A8 in the mouse cochlea. (A) Representative photomicrographs of cryosections of the base of the cochlea
showing immunodetection for SLC7A8 (green) and s100 (red); and staining for DAPI (blue) or phalloidin (white) of wild type (upper row) and Slc7a8~/~
mice (lower row). Scale bar, 100 um. (B) On the left overlay image of a wild-type section indicating cochlea areas. Scale bar, 100 um. On the right
schematic drawing of the adult scala media adapted from Sanchez-Calderon et al. (2010). BC, border cells; CC, Claudius’s cells; DC, Deiter's cells;
Figure 2 continued on next page

Espino Guarch et al. eLife 2018;7:€31511. DOI: https://doi.org/10.7554/eLife.31511 6 of 27


https://doi.org/10.7554/eLife.31511

LI FE Research article Genes and Chromosomes | Human Biology and Medicine

Figure 2 continued

HC, Hensen'’s cells; IC, intermediate cells; IHC, inner hair cells; IPC, inner phalangeal cells; Li, spiral limbus; MB, Basilar Membrane; OHC, outer hair
cells; PC, pillar cells; RM, Reisner's membrane; SG, spiral ganglion; SL, spiral ligament; SV, stria vascularis; TM, tectorial membrane. (C) Quantification of
SLC7A8 expression. Intensity of SLC7A8 immunofluorescence was normalized per mm?. Mean +SEM from quadruplicates for each section, taken from
apex, middle and basal cochlear turns of 4 wild-type (black), 3 Slc7a8"'~ (green) and 4 Slc7a8~’~ (blue) young (4- to 7-month-old) mice. Open and
closed circles represent individual mice from C57BL6/J-129Sv or C57BL6/J backgrounds, respectevely. Unpaired Student's t-test statistical analysis,
p-values: *,<0.05; **,<0.01 and ***,<0.001. (D) Quantification of SLC7A8 protein expression in the apex, middle and basal cochlear turns normalized
per nuclei of young (2 month-old) (open bars) and old (12 month-old) (black bars) wild-type CBA mice. Data (mean +SEM) were obtained from four

cochlear sections obtained from three mice per group. Unpaired Student’s t-test statistical analysis, p-value: *,<0.05.
DOV https://doi.org/10.7554/eLife.31511.009

The following figure supplements are available for figure 2:

Figure supplement 1. Quantification of transcripts in the Slc7a8~/~ mouse cochlea.

DOI: https://doi.org/10.7554/eLife.31511.010

Figure supplement 2. Progression of hearing phenotype of C57BL/6J Slc7a8 knockout mice.

DOV https://doi.org/10.7554/eLife.31511.011

The early HL onset and the progressive ARHL phenotype observed in Slc7a8/~ and Slc7a8"/~
mice respectively, prompted us to compare the expression of SLC7A8 in wild-type cochlea at differ-
ent ages (Figure 1D). Immunofluorescence quantification of SLC7A8 intensity at 2- and 12 months of
age showed expression in the young mice and increased presence of the transporter in the older
mice (Figure 2D). In the same line, Slc7a8 mMRNA quantification from cochlea extracts showed a pro-

gressive increased expression throughout mouse life (Figure 2—figure supplement 1A).

Lack of Slc7a8 induced damage in the organ of Corti, spiral ganglion

and stria vascularis

The cytoarchitecture of the inner ear was studied by hematoxylin/eosin staining (Figure 3), immuno-
fluorescence (Figure 4 and Figure 4—figure supplement 1) and mRNA detection of several
cochlear markers (Figure 3D and Figure 2—figure supplement 1). Most of the structures of the
cochlear duct, including spiral ligament, spiral limbus, tectorial and basilar membranes showed a
normal gross cytoarchitecture in the Slc7a8 '~ mice. In contrast, in the basal turns of the cochlea we
observed that 3 out of 6 Slc7a8~/~ mice evaluated showed complete loss of hair cells and flat epithe-
lia, while only one Slc7a8~/~ mouse showed intact epithelia in the organ of Corti (Figure 3A). Like-
wise, loss of cells in the spiral ganglia, especially in the basal regions of the cochlea, was observed
(Figure 3A). Slc7a8~/~ mice at 4 to 7 months of age presented ~50% of cell loss in the spiral gan-
glion compared with wild type mice (Figure 3B). Decreased number of cells in the ganglia signifi-
cantly correlates with ABR threshold and HL phenotype (Figure 3—figure supplement 1and B).
Concomitantly with the loss of hair cells and spiral ganglion (SG) nuclei in Slc7a8~/~ mice, the mes-
senger levels of cell type specific biomarkers, such as the potassium voltage-gated channels Kecng2,
Keng3 and Keng5, and the transporter Slc26a5, which are expressed in the organ of Corti and SG

were down-regulated respectively (Figure 3D and Figure 2—figure supplement 2B).

Less densely packed cells in the spiral ligament were observed in Slc7a8 /= than in wild-type
mice (Figure 3A). Reinforcing this observation, the expression of Kird.1, a potassium channel highly
expressed in stria vascularis cells (Ando and Takeuchi, 1999), was also dramatically reduced by 50%
in Slc7a8~/~ (Figure 4B and Figure 4—figure supplement 1A). Likewise, decreased expression of
Kir4.1 marker correlates with HL phenotype (Figure 3—figure supplement 1C). Phalloidin labeling
of actin fibers in the basal cells of the stria vascularis was also decreased 50% in the base of the

cochlea (Figure 4C and Figure 4—figure supplement 1).

