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Abstract Malaria has been a major driving force in the evolution of the human genome. In sub-
Saharan African populations, two neighbouring polymorphisms in the Complement Receptor One
(CR1) gene, named SI2 and McCP, occur at high frequencies, consistent with selection by malaria.
Previous studies have been inconclusive. Using a large case-control study of severe malaria in
Kenyan children and statistical models adjusted for confounders, we estimate the relationship
between SI2 and McC? and malaria phenotypes, and find they have opposing associations. The SI2
polymorphism is associated with markedly reduced odds of cerebral malaria and death, while the
McCP polymorphism is associated with increased odds of cerebral malaria. We also identify an
apparent interaction between SI2 and o *thalassaemia, with the protective association of SI2
greatest in children with normal a-globin. The complex relationship between these three mutations
may explain previous conflicting findings, highlighting the importance of considering genetic
interactions in disease-association studies.

DOI: https://doi.org/10.7554/eLife.31579.001

Introduction

Complement Receptor One (CR1) plays a key role in the control of complement activation and the
immune clearance of C3b/C4b-coated immune complexes (Krych-Goldberg and Atkinson, 2001).
CR1 is expressed on a range of cells including red blood cells (RBCs), leucocytes and glomerular
podocytes (Krych-Goldberg and Atkinson, 2001). A number of CR1 polymorphisms have been
described, including four molecular weight variants and variation in the number of CR1 molecules
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elLife digest Malaria kills more than half a million children in Africa every year. The disease is
caused by the Plasmodium falciparum parasite, and mosquitos infected with the parasites spread
them to humans when they bite. Once inside a human, the parasites infect the red blood cells. In
severe cases, these red blood cells can stick to the walls of small blood vessels that supply the brain
and so hinder the flow of oxygen, causing a coma. This is called cerebral malaria. Malaria can also
result in the destruction of many oxygen-carrying red blood cells, which causes severe anemia. Both
cerebral malaria and severe anemia can lead to death.

Small changes (called mutations) in certain human genes can protect against malaria. Over time,
mutations that protect people living in Africa from dying from malaria have been passed down
through generations. A good example is the sickle cell mutation, which causes red blood cells to be
of an unusual shape, but also affects the ability of malaria parasites to grow normally within red cells.
Finding new mutations that protect against malaria may help scientists understand how severe
malaria happens and eventually develop new drugs and vaccines against the disease. Some studies
have found that mutations in a gene called complement receptor 1 (CR1) may be protective,
although others have disagreed.

Now, Opi, Swann et al. show that children with one of the CR1 mutations were one-third less
likely to get cerebral malaria and half as likely to die as children without the mutation. In the study,
genetic and health information on more than 5,500 children in Kenya were analyzed to see if the
severity of malaria differed depending on whether they had a CR1 mutation. They also found that
the CR1 mutation is only protective against severe malaria when the child does not have another
malaria- protective mutation called o-thalassemia. In children with a-thalassemia, the CR1 mutation
does not make a difference.

The interaction between the CR1 mutation and o-thalassemia may explain why some studies did
not show a benefit of CR1. If the researchers did not include a-thalassemia in their assessment, they
could not have seen the whole picture. Future studies showing how the CR1 mutation protects
against cerebral malaria could help identify new treatments that prevent severe disease or death.
More study of interactions between genes that play a role in malaria may also be helpful.

DOI: https://doi.org/10.7554/eLife.31579.002

expressed on the surface of RBCs (reviewed by [Krych-Goldberg et al., 2002, Schmidt et al.,
2015]). Missense mutations of CR1 form the basis of the Knops blood group system of antigens,
that includes the antithetical antigen pairs of Swain-Langley 1 and 2 (SI1 and SI2) and McCoy a and b
(McC? and McCP) (Moulds, 2010). The non-synonymous single nucleotide polymorphisms (SNPs)
A4828G (rs17047661) and A4795G (rs17047660) within exon 29 of the CR1 gene give rise to the SI1/
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Figure 1. Diagram of the most common Complement Receptor 1 size variant (CR1*1). Adapted from Schmidt et al. (2015) and Krych-Goldberg et al.
(2002). The ectodomain of CR1 is composed of 30 Complement Control Protein (CCP) domains which are organized into four ‘Long Homologous
Repeats’ (LHR). The single-nucleotide polymorphisms determining the Sl and McC antigens of the Knops blood group system are found in CCP 25 in
LHR-D (red). Various functions have been mapped to different regions of CR1, including Site 1 (decay accelerating activity for C3 convertases; binding
of the complement component C4b and the P. falciparum invasion ligand PfRH4), and Site 2 (cofactor activity for Factor I; binding of C3b and C4b and
P. falciparum rosetting). LHR-D is thought to bind C1q and Mannose Binding lectin (MBL), but the specific binding sites have not been mapped. TM,
transmembrane region; CYT, cytoplasmic tail.
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SI2 and McC3/McCP alleles, encoding R1601G and K1590E, respectively (Moulds et al., 2001)
(Figure 1).

CR1 has been implicated in the pathogenesis of multiple diseases, with epidemiological and in
vitro data suggesting a role in malaria (Schmidt et al., 2015). The SI2 and McCP alleles occur at high
frequencies only in populations of African origin (Figure 2) (Thathy et al., 2005; Zimmerman et al.,
2003; Moulds et al., 2004; Noumsi et al., 2011; Fitness et al., 2004; Covas et al., 2007;
Gandhi et al., 2009; Yoon et al., 2013, Hansson et al., 2013; Kariuki et al., 2013; Eid et al.,
2010), which, given the historical prevalence of the malaria-causing parasite Plasmodium falciparum
in sub-Saharan Africa, might suggest a possible survival advantage against malaria (Rowe et al.,
1997; Rowe et al., 2000). CR1 is a receptor for the invasion of RBCs by Plasmodium falciparum mer-
ozoites (Spadafora et al., 2010; Tham et al., 2010) and for the formation of clusters of P. falcipa-
rum-infected RBCs (iRBCs) and uninfected RBCs, known as rosettes (Rowe et al., 1997). The
rosetting phenotype is associated with severe malaria in sub-Saharan Africa (Doumbo et al., 2009),
with pathological effects likely due to the obstruction of microcirculatory blood flow (Kaul et al.,
1991). RBCs from donors with the high-frequency African CR1 Knops mutations bind poorly to the
parasite ligand P. falciparum erythrocyte membrane protein-1 (PfEMP1) that mediates rosetting by
iRBCs, potentially protecting against severe malaria by reducing rosetting (Rowe et al., 1997). Nev-
ertheless, epidemiological data supporting this possibility are contradictory, with some studies show-
ing an association between S/ and McC genotypes and severe malaria (Thathy et al., 2005;
Kariuki et al., 2013; Tettey et al., 2015) and others finding none (Zimmerman et al., 2003;
Hansson et al., 2013; Jallow et al., 2009; Manjurano et al., 2012; Toure et al. 2012,
Rockett et al., 2014). Some previous studies have not considered Sl and McC genotypes together
in the same statistical model, despite their physical adjacency in the CR1 molecule, nor taken into
account potential interactions with other malaria resistance genes. Given the important biological
role of CR1 in malaria host-parasite interactions, we aimed to clarify the relationship between the S/
and McC alleles and severe malaria in a case-control study of Kenyan children. These investigations
were supplemented with a separate longitudinal cohort study of Kenyan children, examining the
associations of these alleles with uncomplicated malaria and other common childhood illnesses.
Finally, we also investigated the influence of these alleles on the formation of P. falciparum rosettes,
as a potential functional explanation for these results through ex vivo laboratory studies.

