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Abstract The architecture of normal and diseased tissues strongly influences the development

and progression of disease as well as responsiveness and resistance to therapy. We describe a

tissue-based cyclic immunofluorescence (t-CyCIF) method for highly multiplexed immuno-

fluorescence imaging of formalin-fixed, paraffin-embedded (FFPE) specimens mounted on glass

slides, the most widely used specimens for histopathological diagnosis of cancer and other

diseases. t-CyCIF generates up to 60-plex images using an iterative process (a cycle) in which

conventional low-plex fluorescence images are repeatedly collected from the same sample and

then assembled into a high-dimensional representation. t-CyCIF requires no specialized instruments

or reagents and is compatible with super-resolution imaging; we demonstrate its application to

quantifying signal transduction cascades, tumor antigens and immune markers in diverse tissues

and tumors. The simplicity and adaptability of t-CyCIF makes it an effective method for pre-clinical

and clinical research and a natural complement to single-cell genomics.

DOI: https://doi.org/10.7554/eLife.31657.001

Introduction
Histopathology is among the most important and widely used methods for diagnosing human dis-

ease and studying the development of multicellular organisms. As commonly performed, imaging of

formalin-fixed, paraffin-embedded (FFPE) tissue has relatively low dimensionality, primarily compris-

ing Hematoxylin and Eosin (H&E) staining supplemented by immunohistochemistry (IHC). The poten-

tial of IHC to aid in diagnosis and prioritization of therapy is well established (Bodenmiller, 2016),

but IHC is primarily a single-channel method: imaging multiple antigens usually involves the analysis

of sequential tissue slices or harsh stripping protocols (although limited multiplexing is possible

using IHC and bright-field imaging [Stack et al., 2014; Tsujikawa et al., 2017]). Antibody detection

via formation of a brown diamino-benzidine (DAB) or similar precipitates are also less quantitative

than fluorescence (Rimm, 2006). The limitations of IHC are particularly acute when it is necessary to

quantify complex cellular states and multiple cell types, such as tumor infiltrating regulatory and

cytotoxic T cells (Postow et al., 2015) in parallel with tissue and pharmaco-dynamic markers.

Lin et al. eLife 2018;7:e31657. DOI: https://doi.org/10.7554/eLife.31657 1 of 46

TOOLS AND RESOURCES

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.31657.001
https://doi.org/10.7554/eLife.31657
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


Advances in DNA and RNA profiling have dramatically improved our understanding of oncogene-

sis and propelled the development of targeted anticancer drugs (Garraway and Lander, 2013).

Sequence data are particularly useful when an oncogenic driver is both a drug target and a bio-

marker of drug response, such as BRAFV600E in melanoma (Chapman et al., 2011) or BCR-ABL in

chronic myelogenous leukemia (Druker and Lydon, 2000). However, in the case of drugs that act

through cell non-autonomous mechanisms, such as immune checkpoint inhibitors, tumor-drug inter-

action must be studied in the context of multicellular environments that include both cancer and

non-malignant stromal and infiltrating immune cells. Multiple studies have established that these

components of the tumor microenvironment strongly influence the initiation, progression and metas-

tasis of cancer (Hanahan and Weinberg, 2011) and the magnitude of responsiveness or resistance

to immunotherapies (Tumeh et al., 2014).

Single-cell transcriptome profiling provides a means to dissect tumor ecosystems at a molecular

level and quantify cell types and states (Tirosh et al., 2016). However, single-cell sequencing usually

requires disaggregation of tissues, resulting in loss of spatial context (Tirosh et al., 2016;

Patel et al., 2014). As a consequence, a variety of multiplexed approaches to analyzing tissues have

recently been developed with the goal of simultaneously assaying cell identity, state, and morphol-

ogy (Giesen et al., 2014; Gerdes et al., 2013; Micheva and Smith, 2007; Remark et al., 2016;

Gerner et al., 2012). For example, FISSEQ (Lee et al., 2014) enables genome-scale RNA profiling

of tissues at single-cell resolution, and multiplexed ion beam imaging (MIBI) and imaging mass

cytometry achieve a high degree of multiplexing using antibodies as reagents, metals as labels and

eLife digest To diagnose a disease such as cancer, doctors sometimes take small tissue samples

called biopsies from the affected area. These biopsies are then thinly sliced and treated with dyes to

identify healthy and cancerous cells. However, clinicians and scientists often need to look into what

happens inside individual cells in the tissues so they can understand how cancers arise and progress.

This helps them to identify different types of tumor cells and to tailor the best treatment for the

patient.

To do so, a number of proteins (the molecules involved in nearly all life’s processes) need to be

tracked in healthy and diseased cells and tissues. This can be done thanks to a range of methods

known as immunofluorescence microscopy, but following different proteins on the same slice of a

sample is difficult. However, a new type of immunofluorescence known as t-CyCIF may be a

solution.

With this technique, a fluorescent compound is applied that will bind to a specific protein of

interest. A microscope can pick up the light from the compound when the sample is imaged, which

reveals the protein’s location in the cell or tissue. Then, a substance is used that deactivates the

fluorescence signal. After this, another compound that binds to a new type of protein is used, and

imaged. This cycle is repeated several times to locate different proteins. Lastly, the individual

images are processed and stitched together to reveal the cells and their internal structures.

Here, Lin, Izar et al. showed that t-CyCIF could be used to study biopsies and to obtain images

that covered a large area of healthy human tissues and tumors. The technique helped to track over

60 different proteins in normal and tumor tissue samples from human patients. Several sets of

experiments showed that t-CyCIF could uncover the molecular mechanisms that are disrupted

during cancer, but also reveal the complexity of a single tumor. In fact, as shown with biopsies of

brain cancer, cancerous cells in a tumor can be strikingly different, even when they are close to each

other. Finally, the method helped to pinpoint which types of immune cells are involved in fighting a

kidney tumor. Overall, such information cannot be obtained with conventional methods, yet is

crucial for diagnosis and treatment.

Most laboratories can readily use t-CyCIF since the technique is open source and requires

equipment that is easily accessible. In fact, the technique should soon be used to assess how well

certain drugs help the immune system combat cancer. Ultimately, better use of biopsies is key to

customizing cancer care.

DOI: https://doi.org/10.7554/eLife.31657.002
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mass spectrometry as a detection modality (Giesen et al., 2014; Angelo et al., 2014). Despite the

potential of these new methods, they require specialized instrumentation and consumables, which is

one reason that the great majority of basic and clinical studies still rely on H&E and single-channel

IHC staining. Moreover, methods that involve laser ablation of samples such as MIBI inherently have

a lower resolution than optical imaging.

Thus, there remains a need for highly multiplexed tissue analysis methods that (i) minimize the

requirement for specialized instruments and costly, proprietary reagents, (ii) work with convention-

ally prepared FFPE tissue specimens collected in clinical practice and research settings, (iii) enable

imaging of ca. 50 antigens at subcellular resolution across a wide range of cell and tumor types, (iv)

Figure 1. Steps in the t-CyCIF process. (A) Schematic of the cyclic process whereby t-CyCIF images are assembled via multiple rounds of four-color

imaging. (B) Image of human tonsil prior to pre-staining and then over the course of three rounds of t-CyCIF. The dashed circle highlights a region with

auto-fluorescence in both green and red channels (used for Alexa-488 and Alexa-647, respectively) and corresponds to a strong background signal.

With subsequent inactivation and staining cycles (three cycles shown here), this background signal becomes progressively less intense; the

phenomenon of decreasing background signal and increasing signal-to-noise ratio as cycle number increases was observed in several staining settings

(see also Figure 1—figure supplement 1).

DOI: https://doi.org/10.7554/eLife.31657.003

The following figure supplements are available for figure 1:

Figure supplement 1. Reduction in background signal intensity with repeated cycles of bleaching.

DOI: https://doi.org/10.7554/eLife.31657.004

Figure supplement 2. t-CyCIF using antibodies labelled with Zenon Alexa-555 Fab fragments.

DOI: https://doi.org/10.7554/eLife.31657.005
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Figure 2. Multi-scale imaging of t-CyCIF specimens. (A) Bright-field H&E image of a metastasectomy specimen that includes a large metastatic

melanoma lesion and adjacent benign tissue. The H&E staining was performed after the same specimen had undergone t-CyCIF. (B) Representative

t-CyCIF staining of the specimen shown in (A) stitched together using the Ashlar software from 165 successive CyteFinder fields using a 20X/0.8NA

objective. (C) One field from (B) at the tumor-normal junction demonstrating staining for S100-postive malignant cells, a-SMA positive stroma, T

lymphocytes (positive for CD3, CD4 and CD8), and the proliferation marker phospho-RB (pRB). (D) A melanoma tumor imaged on a GE INCell Analyzer

6000 confocal microscope to demonstrate sub-cellular and sub-organelle structures. This specimen was stained with phospho-Tyrosine (pTyr), Lamin A/

C and p-Aurora A/B/C and imaged with a 60X/0.95NA objective. pTyr is localized in membrane in patches associated with receptor-tyrosine kinase,

visible here as red punctate structures. Lamin A/C is a nuclear membrane protein that outlines the vicinity of the cell nucleus in this image. Aurora

kinases A/B/C coordinate centromere and centrosome function and are visible in this image bound to chromosomes within a nucleus of a mitotic cell in

prophase (yellow arrow). (E) Staining of a melanoma sample using the GE OMX Blaze structured illumination microscope with a 60X/1.42NA objective

shows heterogeneity of structural proteins of the nucleus, including as Lamin B and Lamin A/C (indicated by yellow arrows) and part of the nuclear pore

complex (NUP98) that measures ~120 nm in total size and indirectly allows the visualization of nuclear pores (indicated by non-continuous staining of

NUP98). (F) Staining of a patient-derived mouse xenograft breast tumor using the OMX Blaze with a 60x/1.42NA objective shows a spindle in a mitotic

cell (beta-tubulin in red) as well as vesicles staining positive for VEGFR2 (in cyan) and punctuate expression of the EGFR in the plasma membrane (in

green).

DOI: https://doi.org/10.7554/eLife.31657.006

The following figure supplements are available for figure 2:

Figure 2 continued on next page
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collect data with sufficient throughput that large specimens (several square centimeters) can be

imaged and analyzed, (v) generate high-resolution data typical of optical microscopy, and (vi) allow

investigators to customize the antibody mix to specific questions or tissue types. Among these

requirements the last is particularly critical: at the current early stage of development of high dimen-

sional histology, it is essential that individual research groups be able to test the widest possible

range of antibodies and antigens in search of those with the greatest scientific and diagnostic value.

This paper describes a method for highly multiplexed fluorescence imaging of tissues, tissue-

based cyclic immunofluorescence (t-CyCIF), inspired by a cyclic method first described by

Gerdes et al. (2013). t-CyCIF also extends a method we previously described for imaging cells

grown in culture (Lin et al., 2015). In its current implementation, t-CyCIF assembles up to 60-plex

images of FFPE tissue sections via successive rounds of four-channel imaging. t-CyCIF uses widely

available reagents, conventional slide scanners and microscopes, manual or automated slide proc-

essing and simple protocols. It can, therefore, be implemented in most research or clinical laborato-

ries on existing equipment. Our data suggest that high-dimensional imaging methods using cyclic

immunofluorescence have the potential to become a robust and widely-used complement to single-

cell genomics, enabling routine analysis of tissue and cancer morphology and phenotypes at single-

cell resolution.

Results

t-CyCIF enables multiplexed imaging of FFPE tissue and tumor
specimens at subcellular resolution
Cyclic immunofluorescence (Gerdes et al., 2013) creates highly multiplexed images using an itera-

tive process (a cycle) in which conventional low-plex fluorescence images are repeatedly collected

from the same sample and then assembled into a high-dimensional representation. In the implemen-

tation described here, samples ~5 mm thick are cut from FFPE blocks, the standard in most histopa-

thology services, followed be dewaxing and antigen retrieval either manually or on automated slide

strainers in the usual manner (Shi et al., 2011). To reduce auto-fluorescence and non-specific anti-

body binding, a cycle of ‘pre-staining’ is performed; this involves incubating the sample with second-

ary antibodies followed by fluorophore oxidation in a high pH hydrogen peroxide solution in the

presence of light (‘fluorophore bleaching’). Subsequent t-CyCIF cycles each involve four steps

(Figure 1A): (i) immuno-staining with antibodies against protein antigens (three antigens per cycle in

the implementation described here) (ii) staining with a DNA dye (commonly Hoechst 33342) to mark

nuclei and facilitate image registration across cycles (iii) four-channel imaging at low- and high-mag-

nification (iv) fluorophore bleaching followed by a wash step and then another round of immuno-

staining. In t-CyCIF, the signal-to-noise ratio often increases with cycle number due to progressive

reductions in background intensity over the course of multiple rounds of fluorophore bleaching. This

effect is visible in Figure 1B as the gradual disappearance of an auto-fluorescent feature (denoted

by a dotted white oval and quantified in Figure 1—figure supplement 1; see detailed analysis

below). When no more t-CyCIF cycles are to be performed, the specimen is stained with H&E to

enable conventional histopathology review. Individual image panels are stitched together and regis-

tered across cycles followed by image processing and segmentation to identify cells and other struc-

tures. t-CyCIF allows for one cycle of indirect immunofluorescence using secondary antibodies. In all

other cycles antibodies are directly conjugated to fluorophores, typically Alexa 488, 555 or 647 (for a

description of different modes of CyCIF see Lin et al., 2015). As an alternative to chemical coupling

we have tested the Zenon antibody labeling method (Tang et al., 2010) from ThermoFisher in which

isotype-specific Fab fragments pre-labeled with fluorophores are bound to primary antibodies to

create immune complexes; the immune complexes are then incubated with tissue samples

Figure 2 continued

Figure supplement 1. Flat-field and shading correction for stitched images.

DOI: https://doi.org/10.7554/eLife.31657.007

Figure supplement 2. OMX super-resolution t-CyCIF images.

DOI: https://doi.org/10.7554/eLife.31657.008
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(Figure 1—figure supplement 2). This method is effective with 30–40% of the primary antibodies

that we have tested and potentially represents a simple way to label a wide range of primary anti-

bodies with different fluorophores.

Imaging of t-CyCIF samples can be performed on a variety of fluorescent microscopes each of

which represent a different tradeoff between data acquisition time, image resolution and sensitivity

(Table 1). Greater resolution (a higher numerical aperture objective lens) typically corresponds to a

smaller field of view and thus, longer acquisition time for large specimens. Imaging of specimens

several square centimeters in area at a resolution of ~1 mm is routinely performed on microscopes

specialized for scanning slides (slide scanners); we use a CyteFinder system from RareCyte (Seattle

WA) configured with 10 � 0.3 NA and 40 � 0.6 NA objectives but have tested scanners from Leica,

Nikon and other manufacturers. Figure 2A–B show an H&E image of a ~10 � 11 mm metastatic mel-

anoma specimen and a t-CyCIF image assembled from 165 individual image tiles. The assembly pro-

cess involves stitching sequential image tiles from a single t-CyCIF cycle into one large image panel,

flat-fielding to correct for uneven illumination and registration of images from successive t-CyCIF

cycles to each other; these procedures were performed using ImageJ, ASHLAR, and BaSiC software

as described in materials and methods (Peng et al., 2017).