SLC7A8 is abundantly expressed in fibrocytes of the spiral ligament and limbus (Figure 2),
accordingly the number of fibrocytes in the spiral ligament decreased by 2/3 and 1/3 in the null and
Slc7a8%~ mice, respectively (Figure 3C). Moreover, mice with severe HL phenotype showed 30%
less number of fibrocytes in the spiral ligament (Figure 3—figure supplement 1D). The expression
of the transcription factor Thbx18, essential for fibrocytes development and differentiation, was 50%
less in Slc7a8~/~ than in wild-type mouse cochleae (Figure 3D). In contrast, the expression of s100,
fibrocyte types | and Il marker, did not show significant differences (Figure 4D and Figure 4—figure

supplement 1C).
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Figure 3. Cytoarchitecture of the Slc7a8~'~ mouse cochlea. (A) Hematoxylin and Eosin staining of the base of the
cochlea. Representative photomicrographs taken from paraffin sections of wild-type and hipoacusic Slc7a8~/~
mice. OC, Organ of Corti; SG, spiral ganglia region; and SL, spiral ligament. * Indicates loss of hair cells in the
organ of Corti (first column), loss of neurons in the spiral ganglia (second column) and lower nuclei density in the
Figure 3 continued on next page
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Figure 3 continued

spiral ligament (third column). Scale bar 100 um. (B) Quantification of the number of neurons in the spiral ganglia
(SG) in the basal turns of the cochlea. Y axis represents the mean nuclei quantification of 5 to 10 areas in SG. (C)
Quantification of the number of nuclei in the spiral ligament (SL) of the basal turns of the cochlea by
immunofluorescence using DAPI staining. For each sample, 12 overlaps of Z-stacks areas were used to quantify
number of nuclei. Unpaired Student’s t-test statistical analysis: **, p<0.01 (A to C) 4 wild-type (black), 3 Slc7a8%~
(green) and 4 Slc7a8~'~ (blue) mice at 4 to 7-month-old are represented. Circles represent the average of the
quadruplicate analysis performed in each mouse of C57BL6/J-129Sv (open) and C57BL6/J (filled) background. (D)
Quantification of mMRNA markers by RT-gPCR PCR. Cochlear gene expression of Slc26a5, Tbx18, Kcng2 and Keng3
in the cochlea at 3-month-old and 7 months wild-type (white bars) and Slc7a8~'~ (blue bars) C57BL6/J mice.
Expression levels, normalized with Rplp0 gene expression, are represented as n-fold relative to control group.
Values are presented as mean +SEM of triplicates from pool samples of three mice per condition. Unpaired
Student'’s t-test statistical analysis, p-values: *p<0.05; **p<0.01; ***p<0.001.

DOI: https://doi.org/10.7554/eLife.31511.012

The following figure supplement is available for figure 3:

Figure supplement 1. Correlations of the cell numbers and cell type biomarkers with HL phenotype.
DOI: https://doi.org/10.7554/eLife.31511.013

Mutations in SLC7AS8 are associated with ARHL

Once we associated mouse SLC7A8 transporter with deafness and identified it as a potential ARHL
gene, screening for mutations in human populations was initiated. Whole genome sequencing
(WGS) and audiogram test data obtained from 147 individuals from isolated villages in ltaly were
included in the study. The inclusion criteria were people 50 years old or older with an audiogram
test done at high frequencies (Pure-tone audiometric PTA-H, 4 and 8 kHz). Individuals with pure-
tone average for high frequencies (PTA-H) greater than or equal to 40 decibels hearing level (dB HL)
were considered ARHL cases, whilst people with PTA-H less than 25 dB were considered as controls.
A total of 66 cases suffering ARHL and 81 controls were selected. The gene-targeted studies con-
ducted in this isolated cohort succeeded in detecting seven heterozygous missense variants
(Table 1). Four of the variants: p.Val460Glu (V460E), p.Thr4d02Met (T402M), p.Val302lle (V302l) and
p.Arg418His (R418C) belong to ARHL cases (see Audiogram in Figure 5—figure supplement 1A)
and other three: p.Arg8Pro (R8P), p.Ala?4Thr (A94T) and p.Arg185GIn (R185L) to the control group
(see Audiogram in Audiogram in Figure 5—figure supplement 1B).

All the mutations found in SLC7A8 cases and controls from isolated villages of Friuli Venezia Giu-
lia exhibited different frequencies in comparison to public data bases, such as ExXAC among others
(see Table 1). According to EXAC database’s constrain metrics (Lek et al., 2016), the gene shows
evidence of tolerance of both loss of function (pLi = 0) and missense variation (missense Z
score = —0.14).