Results

The SI2/SI2 genotype is associated with protection against cerebral
malaria and death in the Kenyan case-control study

Data were obtained from 5545 children enrolled in a case-control study of severe malaria (Figure 3).
The general characteristics of the cases and controls are shown in Supplementary file 1A, and the
characteristics of the dataset by S/ and McC genotype are shown in Supplementary file 1B. The SI2
and McCP allele frequencies (0.68 and 0.16 respectively) were comparable to other African popula-
tions (Figure 2). There was no significant deviation from Hardy-Weinberg equilibrium for the S/ or
McC genotypes among controls (Supplementary file 1C).

Using a simple logistic regression model containing only S/ and McC genotypes (referred to as
the unadjusted analysis below), we found a non-significant association between the SI2 allele and
severe malaria overall, with the S/12/5I2 genotype being associated with an OR for severe malaria of
0.90 (95% CI 0.79-1.01; p=0.07) (Supplementary file 1D). We attempted to refine this signal by fit-
ting a more complete model to the data, including the potential confounding factors of ethnicity,
location, sickle cell trait, ABO blood group and o thalassaemia genotype, as well as considering
possible first-order interactions between terms (referred to as the full adjusted analysis below). A sig-
nificant protective association was observed for SI2 in the recessive form (adjusted Odds Ratio (aOR)
0.78; 95% CI 0.64-0.95; p=0.011), which was most marked for cerebral malaria (aOR 0.67; 0.52—
0.87; p=0.006) (Figure 4 and Table 1). The SI2/5I2 genotype was also associated with significant
protection against death from severe malaria (aOR 0.50; 0.30-0.80; p=0.002), and death among chil-
dren admitted with a specific diagnosis of cerebral malaria in the full adjusted analysis (aOR 0.44;
0.23-0.78; p=0.007) (Figure 4 and Table 1). Unexpectedly, we observed a significant interaction
between SI2 and a*thalassaemia genotype, such that the protective associations of SI2 were only
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Figure 2. Global distribution of the CR1 Knops Sl and McC alleles (A) Shows the global frequencies of the Sl alleles. SIT is represented in blue and SI2
in red. (B) Shows the global frequencies of the McC alleles. McC? is represented in green and McC® in purple. The two samples in North and South
America showing high frequencies of SI2 and McCP alleles are both derived from populations with African heritage. Numbers in parentheses indicate
the studies from which the Sl and McC allele frequencies were derived, with * indicating data derived from this study. [1] Thathy et al., 2005; [2]
Figure 2 continued on next page
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Figure 2 continued

Zimmerman et al., 2003; [3] Moulds et al., 2004; [4] Noumsi et al., 2011; [5] Fitness et al., 2004, [6] Covas et al., 2007, [7] Gandhi et al., 2009, [8]
Yoon et al., 2013; [9] Hansson et al., 2013, [10] Kariuki et al., 2013; [11] Eid et al., 2010.
DOI: https://doi.org/10.7554/eLife.31579.004

seen in individuals of normal a-globin genotype (Figure 5). We found no evidence for an association
between SI2 and any other clinical form of severe malaria (Table 1), or with P. falciparum parasite
density (Figure 6).

The McCPallele is associated with increased susceptibility to cerebral
malaria and death in the Kenyan case-control study

The unadjusted analysis showed a borderline significant association between McCP and increased
susceptibility to severe malaria overall (OR 1.17; 1.00-1.25; p=0.056, Supplementary file 1D), and

6193
potentially eligible
children
407 excluded as lived
outwith KDSS
Community Severe malaria
controls cases
n = 3947 n=1839
71 excluded as S/ / McC
genotyping failed
\ A
Community Severe malaria
controls cases
n = 3905 n=1810
86 excluded as a-thal
genotyping failed
Community Severe malaria
controls cases
n = 3902 n=1727
5 excluded as sickle cell
genotyping failed
Community Severe malaria
controls cases
n = 3902 n=1722
79 excluded as ABO blood
grouping unavailable
Community Severe malaria
controls cases Available for final
n=3829 n=1716 analysis

Figure 3. Patient inclusion flow chart for the Kenyan case-control study.
DOI: https://doi.org/10.7554/eLife.31579.005
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Figure 4. The 512 and McCP alleles have opposing associations with cerebral malaria (CM) and death. Forest plot showing the associations between SI
and McC polymorphisms and severe malaria in Kilifi, Kenya. Filled boxes: adjusted Odds Ratios (aOR) for the SI2 genotype in the recessive form (i.e.
SI2/512 vs all other Sl genotypes). Open boxes: McCP in the additive form (i.e. change in odds ratio with each additional McCP? allele). S/ and McC
genotype were included together in a statistical model to examine their associations with malaria susceptibility. aORs displayed are adjusted for
ethnicity, location of residence, sickle cell genotype, 0" thalassaemia genotype and ABO blood group. An interaction term between S/ genotype and
o "thalassaemia is included in the model. Model outputs following 2000 bootstrapped iterations are shown.

DOI: https://doi.org/10.7554/eLife.31579.006

significant associations with increased risk of cerebral malaria (OR 1.21; 1.05-1.39; p=0.008) and
death (OR 1.34; 1.00-1.77; p=0.046, Supplementary file 1D). Similar associations were seen in the
full adjusted analysis, although this only reached statistical significance for cerebral malaria (aOR
1.19; 1.10-1.38; p=0.025 (additive model), Figure 4 and Table 1). We found no association between
McCP and any other clinical form of severe malaria (Table 1 and Supplementary file 1D) or with P.
falciparum parasite density (Figure 6).

Analysis of haplotypic effects and genotype combinations

We considered whether the observed results for Sl and McC could be consistent with the effect of a
single haplotype spanning Sl and McC, or with the effect of a specific genotype combination. Sl and
McC are 33 bp apart and are in linkage disequilibrium, with only three of four possible haplotypes
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Table 1. Adjusted Odds Ratios (aOR) for severe malaria by SI2 (recessive) and McC” (additive) genotype in Kenya.

Clinical outcome SI2 aORs (95% CI)* P value McC" aORs (95% Cl) P value
All severe malaria’ (n = 1716) 0.78 (0.64-0.95) 0.011 1.10 (0.97-1.25) 0.108
CMS (n = 943) 0.67 (0.52-0.87)* 0.006 1.19 (1.02-1.38) 0.025
Severe without CM (n = 674) 1.00 (0.76-1.30) 0.994 0.98 (0.82-1.17) 0.811
Died (n = 180)" 0.50 (0.30-0.80)* 0.002 1.31 (0.95-1.72) 0.086
Died with CM (n = 131) 0.44 (0.23-0.78)* 0.007 1.34 (0.94-1.88) 0.104
Died without CM (n = 42) 0.73 (0.18-2.30) 0.636 1.00 (0.48-1.94) 0.940
SMA* (n = 483) 0.76 (0.55-1.05) 0.099 0.96 (0.78-1.17) 0.688
SMA without CM (n = 223) 0.82 (0.51-1.26) 0.366 0.91 (0.67-1.20) 0.553
Died with SMAT (n = 56) 0.65 (0.21-1.67) 0.374 1.35 (0.77-2.20) 0.229
RD** (n = 522) 0.81 (0.59-1.10) 0.181 1.12 (0.92-1.35) 0.225
RD without CM (n = 192) 1.06 (0.66-1.68) 0.805 1.07 (0.80-1.43) 0.615
Died with RD™ (n = 73) 0.39 (0.14-0.88)* 0.027 1.01 (0.59-1.61) 0.948

*Adjusted Odds Ratios (aOR) and 95% Confidence Intervals (Cl) are presented for the SI2 genotype in the recessive form (i.e. SI2/SI2 vs all other Sl geno-

types) and McCP genotype in the additive form (i.e. change in aOR with each additional McC? allele). S and McC genotype were included together in a

statistical model to examine their associations with malaria susceptibility. aORs displayed are adjusted for ethnicity, location of residence, sickle cell geno-

type, o "thalassaemia genotype and ABO blood group. An interaction term between S/ genotype and o "thalassaemia was included in the model. Model

outputs following 2000 bootstrapped iterations are shown.

