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Abstract 49 

Skeletal muscle from mdx mice is characterized by increased Nox2 ROS, altered microtubule 50 

network, increased muscle stiffness, and decreased muscle/respiratory function. While 51 

microtubule de-tyrosination has been suggested to increase stiffness and Nox2 ROS production 52 

in isolated single myofibers, its role in altering tissue stiffness and muscle function has not been 53 

established. Because Nox2 ROS production is upregulated prior to microtubule network 54 

alterations and ROS affect microtubule formation, we investigated the role of Nox2 ROS in 55 

diaphragm tissue microtubule organization, stiffness and muscle/respiratory function. 56 

Eliminating Nox2 ROS prevents microtubule disorganization and reduces fibrosis and muscle 57 

stiffness in mdx diaphragm. Fibrosis accounts for the majority of variance in diaphragm stiffness 58 

and decreased function, implicating altered extracellular matrix and not microtubule de-59 

tyrosination as a modulator of diaphragm tissue function. Ultimately, inhibiting Nox2 ROS 60 

production increased force and respiratory function in dystrophic diaphragm, establishing Nox2 61 

as a potential therapeutic target in Duchenne muscular dystrophy.  62 
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Introduction 99 

Duchenne muscular dystrophy (DMD) is an X-linked recessive disease which affects 1 in every 100 

3500 boys resulting in progressive muscle atrophy, loss of ambulation and cardio-respiratory 101 

failure (Levi, Genin, Angelini, Halevy, & Pines, 2015). In DMD patients, the leading cause of 102 

mortality is diaphragm dysfunction (Finder et al., 2004; Finsterer & Stöllberger, 2003; Percival 103 

et al., 2012). In the mdx animal, a mouse model of DMD, disease progression in the diaphragm 104 

mimics the human development of the disease (Stedman et al., 1991), and respiratory 105 

dysfunction has been shown to promote cardiac dysfunction (Barbin et al., 2016; Finder et al., 106 

2004; Lanza et al., 2001).  107 

 108 

NADPH Oxidase 2 (Nox2) has been shown to play an important role in dystrophic muscle. Nox2 109 

content and activity are upregulated prior to the onset of inflammation and necrosis (N.P. 110 

Whitehead, Yeung, Froehner, & Allen, 2010) and downregulating Nox2 ROS production 111 

protects against pathophysiological alterations in young (5-7 wk) dystrophic muscle (Pal et al., 112 

2014). Recent evidence indicates the microtubule (MT) network is dysregulated in dystrophic 113 

muscle (Belanto et al., 2016; Iyer et al., 2017; Khairallah et al., 2012; Prins et al., 2009), which 114 

results in aberrant Nox2 ROS production and implicates Nox2 ROS in altered 115 

mechanotransduction (Khairallah et al., 2012). However, Nox2 ROS is upregulated early (19 d; 116 

(N.P. Whitehead et al., 2010)), prior to changes in the MT network (Belanto et al., 2016; Iyer et 117 

al., 2017; Khairallah et al., 2012; Prins et al., 2009), and oxidation has been shown to be a post-118 

translational modification of the MT network (Clark, Hagedorn, & Landino, 2014; Landino, 119 

Moynihan, Todd, & Kennett, 2004; Wilson & Gonzalez-Billault, 2015).  These findings raise the 120 

question of whether Nox2 ROS initiates changes in the MT network.               121 

 122 

In addition to increased Nox2 ROS production and alterations in the MT network, dystrophic 123 

muscle is characterized by increased fibrosis and muscle stiffness (Christophe Cornu, Goubel, & 124 

Fardeau, 1998; C. Cornu, Goubel, & Fardeau, 2001; Virgilio, Martin, Peirce, & Blemker, 2015). 125 

The de-tyrosination of α-tubulin (DT-tubulin) has been proposed as a mechanism which prevents 126 

the de-polymerization of the MT network, causing an increase in muscle stiffness and 127 

dysfunction in isolated muscle cells (Kerr et al., 2015; Robison et al., 2016). However, Belanto 128 

et al (Belanto et al., 2016) demonstrated increased muscle stiffness with no differences in relative 129 

DT-tubulin amount between mdx and WT mice. MT formation also is sensitive to the 130 

extracellular environment (Myers, Applegate, Danuser, Fischer, & Waterman, 2011; Andrew J. 131 