In the t-CyCIF image (Figure 2B) tumor cells staining positive for S100 (a melanoma marker in

green [Henze et al., 1997]) are surrounded by CD45-positive immune cells (CD45RO+ cells in white)

and by stromal cells expressing the alpha isoform of smooth muscle actin (a-SMA in red). By zoom-

ing in on one tile, single cells can be identified and characterized (Figure 2C); in this image, CD4+

and CD8+ T-lymphocytes and proliferating pRB+ positive cells are visible. At 60X resolution on a con-

focal GE INCell Analyzer 6000, kinetochores stain positive for the phosphorylated form of the Aurora

A/B/C kinase and can be counted in a mitotic cell (yellow arrowhead in Figure 2D). Nominally super-

resolution imaging on a GE OMX Blaze Structured Illumination Microscope (Carlton et al., 2010)

(using a 60 � 1.42 Plan Apo objective) reveals very fine structural details including differential

expression of Lamin isotypes (in a melanoma, Figure 2E and Figure 2—figure supplement 2) and

mitotic spindle fibers (in cells of a xenograft tumor; Figure 2F and Figure 2—figure supplement 2).

These data show that t-CyCIF images have readily interpretable features at the scale of an entire

tumor, individual tumor cells and subcellular structures. Little subcellular (or super-resolution) imag-

ing of clinical FFPE specimens has been reported to date (but see Chen et al., 2015), but fine sub-

cellular morphology has the potential to provide dramatically greater information than simple

integration of antibody intensities across whole cells.

To date, we have tested commercial antibodies against ~200 different proteins for their compati-

bility with t-CyCIF; these include lineage makers, cytoskeletal proteins, cell cycle regulators, the

phosphorylated forms of signaling proteins and kinases, transcription factors, markers of cell state

including quiescence, senescence, apoptosis, stress, etc. as well as a variety of non-antibody-based

fluorescent stains (Table 2). Multiplexing antibodies and stains makes it possible to discriminate

among proliferating, quiescent and dying cells, identify tumor and stroma, and collect immuno-phe-

notypes (Angelo et al., 2014; Giesen et al., 2014; Goltsev, 2017). Use of phospho-specific

Table 1. Microscopes used in this study and their properties.

Instrument Type Objective Field of view
Nominal
Resolution*

RareCyte Cytefinder Slide Scanner 10X/0.3 NA 1.6 � 1.4 mm 1.06 mm

20X/0.8NA 0.8 � 0.7 mm 0.40 mm

40X/0.6 NA 0.42 � 0.35 mm 0.53 mm

GE INCell Analyzer 6000 Confocal 60X/0.95 NA 0.22 � 0.22 mm 0.21 mm

GE OMX Blaze Structured
Illumination Microscope

60 � 1.42 NA 0.08 � 0.08 mm 0.11 mm

*Except in the case of the OMX Blaze, nominal resolution was calculated using the formula (r) = 0.61l/NA for widefield and (r) = 0.4l/NA for confocal

microscopy with l = 520 nm. Actual resolution depends on optical properties and thickness of sample, alignment and quality of the optical components in

the light path. For structured illumination microscopy, actual resolution depends on accurate matching of immersion oil refractive index with sample in the

Cy3 channel and use of an optimal point spread function during reconstruction process. The resolution in other channels will be sub-nominal.

DOI: https://doi.org/10.7554/eLife.31657.009
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antibodies and antibodies against proteins that re-localize upon activation (e.g. transcription factors)

makes it possible to assay the states of signal transduction networks. For example, in a 10-cycle

t-CyCIF analysis of human tonsil (Figure 3A) subcellular features such as membrane staining, Ki-67

puncta (Cycle 1), ring-like staining of the nuclear lamina (Cycle 6) and nuclear exclusion of NF-KB

(Cycle 6) can easily be demonstrated (Figure 3B). The five-cycle t-CyCIF data on normal skin in

Figure 3C shows tight localization of auto-fluorescence (likely melanin) to the epidermis prior to pre-

bleaching and images of three non-antibody stains used in the last t-CyCIF cycle: HCS CellMask Red

Stain for cytoplasm and nuclei, Actin Red, a Phalloidin-based stain for actin and Mito-tracker Green

for mitochondria.

Figure 3. t-CyCIF imaging of normal tissues. (A) Selected images of a tonsil specimen subjected to 10-cycle t-CyCIF to demonstrate tissue, cellular, and

subcellular localization of tissue and immune markers (see Supplementary file 1 for a list of antibodies). (B) Selected cycles from (A) demonstrating

sub-nuclear features (Ki67 staining, cycle 1), immune cell distribution (cycle 2), structural proteins (E-Cadherin and Vimentin, cycle 5) and nuclear vs.

cytosolic localization of transcription factors (NF-kB, cycle 6). (C) Five-cycle t-CyCIF of human skin to show the tight localization of some auto-

fluorescence signals (Cycle 0), the elimination of these signals after pre-staining (Cycle 1), and the dispersal of rare cell types within a complex layered

tissue (see Supplementary file 1 for a list of the antibodies).

DOI: https://doi.org/10.7554/eLife.31657.010
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Table 2. List of antibodies tested and validated for t-CyCIF.

Antibody name Target protein Performance Vendor Catalog no. Clone Fluorophore

Research
resource
Identifier

Bax-488 Bax * BioLegend 633603 2D2 Alexa Fluor
488

AB_2562171

CD11b-488 CD11b * Abcam AB204271 EPR1344 Alexa Fluor
488

CD4-488 CD4 * R and D Systems FAB8165G Polyclonal Alexa Fluor
488

CD8a-488 CD8 * eBioscience 53-0008-80 AMC908 Alexa Fluor
488

AB_2574412

cJUN-488 cJUN * Abcam AB193780 E254 Alexa Fluor
488

CK18-488 Cytokeratin 18 * eBioscience 53-9815-80 LDK18 Alexa Fluor
488

AB_2574480

CK8-FITC Cytokeratin 8 * eBioscience 11-9938-80 LP3K FITC AB_10548518

CycD1-488 CycD1 * Abcam AB190194 EPR2241 Alexa Fluor
488

Ecad-488 E-Cadherin * CST 3199 24E10 Alexa Fluor
488

AB_10691457

EGFR-488 EGFR * CST 5616 D38B1 Alexa Fluor
488

AB_10691853

EpCAM-488 EpCAM * CST 5198 VU1D9 Alexa Fluor
488

AB_10692105

HES1-488 HES1 * Abcam AB196328 EPR4226 Alexa Fluor
488

Ki67-488 Ki67 * CST 11882 D3B5 Alexa Fluor
488

AB_2687824

LaminA/C-488 Lamin A/C * CST 8617 4C11 Alexa Fluor
488

AB_10997529

LaminB1-488 Lamin B1 * Abcam AB194106 EPR8985(B) Alexa Fluor
488

mCD3E-FITC ms_CD3E * BioLegend 100306 145–2 C11 FITC AB_312671

mCD4-488 ms_CD4 * BioLegend 100532 RM4-5 Alexa Fluor
488

AB_493373

MET-488 c-MET * CST 8494 D1C2 Alexa Fluor
488

AB_10999405

mF4/80-488 ms_F4/80 * BioLegend 123120 BM8 Alexa Fluor
488

AB_893479

MITF-488 MITF * Abcam AB201675 D5 Alexa Fluor
488

Ncad-488 N-Cadherin * BioLegend 350809 8C11 Alexa Fluor
488

AB_11218797

p53-488 p53 * CST 5429 7F5 Alexa Fluor
488

AB_10695458

PCNA-488 PCNA * CST 8580 PC10 Alexa Fluor
488

AB_11178664

PD1-488 PD1 * CST 15131 D3W4U Alexa Fluor
488

PDI-488 PDI * CST 5051 C81H6 Alexa Fluor
488

AB_10950503

pERK-488 pERK(T202/Y204) * CST 4344 D13.14.4E Alexa Fluor
488

AB_10695876

pNDG1-488 pNDG1(T346) * CST 6992 D98G11 Alexa Fluor
488

AB_10827648

Table 2 continued on next page
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Table 2 continued

Antibody name Target protein Performance Vendor Catalog no. Clone Fluorophore

Research
resource
Identifier

POL2A-488 POL2A * Novus
Biologicals

NB200-598AF488 4H8 Alexa Fluor
488

AB_2167465

pS6(S240/244)�
488

pS6(240/244) * CST 5018 D68F8 Alexa Fluor
488

AB_10695861

S100a-488 S100alpha * Abcam AB207367 EPR5251 Alexa Fluor
488

SQSTM1-488 SQSTM1/p62 * CST 8833 D1D9E3 Alexa Fluor
488

STAT3-488 STAT3 * CST 14047 B3Z2G Alexa Fluor
488

Survivin-488 Survivin * CST 2810 71G4B7 Alexa Fluor
488

AB_10691462

Catenin-488 b-Catenin * CST 2849 L54E2 Alexa Fluor
488

AB_10693296

Actin-555 Actin * CST 8046 13E5 Alexa Fluor
555

AB_11179208

CD11c-570 CD11c * eBioscience 41-9761-80 118/A5 eFluor 570 AB_2573632

CD3D-555 CD3D * Abcam AB208514 EP4426 Alexa Fluor
555

CD4-570 CD4 * eBioscience 41-2444-80 N1UG0 eFluor 570 AB_2573601

CD45-PE CD45 * R and D Systems FAB1430P-100 2D1 PE AB_2237898

CK7-555 Cytokeratin 7 * Abcam AB209601 EPR17078 Alexa Fluor
555

cMYC-555 cMYC * Abcam AB201780 Y69 Alexa Fluor
555

E2F1-555 E2F1 * Abcam AB208078 EPR3818(3) Alexa Fluor
555

Ecad-555 E-Cadherin * CST 4295 24E10 Alexa Fluor
555

EpCAM-PE EpCAM * BioLegend 324205 9C4 PE AB_756079

FOXO1a-555 FOXO1a * Abcam AB207244 EP927Y Alexa Fluor
555

FOXP3-570 FOXP3 * eBioscience 41-4777-80 236A/E7 eFluor 570 AB_2573608

GFAP-570 GFAP * eBioscience 41-9892-80 GA5 eFluor 570 AB_2573655

HSP90-PE HSP90b * Abcam AB115641 Polyclonal PE AB_10936222

KAP1-594 KAP1 * BioLegend 619304 20A1 Alexa Fluor
594

AB_2563298

Keratin-555 pan-Keratin * CST 3478 C11 Alexa Fluor
555

AB_10829040

Keratin-570 pan-Keratin * eBioscience 41-9003-80 AE1/AE3 eFluor 570 AB_11217482

Ki67-570 Ki67 * eBioscience 41-5699-80 20Raj1 eFluor 570 AB_11220088

LC3-555 LC3 * CST 13173 D3U4C Alexa Fluor
555

MAP2-570 MAP2 * eBioscience 41-9763-80 AP20 eFluor 570 AB_2573634

pAUR-555 pAUR1/2/3(T288/
T2

* CST 13464 D13A11 Alexa Fluor
555

pCHK2-PE pChk2(T68) * CST 12812 C13C1 PE

PDL1-555 PD-L1/CD274 * Abcam AB213358 28–8 Alexa Fluor
555
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Table 2 continued

Antibody name Target protein Performance Vendor Catalog no. Clone Fluorophore

Research
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pH3-555 pH3(S10) * CST 3475 D2C8 Alexa Fluor
555

AB_10694639

pRB-555 pRB(S807/811) * CST 8957 D20B12 Alexa Fluor
555

pS6(235/236)–555 pS6(235/236) * CST 3985 D57.2.2E Alexa Fluor
555

AB_10693792

pSRC-PE pSRC(Y418) * eBioscience 12-9034-41 SC1T2M3 PE AB_2572680

S6-555 S6 * CST 6989 54D2 Alexa Fluor
555

AB_10828226

SQSTM1-555 SQSTM1/p62 * Abcam AB203430 EPR4844 Alexa Fluor
555

VEGFR2-555 VEGFR2 * CST 12872 D5B1 Alexa Fluor
555

VEGFR2-PE VEGFR2 * CST 12634 D5B1 PE

Vimentin-555 Vimentin * CST 9855 D21H3 Alexa Fluor
555

AB_10859896

Vinculin-570 Vinculin * eBioscience 41-9777-80 7F9 eFluor 570 AB_2573646

gH2ax-PE gH2ax * BioLegend 613412 2F3 PE AB_2616871

AKT-647 AKT * CST 5186 C67E7 Alexa Fluor
647

AB_10695877

aSMA-660 aSMA * eBioscience 50-9760-80 1A4 eFluor 660 AB_2574361

B220-647 CD45R/B220 * BioLegend 103226 RA3-6B2 Alexa Fluor
647

AB_389330

Bcl2-647 Bcl2 * BioLegend 658705 100 Alexa Fluor
647

AB_2563279

Catenin-647 Beta-Catenin * CST 4627 L54E2 Alexa Fluor
647

AB_10691326

CD20-660 CD20 * eBioscience 50-0202-80 L26 eFluor 660 AB_11151691

CD45-647 CD45 * BioLegend 304020 HI30 Alexa Fluor
647

AB_493034

CD8a-660 CD8 * eBioscience 50-0008-80 AMC908 eFluor 660 AB_2574148

CK5-647 Cytokeratin 5 * Abcam AB193895 EP1601Y Alexa Fluor
647

CoIIV-647 Collagen IV * eBioscience 51-9871-80 1042 Alexa Fluor
647

AB_10854267

COXIV-647 COXIV * CST 7561 3E11 Alexa Fluor
647

AB_10994876

cPARP-647 cPARP * CST 6987 D64E10 Alexa Fluor
647

AB_10858215

FOXA2-660 FOXA2 * eBioscience 50-4778-82 3C10 eFluor 660 AB_2574221

FOXP3-647 FOXP3 * BioLegend 320113 206D Alexa Fluor
647

AB_439753

gH2ax-647 H2ax(S139) * CST 9720 20E3 Alexa Fluor
647

AB_10692910

gH2ax-647 H2ax(S139) * BioLegend 613407 2F3 Alexa Fluor
647

AB_2114994

HES1-647 HES1 * Abcam AB196577 EPR4226 Alexa Fluor
647

Ki67-647 Ki67 * CST 12075 D3B5 Alexa Fluor
647
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Antibody name Target protein Performance Vendor Catalog no. Clone Fluorophore

Research
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Ki67-647 Ki67 * BioLegend 350509 Ki-67 Alexa Fluor
647

AB_10900810

mCD45-647 ms_CD45 * BioLegend 103124 30-F11 Alexa Fluor
647

AB_493533

mCD4-647 ms_CD4 * BioLegend 100426 GK1.5 Alexa Fluor
647

AB_493519

mEPCAM-647 ms_EPCAM * BioLegend 118211 G8.8 Alexa Fluor
647

AB_1134104

MHCI-647 MHCI/HLAA * Abcam AB199837 EP1395Y Alexa Fluor
647

MHCII-647 MHCII * Abcam AB201347 EPR11226 Alexa Fluor
647

mLy6C-647 ms_Ly6C * BioLegend 128009 HK1.4 Alexa Fluor
647

AB_1236551

mTOR-647 mTOR * CST 5048 7C10 Alexa Fluor
647

AB_10828101

NFkB-647 NFkB (p65) * Abcam AB190589 E379 Alexa Fluor
647

NGFR-647 NGFR/CD271 * Abcam AB195180 EP1039Y Alexa Fluor
647

NUP98-647 NUP98 * CST 13393 C39A3 Alexa Fluor
647

p21-647 p21 * CST 8587 12D1 Alexa Fluor
647

AB_10892861

p27-647 p27 * Abcam AB194234 Y236 Alexa Fluor
647

pATM-660 pATM(S1981) * eBioscience 50-9046-41 10H11.E12 eFluor 660 AB_2574312

PAX8-647 PAX8 * Abcam AB215953 EPR18715 Alexa Fluor
647

PDL1-647 PD-L1/CD274 * CST 15005 E1L3N Alexa Fluor
647

pMK2-647 pMK2(T334) * CST 4320 27B7 Alexa Fluor
647

AB_10695401

pmTOR-660 pmTOR(S2448) * eBioscience 50-9718-41 MRRBY eFluor 660 AB_2574351

pS6_235–647 pS6(S235/S236) * CST 4851 D57.2.2E Alexa Fluor
647

AB_10695457

pSTAT3-647 pSTAT3(Y705) * CST 4324 D3A7 Alexa Fluor
647

AB_10694637

pTyr-647 p-Tyrosine * CST 9415 p-Tyr-100 Alexa Fluor
647

AB_10693160

S100A4-647 S100A4 * Abcam AB196168 EPR2761(2) Alexa Fluor
647

Survivin-647 Survivin * CST 2866 71G4B7 Alexa Fluor
647

AB_10698609

TUBB3-647 TUBB3 * BioLegend 657405 AA10 Alexa Fluor
647

AB_2563609

Tubulin-647 beta-Tubulin * CST 3624 9F3 Alexa Fluor
647

AB_10694204

Vimentin-647 Vimentin * BioLegend 677807 O91D3 Alexa Fluor
647

AB_2616801

anti-14-3-3 14-3-3 * Santa Cruz SC-629-G Polyclonal N/D AB_630820

anti-53BP1 53BP1 * Bethyl A303-906A Polyclonal N/D AB_2620256
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Table 2 continued