199 children (7 of whom died) were severe malaria cases whose CM status was not recorded, hence these children are included in the numbers for ‘All

severe malaria’ and ‘Died’ but not in ‘with CM’ or ‘without CM' categories.

*Models that showed significant evidence of interaction between SI2 and o"thalassaemia.

SCM, cerebral malaria (P. falciparum infection with a Blantyre coma score of < 3).

#*SMA, severe malarial anaemia (P. falciparum infection with Hb < 5 g/dl).

134/56 cases who died with SMA also had CM.

**RD, respiratory distress (P. falciparum infection with abnormally deep breathing).
156/73 cases who died with RD also had CM.

DOI: https://doi.org/10.7554/eLife.31579.009

observed in our data. We therefore reanalyzed the data under a haplotype model in which the per-
individual count of each of the three observed haplotypes was included as a predictor along with
the potential confounding factors, as well as under a genotypic model in which the count of each of
the six possible SI/McC genotype combinations was included as a predictor (Appendix 2). These
analyses suggest an additive protective association with the 512/McC? haplotype (aOR = 0.85; 0.75-
0.96; p=0.007), with broadly consistent results observed for analysis of genotype combinations
(Supplementary file 1E and 1F). Thus, the opposing effects of 512 and McCP observed above could
plausibly result from the protective association of a single haplotype at the locus, although this is dif-
ficult to distinguish from the individuals SNPs acting independently and additively based on the sta-
tistical evidence alone.

The SI2/SI2 genotype was associated with protection against
uncomplicated malaria in the Kenyan longitudinal cohort study

We next examined the association between SI12 and McCP alleles and uncomplicated malaria in a
longitudinal prospective study of 208 Kenyan children. General characteristics of the cohort study
population by Sl and McC genotypes are shown in Supplementary file 1G. After adjusting for varia-
bles known to influence malaria susceptibility, the SI2 allele was associated with a >50% reduction in
the incidence of uncomplicated malaria (additive model) (Table 2; the number of episodes, inci-
dence and unadjusted Incidence Rate Ratios for the diseases studied in the longitudinal cohort are
shown in Supplementary file 1H, | and J). Once again, a significant interaction was seen with o
*thalassaemia, such that the protective association of SI2 was only demonstrated in children of nor-
mal a-globin genotype (Table 3). We found no significant association between the McC? allele and
uncomplicated malaria (Table 2).
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Figure 5. The protective association of SI2 with cerebral malaria and death is only evident in children with normal o-globin. Interaction plots showing
the interaction between Sl (recessive) and o."thalassaemia for the proportion of children suffering (A) cerebral malaria and (B) death. For o *thalassaemia
status, O = wild type a-globin; 1 = heterozygote or homozygote for o' thalassaemia. For Sl (recessive) status, O = SI1/51 or SI1/512 genotype; 1 = SI2/SI2
genotype.

DOI: https://doi.org/10.7554/eLife.31579.007

The McCP allele was associated with protection from common non-

malarial childhood diseases in the Kenyan longitudinal cohort study

The data shown above are incompatible with malaria being the selective pressure for McC® in the
Kenyan population, and suggest that other life-threatening childhood diseases may have been
responsible for selection of McCP. We therefore used the same longitudinal cohort study to investi-
gate whether the McCP and SI2 alleles influence the risk of other childhood diseases. McC? was
associated with borderline significant protection against several common infectious diseases includ-
ing LRTIs, URTIs and gastroenteritis (Table 2). SI2 was associated with a borderline reduced
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Figure 6. Parasite densities by S/ and McC genotypes. Geometric mean parasite densities in the Kenyan case-control study (severe malaria) and
longitudinal disease cohort study (uncomplicated malaria and asymptomatic parasitaemia) by A) S/ genotypes and B) McC genotypes. The data on
severe malaria includes 1695 children: (S11/511 (175), SI1/512 (793), 512/512 (727) and McC?/McC? (1167), McC?/McCP (478) and McC?/McCP (50). The data
on uncomplicated malaria includes 162 children: (SI1/SI1 (16) , SI1/S12 (75), SI2/SI2 (71) contributing 124, 488 and 461 episodes respectively and McC?/
McC? (107), McC?/McCP (49) and McC?/McCP (6) contributing 699, 349 and 25 episodes, respectively. The data on asymptomatic parasitaemia includes
57 children: (SI1/511 (5), SI1/512 (26), S12/S12 (26) contributing 6, 35 and 35 episodes, respectively, and McC?/McC? (34), McC?/McCP (20) and McCP/McCP
(3) contributing 47, 25 and 4 episodes, respectively. Differences in parasite densities by genotype were tested by linear regression analysis with
adjustment for HbAS, age as a continuous variable and ABO blood group in the severe malaria cases, HbAS and season (defined into 3-monthly blocks)
in the uncomplicated malaria samples and HbAS and ABO blood group in the asymptomatic parasitaemia samples. Data were adjusted for within-
person-clustering of events in the uncomplicated malaria and asymptomatic parasitaemia studies. Bars represent 95% confidence intervals.

DOV https://doi.org/10.7554/eLife.31579.008

incidence of gastroenteritis (Table 2). The association of McCP with gastroenteritis was predomi-
nantly seen in children of normal a-globin genotype, echoing the interaction seen with SI2 and
malaria.

The SI2 allele was associated with reduced ex vivo rosette frequency in

P. falciparum clinical isolates from Mali

A previous in vitro study based on a culture-adapted P. falciparum parasite line suggested that RBC
from SI2 genotype donors had a reduced ability to form rosettes, providing a possible mechanism
for protection against severe malaria (Rowe et al., 1997). P. falciparum clinical isolates were not
available from the Kenyan case-control study to investigate this potential mechanism in that popula-
tion. However, the association of S/ and McC genotypes with ex vivo P. falciparum rosette frequency
could be examined using 167 parasite isolates from a case-control study of children with clinical
malaria in Mali (Doumbo et al., 2009). Analysis of this small case-control study suggested a protec-
tive association between the SI12/S12 genotype and cerebral malaria (aOR 0.35, 95% Cl 0.12-0.89,
p=0.024) and the S12/512-McC?/McC? genotype combination was associated with protection against
cerebral malaria (aOR 0.14, 95% Cl 0.02-0.84, p=0.031, Appendix 1). As such, we considered sam-
ples from this population to be appropriate for testing rosetting as a potential mechanism of action.
The median rosette frequency (percentage of iRBC that form rosettes) was significantly lower in P.
falciparum isolates from malaria patients with one or more SI2 alleles than in isolates from SI1/SI1
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Table 2. Adjusted Incidence Rate Ratios (alRR) for uncomplicated malaria and non-malarial diseases in Kenya by Sl and McC

genotype*.