Functional studies of SLC7A8 mutations

A structural model of human SLC7A8 protein built using the homologous protein AdiC
(Kowalczylk et al., 2011) in the outward-facing conformation (Rosell et al., 2014) (Figure 5—figure
supplement 1C and D) was used to localize all the mutations identified here. Interestingly, three of
the four mutations found in ARHL patients were located in very striking places: (i) V302 is a con-
served amino acid located in the extracellular loop four which corresponds to the external lid that
closes the substrate binding site when the transporter is open to the cytosol, (i) T402 is located in
transmembrane (TM) domain 10 facing to the substrate binding site, and (iii) V460 is located at the
very end of TM domain 12, with potential interaction with the plasma membrane. In contrast, R418
is in the intracellular loop 5, between TM domain 10 and TM domain 11 and with no functional role
described in transporters with the LeuT-fold (Krishnamurthy and Gouaux, 2012). Thus, three of
these mutations were promising candidates to affect the transporter function due to their crucial
location.

In vitro functional characterization of variants present in patients with ARHL and controls was per-
formed by measuring amino acid uptake in Hela cells co-transfected with the heavy subunit CD98hc
and Strep tagged-SLC7A8 wild type and variants (Figure 5). Co-expression of the light (SLC7AS8)
and the heavy (CD98hc) subunits in the same cell increases the plasma membrane localization of the
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Figure 4. Immunofluorescence of cochlear markers in the Slc7a8~/~ mouse. (A) Representative photomicrographs of cryosections (10 um) from the
basal turn of the cochlea from wild type (1 and 4), Slc7a8"~ (2 and 5) and Slc7a8~'~ (3 and 6) mice labeled for Kir4.1 (green), phalloidin (red) and DAPI
(blue) (1 to 3), or for s100 (red), phalloidin (cyan) and DAPI (blue) (4 to 6). Scale bar, 100 um. (B, C and D) Graph representing the quantification of Kir4.1,
$100 and phalloidin (Pha) labeling intensity in the basal turn of the cochlea. Means + SEM, normalized per mm? of 4 wild type (black bars), 3 Slc7a8"~
(green bars) and 4 Slc7a8~'~ (blue bars) young (4- to 7-month-old) mice are represented. Individual circles represent the average of the quadruplicate
analysis of sections from each mice of either C57BL6/J-129Sv (open) or C57BL4/J (filled) backgrounds. Unpaired Student’s t-test statistical analysis,
p-value: *,<0.05.

DOI: https://doi.org/10.7554/eLife.31511.014

The following figure supplement is available for figure 4:

Figure supplement 1. Quantification of the intensity of cell type biomarkers in apical and middle cochlear regions.

DOI: https://doi.org/10.7554/eLife.31511.015
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Table 1. SLC7A8 Humans mutations found in ARHL and controls individuals.

Frequency
Phenotype Age Sex Variant Consequence Code Esp6500siv2 1000 g Campion ExAC Studied cohort
ARHL 75  Female 23597290 14:23597291 C /T p.Vald60Glu  V460E NA NA 0.0013 0.00002475 0.015
ARHL 57 Male 23598917 14:23598917 G/ A p.Thrd02Met  T402M NA NA 0.0047 0.00002471 0.015
ARHL 75  Male 23608641 14:23608641 C /T p.Val302lle V302l 0.0005 NA 0.0047 0.0004613  0.015
(rs142951280)
ARHL 86  Female 23598870 14:23598869 C/ T p.Argd18His  R418C 0.0005 NA 0.002 0.00002477 0.015
control 50 Male 23652101 14:23652101 C/ G p.Arg8Pro R8P 0.0008 NA 0.0013 0.0008156  0.012
(rs141772308)
control 50 Male 23635621 14:23635621 C /T p.Ala94Thr A94T  0.0012 0.002  0.0013 0.00202 0.012
(rs139927895)
control 90  Female 23612368 14:23612368 C/T p.Arg185GIn  R185L NA NA 0.002 0.00002471 0.012
(rs149245114)

ARHL (age-related hearing loss). The age (years) of the subject when the Audiogram was performed is indicated. Variant [CHR: position reference/alternate

(dbSNP135rsID)]. Consequence [HGUS annotation (protein change)]. Code [short description of the alternate variant]. Frequency of the mutations:
Esp6500siv2 (NHLBI Exome Sequencing Project), 1000 g (1000 Genomes Project), Campion (The Allele Frequency Net Database) and EXAC (The Exome
Aggregation Consortium).
DOV https://doi.org/10.7554/eLife.31511.016

transporter (Rosell et al., 2014). All tested variants showed expression levels comparable to those
of wild type, except for V460E that showed only 20% expression of wild -ype protein (Figure 5—
source data 1), being the only variant that did not reach the plasma membrane as indicated by the
lack of co-localization with wheat germ agglutinin staining (Figure 5A). Amino acid transport
induced by SLC7A8 was analyzed for wild type and the identified variants (Figure 5B). All variants
present in controls (R8P, R186L and A94T) conserved more than 80% of alanine transport compared
with wild-type protein. Three variants found in patients with ARHL showed diminished alanine trans-
port activity: T402M and V460E presented little residual transport activity (14.6 + 2.6% and 3.6 +
0.3% of wild-type activity, respectively) and R418C showed 50.7 + 5.4% of wild-type alanine trans-
port. Surprisingly, V302l presented similar alanine transport levels to wild type SLC7A8. Location of
residue V302 within EL4 (within the external substrate lid (Figure 5—figure supplement 1D) led us
to additionally measure a larger size SLC7A8 substrate, whose transport could potentially be more
compromised than that of a small substrate (e.g. alanine). Interestingly, V302l transport activity of
tyrosine was found to be only 40.0 + 1.6% of wild-type SLC7A8. Because the V302l mutation showed
a substrate-dependent impact, tyrosine transport in the other variants was also tested (Figure 5B).
Other SLC7AS8 variants found in patients with ARHL and controls showed similar decreased transport
activity for alanine and tyrosine. Thus, the SLC7A8-induced tyrosine transport was clearly defective
in the four variants found in patients with ARHL, whereas it was barely affected (>85% of wild-type
transport activity) in the variants found in controls.