Antibody name Target protein Performance Vendor Catalog no. Clone Fluorophore

Research
resource
Identifier

anti-5HMC 5HMC * Active Motif 39769 Polyclonal N/D AB_10013602

anti-CD11b CD11b * Abcam AB133357 EPR1344 N/D AB_2650514

anti-CD2 CD2 * Abcam AB37212 Polyclonal N/D AB_726228

anti-CD20 CD20 * Dako M0755 L26 N/D AB_2282030

anti-CD3 CD3 * Dako A0452 Polyclonal N/D AB_2335677

anti-CD4 CD4 * Dako M7310 4B12 N/D

anti-CD45RO CD45RO * Dako M0742 UCHL1 N/D AB_2237910

anti-CD8 CD8 * Dako M7103 C8/144B N/D AB_2075537

anti-CycA2 CycA2 * Abcam AB38 E23.1 N/D AB_304084

anti-ET1 ET-1 * Abcam AB2786 TR.ET.48.5 N/D AB_303299

anti-FAP FAP * eBioscience BMS168 F11-24 N/D AB_10597443

anti-FOXP3 FOXP3 * BioLegend 320102 206D N/D AB_430881

anti-LAMP2 LAMP2 * Abcam AB25631 H4B4 N/D AB_470709

anti-MCM6 MCM6 * Santa Cruz SC-9843 Polyclonal N/D AB_2142543

anti-PAX8 PAX8 * Abcam AB191870 EPR18715 N/D

anti-PD1 PD1 * CST 86163 D4W2J N/D

anti-pEGFR pEGFR(Y1068) * CST 3777 D7A5 N/D AB_2096270

anti-pERK pERK(T202/Y204) * CST 4370 D13.14.4E N/D AB_2315112

anti-pRB pRB(S807/811) * Santa Cruz SC-16670 Polyclonal N/D AB_655250

anti-pRPA32 pRPA32 (S4/S8) * Bethyl IHC-00422 Polyclonal N/D AB_1659840

anti-pSTAT3 pSTAT3 ** CST 9145 D3A7 N/D AB_2491009

anti-pTyr pTyr * CST 9411 p-Tyr-100 N/D AB_331228

anti-RPA32 RPA32 * Bethyl IHC-00417 Polyclonal N/D AB_1659838

anti-TPCN2 TPCN2 * NOVUSBIO NBP1-86923 Polyclonal N/D AB_11021735

anti-VEGFR1 VEGFR1/FLT1 * Santa Cruz SC-31173 Polyclonal N/D AB_2106885

Abeta-488 Beta-Amyloid (1-
16)

† BioLegend 803013 6E10 Alexa Fluor
488

AB_2564765

BRAF-FITC B-RAF † Abcam ab175637 K21-F FITC

BrdU-488 BrdU † BioLegend 364105 3D4 Alexa Fluor
488

AB_2564499

cCasp3-488 cCasp3 † R and D Systems IC835G-025 269518 Alexa Fluor
488

CD11b-488 CD11b † BioLegend 101219 M1/70 Alexa Fluor
488

AB_493545

CD123-488 CD123 † BioLegend 306035 6H6 Alexa Fluor
488

AB_2629569

CD49b-FITC CD49b † BioLegend 359305 P1E6-C5 FITC AB_2562530

CD69-FITC CD69 † BioLegend 310904 FN50 FITC AB_314839

CD71-FITC CD71 † BioLegend 334103 CY1G4 FITC AB_1236432

CD80-FITC CD80 † R and D Systems FAB140F 37711 FITC AB_357027

CD8a-488 CD8a † eBioscience 53-0086-41 OKT8 Alexa Fluor
488

AB_10547060

CDC2-FITC CDC2/p34 † Santa Cruz SC-54 FITC 17 FITC AB_627224

CycB1-FITC CycB1 † Santa Cruz SC-752 FITC Polyclonal FITC AB_2072134
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Table 2 continued

Antibody name Target protein Performance Vendor Catalog no. Clone Fluorophore

Research
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Identifier

FN-488 Fibronection † Abcam AB198933 F1 Alexa Fluor
488

IFNG-488 Interferron-
Gamma

† BioLegend 502517 4S.B3 Alexa Fluor
488

AB_493030

IL1-FITC IL1 † BioLegend 511705 H1b-98 FITC AB_1236434

IL6-FITC IL6 † BioLegend 501103 MQ2-13A5 FITC AB_315151

mCD31-FITC ms_CD31 † eBioscience 11-0311-82 390 FITC AB_465012

mCD8a-488 ms_CD8a † BioLegend 100726 53–6.7 Alexa Fluor
488

AB_493423

Nestin-488 Nestin † eBioscience 53-9843-80 10C2 Alexa Fluor
488

AB_1834347

NeuN-488 NeuN † Millipore MAB377X A60 Alexa Fluor
488

AB_2149209

PR-488 PR/PGR † Abcam AB199224 YR85 Alexa Fluor
488

Snail1-488 Snail1 † eBioscience 53-9859-80 20C8 Alexa Fluor
488

AB_2574482

TGFB-FITC TGFB1 † BioLegend 349605 TW4-2F8 FITC AB_10679043

TNFa-488 TNFa † BioLegend 502917 MAb11 Alexa Fluor
488

AB_493122

AR-555 AR † CST 8956 D6F11 Alexa Fluor
555

AB_11129223

CD11a-PE CD11a † BioLegend 301207 HI111 PE AB_314145

CD11b-555 CD11b † Abcam AB206616 EPR1344 Alexa Fluor
555

CD131-PE CD131 † BD 559920 JORO50 PE AB_397374

CD14-PE CD14 † eBioscience 12–0149 61D3 PE AB_10597598

CD1a-PE CD1a † BioLegend 300105 HI149 PE AB_314019

CD1c-PE CD1c † BioLegend 331505 L161 PE AB_1089000

CD20-PE CD20 † BioLegend 302305 2H7 PE AB_314253

CD23-PE CD23 † eBioscience 12-0232-81 B3B4 PE AB_465592

CD31-PE CD31 † eBioscience 12-0319-41 WM-59 PE AB_10670623

CD31-PE CD31 † R and D Systems FAB3567P-025 9G11 PE AB_2279388

CD34-PE CD34 † Abcam AB30377 QBEND/10 PE AB_726407

CD45R-e570 CD45R/B220 † eBioscience 41-0452-80 RA3-6B2 eFluor 570 AB_2573598

CD71-PE CD71 † eBioscience 12-0711-81 R17217 PE AB_465739

CD86-PE CD86 † BioLegend 305405 IT2.2 PE AB_314525

CK19-570 Cytokeratin 19 † eBioscience 41-9898-80 BA17 eFluor 570 AB_11218678

HER2-570 HER2 † eBioscience 41-9757-80 MJD2 eFluor 570 AB_2573628

IL3-PE IL3 † BD 554383 MP2-8F8 PE AB_395358

NFATc1-PE NFATc1 † BioLegend 649605 7A6 PE AB_2562546

PDL1-PE PD-L1/CD274 † BioLegend 329705 29E.2A3 PE AB_940366

pMAPK (T202/
Y204)

pERK1/2(T202/
Y20

† CST 14095 197G2 PE

pMAPK (Y204/
Y187)

pERK1/2(Y204/
Y18

† CST 75165 D1H6G PE

pSTAT1-PE pSTAT1(Y705) † BioLegend 686403 A15158B PE AB_2616938
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ABCC1-647 ABCC1 † BioLegend 370203 QCRL-2 Alexa Fluor
647

AB_2566664

AnnexinV-674 N/D † BioLegend 640911 NA Alexa Fluor
647

AB_2561293

CD103-647 CD103 † BioLegend 350209 Ber-ACT8 Alexa Fluor
647

AB_10640870

CD25-647 CD25 † BioLegend 302617 BC96 Alexa Fluor
647

AB_493046

CD31-APC CD31 † eBioscience 17-0319-41 WM-59 APC AB_10853188

CD68-APC CD68 † BioLegend 333809 Y1/82A APC AB_10567107

CD8a-647 CD8a † BioLegend 344725 SK1 Alexa Fluor
647

AB_2563451

CD8a-647 CD8a † R and D Systems FAB1509R-025 37006 Alexa Fluor
647

CycE-660 CycE † eBioscience 50-9714-80 HE12 eFluor 660 AB_2574350

HIF1-647 HIF1 † BioLegend 359705 546–16 Alexa Fluor
647

AB_2563331

HP1-647 HP1 † Abcam AB198391 EPR5777 Alexa Fluor
647

mCD123-APC ms_CD123 † eBioscience 17-1231-81 5B11 APC AB_891363

NGFR-647 NGFR/CD271 † BD 560326 C40-1457 Alexa Fluor
647

AB_1645403

pBTK-660 pBTK(Y551/Y511) † eBioscience 50-9015-80 M4G3LN eFluor 660 AB_2574306

PD1-647 PD1 † Abcam AB201825 EPR4877 (2) Alexa Fluor
647

PR-660 PR/PGR † eBioscience 50-9764-80 KMC912 eFluor 660 AB_2574363

RUNX3-660 RUNX3 † eBioscience 50-9817-80 R3-5G4 eFluor 660 AB_2574383

SOX2-647 SOX2 † Abcam AB192075 Polyclonal Alexa Fluor
647

anti-53BP1 53BP1 † Millipore MAB3802 BP13 N/D AB_2206767

anti-Axl Axl † R and D AF154 Polyclonal N/D AB_354852

anti-CD11b CD11b † Abcam AB52478 EP1345Y N/D AB_868788

anti-CD8a CD8 † eBioscience 14-0085-80 C8/144B N/D AB_11151339

anti-CEP170 CEP170 † Abcam AB72505 Polyclonal N/D AB_1268101

anti-cMYC cMYC † BioLegend 626801 9E10 N/D AB_2235686

anti-CPS1 CPS1 † Abcam AB129076 EPR7493-3 N/D AB_11156290

anti-E2F1 E2F1 † ThermoFisher MS-879-P1 KH95 N/D AB_143934

anti-eEF2K eEF2K † Santa Cruz SC-21642 K-19 N/D AB_640043

anti-Emil1 Emil1 † Abcam AB212397 EMIL/1176 N/D

anti-FKHRL1 FKHRL1 † Santa Cruz SC-9812 Polyclonal N/D AB_640608

anti-FLAG FLAG † Sigma F1804 M2 N/D AB_262044

anti-GranB Granzyme_B † Dako M7235 M7235 N/D AB_2114697

anti-HMB45 HMB45 † Abcam AB732 HMB45 + M2-
7C10 + M2-
9E3

N/D AB_305844

anti-HSP90b HSP90b † Santa Cruz SC-1057 D-19 N/D AB_2121392

anti-IL2Ra IL2Ra † Abcam AB128955 EPR6452 N/D AB_11141054

anti-LAMP2 LAMP2 † R and D AF6228 Polyclonal N/D AB_10971818
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Table 2 continued
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anti-MITF MITF † Abcam AB12039 C5 N/D AB_298801

anti-Ncad N-Cadherin † Abcam AB18203 Polyclonal N/D AB_444317

anti-NCAM NCAM † Abcam AB6123 ERIC-1 N/D AB_2149537

anti-NF1 NF1 † Abcam AB178323 McNFn27b N/D

anti-pCTD Pol II CTD(S2) † Active Motif 61083 3E10 N/D AB_2687450

anti-PD1 PD1 † CST 43248 EH33 N/D

anti-pTuberin pTuberin(S664) † Abcam AB133465 EPR8202 N/D AB_11157389

anti-S100 S100 † Dako Z0311 Polyclonal N/D AB_10013383

anti-SIRT3 SIRT3 † CST 2627 C73E3 N/D AB_2188622

anti-TIA1 TIA1 † Santa Cruz SC-1751 Polyclonal N/D AB_2201433

anti-TLR3 TLR3 † Santa Cruz SC-8691 Polyclonal N/D AB_2240700

anti-TNFa TNFa † Abcam AB11564 MP6-XT3 N/D AB_298170

anti-TPCN2 TPCN2 † Abcam AB119915 Polyclonal N/D AB_10903692

CD11a-FITC CD11a ‡ eBioscience 11-0119-41 HI111 FITC AB_10597888

CD20-FITC CD20 ‡ BioLegend 302303 2H7 FITC AB_314251

CD2-FITC CD2 ‡ BioLegend 300206 RPA-2.10 FITC AB_314030

CD45RO-488 CD45RO ‡ BioLegend 304212 UCHL1 Alexa Fluor
488

AB_528823

CD8a-488 CD8 ‡ BioLegend 301024 RPA-T8 Alexa Fluor
488

AB_2561282

cJUN-FITC cJUN ‡ Santa Cruz SC-1694 FITC Polyclonal FITC AB_631263

CXCR5-FITC CXCR5 ‡ BioLegend 356913 J252D4 FITC AB_2561895

Ecad-FITC Ecad ‡ BioLegend 324103 67A4 FITC AB_756065

FOXP3-488 FOXP3 ‡ BioLegend 320011 150D Alexa Fluor
488

AB_439747

MITF-488 MITF ‡ Novus
Biologicals

NB100-
56561AF488

21D1418 Alexa Fluor
488

AB_838580

NCAM-488 NCAM/CD56 ‡ Abcam AB200333 EPR2566 Alexa Fluor
488

NCAM-FITC NCAM/CD56 ‡ ThermoFisher 11-0566-41 TULY56 FITC AB_2572458

NGFR-FITC NGFR/CD271 ‡ BioLegend 345103 ME20.4 FITC AB_1937226

PD1-488 PD-1 ‡ BioLegend 367407 NAT105 Alexa Fluor
488

AB_2566677

PD1-488 PD-1 ‡ BioLegend 329935 EH12.2H7 Alexa Fluor
488

AB_2563593

pERK-488 pERK(T202/Y204) ‡ CST 4374 E10 Alexa Fluor
488

AB_10705598

pERK-488 pERK(T202/Y204) ‡ CST 4780 137F5 Alexa Fluor
488

AB_10705598

S100A4-FITC S100A4 ‡ BioLegend 370007 NJ-4F3-D1 FITC AB_2572073

SOX2-488 SOX2 ‡ BioLegend 656109 14A6A34 Alexa Fluor
488

AB_2563956

CD133-PE CD133 ‡ eBioscience 12-1338-41 TMP4 PE AB_1582258

cMyc-TRITC cMYC ‡ Santa Cruz SC-40 TRITC 9E10 TRITC AB_627268

cPARP-555 cPARP ‡ CST 6894 D64E10 Alexa Fluor
555

AB_10830735

CTLA4-PE CTLA4 ‡ BioLegend 369603 BNI3 PE AB_2566796
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GATA3-594 GATA3 ‡ BioLegend 653816 16E10A23 Alexa Fluor
594