Clinical

Outcomes SI2 alRRs* (95% CI) P value McCP alRRs (95% Cl) P value
Uncomplicated malaria 0.49 (0.34-0.72)* <0.001 4 1.24 (0.90-1.70) 0.184 "

All non-malaria clinical visits 1.13 (0.96-1.32) 0.140" 0.76 (0.61-0.96)* 0.020 *
LRTIS 1.09 (0.81-1.47) 0.561" 0.39 (0.16-0.96) 0.040 "
URTI¥ 1.21 (0.98-1.50) 0.073" 0.79 (0.63-0.99) 0.047 3
Gastroenteritis 0.66 (0.43-1.03) 0.066 2 0.55 (0.31-0.97)* 0.038 2
Skin infection 1.33 (0.79-2.26) 0.285 2 0.42 (0.16-1.13) 0.086"

Helminth infection 1.98 (0.83-4.71) 0.122 2 0.68 (0.43-1.07) 0.094 4

Malaria negative fever 0.83 (0.58-1.18) 0.293 2 1.03 (0.80-1.33) 0.828 3

*Data were collected from 22 SI1/511, 94 SI1/SI12 and 92 SI2/SI2 individuals during 49.4, 213.8 and 188.8 cyfu (child-years of follow-up), respectively, and 137
McC?/McC?, 63 McC?/McCP and 8 McCP/McCP individuals during 294.5, 143.2 and 14.3 cyfu, respectively. Both SI2 and McCP alleles were tested for their
association with the disease outcomes of interest using Poisson regression in the 'recessive, 2dominant, 2heterozygous and *additive models. The best fit-
ting models as examined using the Akaike information criterion (AIC) were used in the final analysis that included adjustment for McC genotype (for S/
analyses), S/ genotype (for McC analyses) o."thalassaemia and sickle cell genotype, ABO blood group, season (divided into 3 monthly blocks), ethnicity,
age as a continuous variable and within-person clustering of events.

TalRRs: adjusted Incidence Rate Ratios.

*Models that showed significant evidence of interaction between either SI2 or McC? and o thalassaemia.

SLRTI: Lower Respiratory Tract Infection.

#URTI: Upper Respiratory Tract Infection.

DOV https://doi.org/10.7554/eLife.31579.010

donors (Figure 7), whereas McC genotype had no significant associations with P. falciparum rosette
frequency (Figure 7).

Discussion

The data presented here provide epidemiological evidence supporting a role for CR1 in the patho-
genesis of cerebral malaria. Two neighboring CR1 polymorphisms belonging to the Knops blood
group system of antigens had opposing associations on risk of cerebral malaria. The $/12/5/2 geno-
type was associated with protection against cerebral malaria and death, while the McC? allele was
associated with increased susceptibility (Figure 4 and Table 1). The SI2 allele was also associated
with significant protection against uncomplicated malaria, whereas the McCP allele was associated
with borderline protection against several common infections in Kenyan children (Table 2). The pro-
tective association of SI2 against cerebral malaria, death and uncomplicated malaria was influenced
by o*thalassaemia, being most evident in children of normal a-globin genotype.

Table 3. Incidence of uncomplicated malaria by S/ genotype and a+thalassaemia status in the Kenyan longitudinal cohort study.

sl1/si1 sl1/s12 Sl2/si2

Number of episodes Incidence Number of episodes Incidence Number of episodes Incidence
All samples 124 2.51 493 2.31 461 244
Normal 73 418 238 2.87 77 1.64
o globin
Heterozygous 32 1.58 209 1.92 302 2.88
o thalassaemia
Homozygous 19 1.63 46 2.09 82 2.20

o thalassaemia

Incidence = number of episodes per child-year of follow up (cyfu). Data were collected from 22 SI1/SI1, 94 SI1/SI12 and 92 SI2/SI2 individuals during 49.4,
213.8 and 188.8 child-years of follow-up, respectively.
DOI: https://doi.org/10.7554/eLife.31579.011
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Figure 7. The SI2 allele is associated with reduced ex vivo rosette frequency of P. falciparum clinical isolates. Parasite isolates were collected from 167
malaria patients in Mali and matured in culture for 18-36 hr before assessment of rosette frequency (percentage of infected erythrocytes forming
rosettes with two or more uninfected erythrocytes). Red bars show the median rosette frequency and interquartile range (IQR) for each genotype. (A)
Rosetting by patient Sl genotype. SI1/SI1 (n = 22, median 20.0, IQR 8.3-36.5), 511/5I12 (n = 82, median 4.0, IQR 0-20.3), $I2/5I12 (n = 63, median 5.0, IQR
0-17.0); *p<0.05, Kruskal Wallis with Dunn’s multiple comparison test; (B) Rosetting by McC genotype. McC?/McC? (n = 81, median 9.0, IQR 0-22.0),
McC?/McCP (n = 73, median 6.0, IQR 0-20.0), McC?/McCP (n = 13, median 4.0, IQR 1-14.5); not significant, Kruskal Wallis with Dunn’s multiple
comparison test.

DOI: https://doi.org/10.7554/eLife.31579.012

The protective association between SI2 and cerebral malaria was first reported in a small case-
control study from western Kenya (Thathy et al., 2005), but has remained controversial, especially
as most prior studies have been underpowered. Hence, our study is the first adequately powered
independent sample set that replicates the protective association between SI2 and cerebral malaria.
Other studies found no consistent significant associations between S/ genotypes and severe malaria
(Zimmerman et al., 2003; Hansson et al., 2013; Jallow et al., 2009; Manjurano et al., 2012;
Toure et al., 2012; Rockett et al., 2014), including a recent multi-centre candidate gene study that
included the sample set analysed here (Rockett et al., 2014). A weak association between McCP
and an increased odds ratio for cerebral malaria was shown in the multi-centre study (Rockett et al.,
2014).

The complex interactions between SI2, McC? and a*thalassaemia revealed by our study provide
possible reasons for the previous inconsistent findings. Although SI2 was associated with protection
against cerebral malaria in our study, McC® and o*thalassaemia both counteracted this effect. The
protective association of SI2 was observed most clearly when both McC? and o*thalassaemia geno-
types were included in the statistical model, something that has not been considered in previous
studies. It is possible that some of the other discrepant genetic associations with severe malaria
(Rockett et al., 2014) might result from interactions between multiple loci that vary across popula-
tions and may not be revealed by standard analyses. Biologically, it makes sense to account for McC
genotype when investigating associations with SI2 and vice versa, as the two polymorphisms encode
changes only 11 amino acids apart in the CR1 molecule (Figure 1). The possibility that the observed
association might be due to a haplotype rather than independent effects of S/ and Mc cannot be
discounted.

The interaction we describe here between SI2 and o*thalassaemia is reminiscent of the epistatic
interactions that have been observed between othalassaemia and other malaria-protective poly-
morphisms including sickle cell trait (HbAS) (Williams et al., 2005a) and haptoglobin
(Atkinson et al., 2014). It is possible, therefore, that o thalassaemia has a broad effect on multiple
malaria-protective polymorphisms, influencing their restricted global frequencies (Penman et al.,
2009), and contributing to the discrepant outcomes of previous association studies. Recent large
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genetic association studies on malaria do not include data on o*thalassaemia, because the causal
deletions are not typed on automated platforms (Rockett et al., 2014), instead requiring manual
genotyping using labour-intensive PCR-based methods (Chong et al., 2000). Replication of the SI2/
o"thalassaemia interaction will be required, and we suggest that o"thalassaemia genotype should
be included as an important confounding variable in future malaria epidemiological studies and that
efforts should continue to discover the mechanism of protection afforded by o *thalassaemia, which
remains controversial (Carlson et al., 1994; Fowkes et al., 2008; Krause et al., 2012; Opi et al.,
2014; Opi et al., 2016).