Discussion

Here, we show that loss of function of the amino acid transporter SLC7AS8 is associated with ARHL in
both humans and mice. Full ablation of SLC7A8 transporter in mice produced a hearing loss defect
with incomplete penetrance affecting mainly high-frequency sounds, a characteristic of ARHL
(Figures 1C-F, S5 and Sé). Interestingly, hearing loss severity increases with age in Slc7a8~~ mice
(Figures 1C-F and Sé). Similarly, Slc7a8 heterozygous mice showed increased hearing loss pene-
trance with age, as indicated by the late onset of the phenotype (starting from 7 months onwards)
(Figures 1E, S5 and Sé). In addition, SLC7A8 expression in wild type cochlea rises during ageing
(Figure 2D and S7A). In patients with ARHL we identified four SLC7A8 variants that showed loss of
function of transport of tyrosine (Figure 5B). Altogether, these results indicate that full SLC7A8 func-
tion is needed to keep an optimal hearing function throughout life, with half a dose of SLC7A8 being
enough to accelerate ARHL phenotype in mice and humans.
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Figure 5. In vitro characterization of SLC7A8 mutants. (A) Panel showing representative images of immunofluorescence of wild type and the indicated
SLC7A8 mutants overexpressed in Hela cells. Overlay of SLC7A8 (green), wheat germ agglutinin (WGA, membrane marker) (red) and the nuclear
marker DAPI (blue) labeling. All SLC7A8 variants, except V460E, reached the plasma membrane. (B) Alanine (Ala) and tyrosine (Tyr) transport activity of
human SLC7A8 wild type (WT) and mutants in transfected Hela cells. SLC7A8 transport activity, corrected by SLC7A8-GFP expression, is presented as
percentage of wild-type SLC7A8 transport activity. Data (mean £SEM) corresponds to three independent experiments with quadruplicates. Mutants
activity comparing with its, respectively, wild-type transport unpaired Student's t-test statistical analysis is represented, p-values: *,<0.05; **,<0.01 and
*** <0.001.

DOI: https://doi.org/10.7554/eLife.31511.017

The following source data and figure supplement are available for figure 5:

Source data 1. Mutants expression and oligonucleotides for Site-Directed Mutagenesis (5'-3').

DOI: https://doi.org/10.7554/eLife.31511.019

Figure supplement 1. Audiogram of patients with ARHL and localization of the mutations in SLC7A8 protein.

DOI: https://doi.org/10.7554/eLife.31511.018

The hearing loss (HL) phenotype in the Slc7a8/~ mice has been confirmed on two genetic back-

grounds (mixed C57BL6/J-129Sv; Figure 1, and inbred C57BL6/J; Figure 1—figure supplement 5).
Interestingly, onset and penetrance, but not severity, was increased in the hearing loss trait of
Slc7a8~/~ mice in the pure C57BL6/J background (Figure 1—figure supplement 5). It is well-known
that the C57BL6/J background carry a mutation in the Cdh23 gene causing early onset of ARHL
(Noben-Trauth et al., 2003; Mazelova et al., 2003). It is also worthwhile to mention that all the
inbred C57BL6/J mice used to perform the experiments in this research were positive for the ARHL
susceptibility allele A/A in Cadh23 (data not shown). Genetic linkage between both genes could be
disregarded because both are located in different chromosomes (Slc7a8 in Chr:14 and Cdh23 in
Chr:8). Therefore, non-additive severity of the hearing loss phenotype of Slc7a8 ablation and Cdh23
susceptibility allele suggests that both genes may share similar mechanisms of pathogenicity.

In line with the results observed in the mouse model, the four human mutations found in hetero-
zygosis in ARHL patients showed a reduced SLC7A8 transporter activity meanwhile the mutations
found in control group did not affect the transporter activity (Figure 5B). The predisposition of
SLC7A8 to host deleterious variants, as shown by the in silico-patterns of missense and loss-of-func-
tion tolerance, could be explained because its aberration affects age-related hearing function, but
its ablation is neither vital nor affects the reproduction of the mice (Slc7a8/~ showed same
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frequency of siblings as expected, data not shown). Furthermore, the presence of mutations in both
ARHL cases and controls in our cohort with higher frequencies in respect to public databases could
be explained as a result of isolation and inbreeding in our individuals; as isolation in a population
could lead to an enrichment of deleterious variants due to relaxation of purifying selection
(Xue et al., 2017). We also noted that in ExXAC the mutations found in controls have a mean fre-
quency that is seven times higher than the ones found in our cases, and we speculate that this could
be an indirect hint of the higher deleteriousness of the variations found in our cases in respect to the
controls. Thus, the present work points to SLC7A8 as a strong candidate gene involved in ARHL
induction and the presented data suggest that a significant proportion (~3%) of ARHL cases could
be explained by SLC7A8 mutations making it one of the major players so far described.