AB_2563353

GFAP-Cy3 GFAP ‡ Millipore MAB3402C3 NA Cy3 AB_11213580

Oct4-555 OCT_4 ‡ CST 4439 C30A3 Alexa Fluor
555

AB_10922586

p21-555 p21 ‡ CST 8493 12D1 Alexa Fluor
555

AB_10860074

PD1-PE PD1 ‡ BioLegend 329905 EH12.2H7 PE AB_940481

PDGFRb-555 PDGFRb ‡ Abcam AB206874 Y92 Alexa Fluor
555

pSTAT1-555 pSTAT1 ‡ CST 8183 58D6 Alexa Fluor
555

AB_10860600

TIM1-PE TIM1 ‡ BioLegend 353903 1D12 PE AB_11125165

cCasp3-647 cCasp3 ‡ CST 9602 D3E9 Alexa Fluor
647

AB_2687881

CD103-APC CD103 ‡ eBioscience 17-1038-41 B-Ly7 APC AB_10669816

CD3-647 CD3 ‡ BioLegend 300422 UCHT1 Alexa Fluor
647

AB_493092

CD3-660 CD3 ‡ eBioscience 50-0037-41 OKT3 eFluor 660 AB_2574150

CD3-APC CD3 ‡ eBioscience 17-0038-41 UCHT1 APC AB_10804761

CD45RO-APC CD45RO ‡ BioLegend 304210 UCHL1 APC AB_314426

ER-647 ER ‡ Abcam AB205851 EPR4097 Alexa Fluor
647

FOXO3a-647 FOXO3a ‡ Abcam AB196539 EP1949Y Alexa Fluor
647

GZMA-e660 Granzyme A ‡ ThermoFisher 50-9177-41 CB9 eFluor 660 AB_2574330

GZMB-647 Granzyme_B ‡ BioLegend 515405 GB11 Alexa Fluor
647

AB_2294995

GZMB-APC Granzyme_B ‡ R and D Systems IC29051A 356412 APC AB_894691

HER2-647 HER2 ‡ BioLegend 324412 24D2 Alexa Fluor
647

AB_2262300

mCD49b-647 ms_CD49b ‡ BioLegend 103511 HMa2 Alexa Fluor
647

AB_528830

NCAM-647 NCAM/CD56 ‡ BioLegend 362513 5.1H11 Alexa Fluor
647

AB_2564086

NCAM-e660 NCAM/CD56 ‡ ThermoFisher 50-0565-80 5tukon56 eFluor 660 AB_2574160

pAKT-647 pAKT ‡ CST 4075 D9E Alexa Fluor
647

AB_10691856

pERK-647 pERK (T202/Y204) ‡ CST 4375 E10 Alexa Fluor
647

AB_10706777

pERK-647 pERK (T202/Y204) ‡ BioLegend 369503 6B8B69 Alexa Fluor
647

AB_2571895

pIKBa-660 pIKBa ‡ eBioscience 50-9035-41 RILYB3R eFluor 660 AB_2574310

YAP-647 YAP ‡ CST 38707S D8H1X Alexa Fluor
647

anit-FANCD2 FANCD2 ‡ Bethyl IHC-00624 Polyclonal N/D AB_10752755

anit-pcJUN p-cJUN ‡ Santa Cruz SC-822 KM-1 N/D AB_627262

anti-AXL AXL ‡ CST 8661 C89E7 N/D AB_11217435

anti-CXCR5 CXCR5 ‡ GeneTex GTX100351 Polyclonal N/D AB_1240668
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In the current work, we rely exclusively on commercial antibodies that have previously been vali-

dated using IHC or conventional immunofluorescence; when feasible we confirm that staining by

t-CyCIF resembles what has previously been reported for IHC staining. This does not constitute a

sufficient level of testing or validation for discovery science or clinical studies and the patterns of

staining described in this paper should therefore be considered illustrative of the t-CyCIF approach

rather than definitive descriptions; we are currently developing a database of matched t-CyCIF and

IHC images across multiple tissues and knockdown cell lines to address this issue and share valida-

tion test data with the wider research community.

Fluorophore inactivation, cycle count and tissue integrity
The efficiency of fluorophore inactivation by hydrogen peroxide, light and high pH varies with fluoro-

phore but only minimally with the antibody to which the fluorophore is coupled (Alexa Fluor 488 is

inactivated more slowly than Alexa Fluor 570 or 647; Figure 4B and Figure 4—figure supplement

1). We typically incubate specimens in bleaching conditions for 60 min, which is sufficient to reduce

fluorescence intensity by 102 to 103-fold (Figure 4C). When testing new antibodies or analyzing new

tissues, imaging is performed after each bleaching step and prior to initiation of another t-CyCIF

cycle to ensure that fluorophore inactivation is complete. In preliminary studies, we have tested a

range of other fluorophores for their compatibility with t-CyCIF including FITC, TRITC, phycoerythrin,

Allophycocyanin, eFluor 570 and eFluor 660 (eBioscience). We conclude that it will be feasible to

increase the number of t-CyCIF channels per cycle from four to at least six (3 to 5 antibodies plus a

DNA stain). However, all the images in this paper are collected using a four-channel method.

The primary limitation on the number of t-CyCIF cycles that can be performed is the integrity of

the tissue: some tissues samples are physically more robust and can withstand more staining and

washing procedures than others (Figure 4D). To study the effect of cycle number on tissue integrity,

we performed a 10-cycle t-CyCIF experiment on a tissue microarray (TMA) comprising a total of 40

cores from 16 different tissues and tumor types. After each t-CyCIF cycle, the number of nuclei

remaining was quantified for each core relative to the initial number. For example, Figure 4D shows

breast, bladder, lung and prostate cores in which cell number was reduced after 10 cycles by ~2%

and an unusually high 46% (apparent increases in cell number in these data are caused by fluctuation

in the performance of cell segmentation routines and are not statistically significant). Cells that were

lost appear red in these images. The data show that cell loss is often uneven across samples, prefer-

entially affecting regions of tissue with low cellularity.

Overall, we found that the extent of cell loss varied with tissue type and, within a single tissue

type, from core to core (six breast cores are shown; Figure 4E). For many tissues, we have not yet

Table 2 continued

Antibody name Target protein Performance Vendor Catalog no. Clone Fluorophore

Research
resource
Identifier

anti-CXCR5 CXCR5 ‡ R and D MAB-190-SP 51505 N/D AB_2292654

anti-FOXO3a FOXO3a ‡ CST 2497 75D8 N/D AB_836876

anti-GZMB Granzyme B ‡ Abcam AB4059 Polyclonal N/D AB_304251

anti-PD1 PD-1 ‡ Abcam AB63477 Polyclonal N/D AB_2159165

anti-PD1 PD-1 ‡ ThermoFisher 14-9985-81 J43 N/D AB_468663

anti-PD1 PD-1 ‡ R and D AF1021 Polyclonal N/D AB_354541

anti-RFP RFP ‡ ThermoFisher R10367 Polyclonal N/D AB_2315269

CD11C-BV570 CD11C ‡ BioLegend 117331 N418 BV570 AB_10900261

CD45-BV785 CD45 ‡ BioLegend 304047 HI30 BV785 AB_2563128

LY6G-BV570 LY6G ‡ BioLegend 127629 1A8 BV570 AB_10899738

*Show positive/correct signals in multiple samples/tissues.

†Show positive/correct signals in some but not all samples tested.

‡Show no signal or incorrect signals in most samples tested.

DOI: https://doi.org/10.7554/eLife.31657.011
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Figure 4. Efficacy of fluorophore inactivation and preservation of tissue integrity. (A) Exemplary image of a human tonsil stained with PCNA-Alexa 488

that underwent 0, 15, 30 or 60 min of fluorophore inactivation. (B) Effect of bleaching duration on the distribution of anti-PCNA-Alexa 488 staining

intensities for samples used in (A). The distribution is computed from mean values for the fluorescence intensities across all cells in the image that were

successfully segmented. The gray band denotes the range of background florescence intensities (below 6.2 in log scale). (C) Effect of bleaching

Figure 4 continued on next page

Lin et al. eLife 2018;7:e31657. DOI: https://doi.org/10.7554/eLife.31657 18 of 46

Tools and resources Cancer Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.31657


attempted to optimize cycle number and the experiments performed to date do not fully control for

pre-analytical variables (Vassilakopoulou et al., 2015) such as fixation time and the age of tissue

blocks. As a rule, we find that normal tonsil, skin, glioblastoma, ovarian cancer, pancreatic cancer

and melanoma can be subjected to >15 cycles with less than 25% cell loss. Figure 4F shows a mela-

noma specimen subjected to 20 t-CyCIF cycles with good preservation of cell and tissue morphology

(Figure 4G). We conclude that t-CyCIF is compatible with multiple normal tissues and tumor types

but that some tissues and/or specimens can be subjected to more cycles than others. One require-

ment for high cycle number appears to be cellularity: samples in which cells are very sparse tend to

be more fragile. We expect improvements in cycle number with additional experimentation and the

use of fluidic devices that deliver staining and wash liquids more gently.

One potential concern about cyclic immunofluorescence is that the process is relatively slow;

each cycle takes 6–8 hr and we typically perform one cycle per day. However, a single operator can

easily process 30 slides in parallel, and in the case of TMAs, 30 slides can comprise over 2000 differ-

ent samples. Under these conditions, the most time-consuming step in t-CyCIF is collecting the 200–

400 fields of view needed to image each slide. Time could be saved by imaging fewer cells per sam-

ple, but the results described below (demonstrating substantial cellular heterogeneity in a single

piece of a tumor resection) strongly argue in favor of analyzing as large a fraction of each tissue

specimen as possible. As a practical matter, data analysis and data interpretation remain more time-

consuming than data collection. We also note that the throughput of t-CyCIF compares favorably

with other tissue-imaging platforms or single-cell transcriptome profiling.

Impact of cycle number on immunogenicity
Because t-CyCIF assembles multiplex images sequentially, it is sensitive to factors that alter immuno-

genicity as cycle number increases. To investigate such effects, we performed a 16-cycle t-CyCIF

experiment in which the order of antibody addition was varied between two immediately adjacent

tissue slices cut from the same tissue block (Figure 5A; Slides A and B); the study was repeated

three times, once with tonsil and twice with melanoma specimens with similar results (~1.8 � 105

cells were used for the analysis and overall cell loss was <15%).

This experiment made it possible to judge: (i) the repeatability of staining a single specimen using

the same set of antibodies (Figure 5A, denoted by yellow highlight) (ii) the similarity of staining

between slides A and B (blue highlight) and (iii) the effect of swapping the order of antibody addi-

tion (cycle number) between slides A and B (blue lines). Comparisons within a single slide were

made on a cell-by-cell basis but because slides A and B contain different cells, comparisons between

slides were made at the level of intensity distributions (computed on a per-cell basis following seg-

mentation). The repeatability of staining (as measured in cycles 3, 7, 12 and 16) was performed using

Figure 4 continued

duration on mean intensity for nine antibodies conjugated to Alexa fluor 488, efluor 570 or Alexa fluor 647. Intensities were determined as in (B). The

gray band denotes the range of background florescence intensities. (D) Impact of t-CyCIF cycle number on tissue integrity for four exemplary tissue

cores. Nuclei present in the first cycle are labeled in red and those present after the 10th cycle are in green. The numbers at the bottom of the images

represent nuclear counts in cycle 1 (red) and cycle 10 (green), respectively. (E) Impact of t-CyCIF cycle number on the integrity of a TMA containing 48

biopsies obtained from 16 different healthy and tumor tissues (see Materials and methods for TMA details) stained with 10 rounds of t-CyCIF. The

number of nuclei remaining in each core was computed relative to the starting value; small fluctuations in cell count explain values > 1.0 and arise from

errors in image segmentation. Data for six different breast cores is shown to the right. (F) Nuclear staining of a melanoma specimen subjected to 20

cycles of t-CyCIF emphasizes the preservation of tissue integrity (22 ± 4%). (G) Selected images of the specimen in (F) from cycles 0, 5, 15 and 20.

DOI: https://doi.org/10.7554/eLife.31657.012

The following source data and figure supplement are available for figure 4:

Source data 1. Mean intensity versus bleach time for multiple antibodies (Figure 4C).

DOI: https://doi.org/10.7554/eLife.31657.014

Source data 2. Intensity distribution for single cells versus bleach time for one antibody (Figure 4B).

DOI: https://doi.org/10.7554/eLife.31657.015

Source data 3. Cell counts dependent on number of staining cycles (Figure 4E).

DOI: https://doi.org/10.7554/eLife.31657.016

Figure supplement 1. Impact of bleaching time on fluorophore inactivation.

DOI: https://doi.org/10.7554/eLife.31657.013
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Figure 5. Design of a 16-cyle experiment used to assess the reliability of t-CyCIF data. (A) t-CyCIF experiment involving two immediately adjacent

tissue slices cut from the same block of tonsil tissue (Slide A and Slide B). The antibodies used in each cycle are shown (antibodies are described in

Supplementary file 2). Highlighted in blue are cycles in which the same antibodies were used on slides A and B at the same time to assess

reproducibility. Highlighted in yellow are cycles in which antibodies targeting PCNA, Vimentin and Tubulin were used repeatedly on both slides A and

B to assess repeatability. Blue arrows connecting Slides A and B show how antibodies were swapped among cycles. (B) Representative images of Slide

A (top panels) and Slide B specimens (bottom panels) after each t-CyCIF cycle. The color coding highlighting specific cycles is the same as in A.

DOI: https://doi.org/10.7554/eLife.31657.017
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Figure 6. Impact of cycle number on repeatability, reproducibility and strength of t-CyCIF immuno-staining. (A) Plots on left: comparison of staining

intensity for anti-PCNA Alexa 488 (top), anti-vimentin Alexa 555 (middle) and anti-tubulin Alexa 647 (bottom) in cycle 3 vs. 16 and cycle 7 vs. 12 of the

16-cycle t-CyCIF experiment show in Figure 5. Intensity values were integrated across whole cells and the comparison is made on a cell-by-cell basis.

Spearman’s correlation coefficients are shown. Plots in middle: intensity distributions at cycles 3 (blue), 7 (yellow), 12 (red) and 16 (green); intensity

Figure 6 continued on next page
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anti-PCNA-Alexa 488, anti-Vimentin-Alexa 555 and anti-Tubulin- Alexa 647 which bind abundant

proteins with distrinct cellular distributions (Figure 5B). Repeated staining of the same antigen is

expected to saturate epitopes, but we reasoned that this effect would be less pronounced the more

abundant the antigen. For PCNA, the correlation in staining intensities across four cycles was high

(r = 0.95 to 0.99) and somewhat lower in the case of Vimentin and Tubulin (r = 0.80 to 0.95;

Figure 6A; a more extensive comparison is shown in Figure 6—figure supplement 1). When we

examined the corresponding images, it was readily apparent that Tubulin, and to a lesser extent

Vimentin, stained more intensely in later than in earlier t-CyCIF cycles (see intensity distributions in

Figure 6A and images in Figure 6B). When images were scaled to equalize the intensity range (by

histogram equalization), staining patterns were indistinguishable across all cycles and loss of cells or

specific subcellular structures was not obviously a factor (Figure 6B, left vs right panels and

Figure 6C). Thus, for at least a subset of antibodies, staining intensity increases rather than

decreases with cycle number whereas background fluorescence falls. As a consequence, dynamic

range, defined here as the ratio of the least to the most intense 5% of pixels, frequently increases

with cycle number (Figure 6A and Figure 6—figure supplement 1). These effects were reproduc-

ible across slides A and B in all three experiments performed.