Putnam, Cunningham, Pillemer, & Mooney, 2003; A. J. Putnam, Schultz, & Mooney, 2001) and 132 

increased extracellular matrix (ECM) has been implicated in increased muscle stiffness and 133 

decreased force production (Desguerre et al., 2009; Meyer & Lieber, 2011; Percival et al., 2012; 134 

Rowe et al., 2010; Wood et al., 2014). Intriguingly, transgenic mdx mice expressing either a 135 

nearly full length dystrophin (DysΔ71-78-mdx) or overexpressing utrophin (Fiona) suggest that 136 

MT density and organization is independent of the level of MT de-tyrosination (Belanto et al., 137 

2014; Belanto et al., 2016).  Taken together, the role of de-tyrosinated MTs in tissue stiffness and 138 

disease pathogenesis in muscular dystrophy is unclear.  139 

 140 

Skeletal muscle stiffness traditionally has been evaluated using either atomic force microscopy 141 

(AFM; (Canato et al., 2010; Kerr et al., 2015; Mathur, Collinsworth, Reichert, Kraus, & Truskey, 142 

2001; van Zwieten et al., 2013)) or the passive properties of muscle measured during stretch 143 

(Chady H. Hakim & Duan, 2013; C. H. Hakim, Grange, & Duan, 2011; Lopez, Pardo, Cox, & 144 

Boriek, 2008; Rowe et al., 2010). AFM evaluates single muscle fiber stiffness but does not 145 

consider cell-cell interactions or the influence of the extra cellular matrix. While evaluating 146 

stiffness through muscle passive properties considers the series and parallel elastic components 147 

together it does not differentiate between the contributions of longitudinal (series) or transverse 148 
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(parallel) tissue stiffness within overall muscle stiffness. Optical coherence elastography (OCE) 149 

recently has been developed as a unique method to noninvasively evaluate tissue stiffness (Larin 150 

& Sampson, 2017; Wang & Larin, 2014; Wang et al., 2012; Wang et al., 2014). Here we utilize 151 

OCE to evaluate the differences in longitudinal and transverse tissue stiffness in the diaphragm 152 

of mdx mice. Previous data indicate mdx muscle is compromised in the transverse direction 153 

(Kumar, Khandelwal, Malya, Reid, & Boriek, 2004; Ramaswamy et al., 2011). Therefore, OCE 154 

may provide a unique method to differentiate pathological alterations in longitudinal and 155 

transverse stiffness and their impact on muscle function. 156 

 157 

Because the altered MT network and fibrosis develop later in the disease pathology, after Nox2 158 

ROS production has been initiated, we hypothesized that genetically eliminating Nox2 ROS 159 

production would prevent alterations to the MT network and reduce diaphragm stiffness thereby 160 

improving muscle and respiratory function in adult mdx mice. We also hypothesized, at the tissue 161 

level, stiffness would be greater in the transverse direction and fibrosis would be the major 162 

determinant of tissue stiffness.  163 

 164 

Results 165 

Genetic deletion of Nox2 ROS production prevents disorganization of the microtubule 166 

network in dystrophic muscle  167 

Previous data have shown that tubulin content is upregulated in muscular dystrophy, and DT-168 

tubulin may influence MT stability (Kerr et al., 2015; Khairallah et al., 2012; Prins et al., 2009). 169 

However, Belanto et al (Belanto et al., 2016) have suggested that the relative DT-tubulin level is 170 

not elevated in mdx muscle. Our data confirm that α-, -, and DT-tubulin are elevated with 171 

muscular dystrophy and extend these findings to show that eliminating Nox2 ROS production in 172 

mdx mice prevents the increase in all three forms of tubulin (Fig. 1B-D). Because DT-tubulin is 173 

the de-tyrosinated form of α-tubulin, and both DT- and α-tubulin are elevated in mdx muscle, we 174 

assessed the fraction of α-tubulin that is de-tyrosinated. We found that there is no difference in 175 

the DT-/α-tubulin ratio between groups (Fig. 1E), suggesting that the increase in DT-tubulin is 176 

likely due to increased α-tubulin.  Khairallah et al (Khairallah et al., 2012) demonstrated Nox2 177 