SLC7A8 was localized in key cochlear structures: the spiral ligament, spiral limbus and spiral gan-
glion (Figure 2A and S2B) likewise the three main pathological changes described in the ARHL were
observed in the absence of SLC7A8: the hair cells of organ of Corti (sensory), the spiral ganglia (neu-
ral), and the spiral ligament and the stria vascularis (metabolic) (Figure 3).

The spiral ligament contributes to cochlear homeostasis and is crucial for normal hearing. Degra-
dation of the spiral ligament can result in either one form of hereditary deafness through POU3F4
mutations at locus DFN3 (41) or in the loss of endocochlear potential (EP) in presbycusis mouse
models (Wu and Marcus, 2003). In the spiral ligament, SLC7A8 expression was detected in fibro-
cytes, mostly in type |, close to the stria vascularis (Figure 2). In addition, a reduced number of total
cells was observed in both Slc7a8 '~ and Slc7a8"~ mice (Figure 3C). Type | fibrocytes are intercon-
nected with the adjacent types Il and V cells forming a gap junction-dependent cell system with a
relevant role in ion homeostasis [for a review, see (Kikuchi et al., 2000)]. Deafness due to fibrocyte
alterations has been described, which indicates the importance of their integrity for appropriate
hearing (Minowa et al., 1999; Teubner et al., 2003; Boettger et al., 2003; Delprat et al., 2005;
Trowe et al., 2008). Nonetheless, s100 expression (Figure 4C) appeared to be unaffected in the
absence of SLC7A8. Interestingly, mutations in genes expressed in spiral ligament fibrocytes could
affect stria vascularis function causing deafness, such as the ablation of the fibrocyte transcription
factor POU3F4 that causes loss of fibrocytes IV and V in the spiral ligament, decreased cellular den-
sity in the stria vascularis and decreased expression of Kird.1 (48). As the stria vascularis regulates
nutrient transport and ion fluxes is responsible for the maintenance of the EP (Peter and Santi,
2001), which is the driving force required for neurotransmission after acoustic stimulus (Wange-
mann, 2006; Couloigner et al., 2006). We observed alterations in the stria vascularis, decreased
expression of Kird.1 and the basal cell marker phalloidin all correlating with HL phenotype in
Slc7a8~'~, and similar traits in Slc7a8"/~ mice (Figures 3A and 4B-C and S9). Moreover, is described
that the ablation of the T-box transcription factor gene Tbx18, expressed in the spiral ligament,
compromises fibrocytes differentiation (Trowe et al., 2008) and concomitant disruption of the archi-
tecture of the stria vascularis with almost complete absence of the basal cell layer, and down-regula-
tion of Kird.1 (52). Likewise, deletion of Pendrin (SLC26A4, PDS) (CI/I/HCO3 anion exchanger
expressed in mouse fibrocytes) showed pronounced signs of vestibular disease attributed to an
altered EP (Everett et al., 2001). Concomitant with reported data, transcript levels of both Thx18
and Slc26a4 are down-regulated in the Slc7a8~'~ mouse (Figure 3D). Therefore, if we assume a
defect in ion homeostasis in the absence of SLC7A8, we could expect an EP impairment that should
also trigger vestibular damage. In line with this assumption, we observed impaired balance during
gradual acceleration in rotarod test performance of Slc7a8~/~ mouse (Figure 1—figure supplement
3G). Altogether, the data presented suggests that the absence of SLC7A8 in fibrocytes might con-
tribute a metabolic component to the progression of hearing loss.

The reduction in the number of cells of the spiral ganglia in Slc7a8/~ mice to half of those in wild
type (Figure 3A and B) and its correlation with ABR threshold at high frequencies (Figure 3—figure
supplement 1) could be considered causative of neuronal hearing loss (Camarero et al., 2001), and
the lack of expression of SLC7A8 in SG might directly contributed to this neurodegeneration (Fig-
ure 1—figure supplement 2B). SG axons are part of the auditory nerve and transmit signals from
the organ of Corti to the brain. In addition, it has been described that SG degeneration may result
in hair cells and sensory hearing loss (Stankovic et al., 2004; Sugawara et al., 2007,
Zilberstein et al., 2012). SLC7A8 is expressed in the SG but not in the organ of Corti. However,
Slc7a8~/~ mice also showed loss of hair cells (Figure 3A) suggesting a potential negative feedback
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from the damaged SG similar to those described (Stankovic et al., 2004, Sugawara et al., 2007,
Zilberstein et al., 2012).