We examined one possible biological mechanism by which the SI2 allele might influence cerebral
malaria by studying P. falciparum rosetting, a parasite virulence factor associated with severe malaria
in African children (Doumbo et al., 2009). Previous in vitro experiments showed that CR1 is a recep-
tor for P. falciparum rosetting on uninfected RBCs, and that RBCs serologically typed as negative for
the SI1 antigen (likely to be from donors with SI1/SI2 or SI2/5I2 genotypes) (Moulds et al., 2001)
show reduced binding to the parasite rosetting ligand PfEMP1 (Rowe et al., 1997) . In this study, we
found a significantly lower median rosette frequency in P. falciparum parasite isolates from Malian
patients with SI2 genotypes compared to SI1/SI1 controls (Figure 4). Therefore, similar to HbC
(Fairhurst et al., 2005), blood group O (Rowe et al., 2007) and RBC CR1 deficiency
(Cockburn et al., 2004), it is possible that reduced rosetting and subsequent reduced microvascular
obstruction (Kaul et al., 1991) may in part explain the protective association of SI2 against cerebral
malaria. However, given the protective association of SI2 with uncomplicated malaria, and the possi-
ble associations of SI2 and McCP with other common childhood infections, it seems likely that the
Knops polymorphisms may be associated with broader effects, for example on the complement reg-
ulatory functions of CR1. Previously, we have shown that neither cofactor activity for the breakdown
of C3b and C4b nor binding to C1q are influenced by the SI2 and McC® mutations (Tetteh-
Quarcoo et al., 2012). In addition, we can find no association between Knops genotype and CR1
clustering on erythrocytes (Paccaud et al., 1988; Swann et al., 2017). However, other potential
effects such as altered immune complex binding and processing or activation of the complement
lectin pathway via mannose-binding lectin (Ghiran et al., 2000) have not yet been investigated.

Our studies have several limitations: McC? homozygotes are relatively infrequent in Kenya, which
limited our power to detect associations with McCP in the homozygous state. Our longitudinal
cohort study generated several values of borderline statistical significance for the McCP allele which
are inconclusive. Studies with larger sample sizes will be needed to examine the specific associations
of McCP on assorted childhood diseases. Another limitation is that our functional (Mali) and epidemi-
ological (Kenya) studies were conducted in different populations. The mechanisms of rosetting and
associations with malaria severity are thought to be similar across sub-Saharan Africa (Rowe et al.,
2009), suggesting that data collected in either location are likely to be comparable. Furthermore,
examination of a small set of cerebral malaria cases and controls from Mali suggests a protective
association between 5/2/5/2 genotype and cerebral malaria also occurs in this setting (Appendix 1).
Ideally, future epidemiological and functional studies of specific polymorphisms on malaria should
be conducted within a single population, although this remains logistically challenging.

In conclusion, we show that two high frequency CR1 polymorphisms have opposing associations
with cerebral malaria and death in Kenyan children. While the SI2 allele may have reached high fre-
quency in African populations by conferring a protective advantage against cerebral malaria, our
data suggest that McCP arose due to a survival advantage afforded against other non-malarial infec-
tions (Noumsi et al., 2011; Fitness et al., 2004). SI2 may in part protect against cerebral malaria by
reducing rosetting, but additional effects seem likely. Further work is needed to examine both the
epidemiological effects of the Knops polymorphisms on diverse childhood diseases, and the biologi-
cal effects of the SI2 and McCP polymorphisms on CR1 function. Future epidemiological studies
should account for the effect of a*thalassaemia on the associations between SI2 and McCP on
malaria and other infectious diseases.
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Materials and methods
Datasets studied

This study uses data from a Kenyan case-control study of severe malaria, with samples collected
between 2001 and 2010, a Kenyan longitudinal cohort study, with samples collected between 1998
and 2001 and a Malian case-control study performed between July 2000 and December 2001. His-
toric datasets (i.e. >10 years old) are widely used in genetic epidemiological studies of malaria due
to the logistical challenges of sample collection in malaria endemic countries and the changing epi-
demiological patterns of disease.

The Kenyan study area

All epidemiological and clinical studies in Kenya were carried out in the area defined by the Kilifi
Health and Demographic Surveillance System (KHDSS), with Kilifi County Hospital (KCH) serving as
the primary point of care (Scott et al., 2012). Malaria transmission is seasonal in this region follow-
ing the long and short rains. An Entomological Inoculation Rate (EIR) of up to 50 infective bites per
person per year was measured in the late 1990s (Mbogo et al., 2003), but transmission has since
declined (O’Meara et al., 2008).

The Kenyan case-control study

Between January 2001 and January 2008, children aged <14 years who were admitted to KCH with
severe malaria were recruited as cases, as described previously (Rockett et al., 2014), except that
children who were resident outside the KHDSS were excluded (Figure 3). Severe malaria was
defined as the presence of blood-film positive P. falciparum infection complicated by one or more of
the following features: cerebral malaria (CM) (a Blantyre coma score (BCS) of <3) n = 943; severe
malarial anaemia (SMA) (hemoglobin concentration of <5 g/dl) n = 483; respiratory distress (RD)
(abnormally deep breathing) n = 522 or ‘other severe malaria’ (no CM, SMA or RD but other features
including prostration (BCS 3 or 4), hypoglycemia and hyperparasitemia) n = 318. Controls (n = 3829)
consisted of children 3-12 months of age who were born consecutively within the KHDSS study area
between August 2006 and September 2010 and were recruited to an ongoing genetic cohort study
(Williams et al., 2009). As such, controls were representative of the general population in terms of
ethnicity and residence but not of age. The use of controls who are considerably younger than cases
differs from the classical structure of a case-control study. However, this method (using cord blood
or infant samples as controls) has been widely used in African genetic association studies (e.g.
[Band et al., 2013; Busby et al., 2016; Clarke et al., 2017]) and is the most logistically feasible way
of collecting sufficiently large numbers of control samples in many sub-Saharan African settings.

Sample processing and quality control for the Kenyan case-control
study

The Sl and McC polymorphisms were originally typed as part of a larger study by Rockett et al.,
2014, which included case-control data from 12 global sites. In Kenya, 0.5 ml blood samples were
collected into EDTA tubes and DNA extracted using Qiagen DNeasy blood kits (Qiagen, Crawley,
UK). DNA was stored at —20°C and shipped frozen to Oxford. Sample processing is described in
detail in the supplementary methods of Rockett et al., 2014. Briefly, samples underwent a whole-
genome amplification step using Primer-Extension Pre-Amplification. Genotyping was performed
using SEQUENOM iPLEX Gold with 384 samples processed per chip. In Rockett et al.’s study, sam-
ples were typed for 73 SNPs; 55 of these SNPs were chosen on the basis of a known association
with severe malaria, 3 SNPs were used to confirm gender and the remaining 15 SNPs to aid quality
control. Samples were excluded if they did not have clinical data for gender or if genotypic gender
of the sample did not match clinical gender. Samples were included if they were successfully geno-
typed for more than 90% of 65 ‘analysis’ SNPs. The Kenyan samples studied by Rockett et al. origi-
nally comprised 2741 cases of severe malaria and 4183 controls. After the quality control of both
phenotypic and genotypic data described above, 2268 cases and 3949 controls were analysed by
Rockett et al., 2014.
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Comparison between this study and Rockett et al., 2014.

The 2268 Kenyan cases and 3949 controls that were analyzed by Rockett et al., 2014 were the start-
ing point for our study. Children living outside the KHDSS were excluded, because this allowed us to
use 'location’ as a random effect in the final statistical model, which greatly improved model fit. Chil-
dren with missing genotypes (SI, McC, sickle cell, o*thalassaemia or ABO blood group) were also
excluded (Figure 3). After applying these exclusion criteria, 1716 severe malaria cases and 3829
community controls were available for analysis.

Hence, the number of severe malaria cases differs between our study and Rockett et al., 2014
due to differing exclusion criteria. The inclusion of the severe malaria cases who lived outside the
KHDSS into our statistical models did not alter the findings of our analysis (Supplementary file 1K).
In both our study and Rockett et al., 2014, the control samples were identical and all came from
within the KHDSS. Our study has 120 fewer controls than Rockett et al., 2014 due to missing geno-
types, because we only used controls for whom full SI, McC, sickle cell genotype, o "thalassaemia
genotype and ABO blood group data were available.