When we compared staining between slides A and B for the same antibodies and cycle number,

the overlap in intensity distributions was high (>0.85), demonstrating good sample to sample repro-

ducibility (Zhou and Liu, 2012). The overlap remained high for the majority of antibodies even when

they were used in different cycles on slides A and B, but for some antibodies, signal intensity clearly

increased or decreased with cycle number (Figure 6D; blue and red outlines). In the case of eight

antibodies for which the effect of cycle number was greatest (including tubulin, as discussed above),

the overlap in intensity distributions was <0.6 as a consequence of both increases and decreases in

staining intensity (Figure 6E). Overall, we found that the repeatability of staining between two bio-

logical samples was highest when the antibodies were used in the same cycle on both samples,

lower when the antibodies were used in different cycles on the sample, and lowest when both the

order and sample were different (Figure 6F).

The reasons for changes in staining intensity with cycle number are not known, but the fact that

the same changes were observed across multiple experiments (for any single antibody) suggests

that they arise not from irreproducibility of the t-CyCIF procedure but rather from changes in epi-

tope accessibility. Even in these cases, it appears that it is absolute intensity rather than morphology

that is variable. Thus, while changes in staining intensity with cycle number are a concern for a subset

of t-CyCIF antibodies, it should be possible to minimize the problem by staining all samples in the

Figure 6 continued

values were integrated across whole cells to construct the distribution. Box plots to right: estimated dynamic range at four cycle numbers 3, 7, 12, 16.

Red lines denote median intensity values (across 56 frames), boxes denote the upper and lower quartiles, whiskers indicate values outside the upper/

lower quartile within 1.5 standard deviations, and red dots represent outliers. (B) Representative images showing anti-tubulin Alexa 647 staining at four

t-CyCIF cycles; original images are shown on the left (representing the same exposure time and approximately the same illumination) and images

scaled by histogram equalization to similar intensity ranges are shown on the right. (C) Image for anti-CD45RO-Alexa 555 at cycles 5 and 15 scaled to

similar intensity ranges as described in (B); the dynamic range (DR) of the cycle 15 image is ~3.3 fold lower than that of the Cycle 5 image, but shows

similar morphology. (D) Intensity distributions for selected antibodies that were used in different cycles on Slides A and B. Colors denote the degree of

concordance between the slides ranging from high (overlap >0.8 in yellow; PCNA), slightly increased or decreased with increasing cycle (overlap 0.6 to

0.8 in light blue or light red; S100 and SMA) or substantially increased or decreased (overlap <0.6 in red or blue; VEGFR2 and CD45RO). (E) Summary of

effects of cycle number on antibody staining based on the degree of overlap in intensity distributions (the overlap integral); color coding is the same as

in (D). (F) Effect of cycle number and specimen identity on overlap integrals for all antibodies and all cycles assayed. The red line denotes the median

intensity value, boxes denote the upper/lower quartiles, and whiskers indicate values outside the upper/lower quartile and within 1.5 standard

deviations, and red dots represent outliers. All the numeric data in Figures 5 and 6 are available in a Jupyter notebook; see Code Availability section

of Materials and methods for details.

DOI: https://doi.org/10.7554/eLife.31657.018

The following source data and figure supplement are available for figure 6:

Source data 1. Single-cell intensity data used in Figure 6.

DOI: https://doi.org/10.7554/eLife.31657.020

Figure supplement 1. Comparison of staining intensities across different cycles at a single-cell level.

DOI: https://doi.org/10.7554/eLife.31657.019
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Figure 7. t-CyCIF of a large resection specimen from a patient with pancreatic cancer. (A) H&E staining of pancreatic ductal adenocarcinoma (PDAC)

resection specimen that includes portions of cancer and non-malignant pancreatic tissue and small intestine. (B) The entire sample comprising 143

stitched 10X fields of view is shown. Fields that were used for downstream analysis are highlighted by yellow boxes. (C) A representative field of normal

intestine across 8 t-CyCIF rounds; see Supplementary file 3 for a list of antibodies. (D) Segmentation data for four antibodies; the color indicates

Figure 7 continued on next page
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same order. Other approaches will also be important; for example, using calibration standards and

identifying antibodies exhibiting the least variation with cycle number.

One way to reduce artefacts generated by differences in the order of antibody addition is to cre-

ate a single high-plex antibody mixture and then stain all antigens in parallel. This approach is not

compatible with t-CyCIF but is feasible using methods such as MIBI or CODEX (Angelo et al., 2014;

Goltsev, 2017). However, there is substantial literature showing that the formulation of highly multi-

plex immuno-assays is complicated by interaction among antibodies (Ellington et al., 2010) that has

a physicochemical explanation in some cases in weak self-association and viscosity (Wang et al.,

2018). Consistent with these data, we have observed that when eight or more unlabeled antibodies

are added to a t-CyCIF experiment, the intensity of staining can fall, although the effect is smaller

than observed with antibodies most sensitive to order of addition. We conclude that the construc-

tion of sequentially applied t-CyCIF antibody panels and of single high-plex mixtures will both

require optimization of specific panels and their method of use.

Analysis of large specimens by t-CyCIF
Review of large histopathology specimens by pathologists involves rapid and seamless switching

between low-power fields to scan across large regions of tissue and high-power fields to study cellu-

lar morphology. To mimic this integration of information at both tissue and cellular scales, we per-

formed eight-cycle t-CyCIF on a large 2 � 1.5 cm resection specimen that includes pancreatic ductal

adenocarcinoma (PDAC) and adjacent normal pancreatic tissue and small intestine (Figure 7A–C).

Nuclei were located in the DAPI channel and cell segmentation performed using a watershed algo-

rithm (Figure 7—figure supplement 1: see Materials and methods section for a discussion of the

method and its caveats) yielding ~2 � 105 single cells each associated with a vector comprising 25

whole-cell fluorescence intensities. Differences in subcellular distribution were evident for many pro-

teins, but for simplicity, we only analyzed fluorescence intensity on a per-antigen basis integrated

over each whole cell. Results were visualized by plotting intensity value onto the segmentation data

(Figure 7D), by computing correlations on a cell-by-cell basis (Figure 7E), or by using t-distributed

stochastic neighbor embedding (t-SNE) (Maaten and Hinton, 2008), which clusters cells in 2D based

on their proximity in the 25-dimensional space of image intensity data (Figure 8A).

The analysis in Figure 7E shows that E-cadherin, keratin and b-catenin levels are highly correlated

with each other, whereas vimentin and VEGFR2 receptor levels are anti-correlated, recapitulating

the known dichotomy between epithelial and mesenchymal cell states in normal and diseased tis-

sues. Many other physiologically relevant correlations are also observed, for example between the

levels of pERKT202/Y204 (the phosphorylated, active form of the kinase) and activating phosphoryla-

tion of the downstream kinase pS6S235/S236 (r = 0.81). When t-SNE was applied to all cells in the

specimen, we found that those identified during histopathology review as being from non-neoplastic

pancreas (red) were distinct from PDAC (green) and also from the neighboring non-neoplastic small

intestine (blue) (Figure 8B–D). Vimentin and E-Cadherin had very different levels of expression in

PDAC and normal pancreas as a consequence of epithelial-to-mesenchymal transitions (EMT) in

malignant tissues as well as the presence of a dense tumor stroma, a desmoplastic reaction that is a

hallmark of the PDAC microenvironment (Mahadevan and Von Hoff, 2007). The microenvironment

Figure 7 continued

fluorescence intensity (blue = low, red = high). (E) Quantitative single-cell signal intensities of 24 proteins (rows) measured in ~4�103 cells (columns)

from panel (C). The Pearson correlation coefficient for each measured protein with E-cadherin (at a single-cell level) is shown numerically. Known

dichotomies are evident such as anti-correlated expression of epithelial (E-Cadherin) and mesenchymal (Vimentin) proteins. Proteins highlighted in red

are further analyzed in Figure 8.

DOI: https://doi.org/10.7554/eLife.31657.021

The following source data and figure supplement are available for figure 7:

Source data 1. Single-cell intensity data used in Figure 7E.

DOI: https://doi.org/10.7554/eLife.31657.023

Source data 2. Single-cell intensity data used in Figures 7 and 8.

DOI: https://doi.org/10.7554/eLife.31657.024

Figure supplement 1. t-CyCIF for examining large resection specimens of a human pancreatic cancer.

DOI: https://doi.org/10.7554/eLife.31657.022
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Figure 8. High-dimensional single-cell analysis of human pancreatic cancer sample with t-CyCIF. (A) t-SNE plots of cells derived from small intestine

(left) or the PDAC region (right) of the specimen shown in Figure 7 with the fluorescence intensities for markers of proliferation (PCNA and Ki67) and

signaling (pERK and b-catenin) overlaid on the plots as heat maps. In both tissue types, there exists substantial heterogeneity: circled areas indicate the

relationship between pERK and b-catenin levels in cells and represent positive (‘a’), negative (‘b’) or no association (‘c’) between these markers. (B)

Figure 8 continued on next page
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of PDAC was more heavily infiltrated with CD45+ immune cells than the normal pancreas, and the

intestinal mucosa of the small intestine was also replete with immune cells, consistent with the known

architecture and organization of this tissue.

The capacity to image samples that are several square centimeters in area with t-CyCIF can facili-

tate the detection of signaling biomarker heterogeneity. The WNT pathway is frequently activated in

PDAC and is important for oncogenic transformation of gastrointestinal tumours (Jones et al.,

2008). Approximately 90% of sporadic PDACs also harbor driver mutations in KRAS, activating the

MAPK pathway and promoting tumourigenesis (Vogelstein et al., 2013). Studies comparing these

pathways have come to different conclusions with respect to their relationship: some studies show

concordant activation of MAPK and WNT signaling and others argue for exclusive activation of one

pathway or the other (Jeong et al., 2012). In t-SNE plots derived from images of PDAC, multiple

sub-populations of cells representing negative, positive or no correlation between pERK and b-cate-

nin levels can be seen (marked with labels ‘a’, ‘b’ or ‘c’, respectively in Figure 8A). The same three

relationships can be found in non-neoplastic pancreas and small intestine (Figures 8A and 7C). In

PDAC, malignant cells can be distinguished from stromal cells, to a first approximation, by high pro-

liferative index, which can be measured by staining for Ki-67 and PCNA (Bologna-Molina et al.,

2013). When we gated for cells that were both Ki67high and PCNAhigh, and thus likely to be malig-

nant, the co-occurrence of different relationship between pERK and b-catenin levels on a cellular

level was again evident. While we cannot exclude the possibility of phospho-epitope loss during

sample preparation, it appears that the full range of possible relationships between the MAPK and

WNT signaling pathways described in the literature can be found within a specimen from a single

patient, illustrating the impact of tissue context on the activities of key signal transduction pathways.

Multiplex imaging of immune infiltration
Immuno-oncology drugs, including immune checkpoint inhibitors targeting CTLA-4 and the PD-1/

PD-L1 axis are rapidly changing the therapeutic possibilities for traditionally difficult-to-treat cancers

including melanoma, renal and lung cancers, but responses are variable across and within cancer

types. The hope is that tumor immuno-profiling will yield biomarkers predictive of therapeutic

response in individual patients. For example, expression of PD-L1 correlates with responsiveness to

the ICIs pembrolizumab and nivolumab (Mahoney and Atkins, 2014) but the negative predictive

value of PD-L1 expression alone is insufficient to stratify patient populations (Sharma and Allison,

2015). In contrast, by measuring PD-1, PD-L1, CD4 and CD8 by IHC on sequential tumor slices, it

has been possible to identify some immune checkpoint inhibitor-responsive melanom patients

(Tumeh et al., 2014). To test t-CyCIF in this application, eight-cycle imaging was performed on a 1

� 2 cm specimen of clear-cell renal cell carcinoma using 10 antibodies against multiple immune

markers and 12 against other proteins expressed in tumor and stromal cells (Figure 9A–B;

Supplementary file 4). A region of the specimen corresponding to tumor was readily distinguishable

from non-malignant stroma based on a-SMA expression (a-SMAhigh regions denote stroma and a-

SMAlow regions high density of malignant cells).

In the a-SMAlow domain, CD3+ or CD8+ lymphocytes were fourfold enriched (Figure 9C) and PD-

1 and PD-L1-positive cells were 13 to 20-fold more prevalent as compared to the surrounding tumor

stroma (a-SMAhigh domain); CD3+ CD8+ double positive T-cells were found almost exclusively in the

tumor. Suppression of immune cells is mediated by binding of PD-L1 ligand, which is commonly

expressed by tumor cells, to the PD1 receptor expressed on immune cells (Tumeh et al., 2014). To

Figure 8 continued

Representative frames of normal pancreas and pancreatic ductal adenocarcinoma from the 8-cycle t-CyCIF staining of the same resection specimen

from Figure 7. (C) t-SNE representation and clustering of single cells from normal pancreatic tissue (red), small intestine (blue) and pancreatic cancer

(green). Projected onto the origin of each cell in t-SNE space are intensity measures for selected markers demonstrating distinct staining patterns. (D)

Fluorescence intensity distributions for selected markers in small intestine, pancreas and PDAC.

DOI: https://doi.org/10.7554/eLife.31657.025

The following source data is available for figure 8:

Source data 1. Single-cell data in FCS format (Figure 8C–E).

DOI: https://doi.org/10.7554/eLife.31657.026
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Figure 9. Spatial distribution of immune infiltrates and checkpoint proteins. (A) Low-magnification image of a clear cell renal cancer subjected to 12-

cycle t-CyCIF (see Supplementary file 4 for a list of antibodies). Regions high in a-smooth muscle actin (a-SMA) correspond to stromal components of

the tumor, those low in a-SMA represent regions enriched for malignant cells. (B) Representative images from selected t-CyCIF channels are shown. (C)

Quantitative assessment of total lymphocytic cell infiltrates (CD3+ cells), CD8+ T lymphocytes, cells expressing PD-1 or its ligand PD-L1 or the VEGFR2

Figure 9 continued on next page

Lin et al. eLife 2018;7:e31657. DOI: https://doi.org/10.7554/eLife.31657 27 of 46

Tools and resources Cancer Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.31657


begin to estimate the likelihood of ligand-receptor interactions, we quantified the degree of co-

localization of cells expressing the two molecules. The centroids of PD-1+ or PD-L1+ cells were

determined from images (PD-1, red; PD-L1, green, Figure 9E) and co-localization (highlighted in yel-

low, Figure 9F) computed by k-nearest neighbor analysis. We found that co-localization of PD-1/PD-

L1 was ~2.7-fold more likely (Figure 9—figure supplement 1) in tumor and stroma and was concen-

trated on the tumor-stroma border consistent with previous reports on melanoma (Tumeh et al.,

2014). These data demonstrate the potential of spatially resolved immuno-phenotyping to quantify

state and location of tumor infiltrating lymphocytes; such data may ultimately yield biomarkers pre-

dictive of sensitivity to immune checkpoint inhibitor (Tumeh et al., 2014).