SLC7AB8/SLC3A2 exchanges all neutral amino acids except for proline (Pineda et al., 1999), and
therefore either SLC7A8 ablation in mice or SLC7A8 loss-of-function mutations in humans can alter
availability or concentration of a specific set of neutral amino acids in cells (especially fibrocytes and
neurons) of the spiral ligament, spiral limbus and spiral ganglion. Three of the four ARHL mutations
(T402M, R418C and V460E) showed similarly compromised transport of the amino acids tested (ala-
nine and tyrosine), whereas V302! selectively showed a defect for the large amino acid tyrosine
(Figure 5B). Mutation V302, located within the external lid in the extracellular loop 4, might result in
a steric hindrance with bulky substrates when closing the substrate cavity in the inward-facing con-
formation of the transporter. SLC7A8 loss-of-function might render alterations in the cell content of
bulky neutral amino acids like branched chain amino acids or glutamine, which affect proteostasis
and renewal of cell structures causing cell stress (Efeyan et al., 2015; Someya and Prolla, 2010).
Caloric restriction, that involves both an increased branched amino content and protein degradation,
showed an effective delay of age-related cochlear neuron degeneration (Someya et al., 2010;
Bao and Ohlemiller, 2010). In any case, Slc7a8’~ cochlea presents signs of unresolved chronic
inflammation with up-regulation of IITb and ll6 mRNA (Figure 2—figure supplement 1C) and
reduced activation of macrophages (down-regulation of Ibal protein) (Suppl. Figure S8D). As
SLC7A8 is also expressed in macrophages (BioGPS [Internet]. 2001), the role of the immune
response in the hearing loss associated with Slc7a8~/~ mice deserves further attention.

SLC7AS8 also transports thyroid hormones (TH) (Zevenbergen et al., 2015; Hinz et al., 2017) as
well as the dopamine precursor L-DOPA (Gomes and Soares-da-Silva, 2002; Pinho et al., 2004).
Even though hypothyroidism causes hearing loss characterized by alterations in cochlear develop-
ment (Peeters et al., 2015) and L-DOPA showed a protective role for cochlea during aging
(Murillo-Cuesta et al., 2010), Slc7a8 '~ mice showed neither hypothyroidism (Braun et al., 2011)
nor alterations in L-DOPA plasma levels (data not shown). The lack of SLC7A8 might be compen-
sated by other transporters like the main TH transporter MCT8 (Nufez et al., 2014). Moreover, we
cannot disregard a local impact of a shortage of L-DOPA in the cochlea, which could influence its
maintenance, altering the protective role of this metabolite. Therefore, in the absence of SLC7AS8,
three elements could play a role in the hearing loss phenotype: neutral amino acids, thyroid hor-
mones and/or L-DOPA. Characterization of new SLC7A8 mutations with substrate-dependent trans-
port activity will be necessary to draw a definitive conclusion as to the molecular mechanism of the
SLC7AS8 substrates involved in ARHL.

Conclusion

The present work provides evidence that the amino acid transporter SLC7A8/SLC3A2 has a direct
role in age-related hearing-loss (ARHL). The ablation of SLC7A8 in a mouse model causes deafness
with ARHL characteristics, defective audition at high-frequencies with early onset in homozygotes
and progressive worsening in heterozygotes with age. Identification of rare variants in SLC7A8 gene
together with amino acid transport loss-of-function in ARHL patients supports the concept that this
gene has a role in the auditory system in association with other genetic and/or environmental
factors.

This study highlights amino acid transporters as new targets to study in largely uncharacterized
hearing disorders. The description of SLC7A8 as a novel gene involved in a complex trait such as
ARHL demonstrates the importance of amino acid homeostasis in preserving auditory function and
suggests that genetic screening should be extended to consider other amino acid transporters as
potential new genes involved in cochlear dysfunction. Our results may enable the identification of
individuals susceptible to developing ARHL, allowing for early treatment or prevention of the
disease.

Materials and methods

All key research resources described in this section are summarized in Table 2.
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Table 2. Key resources table.

Reagent type

Genes and Chromosomes | Human Biology and Medicine

(species) Source or
or resource Designation reference Identifiers Additional information
Antibody SLC7A8 Custom made NA Anti-Rabbit peptide sequence: PIFKPTPVKDPDSEEQP WB: 1:1000,
antibody IHC: 1/5000 and IF:1/200
s100 Sigma-Aldrich Ref: 52532 IF: 1/1000
Kird.1 Merck Millipore  Ref: AB5818 IF: 1/200
BA1 Abcam Ref: ab5076 IF: 1/200
Phalloidin Thermo Fisher Ref: A22287 IF: 1/100
Scientific
Donkey anti- Thermo Fisher Ref: A-11056 IF: 1/300
Goat Scientific
Alexa Fluor 546
Donkey anti- Thermo Fisher Ref: A-21206 IF: 1/300
Rabbit Scientific
Alexa Fluor 488
Goat anti- Thermo Fisher Ref: A-11030 IF: 1/300
Mouse Scientific
Alexa Fluor 546
Goat anti-Rabbit Thermo Fisher Ref: A-11034 IF: 1/300
Alexa Fluor 488 Scientific
WGA Thermo Fisher Ref: W21405 labeled with Texas-Red IF: 1 mg/mL
Scientific
Anti-Strep Tag ~ Abcam Ref: ab184224 IF: 1/100
GT517
Goat-anti- Abcam Ref: ab6785 IF: 1/300
mouse-FITC
Behavior Rotarod Panlab Ref:LEB500
Treadmill Panlab E8710MTS
Morris water Panlab SMART camera circular tank (150 cm diameter, 100 cm high)
maze
PPI Panlab LE116
Restrain stressor Lab Research Ref:GO5
ABR Tucker Davis System 3 Evoked
Technologies
DT
Mouse C57BL6/J wild  Harlam Ref: 057 C57BL/6JOlaHsd
type
C57BL6/J wild  Jackson Ref: 000664/Black
type laboratory
Slc7a8”" chimera Genoway Customized Model Strategy Figure 1—figure supplement 1
Development
Cell Line Hela Sigma Aldrich Ref: 93021013
Chemical DTT SigmaAldrich Ref:D9779
compound, dithiothreitol
drug
L- [®H]-labeled  Perkin Elmer Ref: NET348250UC 1 uCi/ml
alanine
[3 hrl]-tyrosine Perkin Elmer Ref: NET127250UC 1 uCi/ml