Our analytical methods differed from Rockett et al., 2014, in that we included both Sl and McC
in the same statistical model and adjusted for confounders, whereas Rockett et al. examined each
SNP independently.

The Kenyan longitudinal cohort study

This study has been described in detail previously (Nyakeriga et al., 2004). Briefly, this study was
established with the aim of investigating the immuno-epidemiology of uncomplicated clinical malaria
and other common childhood diseases in the northern part of the KHDSS study area, approximately
15 km from KCH (Williams et al., 2005b). The study was carried out between August 1998 and
August 2001 involving children aged 0-10 years recruited either at the start of the study or at birth
when born into study households during the study period. They were actively followed up on a
once-weekly basis for both malaria and non-malaria related clinical events. In addition, on presenta-
tion with illnesses, cohort members were referred to a dedicated outpatient clinic for more detailed
diagnostic tests. The cohort was monitored for the prevalence of asymptomatic P. falciparum infec-
tion through four cross-sectional surveys carried out in March, July and October 2000 and June
2001. Exclusion criteria included migration from the study area for more than 2 months, the with-
drawal of consent and death. Uncomplicated clinical malaria was defined as fever (axillary tempera-
ture of > 37.5°C) in association with a P. falciparum positive slide at any density. The most common
non-malaria-related clinical events reported during the study period included upper respiratory tract
infections (URTIs), lower respiratory tract infections (LRTIs), gastroenteritis, helminth infections and
skin infections, as defined in detail previously (Williams et al., 2005b). Malaria negative fever was
defined as an axillary temperature of > 37.5°C in association with a slide negative for P. falciparum.
This analysis includes 208 children aged < 10 years for whom full SI, McC, sickle cell genotype, o
*thalassaemia genotype and ABO blood group data were available.

The Malian case-control study

This study has been described in detail previously (Lyke et al., 2003). Briefly, between July 2000
and December 2001, children ranging from 1 month to 14 years of age were recruited into a case-
control study in the Bandiagara region in East Central Mali, an area of intense and seasonal P. falci-
parum malaria infection. In order to address the specific question of whether the 5/12/512 genotype is
associated with protection against cerebral malaria in Mali, only the subset of children suffering
strictly defined cerebral malaria (a BCS of <3, with other obvious causes of coma excluded, n = 34)
or uncomplicated malaria (n = 184, symptomatic children with P. falciparum parasitemia and an axil-
lary temperature >37.5°C, in the absence of other clear cause of fever), and for whom Sl and McC
genotyping was available were analyzed.

Ex vivo rosetting

The rosette frequency (percentage of mature infected erythrocytes forming rosettes with two or
more uninfected erythrocytes) of P. falciparum isolates from patients recruited into the Mali case-
control study was determined by microscopy after short term culture (18-36 hr), as described in
detail previously (Doumbo et al., 2009). Of the 209 isolates studied previously (Doumbo et al.,
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2009), 167 were successfully genotyped for the Sl and McC alleles and are analysed here. The
rosetting assays were performed before we genotyped the study participants, excluding observer
bias. The rosette frequency of parasites from hosts with differing S/ and McC genotypes were com-
pared by a Kruskal-Wallis test with Dunn’s multiple comparisons (Prism v6.0, Graphpad Inc, San
Diego, CA).

Laboratory procedures

DNA was extracted either from fresh or frozen whole blood by proprietary methods using either the
semi-automated ABI PRISM 6100 Nucleic acid prep station (Applied Biosystems, Foster City, CA) or
using QlAamp DNA Blood Mini Kits (Qiagen, West Sussex, UK). SNPs giving rise to the Sl and McC
alleles were genotyped using either the SEQUENOM iPLEX Gold multiplex system (Agena Bioscien-
ces, Hamburg, Germany) (Kenyan study) (Rockett et al., 2014) or by an established PCR-RFLP
method as described previously (Malian study) (Moulds et al., 2004). Genotyping for sickle cell trait
(HbAS) and the common African o'thalassaemia variant caused by a 3.7 kb deletion in the HBA
gene were performed by PCR as described in detail elsewhere (Chong et al., 2000; Waterfall and
Cobb, 2001).

Statistical analysis

The effects of the Sl and McC alleles were examined in genotypic, dominant, recessive and additive
models of inheritance, with the best fitting model selected based on Akaike information criterion
(AIC). Analyses for the Kilifi case-control study were performed in R (R Foundation for Statistical
Computing, Vienna, Austria) (R Development Core Team, 2010) using the ‘ggplot2’, ‘Ime4’, and
‘HardyWeinberg’ packages (Wickham, 2009; Bates et al., 2015; Graffelman and Camarena, 2008),
while analyses for the longitudinal study were performed in Stata v11.2 (StataCorp, Texas, USA). In
both studies, a p value of < 0.05 was considered statistically significant. Graphs were generated
using R or Prism v6.0 (Graphpad Inc, San Diego, CA).

For the Kenyan case-control study, S/ and McC genotype were included together in a statistical
model to examine their associations with malaria susceptibility. Odds Ratios (ORs) and 95% Confi-
dence Intervals (Cl) were generated using mixed effect logistic regression analysis both with and
without adjustment for ethnicity and location of residence as random effects, and sickle cell geno-
type, o thalassaemia genotype, and ABO blood group (O or non-O) as fixed effects (variables which
have been associated with malaria susceptibility in multiple previous studies in this population)
(Jallow et al., 2009: Rockett et al., 2014; Williams et al., 2005a; Atkinson et al., 2014,
Rowe et al., 2007; Williams et al., 2005b; Fry et al., 2008; Malaria Genomic Epidemiology Net-
work et al., 2015). The ethnicity variable was compressed from 28 categories to four; Giriama
(n = 2728), Chonyi (n = 1800), Kauma (n = 588) and other (n = 429). Binary parameterization of the o~
*thalassaemia variable was used, that is, comparing those children with no o*thalassaemia alleles
against those with one or more o*thalassaemia alleles. This division was chosen in accordance with a
previous report showing that both heterozygous and homozygous othalassaemia genotypes are
associated with protection against severe malaria and death in the Kilifi area (Williams et al.,
2005c). 2000 bootstrapped iterations were run to give 95% Cls and p values.

For the Kenyan longitudinal cohort study, Incidence Rate Ratios (IRRs) and 95% Cls were gener-
ated using a random effects Poisson regression model that took into account within-person cluster-
ing. Data were examined with and without adjustment for confounding by McC genotype (for S/
analyses), Sl genotype (for McC analyses) sickle cell genotype, o.*thalassaemia genotype, ABO blood
group, ethnic group, season (defined as 3 monthly blocks), and age in months as a continuous
variable.

For the Malian case-control study, ORs and 95% Cls were computed using mixed effect logistic
regression analysis with adjustment for location of residence as a random effect and age, ABO blood
group (O or non-0O) and ethnicity (Dogon or non-Dogon) as fixed effects. o"thalassaemia genotyping
was not available for the Malian study and sickle cell trait is extremely uncommon in this population,
therefore neither variable was included in the model. 2000 bootstrapped iterations were run to give
adjusted ORs.