Analysis of diverse tumor types and grades using t-CyCIF of tissue-
microarrays (TMA)
To explore the general utility of t-CyCIF in a range of healthy and cancer tissues we applied eight

cycle t-CyCIF to TMAs containing 39 different biopsies from 13 healthy tissues and 26 biopsies cor-

responding to low- and high-grade cancers from the same tissue types (Figure 10A and Figure 10—

figure supplement 1, Supplementary file 3 for antibodies used, Supplementary file 5 for TMA

details and naming conventions) and then performed t-SNE and clustering on single-cell intensity

data (Figure 10B). The great majority of TMA samples mapped to one or a few discrete locations in

the t-SNE projection (compare normal kidney tissue - KI1, low-grade tumors - KI2, and high-grade

tumors – KI3; Figure 10C), although ovarian cancers were scattered across the t-SNE projection

(Figure 10D); overall, there was no separation between normal tissue and tumors regardless of

grade (Figure 10E). In a number of cases, high-grade cancers from multiple different tissues of ori-

gin co-clustered, implying that transformed morphologies and cell states were closely related. For

example, while healthy and low-grade pancreatic and stomach cancer occupied distinct t-SNE

domains, high-grade pancreatic and stomach cancers were intermingled and could not be readily

distinguished (Figure 10F), recapitulating the known difficulty in distinguishing high-grade gastroin-

testinal tumors of diverse origin by histophathology (Varadhachary and Raber, 2014). Nonetheless,

t-CyCIF might represent a means to identify discriminating biomarkers by efficiently sorting through

large numbers of alternative antigens and antigen localizations.

Quantitative analysis reveals global and regional heterogeneity and
multiple histologic subtypes within the same tumor in glioblastoma
multiforme (GBM)
Data from single-cell genomics reveals extensive heterogeneity in many types of cancer (Turner and

Reis-Filho, 2012) but our understanding of this phenomenon requires spatially resolved data

(Giesen et al., 2014). We performed eight-cycle imaging on a 2.5 cm x 1.8 mm resected glioblas-

toma (GBM) specimen imaging markers of neural development, cell cycle state and signal transduc-

tion (Figure 11A–B, Supplementary file 6). GBM is a highly aggressive and genetically

heterogeneous (Brennan et al., 2013) brain cancer commonly classified into four histologic subtypes

Figure 9 continued

for the entire tumor or for a-SMAhigh and a-SMAlow regions. VEGFR2 is a protein primarily expressed in endothelial cells and is targeted in the

treatment of renal cell cancer. The error bars represent the S.E.M. derived from 100 rounds of bootstrapping. (D) Density plot for CD3 and CD8

expression on single cells in the tumor (left) or stromal domains (right). (E) Centroids of CD3+ or CD3+CD8+ cells in blue or dark blue as well as cells

staining as SMAhigh or SMAlow (gray and light-gray, respectively) used to define the stromal and tumor regions. (F) Centroids of PD-1+ and PD-L1+ cells

are shown in red and green, respectively. (G) Results of a K-nearest neighbor algorithm used to compute areas in which PD-1+ and PD-L1+ cells lie

within ~10 mm of each other and with high spatial density (in yellow) and thus, are potentially positioned to interact at a molecular level.

DOI: https://doi.org/10.7554/eLife.31657.027

The following source data and figure supplement are available for figure 9:

Source data 1. Immune cell counts from bootstrapping in tumor and stroma regions (Figure 9C).

DOI: https://doi.org/10.7554/eLife.31657.029

Source data 2. Single-cell intensity data used in Figure 9.

DOI: https://doi.org/10.7554/eLife.31657.030

Figure supplement 1. Spatial analysis of PD-1 and PD-L1 expressing cells.

DOI: https://doi.org/10.7554/eLife.31657.028
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Figure 10. Eight-cycle t-CyCIF of a tissue microarray (TMA) including 13 normal tissues and corresponding tumor types. The TMA includes normal

tissue types, and corresponding high- and low-grade tumors, for a total of 39 specimens (see Supplementary file 3 for antibodies and

Supplementary file 5 for specifications of the TMA). (A) Selected images of different tissues illustrating the quality of t-CyCIF images (additional

examples shown in Figure 9—figure supplement 1; full data available online at www.cycif.org). (B) t-SNE plot of single-cell intensities of all 39 cores;

Figure 10 continued on next page
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(Olar and Aldape, 2014). Following image segmentation, phenotypic heterogeneity was assessed at

three spatial scales corresponding to: (i) 1.6 � 1.4 mm fields of view (252 total) each of which com-

prised 103 to 104 cells (ii) seven macroscopic regions of ~104 to 105 cells each, corresponding

roughly to tumor lobes and (iii) the whole tumor comprising ~106 cells. To quantify local heterogene-

ity, we computed the informational entropy on a-per-channel basis for 103 randomly selected cells in

each field (Figure 11C; see online Materials and methods for details). In this setting, informational

entropy is a measure of cell-to-cell heterogeneity on a mesoscale corresponding to 10–30 cell diam-

eters. For a marker such as EGFR, which can function as a driving oncogene in GBM, informational

entropy was high in some areas (Figure 11C; red dots) and low in others (blue dots). Areas with high

entropy in EGFR abundance did not co-correlate with areas that were most variable with respect to

a downstream signaling protein such as pERK. Thus, the extent of local heterogeneity varied with

the region of the tumor and the marker being assayed.

Semi-supervised clustering using expectation–maximization Gaussian mixture (EMGM) modeling

of all cells in the tumor yielded eight distinct clusters, four of which encompassed 85% of all cells

(Figure 12A and Figure 12—figure supplement 1). Among these, cluster one had high EGFR levels,

cluster two had high NGFR and Ki67 levels and cluster six had high levels of vimentin; cluster five

was characterized by high keratin and pERK levels. The presence of four highly populated t-CyCIF

clusters is consistent with data from single-cell RNA-sequencing of ~400 cells from five GBMs

(Patel et al., 2014). Three of the t-CyCIF clusters have properties reminiscent of established histo-

logical subtypes including: classical, cluster 1; pro-neural, cluster 3; and mesenchymal, cluster 6, but

additional work will be required to confirm such assignments.

To study the relationship between phenotypic diversity and tumor architecture, we mapped each

cell to an EMGM cluster (denoted by color). Extensive intermixing was observed at all spatial scales

(Figure 12B). For example, field of view 147 was highly enriched for cells corresponding to cluster 5

(yellow), but a higher magnification view revealed extensive intermixing of four other cluster types

on a scale of ~3–5 cell diameters (Figure 12C). At the level of larger, macroscopic tumor regions,

the fraction of cells from each cluster also varied dramatically (Figure 12D). None of these findings

was substantially different when the number of clusters was set to 12 (Figure 12—figure supple-

ment 2).

These results have several implications. First, they suggest that GBM is phenotypically heteroge-

neous on a spatial scale of 5–1000 cell diameters and that cells corresponding to distinct t-CyCIF

clusters are often found in the vicinity of each other. Second, sampling a small region of a large

tumor has the potential to misrepresent the proportion and distribution of tumor subtypes, with

implications for prognosis and therapy. Similar concepts likely apply to other tumor types with high

genetic heterogeneity, such as metastatic melanoma (Tirosh et al., 2016), and are therefore relevant

to diagnostic and therapeutic challenges arising from tumor heterogeneity.

Figure 10 continued

data were analyzed using the CYT package (see Materials and methods). Tissues of origin and corresponding malignant lesions were labeled as follows:

BL, bladder cancer; BR, breast cancer CO, Colorectal adenocarcinoma, KI, clear cell renal cancer, LI, hepatocellular carcinoma, LU, lung

adenocarcinoma, LY, lymphoma, OV, high-grade serous adenocarcinoma of the ovary, PA, pancreatic ductal adenocarcinoma, PR, prostate

adenocarcinoma, UT, uterine cancer, SK, skin cancer (melanoma), ST, stomach (gastric) cancer. Numbers refer to sample type; ‘1’ to normal tissue, ‘2’ to

-grade tumors and ‘3’ to high-grade tumors. (C) Detail from panel B of normal kidney tissue (KI1) a low-grade tumor (KI2) and a high-grade tumor (KI3)

(D) Detail from panel B of normal ovary (OV1) low-grade tumor (OV2) and high-grade tumor (OV3). (E) t-SNE plot from Panel B coded to show the

distributions of all normal, low-grade and high-grade tumors. (F) tSNE clustering of normal pancreas (PA1) and pancreatic cancers (low-grade, PA2, and

high-grade, PA3) and normal stomach (ST1) and gastric cancers (ST2 and ST3, respectively) showing intermingling of high-grade cells.

DOI: https://doi.org/10.7554/eLife.31657.031

The following source data and figure supplement are available for figure 10:

Source data 1. Single-cell intensity data used in Figure 10.

DOI: https://doi.org/10.7554/eLife.31657.033

Figure supplement 1. Gallery of exemplary tissues imaged on the TMA described in Figure 10.

DOI: https://doi.org/10.7554/eLife.31657.032
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Discussion
The complex molecular biology and spatial organization of tissues and solid tumors poses a scientific

and diagnostic challenge that is not sufficiently addressed using single-cell genomics, in which mor-

phology is commonly lost, or H&E and single-channel IHC staining, which provide data on only a few

Figure 11. Molecular heterogeneity in a single GBM tumor. (A) Representative low-magnification image of a GBM specimen generated from 221

stitched 10X frames; the sample was subjected to 10 rounds of t-CyCIF using antibodies listed in Supplementary file 6. (B) Magnification of frame 152

(whose position is marked with a white box in panel A) showing staining of pERK, pRB and EGFR; lower panel shows a further magnification to allow

single cells to be identified. (C) Normalized Shannon entropy of each of 221 fields of view to determine the extent of variability in signal intensity for

1000 cells randomly selected from that field for each of the antibodies shown. The size of the circles denotes the number of cells in the field and the

color represents the value of the normalized Shannon entropy (data are shown only for those fields with more than 1000 cells; see Materials and

methods for details).

DOI: https://doi.org/10.7554/eLife.31657.034

The following source data is available for figure 11:

Source data 1. Normalized entropy data shown in Figure 11C.

DOI: https://doi.org/10.7554/eLife.31657.035

Source data 2. Single-cell intensity data used in Figure 11 and 12.

DOI: https://doi.org/10.7554/eLife.31657.036
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proteins or molecular features. At the same time, the vast number of FFPE histological specimens

collected in the course of routine clinical care and clinical trials (and in the study of model organisms)

represents an underutilized resource with great potential for novel discovery. A variety of methods

for performing highly multiplexed immune-based imaging of cells and tissues has recently been

described including imaging cytometry (Giesen et al., 2014), MIBI (Angelo et al., 2014), DNA-

exchange imaging (DEI) (Wang, 2017) and CODEX (Goltsev, 2017); FISSEQ (Lee et al., 2014)

directly images expressed RNAs. Like traditional antibody stripping approaches, the cyclic immuno-

fluorescence approach first described by Gerdes et al (Gerdes et al., 2013) and further developed

here assembles highly multiplexed images by sequential acquisition of lower dimensional immunoflu-

orescence images. We show here that the t-CyCIF implementation of cyclic immunofluorescence is

compatible with a wide range of antibodies and tissue types and yields up to 60-plex images with

excellent preservation of small intracellular structures.

The requirement in t-CyCIF for multiple rounds of staining and imaging might seem to be a liabil-

ity but it has several substantial advantages relative to all-in-one methods such as MIBI, DEI and

CODEX. First, t-CyCIF can be performed using existing fluorescence microscopes. Not only does

this reduce costs and barriers to entry, it allows the unique strengths of slide-scanning, confocal, and

structured illumination microscopes to be exploited. Using different instruments, samples several

square centimeters in area can be rapidly analyzed at resolutions of ~1 mm and selected fields of

view studied at super-resolution (~110 nm on an OMX Blaze). Multiscale imaging makes it possible

to combine tissue-level architecture with subcellular morphology, much like a pathologist switching

between low- and high-power fields, but there is little chance that such capabilities can be combined

in a single instrument. Because no spectral deconvolution is required, t-CyCIF can use highly opti-

mized filter sets and fluorophores, resulting in good sensitivity. t-CyCIF antibody panels are also sim-

ple to assemble and validate using commercial antibodies, including those that constitute FDA-

approved diagnostics. This avoids the limitations of an exlusive reliance on pre-assembled reagent

kits provided by manufacturers. Finally, t-CyCIF is compatible with H&E staining, enabling fluores-

cence imaging to be combined with conventional histopathology review.

Commercial systems for non-optical tissue imaging are only now starting to appear and it is diffi-

cult to compare their performance to multiplexed immunofluorescence, particularly because the

approach published by Gerdes et al. (2013) is proprietary and available only as commercial service.

In contrast, the t-CyCIF method described here can easily be implemented in a conventional

research or clinical laboratory without the need for expensive equipment or specialized reagents. As

MIBI, DEI and CODEX instruments come on-line, direct comparison with t-CyCIF will be possible.

We anticipate that high resolution and good linearity will be areas in which fluorescence imaging is

superior to enzymatic amplification, laser ablation or mechanical picking of tissues. t-CyCIF is rela-

tively slow when performed on a single sample, but when many large specimens or TMAs are proc-

essed in parallel, throughput is limited primarily by imaging acquisition, which is at least as fast as

approaches involving laser ablation. Considerable opportunity exists for further improvement in

t-CyCIF by switching from four to six-channels per cycle, optimizing bleach and processing solutions

to preserve tissue integrity, using fluidic devices to rapidly process many slides in parallel and devel-

oping better software for identifying fields of view that can be skipped in large irregular specimens.

Because direct fluorescence will remain challenging in the case of very rare epitopes, we speculate

that hybrid approaches involving t-CyCIF and methods such as DEI or CODEX will ultimately prove

to be most effective.

As in all methods involving immune detection, antibodies are the most critical and difficult to vali-

date reagents in t-CyCIF. To date, we have shown that over 200 commercial antibodies are compati-

ble with the method as judged by patterns of staining similar to those previously reported for IHC;

this is an insufficient level of validation for most studies and we are therefore working to develop a

generally useful antibody validation resource (www.cycif.org). Thus, while this paper describes

markers relevant to diagnosis of disease, our results are illustrative of the t-CyCIF approach and spe-

cific findings might not prove statistically significant when tested on larger, well-controlled sets of

human samples.

There is little or no evidence that antigenicity falls across the board in t-CyCIF as cycle number

increases; signal-to-noise ratios can even increase due to falling background auto-fluorescence.

When samples are stained with the same antibodies in different t-CyCIF cycles, repeatability is high

(as measured by correlation in staining intensity on a cell-by-cell basis) as is reproducibility across
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Figure 12. Spatial distribution of molecular phenotypes in a single GBM. (A) Clustering of intensity values for 30 antibodies in a 10-cycle t-CyCIF

analysis integrated over each whole cell based on images shown in Figure 11. Intensity values were clustered using expected-maximization with

Gaussian mixtures (EMGM), yielding eight clusters, of which four clusters accounted for the majority of cells. The intensity scale shows the average level

for each intensity feature in that cluster. The number of cells in the cluster is shown as a percentage of all cells in the tumor (bottom of panel). An

analogous analysis is shown for 12 clusters in Figure 12—figure supplement 2. (B) EMGM clusters (in color code) mapped back to the positions of

individual cells in the tumor. The coordinate system is the same as in Figure 11A. The positions of seven macroscopic regions (R1-R7) representing

distinct lobes of the tumor are also shown. (C) Magnified view of Frame 147 from region R5 with EMGM cluster assignment for each cell in the frame;

dots represent the centroids of single cells. (D) The proportional representation of EMGM clusters in each tumor region as defined in panel (B).

DOI: https://doi.org/10.7554/eLife.31657.037

Figure 12 continued on next page
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two successive slices of tissue (as measured by overlap in intensity distributions). Moreover, for the

majority of antibodies tested, order of use is not critical. For some antibodies fluorescence intensity

increases with cycle number and for others it decreases; these factors need to be considered when

developing a staining strategy. While the precise reasons for variation in staining with cycle number

are not known such variation is reproducible across specimens, suggesting that it reflects properties

of the epitope or antibody and not the t-CyCIF process per se , variation in staining can be mini-

mized by staining all specimens with the same antibodies in the same order (which also represents

the most practical approach). However, this solution is likely to be insufficient for creation of large-

scale t-CyCIF datasets in which diverse tissues will be compared with each other (e.g. in proposed

tissue atlases [Department of Health and Human Services, 2018]) and it will therefore be important

to identify antibodies for which cycle number has minimal impact and to create effective methods to

correct for those fluctuations that do occur (e.g. inclusion of staining controls).