Commercial assay Pierce BCA Thermo Scientific Ref:23225

or kit Protein
Assay Kit
ECL GE Healthcare Ref:RPN2232
Corticosterone  Enzo Ref:ADI900097

EIA kit

Table 2 continued on next page
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Table 2 continued

Reagent type

Genes and Chromosomes | Human Biology and Medicine

(species) Source or
or resource Designation reference Identifiers Additional information
A + B conjugate Vectastain Ref: ABC kit
Rneasy Qiagen Ref: 74104
High-capacity ~ Applied Ref: 4368813
cDNA Reverse  Biosystems
Transcription Kit
TagMan Gene  Applied potassium voltage-gated channel subfamily Q member 2 (Kecng2) Mm00440080_m1; potassium
Expression Biosystems voltage-gated channel subfamily Q member 3 (Keng3) Mm00548884_m1; potassium voltage-
Assay gated channel subfamily Q member 5 (Kcng5) Mm01226041_m1; prestin (Slc26a5)
Mm00446145_m1; T-box transcription factor TBX18 (Tbx18) Mm00470177_m1; interleukin one
beta (Il1b) Mm00434228m1; interleukin 6 (/16) Mm00446190m1; solute carrier family 7 (cationic
amino acid transporter, y + system), member 8 (Slc7a8) Mm01318971m1
QuikChange Stratagene Ref: 200524
site-directed
mutagenesis kit
Gene (human) SLC7A8 NCBI NM_012244.3 Protein NP_036376.2 (535AA)
Slc7a8 NCBI NM_016972.2 Protein NP_058668.1 (531AA)
Sequence-based whole genome  lllumina HiSeq 2000 Data coverage was ranging from 4 to 10X
reagent sequence
Sanger Life Technologies 3500 Dx Genetic Analyzer
sequencing
BigDye Life Technologies ABI PRISM 3.1 Big
Dye terminator
Software, BioSig Tucker Davis NA
algorithm Technologies
TDT
Graph Pad GraphPad Prism 4 https://www.graphpad.com/scientific-software/prism/
Software Software, Inc
SeqMan Pro DNAstar https://www.dnastar. sequencing assembly and analysis
software com/
t-segqmanpro.aspx
Annotations ANNOVAR http://annovar. functional annotation of genetic variants DOI: 10.1093
tools openbioinformatics.org/
en/latest/
Genome Bcftools http://samtools.github.
Research io/bcftools/
SPSS 23.0 IBM NA https://www.ibm.com/analytics/data-science/predictive-analytics/
statistic spss-statistical-software
software
package
Transfected Slc7a8 construct Agilent Catalog #212205 Resistances: Neomycin and thymidine kinase
construct
pcDNA3.1- ThermoFisher Ref: V79020 fused SLC7A8 or SLC3A2
StrepTag

DOI: https://doi.org/10.7554/eLife.31511.020

Mouse protocols

Animal experimentation complied with the ARRIVE guidelines and was conducted in accordance
with Spanish (RD 53/2013) and European (Directive 2010/63/EU) legislations. All protocols used in
this study were reviewed and approved by the Institutional Animal Care and Use Committee at IDI-
BELL in a facility accredited by the Association for the Assessment and Accreditation of Laboratory
Animal Care International (AAELAC accredited facility, B900010). Mice procedures were done
according with scientific, humane, and ethical principles. The studied mouse model did not show
phenotype differences comparing male and female. Thus, to ensure that our research represents
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both genders, the studies describes in this work were performed using both sexes equitably. The
number of biological and experimental replicates is detailed in the legend of each figure.

Mouse model

Generation of the null Slc7a8 (Slc7a8/~) was done by gene disruption. A coding region that includes
exon 1 of the Slc7a8 gene was replaced for a neomycin resistance cassette by homologous recombi-
nation using a pBlueScript vector with two homologous arms (right: 6.1 kb and left: 2.3 kb) and two
resistances (neomycin and thymidine kinase) in 5’ region of the gene (Figure 1—figure supplement
1A). ES cells transfection and microinjection experiments were done by GenOway (Lyon-France).
Chimera mouse was outcrossed with a wild-type C57BL6/J mouse to obtain first generation (F1) of
Slc7a8 heterozygous (Slc7a8"7) in a mixed C57BL6/J-129Sv background. Intercross of F1 resulted in
the analyzed F2 generation, which contemplates the three genotypes: wild type, Slc7a8"~ and
Slc7a8/~ knockout mice. The pure inbred genetic background was generated backcrossing
Slc7a8~ F1 mice in the mixed C57BL6/J-129Sv strain for 10 generations with pure C57BL&/J wild-
type mice alternating male and females to avoid a genetic drift in the X and Y chromosomes.