Corrections for multiple comparisons were not performed, instead all adjusted odds ratios, confi-
dence intervals and p values have been clearly reported. This approach has been repeatedly
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advocated, particularly when dealing with biological data (Rothman, 1990; Perneger, 1998; Naka-
gawa, 2004; Fiedler et al., 2012; Rothman, 2014). A detailed description of the Malian dataset is
given in Appendix 1, and a detailed description of the statistical model fitting for the Kenyan studies
is given in Appendix 2.
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 Supplementary file 1. Additional tables. (A) General characteristics for the Kenyan case-control
study. (B) Characteristics for the Kenyan case-control study by S/ and McC genotype. (C) Hardy
Weinberg equilibrium calculations for controls in the Kenyan case-control study. (D) Unadjusted
odds ratios for clinical outcomes for the Kenyan case-control study. (E) SI and McC combined geno-
types and adjusted odds ratios for cerebral malaria in the Kenyan case-control study. (F) Sl and McC
combined genotypes and adjusted odds ratio for death in the Kenyan case-control study. (G) Gen-
eral characteristics of the Kenyan longitudinal cohort study population by Sl and McC genotypes. (H)
Incidence of common childhood diseases by S/ genotypes in the Kenyan longitudinal cohort study.
(I) Incidence of common childhood diseases by McC genotypes in the Kenyan longitudinal cohort
study. (J) Unadjusted Incidence Rate Ratios (IRR) for uncomplicated malaria and non-malarial dis-
eases in the Kenyan longitudinal cohort study by SI and McC genotype. (K) Reanalysis of Kenyan
case-control study including children who lived outside of the KHDSS study area. (L) Adjusted Odds
Ratios for different genetic models for the S| polymorphism in the Kenyan case-control study. (M)
Adjusted Odds Ratios for different genetic models for the McC polymorphism in the Kenyan case-
control study. (N) Investigation of the sickle trait/o*thalassaemia negative epistatic interaction and
the SI2/a"thalassaemia interaction by clinical outcome in the Kenyan case-control study. (O) Reanaly-
sis of the Kenyan case-control study excluding all children with one or more sickle cell alleles. (P)
Raw data for the combined sickle trait, o"thalassaemia and S/ genotype by clinical outcome in the
Kenyan case-control study. (Q) Correlations between the sickle cell, o + thalassaemia, SI2 and McCP
variants in the Kenyan case-control study. (R) Adjusted incidence Rate Ratios (IRRs) for Sl disease
associations in the longitudinal cohort study by genetic models of inheritance (S) Adjusted incidence
rate ratios for McC disease associations in the longitudinal cohort study by genetic models of
inheritance
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Appendix 1

DOV https://doi.org/10.7554/eLife.31579.016

Validation of the Mali case-control study as a source of
samples to examine the effect of Knops genotype on P.
falciparum rosetting

The SI2/SI2 genotype is associated with protection against cerebral
malaria in Mali

To determine if the Mali case-control study was a suitable source of samples to examine the
effect of Knops genotype on P. falciparum rosetting (Doumbo et al., 2009), we examined
whether there was any evidence to suggest that the association of the S/2/5I2 genotype with
cerebral malaria also occurred in Mali. To do this, we examined the cerebral malaria cases

(n = 34) and uncomplicated malaria controls (n = 184) from a case-control study

(Appendix 1—figure 1) (Lyke et al., 2003). General characteristics of the cases and controls
are shown in Appendix 1—table 1 and general characteristics by Sl and McC genotype are
shown in Appendix 1—table 2 below.

Patient inclusion flow chart
for Mali case-control study

674
potentially eligible
children

396 excluded as not
uncomplicated malaria
or cerebral malaria

Uncomplicated Cerebral malaria
malaria controls cases
n=229 n=49

57 excluded as S| / McC
genotyping failed

y
Uncomplicated Cerebral malaria
malaria controls cases

n=187 n=34

Uncomplicated Cerebral malaria

3 excluded as ABO blood
grouping unavailable

Available for final
analysis

malaria controls cases
n =184 n=234

Appendix 1—figure 1. Patient inclusion flow-chart for the Mali case-control study.
DOI: https://doi.org/10.7554/eLife.31579.017

A mixed effect logistic regression analysis with adjustment for location of residence as a
random effect and age, ABO blood group (O or non-O) and ethnicity (Dogon or non-Dogon)
as fixed effects showed a protective association of the S12/512 genotype (recessive model)
against cerebral malaria (aOR 0.35, 95% Cl 0.12-0.89, p=0.024). McCP (additive model) did
not show a statistically significant association with increased odds of cerebral malaria (aOR
1.53, 95% CI1 0.77-3.20, p=0.212). SI2/5I12-McC?/McC? was the only combined SI/McC
genotype to be significantly associated with protection (aOR 0.14, 95% CI 0.02-0.84,
p=0.031). o"thalassaemia genotype data were not available for the Mali samples to test for
interaction. Therefore, given that the data do suggest a protective association between SI2/
SI2 genotype and cerebral malaria in Mali, we considered samples from this population to be
appropriate for testing rosetting as a potential mechanism of action.
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Appendix 1—table 1. General characteristics for cases and controls in the Mali case- control

study.

Controls Cases

(Uncomplicated malaria) (Cerebral malaria) P value
Mali n=184 n=234
Gender

90 (49 %) 17 (50 %)
el 94 (51 %) 17 (50 %) oA
Females
ET;(‘)C:Y 161 (87.5 %) 30 (88 %) :

O, o)
Non-Dogon 23 (12.5 %) 4 (12 %)
Age in months*
Median (IQR) 36.5 (19-56) 28 (16-41) 0.026
Comparisons performed using Pearson’s x? test except *Kruskal Wallis test
DOI: https://doi.org/10.7554/eLife.31579.018
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Appendix 2

DOI: https://doi.org/10.7554/eLife.31579.020

Detailed statistical methods

Statistical model fitting and bootstrapping for the Kenyan case-
control study

Analyses for the Kilifi case-control study were performed in R (R Foundation for Statistical
Computing, Vienna, Austria) (R Development Core Team, 2010) using the ‘ggplot2’, ‘Ime4’,
and 'HardyWeinberg' packages (Wickham, 2009, Bates et al., 2015; Graffelman and
Camarena, 2008). The dataset was restricted to children who were resident in the Kilifi Health
and Demographic Surveillance System (KHDSS) (Scott et al., 2012) and had full genotyping
data for SI, McC o thalassaemia, sickle cell and ABO blood group. This resulted in 1716 cases
and 3829 controls (Figure 3). The ethnicity variable was compressed from 28 categories to
four; Giriama (n = 2728), Chonyi (n = 1800), Kauma (n = 588) and other (n = 429). Binary
parameterization of the o*thalassaemia variable was used, that is, comparing those children
with no o"thalassaemia alleles against those with one or more o/ thalassaemia alleles. This
division was chosen in accordance with a previous report showing that both heterozygous and
homozygous o "thalassaemia genotypes are associated with protection against severe malaria
and death in the Kilifi area (Williams et al., 2005c).

A simple unadjusted logistic regression analysis containing only the S/ and McC genotypes
suggested potential associations with severe malaria (Supplementary file 1D). We attempted
to refine this signal by fitting a more complete model to the data using mixed effect logistic
regression analysis. The full adjusted analysis was constructed as follows:

1. Variables associated with malaria susceptibility in multiple previous studies in this population
(Jallow et al., 2009; Rockett et al., 2014; Williams et al., 2005a; Atkinson et al., 2014,
Rowe et al., 2007; Williams et al., 2005b; Fry et al., 2008; Malaria Genomic Epidemiology
Network et al., 2015) were included to give a ‘base model’. These variables were sickle cell
genotype (as a binary variable, sickle trait vs no sickle trait), o"thalassaemia genotype (as a
binary variable, one or more o*thalassaemia alleles vs no o"thalassaemia alleles) and ABO
blood group (as a binary variable, group O vs non-group O).