As an initial application of t-CyCIF, we examined a cancer resection specimen that includes

PDAC, healthy pancreas and small intestine. Images were segmented and fluorescence intensities

in ~105 whole cells calculated for 24 antibody channels plus a DNA stain. Integrating intensities in

this manner does not make use of the many subcellular features visible in t-CyCIF images and there-

fore represents only a first step in data analysis. We find that expression of vimentin and E-cadherin,

classical markers of epithelial and mesenchymal cells, are strongly anti-correlated at a single-cell level

and that malignant tissue is skewed toward EMT, consistent with prior knowledge on the biology of

pancreatic cancer (Zeitouni et al., 2016). The WNT and ERK/MAPK pathways are known to play

important roles in the development of PDAC (Jones et al., 2008), but the relationship between the

two pathways remains controversial. t-CyCIF reveals a negative correlation between b-catenin levels

(a measured of WNT pathway activity) and pERK (a measure of MAPK activity) in cells found in some

regions of PDAC, non-malignant small intestine and pancreas, a positive correlation in other regions

and no significant correlation in yet others. Thus, the full range of discordant observations found in

the literature can be recapitulated within a single tumor, emphasizing the wide diversity of signaling

states observable at a single-cell level.

As a second application of t-CyCIF, we studied within-tumor heterogeneity in GBM, a brain can-

cer with multiple histological subtypes whose differing properties impact prognosis and therapy

(Olar and Aldape, 2014; Phillips et al., 2006). Clustering reveals multiple phenotypic classes inter-

mingled at multiple spatial scales with no evidence of recurrent patterns. In the GBM we have stud-

ied in detail, heterogeneity on a scale of 10–100 cell diameters is as great as it is between distinct

lobes. The proportion of cells from different clusters also varies dramatically from one tumor lobe to

the next. Although it is not yet possible to link t-CyCIF clusters and known histological subtypes,

cell-to-cell heterogeneity on these spatial scales are likely to impact the interpretation of small biop-

sies (e.g. a core needle biopsy) of a large tumor sample; the data also emphasize the inherent limita-

tion in examining only a small part of a large tumor specimen (e.g. to save time on image

acquisition). At the same time, it is important to note that cell-to-cell heterogeneity is caused by pro-

cesses operating on a variety of time scales, only some of which are likely to be relevant to therapeu-

tic response and disease progression. For example, some cell-to-cell differences visible in GBM

images arise from a cyclic process, such as cell cycle progression, whereas others appear to involve

differences in cell lineage or clonality. Methods to correct for the effects of variation in cell cycle

state have been worked out for single-cell RNA-sequencing (Izar, 2017), but will require further

work in imaging space.

Figure 12 continued

The following source data and figure supplements are available for figure 12:

Source data 1. Ratios of EMGM clusters in different regions of a GBM (Figure 12D).

DOI: https://doi.org/10.7554/eLife.31657.040

Figure supplement 1. Determination of cluster number for semi-supervised clustering using expectation–maximization Gaussian mixture (EMGM)

modeling.

DOI: https://doi.org/10.7554/eLife.31657.038

Figure supplement 2. Spatial distribution of molecular phenotypes in a single GBM.

DOI: https://doi.org/10.7554/eLife.31657.039
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In a third application of t-CyCIF, we characterized tumor-immune cell interactions in a renal cell

tumor. Immune checkpoint inhibitors elicit durable responses in a portion of patients with diverse

types of cancer, but identifying potential responders and non-responders remains a challenge. In

those cancers in which it has been studied (Mahoney and Atkins, 2014), quantification of single

checkpoint receptors or ligands by IHC lacks sufficient positive and negative predictive value to

stratify therapy or justify withholding checkpoint inhibitors in favor of small molecule therapy

(Sharma and Allison, 2015). Multivariate predictors based on multiple markers such as CD3, CD4,

CD8, PD-1 etc. appear to be more effective, but still underperform in patient stratification

(Tumeh et al., 2014) probably because cells other than CD8 +lymphocytes affect therapeutic

responsiveness. In this paper, we perform a simple analysis to show that tumor infiltrating lympho-

cytes can be subtyped by t-CyCIF and analyzed for the proximity of PD-1 and PD-L1 at a single-cell

level. Next steps involve thorough interrogation of immuno-phenotypes by multiplex imaging to

relate staining patterns in images to immune cell classes previously defined by flow cytometry and

to identify immune cell states that fall below the limit of detection for existing analytical methods.

In conclusion, t-CyCIF is a robust, easy to implement approach to multi-parametric tissue imaging

applicable to many types of tumors and tissues; it allows investigators to mix and match antibodies

Table 3. Breakdown of individual steps performed for dewaxing and antigen retrieval on a Leica

BOND.

Step Reagent Supplier Incubation (min) Temp. (˚C)

1 *No Reagent N/D 30 60

2 BOND Dewax Solution Leica 0 60

3 BOND Dewax Solution Leica 0 R.T.

4 BOND Dewax Solution Leica 0 R.T.

5 200 proof ethanol User* 0 R.T.

6 200 proof ethanol User* 0 R.T.

7 200 proof ethanol User* 0 R.T.

8 Bond Wash Solution Leica 0 R.T.

9 Bond Wash Solution Leica 0 R.T.

10 Bond Wash Solution Leica 0 R.T.

11 Bond ER1 solution Leica 0 99

12 Bond ER1 solution Leica 0 99

13 Bond ER1 solution Leica 20 99

14 Bond ER1 solution Leica 0 R.T.

15 Bond Wash Solution Leica 0 R.T.

16 Bond Wash Solution Leica 0 R.T.

17 Bond Wash Solution Leica 0 R.T.

18 Bond Wash Solution Leica 0 R.T.

19 Bond Wash Solution Leica 0 R.T.

20 IF Block User* 30 R.T.

21 Antibody Mix User* 60 R.T.

22 Bond Wash Solution Leica 0 R.T.

23 Bond Wash Solution Leica 0 R.T.

24 Bond Wash Solution Leica 0 R.T.

25 Hoechst Solution User* 30 R.T.

26 Bond Wash Solution Leica 0 R.T.

27 Bond Wash Solution Leica 0 R.T.

28 Bond Wash Solution Leica 0 R.T.

DOI: https://doi.org/10.7554/eLife.31657.041
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depending on the requirements of a specific type of sample. To create a widely available community

resource, we have posted antibody lists, protocols and example data at http//www.cycif.org and

are currently updating this information on a regular basis. Highly multiplexed histology is still in an

early stage of development and better methods for segmenting cells, quantifying fluorescence inten-

sities and analyzing the resulting data are in development by multiple groups. The resulting ability

to quantify cell-to-cell heterogeneity may enable reconstruction of signaling network topologies in

situ (Giesen et al., 2014; Sachs et al., 2002) by exploiting the fact that protein abundance and

states of activity fluctuate from one cell to the next; when fluctuations are well correlated, they are

likely to reflect causal associations (Vilela and Danuser, 2011). We expect t-CyCIF to be comple-

mentary to, and used in parallel with other protein and RNA imaging methods such as FISSEQ

(Lee et al., 2015) or DEI (Wang et al., 2017) that may have higher sensitivity or greater channel

capacity. A particularly important task will be cross-referencing tumor cell types identified by single-

cell genomics or multi-color flow cytometry with those identified by multiplexed imaging, making it

possible to precisely define the genetic geography of human cancer and infiltrating immune cells.
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Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Biological sample
(human tissue specimen)

TMA:TMA-1207 Protein Biotechnologies Cat: TMA-1207 http://www.proteinbiote
chnologies.com/pdf/
TMA-1207.pdf

Biological sample
(human tissue specimen)

TMA:MTU481 Biomax Cat: MTU-481 https://www.biomax.us/
tissue-arrays/Multiple_
Organ/MTU481

Antibody Alexa-488 anti-Rabbit
antibodies (Fab)

ThermoFisher Scientific Cat: A-11034
(RRID:AB_2576217)

Dilution 1:2000

Antibody Alexa-555 anti-Rat
antibodies

ThermoFisher Scientific Cat: A-21434
(RRID:AB_141733)

Dilution 1:2000

Antibody Alexa-647 anti-Mouse
antibodies (Fab)

ThermoFisher Scientific Cat: A-21236
(RRID:AB_141725)

Dilution 1:2000

Chemical compound,
drug

Hoechst 33342 ThermoFisher Scientific Cat: H3570 https://www.thermo
fisher.com/order/catalog
/product/H3570

Software, algorithm ImageJ PMID:22930834 RRID: SCR_003070 https://imagej.nih.gov/ij/

Software, algorithm Matlab MathWorks, Inc. RRID:SCR_001622

Software, algorithm Ashlar Laboratory of Systems
Pharmacology, Harvard
Medical School

RRID:SCR_016266 https://github.com/sorgerlab/ashlar
(copy archived at
https://github.com/
elifesciences-publications/ashlar)

Software, algorithm BaSiC Helmholtz Zentrum
München

RRID: SCR_016371 https://www.nature.
com/articles/ncomms14836

Other www.cycif.org Laboratory of Systems
Pharmacology, Harvard
Medical School

RRID:SCR_016267 Online resource for
cyclic immunofluorescence

Other lincs.hms.harvard.edu HMS LINCS Center RRID:SCR_016370 Additional data/image
resource for t-CyCIF
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Key resources, reagents and software used in this study are listed in Key resources table and also

online at the HMS LINCS Center Publication Page http://lincs.hms.harvard.edu/lin-elife-2018/ (RRID:

SCR_016370). This page provides links to an OMERO image database from which individual images

can be obtained; stitched and registered image panels can be obtained at www.cycif.org (RRID:

SCR_016267) and a video illustrating the t-CyCIF method can be found at https://vimeo.com/

269885646. The data on staining repeatability shown in Figures 5 and 6 are complex and are avail-

able in a Jupyter notebook at https://github.com/sorgerlab/lin_elife_2018_tCyCIF_plots

(Muhlich and Wang, 2018; copy archived at https://github.com/elifesciences-publications/lin_elife_

2018_tCyCIF_plots).

Patients and specimens
Formalin fixed and paraffin embedded (FFPE) tissues from were retrieved from the archives of the

Brigham and Women’s Hospital as part of discarded/excess tissue protocols or obtained from com-

mercial vendors. The Institutional Review Board (IRB) of the Harvard Faculty of Medicine last

reviewed the research described in this paper on 2/16/2018 (under IRB17-1688) and judged it to

‘involve no more than minimal risk to the subjects’ and thus eligible for a waiver of the requirement

to obtain consent as set out in 45CFR46.116(d).

Tumor tissue and FFPE specimens were collected from patients under IRB-approved protocols

(DFCI 11–104) at Dana-Farber Cancer Institute/Brigham and Women’s Hospital, Boston, Massachu-

setts. Tonsil samples used in Figure 1 were purchased from American MasterTech (CST0224P). Tis-

sue microarrays for analyses in Figure 4D and E were obtained from Biomax (Cat. MTU481);

detailed information can be found online at https://www.biomax.us/tissue-arrays/Multiple_Organ/

MTU481. Tissue microarrays (TMA) for diverse healthy tissues and tumor analyses were obtained

from Protein Biotechnologies (Cat. TMA-1207).

Reagents and antibodies
All conjugated and unconjugated primary antibodies used in this study are listed in Table 2. Indirect

immunofluorescence was performed using secondary antibodies conjugated with Alexa-647 anti-

Mouse (Invitrogen, Cat. A-21236), Alexa-555 anti-Rat (Invitrogen, Cat. A-21434) and Alexa-488 anti-

Rabbit (Invitrogen, Cat. A-11034). 10 mg/ml Hoechst 33342 stock solution was purchased from Life

Technologies (Cat. H3570). 20xPBS was purchased from Santa Cruz Biotechnology (Cat. SC-362299).

30% hydrogen peroxide solution was purchased from Sigma-Aldrich (Cat. 216763). PBS-based Odys-

sey blocking buffer was purchased from LI-COR (Cat. 927–40150). All reagents for the Leica BOND

RX were purchased from Leica Microsystems. HCS CellMask Red Stain and Mito-tracker Green stains

were purchased from ThermoFischer (catalog numbers H32712, R37112 and M751, respectively).

Pre-processing and pre-staining tissues for t-CyCIF
Automated dewaxing, rehydration and pre-staining
Pre-processing of FFPE tissue and tumor slices mounted on slides was performed on a Leica BOND

RX automated stained using the protocol shown in Table 3.

Steps 2–10: Dewaxing and Rehydration with Leica Bond Dewax Solution Cat. AR9222.

Steps 11–14: Antigen retrieval with BOND Epitope Retrieval solution 1 (ER1; Cat. AR9961).

Steps 15–19: Washing with Leica Bond Wash Solution (Cat. AR9590).

Steps 20–28 Pre-staining procedures as shown in Figure 1A:

Step 20: IF Block - Immunofluorescence blocking in Odyssey blocking buffer (LI-COR, Cat.

927401).

Step 21: Antibody Mix - Incubation with secondary antibodies diluted in Odyssey blocking buffer.

Step 25: Staining with Hoechst 33342 at 2 mg/ml (w/v) in in Odyssey blocking buffer.

Manual dewaxing, rehydration and pre-staining
In our experience dewaxing, rehydration and pre-staining can also be performed manually with simi-

lar results. For manual pre-processing, FFPE slides were first incubated in a 60˚C oven for 30 min. To

completely remove paraffin, slides were placed in a glass slide rack and then immediately immersed

in Xylene in a glass staining dish (Wheaton 900200) for 5 min and subsequently transferred to

another dish containing fresh Xylene for 5 min. Rehydration was achieved by sequentially immersing
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slides, for 3 min each, in staining dishes containing 100% ethanol, 90% ethanol, 70% ethanol, 50%

ethanol, 30% ethanol, and then in two successive 1xPBS solutions. Following rehydration, slides

were placed in a 1000 ml beaker filled with 500 ml citric acid, pH 6.0, for antigen retrieval. The bea-

ker containing slides and citric acid buffer was microwaved at low power until the solution was at a

boiling point and maintained at that temperature for 10 min. After cooling to room temperature,

slides were washed 3 times with 1xPBS in vertical staining jars.

Prestaining
Dewaxed specimens were blocked by incubation with Odyssey blocking buffer for 30 mins by apply-

ing the buffer to slides as a 250–500 ml droplet at room temperature; evaporation was minimized by

using a slide moisture chamber (Scientific Device Laboratory, 197-BL). Slides were then pre-stained

by incubation with diluted secondary antibodies (listed above) for 60 min, followed by washing three

times with 1xPBS. Finally, slides were incubated with Hoechst 33342 (2 mg/ml) in 250–500 ml Odyssey

blocking buffer for 30 min in a moisture chamber and washed three times with 1xPBS in vertical

staining jars. After imaging, cells were subjected to a round of fluorophore inactivation (see below).

Following fluorophore inactivation, slides were washed four times with 1x PBS by dipping them in a

series of vertical staining jars to remove residual inactivation solution.

Performing cyclic immunofluorescence
All primary antibodies (fluorophore-conjugated and unconjugated) were diluted in Odyssey blocking

buffer. Slides carrying tissues that had been subjected to pre-staining, or to a previous t-CyCIF stain

and bleach cycle, were incubated at 4˚C for ~12 hr with diluted primary or fluorophore-conjugated

antibody (250–500 ml per slide) in a moisture chamber. Long incubation times were a matter of con-

venience and many antibodies only require short incubation with sample. Slides were then washed

four times in 1x PBS by dipping in a series of vertical staining jars.