Genotyping

Mice genotype was confirmed by triplex-PCR using DNA from the tail. Primers used were forward:
5'GGAGCGATCTGCGGAGTGAZ'; reverse: 5’ ACAGAGTGCGCTCCTACCCT3' and reverse KO-spe-
cific: 5’CGGTGGGCTCTATGGGTCTA3’, and Standard DNA polymerase (Biotools Ref:10.002). The
PCR products are 458 bp (wild type allele) and 180 bp (Slc7a8~/~ allele) fragment.

Protein analysis

Protein analysis was done by western blotting using total membrane samples. Frozen tissues (50—
100 mg) were homogenized in 5 mL of membrane buffer (25 mM HEPES - 4 mM EDTA - 250 mM
sucrose — and protease inhibitors) and centrifuged at 10,000 rpm for 10 min at 4°C. Supernatant was
centrifuged at 200,000xg for 1 hr at 4°C. The pellet was resuspended in 150 pL of membrane buffer
using a 25G syringe. Pierce BCA Protein Assay Kit (Thermo Scientific Ref:23225) was used for protein
quantification. Polyclonal rabbit antibody against mouse SLC7A8 protein was generated using an
antigen against the C-terminal region (peptide sequence: PIFKPTPVKDPDSEEQP) (Figure 1—figure
supplement 1B). Serum extracts from inoculated rabbits were purified with protein G and used as
primary antibody. Detection was by chemiluminescent reaction using ECL (GE Healthcare Ref:
RPN2232) and autoradiography (Amersham Hyperfilm Ref:28906839). For specific SLC7A8 light sub-
unit detection, samples were run in the presence of 100 mM of dithiothreitol (SigmaAldrich Ref:
D9779).

Behavior tests

Rotarod (Panlab Ref:LE8500). The experimental design consisted of two training trials (TR) at the
minimum speed (4 rpm) followed of two different tasks: (a) motor coordination and balance were
assessed by measuring the latency to fall off the rod in consecutive trials with increasing fixed rota-
tional speeds (FRS 4, 10, 14, 19, 24, and 34 rpm). The animals were allowed to stay on the rod for a
maximum period of 1 min per trial and a resting period of 5 min was left between trials. (b) In the
accelerating rod test, the rotation speed was increased from 4 to 40 rpm during two sessions of 1
min. For each trial, the elapsed time until the mouse fell off the rod was recorded. Treadmill (Panlab
Ref:LE8710MTS): During two training trials (TR), the inclination of the treadmill was increased from
0° to 20° from the horizontal plane at different speeds (5, 10, 20, 30, 40 and 50 cm/s). Whenever an
animal fell off the belt, foot shocks were applied for a maximal duration of 1 s. After the shock, mice
were retrieved and placed back. Morris water maze (MWM): Mice were tested over 4 days (four tri-
als/session, 10 min inter-trial intervals). The Morris Water Maze test consists of a circular tank (150
cm diameter, 100 cm high) filled with opaque water (with non-toxic white paint) and maintained at
21 + 2°C. A removable circular platform (8 cm diameter) was located in a fixed position (NE quad-
rant) inside the pool. The pool was surrounded by white curtains, with cues affixed. The test was per-
formed under low non-aversive lighting conditions (50 lux). An overhead camera connected to
video-tracking software (SMART, Panlab SL., Spain) will be used to monitor the animal’s behavior.
Latency to reach the platform, total distance travelled, speed and time in zones will be recorded for
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posterior data analysis. The maze was surrounded by white curtains with black patterns affixed, to
provide an arrangement of spatial cues. A pre-training session was performed in which the platform
was visible in the center (day 1), followed by five acquisition sessions during which the platform was
submerged 2 cm below the water (days 2-6). In each trial, mice were introduced in the pool from
one of the random starting locations. Mice failing to find the platform within 60 s. were placed on it
for 10 s. At the end of every trial the mice were dried for 15 min in a heater. Escape latencies, length
of the swimming paths and swimming speed for each animal and trial were monitored and com-
puted by a tracking system connected to a video camera placed above the pool. Pre-pulse inhibi-
tion of acoustic startle response (PPI) (Panlab Ref:LE116): Training was 5 min of habituation time to
the apparatus with a background noise level of 70 dB and then exposed to six blocks of 7 trial types
in pseudo-random order with 15 s. inter-trial intervals. The trials: 1 s of a 120 dB, 8000 kHz sound
preceded 100 ms. by a 40 ms pre-pulse (PP) sound of 74, 78, 82, 86 or 90 dB. The startle response
was recorded for 65 ms, measuring every 1 ms. from the onset of the startle stimulus. Restrain
stressor (LabResearch Ref:GO5): Mice were habituated for 3 days prior the experiment collecting
10-15 uL of blood from tail. All sets were carried in the same room at the same time to minimize
environmental variations and corticosterone fluctuations as a result of circadian rhythms. Mice were
placed for 15 min in the conditioning unit and 75 pL of tail's blood was collected. For recovery mice
were placed into a clean cage for 90 min. Blood corticosterone were determined by Corticosterone
EIA kit (Enzo Ref:ADI?00097).

Auditory brainstem response test