2. Both Sl and McC genotype were added in the simplest form (additive).

. All possible models for Sl were then examined (genotypic, dominant, recessive, heterozygous

and additive models of inheritance, see Supplementary file 1L).

w

Model selection was performed using a criterion-based approach by minimizing the Akaike
information criterion (AIC) and discrimination (i.e. how well a model separates individuals with
and without the outcome of interest) was determined using the c-statistic (area under the
receiver operator curve). The recessive model had the best overall fit for Sl across clinical
outcomes.

1. The process of examining all genetic models of inheritance was then repeated for McC
(Supplementary file 1M), with S| as recessive included in each model. The additive model
had the best overall fit for McC across clinical outcomes.

2. All first order interactions were explored. The interaction with the greatest effect on the AIC
was included in the final model. This resulted in an interaction term between SI2 and o
"thalassaemia being incorporated into the model.

3. Finally, ethnicity and location of residence were incorporated as random effects in order to
accommodate population structures which did not require quantification for this study.

The final model incorporated ethnicity and location of residence as random effects, and as
fixed effects had SI2 in the recessive form (i.e. binary variable, SI2/SI2 vs SI1/SI1 or SI1/512);
presence of at least one o' thalassaemia allele vs no o/"thalassaemia alleles (binary variable);an
interaction term between the Sl and o " thalassaemia variables; McC® in the additive form (i.e.
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impact of each additional McCP allele); presence/absence of sickle cell trait as a binary
variable; O/non-O blood group as a binary variable.

The code used for the final model was: fit = glmer (outcome ~ (1|ethnicity) + (1|location)
+S|_recessive*thalassaemia_allele + Mc + sickle_trait + non_O, data = data, family = binomial)
Bootstrapping was performed using the ‘bootMer’ function in package ‘Ime4’ in R. 2000

iterations were run of each model to calculate 95% confidence intervals and p values. If
models did not converge over these 2000 iterations they were inspected for singularities (i.e. a
level of one of the variables having a value of O, for example 0 cases living in Gede). If no
singularities were identified, the bootstrapping was rerun using the optimiser ‘bobyqga’ with
10° evaluations.

Corrections for multiple comparisons were not performed in this study, instead all adjusted
odds ratios, confidence intervals and p values have been clearly reported. This approach has
been repeatedly advocated, particularly when dealing with biological data (Rothman, 1990;
Perneger, 1998, Nakagawa, 2004; Fiedler et al., 2012; Rothman, 2014). The stringency of
multiple comparisons increases the risk of type Il error, potentially discarding important
findings. No single study can be considered conclusive and novel results will always require
replication.

Exploration of alternative haplotype and combined

genotype models

As one of the four possible SI/Mc haplotype combinations was not seen (S11/McCP), the SI2
and McCP alleles are likely to be in complete linkage disequilibrium in this population sample
(i.e. D'=1, no recombination between these two markers). This situation makes it difficult to
distinguish statistically between a model where Sl and McC act independently and additively
or a haplotype model. We considered the possibility that a haplotype model could provide an
alternative explanation for our findings, with a separate true protective mutation being
positively tagged by the SI2 allele and negatively tagged by the McCP” allele. Specifically, for
each sample we computed the count of each of the three possible SI/Mc haplotypes
(assuming only three haplotypes are segregating as above). We then re-fit the logistic
regression model for cerebral malaria using haplotype counts as predictors, in addition to
potential confounders included in the full adjusted analysis described above. This model
estimates a non-zero protective effect of the SI2/McC? haplotype (additive OR = 0.85; 0.75-
0.96; p=0.007), but did not fit as well as the full adjusted analysis described above

(AIC = 4268.5, versus 4266.8 for the full analysis).

As both Sl and Mc have sufficient structural effects to alter Knops blood group phenotype,
it would appear reasonable to examine their function further before looking for other nearby
mutations. In addition, no other strong effects near CR1 have been identified by GWAS
studies that could explain the association. However, a haplotype model cannot be excluded as
a possibility on the basis of our current data.

Exploration of the negative epistasis between sickle trait

and o*thalassaemia

Previous studies have described a negative epistatic interaction between sickle trait and
o"thalassaemia, reporting that o*thalassaemia homozygotes who also carry the sickle trait are
not protected from severe malaria (Williams et al., 2005a). We wanted to ensure that an
unrecognised relationship between sickle cell trait and S/ genotype did not account for the
interaction between o' thalassaemia and Sl that we report in the current study.

Analysis of our current dataset confirmed the existence of negative epistasis between sickle
trait and o "thalassaemia in this population (Supplementary file 1N). However, of interest, this
negative epistatic interaction was only seen in the severe malaria cases without cerebral
malaria, whereas the o*thalassaemia/Sl interaction was specific to cerebral malaria cases
(Supplementary file 1N). Therefore, the two interactions appear to be mutually exclusive.

The final adjusted analysis was also re-run on a restricted dataset which excluded the 664
children with sickle cell trait or sickle cell disease. The results of this analysis remained
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unchanged and the o' thalassaemia/Sl interaction persisted without any influence of sickle trait
(Supplementary file 10).

Sickle cell trait did not show a statistical interaction with either S/ or McC genotype. The
sickle cell mutation is far less common in the KHDSS population than the o "thalassaemia
mutation (~12% of children have one or more sickle cell alleles, compared to ~ 64% with one
or more o/ thalassaemia alleles). As such, even in a study as large as this one, the power to
detect statistically significant interactions between all three of sickle, 0" thalassaemia and S/
genotypes is greatly reduced. However, we found no evidence of a three way interaction
between these alleles. The raw data for the combined genotypes compromising sickle trait,
o*thalassaemia and S/ for each clinical outcome is presented in Supplementary file 1P.
Correlations between sickle cell, o.*thalassaemia, Sl and McC are presented in
Supplementary file 1Q.

Statistical model fitting for the longitudinal cohort study

Associations between S/ and McC and mild malaria and other non-malarial related diseases in
the longitudinal cohort study were tested in Stata v11.2 (StataCorp, Texas, USA) using a
random effects Poisson regression analysis that accounted for within-person clustering of
events. This analysis was restricted to children under 10 years old living in the Ngerenya area
in the northern part of the KHDSS study area. The analysis was carried out on the 208 children
from the cohort with full genotype, ethnic group, season and age data. The model selection
process first involved univariate analyses testing for disease associations for Sl and McC
independently without potential confounders in genotypic, dominant, recessive, heterozygous
and additive models of inheritance. Models were compared using the Akaike information
criterion (AIC) for fitness, with the model displaying the minimum AIC values for each
respective genotype and outcome of interest chosen as the best fitting model. The unadjusted
Incident Rate Ratios and best fitting models are shown in Supplementary file 1J. For each
disease outcome, the association with S/ genotype was then adjusted for confounding by McC
(best genetic model chosen from the univariate analysis) and for explanatory variables
previously associated with outcomes of interest: sickle cell genotype, o"thalassaemia
genotype, ABO blood group genotype, ethnic group (Giriama, Chonyi and others), season
(defined as 3 monthly blocks) and age in months as a continuous variable. AIC values were
compared to identify the best fitting genetic model (Supplementary file 1R). The same
process was carried out for the association of McC genotype with each disease outcome, with
adjustment for Sl genotype and the other explanatory variables (Supplementary file 1S). For
consistency of reporting here, the same explanatory variables are included in the statistical
models for all disease outcomes in the data presented. Optimized model-fitting for each
outcome by removing explanatory variables that did not improve model fit, did not make any
material difference to the results shown here.

Finally, we tested for interactions between either S/ and McC and o "thalassaemia
(represented as normal, heterozygous and homozygous genotypes) using the likelihood ratio
test with a p value of <0.05 indicating statistically significant evidence for interaction, and the
appropriate interaction term included in the final model.
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