For indirect immunofluorescence, slides were incubated in diluted secondary antibodies in a mois-

ture chamber for 1 hr at room temperature followed by four washes with 1xPBS. Slides were incu-

bated in Hoechst 33342 at 2 mg/ml in Odyssey blocking buffer for 15 min at room temperature,

followed by four washes in 1xPBS. Stained slides were mounted prior to image acquisition (see the

Mounting section below).

Primary antibodies
For t-CyCIF, we selected commercial antibodies previously validated by their manufacturers for use

in immunofluorescence, immunocytochemistry or immunohistochemistry (IF, ICC or IHC). When pos-

sible, we checked antibodies on reference tissue known to express the target antigen, such as

immune cells in tonsil tissue or tumor-specific markers in tissue microarrays. The staining patterns for

antibodies with favorable signal-to-noise ratios were compared to those previously reported for that

antigen by conventional antibodies. An updated list of all antibodies tested to date can be found at

http://www.cycif.org. In current practice, the degree of validation is quantified on a level between 0

and 2: ‘Level 0’ represents antibodies with inconsistent or no staining in tissues for which the antigen

is thought to be present based on published data; ‘Level 1’ represents the expected pattern of posi-

tive staining in a limited number of tissues types (e.g. CD4 antibody in tonsil tissue alone); ‘Level 2’

represents the expected pattern of positive staining in all tissues or tumor types tested (N >= 3).

Higher levels will be assigned in the future to antibodies that have undergone extensive validation;

for example, side-by-side comparison of against an established IHC positive control. Overall, the val-

idation of primary antibodies used in this study is not meaningfully greater what has already been

done by commercial vendors using conventional IF or IHC.

Mounting and de-coverslipping
Immediately prior to imaging, slides were mounted with 1xPBS or, if imaging was expected to take

longer than 30 min, for example, in the case of samples larger than 2–4 cm2 (corresponding to about

200 fields of view with a 10X objective) PBS was supplement with 10% Glycerol. Slides were covered

using 24 � 60 mm No. one coverslips (VWR 48393–106) to prevent evaporation while facilitating

subsequent de-coverslipping via gravity. Following image acquisition, slides were placed in a vertical
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staining jar containing 1xPBS for at least 15 min. Coverslips were released from slides (and the tissue

sample) via gravity as the slides were slowly drawn out of the staining jar.

Fluorophore inactivation (bleaching)
After imaging, fluorophores were inactivated by placing slides horizontally in 4.5% H2O2 and 24 mM

NaOH made up in PBS for 1 hr at RT in the presence of white light. Following fluorophore inactiva-

tion, slides were washed four times with 1x PBS by dipping them in a series of vertical staining jars

to remove residual inactivation solution.

Image acquisition
Stained slides from each round of CyCIF were imaged with a CyteFinder slide scanning fluorescence

microscope (RareCyte Inc. Seattle WA) using either a 10X (NA = 0.3) or 40X long-working distance

objective (NA = 0.6). Imager5 software (RareCyte Inc.) was used to sequentially scan the region of

interest in four fluorescence channels. These channels are referred to by the manufacturer as a: (i)

‘DAPI channel’ with an excitation filter having a peak of 390 nm and half-width of 18 nm and an

emission filter with a peak of 435 nm and half-width of 48 nm; (ii) ‘FITC channel’ having a 475/28 nm

excitation filter and 525/48 nm emission filter (iii); ‘Cy3 channel’ having a 542/27 nm excitation filter

and 597/45 nm emission filter and (iv); ‘Cy5 channel’ having a 632/22 nm excitation filter and 679/34

nm emission filter. Imaging was performed with 2 � 2 binning to increase sensitivity, shorten expo-

sure time and reduce photo bleaching. We have tested slide scanners from several other manufac-

turers (e.g. a Leica Aperio Digital Pathology Slide Scanner, GE IN-Cell Analyzer 6000 and GE Cytell

Cell Imaging System) and found that they too can be used to acquire images from samples proc-

essed by t-CyCIF. Slides can also be analyzed on conventional microscopes, but the field of view is

typically smaller, and an automated stage is required for accurate stitching of individual fields of

view into a complete image of a tissue.

Super-resolution microscopy
We acquired 3D-SIM images on a Deltavision OMX V4 Blaze (GE Healthcare) with a 60x/1.42N.A.

Plan Apo oil immersion objective lens (Olympus) and three Edge 5.5 sCMOS cameras (PCO). Two to

three micron z-stacks were collected with a z-step of 125 nm or 250 nm and with 15 raw images per

plane. To minimize spherical aberration, immersion oil matching was used for each sample as

described by Hiraoka et al. (1990). except that we measured point spread functions of point-like

structures within the sample as opposed to beads on a separate slide. DAPI fluorescence was

excited with a 405 nm laser and collected with a 477/35 emission filter, Alexafluor 488 with a 488 nm

laser and a 528/48 emission filter, Alexa fluor 555 with a 568 nm laser and a 609/37 emission filter,

and Alexa fluor 647with a 642 nm laser and a 683/40 emission filter. All stage positions were saved

in softWorX to be revisited later. Super-resolution images were computationally reconstructed from

the raw data sets with a channel-specific, measured optical transfer function and a Wiener filter con-

stant of 0.001 using CUDA-accelerated 3D-SIM reconstruction code based on Gustafsson et al.

(2008). A comparison of properties of different imaging platforms used in this study are shown in

Table 1.

Image processing
Quantitative analysis of tissue images is challenging, in large part because cells are close together

and embedded in a complex extracellular environment. Background can be uneven across large

images and signal-to-noise ratios relatively low, particularly in the case of tissues with high auto-fluo-

rescence and low signal antibodies (e.g. phospho-protein antibodies). We have only started to tackle

these issues in the case of high-dimensional t-CyCIF data and users are encouraged to check for

updates on www.cycif.org and implement their own approaches.

Background subtraction and image registration
Background subtraction was performed using the previously established rolling ball algorithm (with

a 50-pixel radius) in ImageJ. Adjacent background-subtracted images from the same sample were

then registered to each using an ImageJ script as described previously (Lin et al., 2015). All images

with 2�2 binning in acquisition were partially de-convoluted with unsharp masking. DAPI images
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from each cycle were used to generate reference coordinates by Rigid-body transformation. To gen-

erate virtual hyper-stacked images, the transformed coordinates were applied to images from four

channel imaging of each t-CyCIF cycle.

Single-cell segmentation and quantification
To obtain intensity values for single cells, images were segmented using a previously described

(Lin et al., 2015) Watershed algorithm based on nuclear staining by Hoechst 33342. Images were ini-

tially thresholded using the OTSU algorithm and binarized in the Hoechst channel, which was then

used to generate a nuclear mask image. The mask images were then subjected to the Watershed

algorithm in ImageJ to obtain single-cell regions of interest (ROIs). From the nuclei, the cytoplasm

was captured by centripetal expansion of either of 3 pixels in images obtained with a 10X objective

or of 6 pixels in images obtained with a 40X objective, until cell reaching the cell boundaries (cell

membrane). The cytoplasm was then defined as the region between the cell membrane and the

nucleus. Following cell segmentation, these cell boundaries were used to compute mean and inte-

grated intensity values from all channels. Because ROIs are (initially) defined only by the nuclear sig-

nal, this approach is likely to over- or under- segment cells with irregular shapes, which can lead to

nuclear, cytosolic or cell membrane ‘signal contamination’ between neighboring and/or stacked

cells. Further experimental (e.g. including membrane markers to guide whole-cell rather than

nuclear-only segmentation) and analytical algorithms to more accurately segment individual cells

(e.g. using deep learning methods to register and apply additional features) would help to improve

segmentation. All imageJ scripts used in this manuscript can be found in our Github repository

(https://github.com/sorgerlab/cycif [Lin, 2018]; copy archived at https://github.com/elifesciences-

publications/cycif).

Image stitching, shading and flat-field correlation
The BaSiC algorithm (Peng et al., 2017) was used for shade and flat-field correction in the create of

the multi-panel montage images shown in Figures 2B, 6B, 9A and 11A. Additional information can

be found on the BaSiC website (https://www.helmholtz-muenchen.de/icb/research/groups/quantita-

tive-single-cell-dynamics/software/basic/index.html). An example of the performance of BaSiC is

shown in Figure 2—figure supplement 1. The ImageJ plugin of BaSiC was applied for whole image

stacks using the default options. After processing with BaSiC, images stack were stitched with

ImageJ/Fiji ‘Grid stitch’ plugin with default options. ASHLAR was used to stich, register and scale

images available at http://www.cycif.org/.

Time considerations
We believe that the greater time invested in t-CyCIF as compared to conventional IF IHC must be

placed in the context of the much greater amount of data generate from a t-CyCIF experiment. It is

also important to note that while t-CyCIF can be relatively slow when a single sample is processed it

can easily be performed in parallel on multiple samples. As a practical example, we usually stain 30

slides in parallel (each involving 100-200 fields of view); in the case of TMAs, >80 samples can be

assembled on each slide, so up to 2400 samples can be processed in parallel. With a single scanner,

30 slides can be scanned (average scan time ~10 min) in about 6 hr. Photo-inactivation and washing

steps take ~1 to 1.5 hr, after which an additional round of staining is initiated. As a matter of conve-

nience, we usually perform staining overnight. Hence, one user can generate data for 90 channels

and 1800 images per day. Thus, ~10 work days are required to generate 900 channels/18,000

images. Further time needs to be allotted for registration and stitching (~12–18 hr of computing

time) and quantification (~24–48 hr computing time, depending on cell density). Overall, we believe

that this is a reasonable level of throughput; moreover we have not yet attempted to optimize it

using fluidic devices, automated stainers etc. We also note that the throughput of t-CyCIF compares

favorably with other tissue-imaging platforms and single-cell transcriptome profiling.

Analysis of tissue integrity over cycles
We purchased a TMA (MTU481, Biomax Inc, https://www.biomax.us/tissue-arrays/Multiple_Organ/

MTU481) to test the impact of cycle number on tissue integrity. Images were captured and proc-

essed as described above. The registered image stacks were then segmented and nuclei counts for
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each core and each cycle were recorded. All values were normalized to the number of nuclei from

the first cycle of a particular core biopsy and the fractional normalized nuclei count shown at each

staining cycle.

Calculation of intensity overlap between different cycles and dynamic
range
To compare staining patterns between different cycles within the same specimen, we calculated

overlap integrals. First, we determined the distribution of intensity data averaged over each single

cell and for each t-CyCIF cycles. The area under the curve of these distributions was calculated by

trapezoidal numerical integration using ‘trapz’ function in Matlab (Gustafsson et al., 2008). The

ratio of the area under the curve (AUC) for different cycles, samples or antibodies was calculated

and the overlap scores then computed as:

Overlapscore¼ overlapAUC=totalAUC

The dynamic range (DR) of fluorescence intensities for a given antibody was calculated as a rough

estimate of the signal-to-noise ratio; SNR. The calculation was performed as follows: first, pixel-by-

pixel intensity data was extracted from a t-CyCIF image; the DR was then calculated as the ratio of

the intensities of the 95th and 5th percentile values and represented on a log scale. High DR values

indicate a favorable SNR. Intensities below the 5th percentile were considered to be background

noise.

High-dimensional single-cell analysis by t-SNE
Raw intensity data generated from registered and segmented images were imported into Matlab

and converted to comma separated value (csv) files. The viSNE implementation of t-SNE and EMGM

algorithms from the CYT single-cell analysis package were obtained from the Pe’er laboratory at

Columbia University (Amir et al., 2013). Intensity-based measurements (such as flow cytometry or

imaging cytometry) of protein expression have approximately log-normal distribution (Bag-

well, 2005), hence, t-CyCIF raw intensity values were first transformed in log or in inverse hyperbolic

sine (asinh) using the default Matlab function or the CYT package (Amir et al., 2013), respectively.

Between-sample variation was normalized on a per-channel basis by using the CYT package to align

intensity measurements that encompass values between 1st and the 99th percentile. Data files were

aggregated and used to generate viSNE plots. All viSNE/t-SNE analyses used the following settings:

perplexity �30, epsilon = 500, lie factor = 4 for initial 100 iterations and lie factor �1 for remaining

iterations.

Regional and neighboring analysis using K-nearest neighbors (KNN)
methods
To determine whether PD-1 and PD-L1 expressing cells are sufficiently close for the receptor and

ligand to interact, the spatial densities for PD1+ and PDL1+ cells were estimated using a k nearest

neighbors (kNN) model with k = 4, corresponding to a ~10 mm smoothing window. Since the density

in space of the PD1+ or PDL1+ cells at any point in that space is proportional to the probability of

that cell having a centroid there, the co-occurrence probability at a point was therefore proportional

to the product of the spatial densities for both cell types at a point. To normalize for the difference

in total PDL1+ or PD1+ cells between regions of the tissue corresponding to tumor and stroma, we

calculated spatial probabilities for the different regions in the specimen separately. Figure 9—figure

supplement 1 shows the distribution of co-occurrence densities for stroma and tumor relevant to a

clear-cell carcinoma shown in Figure 9.

Calculating Shannon entropy values
Images were divided into regular grids and 1000 cells from each region used to calculate the non-

parametric Shannon entropy as follows:

ShanonEntropy sð Þ ¼ �i
X

s2i log s2i
� �
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where si is the per-pixel intensity of signal s at a given point. Normalized Shannon entropy as calcu-

lated as Enormalized = Eregion/Esample.

Expectation–Maximization Gaussian mixtures (EMGM) clustering
To determine an appropriate number of clusters (k) for analysis of the GBM tumor shown in Fig-

ures 11 and 12 and in Figure 12—figure supplement 2 we determined negative log-likelihood-

ratios for various values of k. For each choice of cluster number n, the likelihood-ratio was calculated

for a Gaussian mixture model with n = k-1 and with n = k and the ratio then plotted relative to k.

The EMGM algorithm was initialized 30 times for each value of k and it converged in all instances.

The inflection at k = 8 (red arrow) suggests that inclusion of additional clusters (k > 8) explains a

smaller, distinct source of variation in the data (Figure 12—figure supplement 1). As an alternative,

k = 12 was also explored in Figure 12—figure supplement 2. Intensity values from all antibody

channels (plus area and Hoechst intensity) were used for clustering.

Data availability
All data generated or analyzed during this study are included in the manuscript and supporting files.

Intensity data used to generate figures is available in supplementary materials and can be down-

loaded from the HMS LINCS Center Publication Page (http://lincs.hms.harvard.edu/lin-elife-2018/)

(RRID:SCR_016370).

Code availability
Code and scripts used in this study are listed in Key resources table and also on-line at the HMS

LINCS Center publication page (http://lincs.hms.harvard.edu/lin-elife-2018/). ImageJ is available at

https://imagej.nih.gov/ij/

BaSic is available at https://www.helmholtz-muenchen.de/icb/research/groups/quantitative-sin-

gle-cell-dynamics/software/basic/index.html. Matlab scripts used in this paper and the ASHLAR reg-

istration/stitching algorithm is available at our GitHub repositories (https://github.com/sorgerlab/

cycif and https://github.com/sorgerlab/ashlar (Muhlich, 2018; Lin, 2018). A Jupyter notebook for

futher exploration of data in Figures 5 and 6 is available at https://github.com/sorgerlab/lin_elife_

2018_tCyCIF_plots (Muhlich and Wang, 2018; copy archived at https://github.com/elifesciences-

publications/lin_elife_2018_tCyCIF_plots).

Image availability
All images can be obtained from an OMERO image database via links found at the HMS LINCS Cen-

ter Publication Page http://lincs.hms.harvard.edu/lin-elife-2018/ (RRID: SCR_016370). Stitched and

registered image composites can be obtained at www.cycif.org. (RRID:SCR_016267) and via links

found there.
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