ROS production is increased in response to a polymerized MT network. We found that Nox2 178 

ROS production leads to increased MT disorganization (Fig 1G-H) and density (Fig 1I) in 179 

dystrophic diaphragm muscle which was prevented by eliminating Nox2 ROS. These results 180 

indicate that Nox2-generated ROS increases tubulin content, MT disorganization and MT 181 

polymerization in dystrophic diaphragm muscle and questions the role of DT-tubulin in MT 182 

stabilization or density.  183 

 184 

Genetic inhibition of Nox2 ROS decreases skeletal muscle fibrosis  185 

Increased fibrosis is a pathological hallmark of muscular dystrophy. In accordance with previous 186 

studies, we observed increased diaphragm fibrosis in mdx compared with WT mice (Fig 2). 187 

Eliminating Nox2 ROS in dystrophic muscle resulted in reduced collagen as measured by 188 

Trichrome staining (Fig 2A), hydroxyproline content (Fig 2B), and western blot (Fig 2C) as well 189 

as fibronectin content (Fig 2C).  These data suggest that decreasing Nox2 ROS results in a 190 

significant decrease in fibrosis in the mdx diaphragm.   191 

 192 

Muscle stiffness and stretch induced ROS are reduced in Nox2 deficient dystrophic muscle  193 

Microtubules have been shown to be sensitive to the extracellular environment (Myers et al., 194 

2011; Andrew J. Putnam et al., 2003; A. J. Putnam et al., 2001) and cell to cell (transverse) 195 

interactions are critical in skeletal muscle force transduction (Passerieux, Rossignol, Letellier, & 196 

Delage, 2007; Purslow & Trotter, 1994; Ramaswamy et al., 2011).  We evaluated the role of 197 

Nox2 ROS in diaphragm mechanical properties using two distinct methods; passive stretch to 198 
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evaluate the series and parallel elastic components together and optical coherence elastography 199 

(OCE) to differentiate between the contributions of series (longitudinal stiffness) and parallel 200 

(transverse stiffness) components within overall muscle tissue stiffness. Figure 3A and E 201 

demonstrate the system design for both passive stretch and OCE, respectively, Figure 3F shows a 202 

sample OCT image of the diaphragm and Figure 3-video 1 illustrates a sample wave propagation 203 

taken during OCE. Passive stiffness while lengthening the diaphragm to 120% Lo was increased 204 

in mdx compared with WT mice, and eliminating Nox2 ROS resulted in reduced tissue stiffness 205 

compared with mdx diaphragm (Fig 3B-C). Transverse and longitudinal stiffness, using OCE, 206 

was increased in diaphragm of mdx mice compared with WT mice. Interestingly, eliminating 207 

Nox2 ROS production reduced only longitudinal stiffness in Ncf1-/-::mdx (designated as p47(-/-
208 

)/mdx) mice to WT levels (Fig. 3G-H). Muscle function was measured pre- and post-OCE to 209 

ensure OCE measurements did not compromise tissue health. Muscle function for all genotypes 210 

was not altered following OCE measurements (Fig. 3I). We also found that stretch induced ROS 211 

was elevated in mdx diaphragm compared with both WT and p47(-/-)/mdx diaphragm tissue (Fig 212 

3D). These data suggest that elevated Nox2 ROS increases diaphragm stiffness in dystrophic 213 

muscle and demonstrate Nox2 as the source of stretch induced ROS at the tissue level. In 214 

addition, stiffness measured using OCE can detect changes in tissue elastic properties based on 215 

fiber orientation and indicate a direction dependent response to alterations in tissue stiffness. 216 

 217 

Fibrosis is a major determinant of diaphragm stiffness 218 

Increased DT-tubulin has been suggested to stabilize the microtubule network resulting in less 219 

dynamic microtubules thereby increasing tissue stiffness (Kerr et al., 2015; Robison et al., 2016).  220 

Our results demonstrate that while both α- and DT-tubulin are upregulated in dystrophic muscle 221 

the ratio of DT- to α-tubulin revealed no significant difference between groups (Fig. 1E). A 222 

linear regression analysis demonstrated that fibrosis, DT-tubulin and α-tubulin significantly 223 

correlate to transverse and longitudinal diaphragm stiffness while the DT-/α-tubulin ratio only 224 

demonstrated a significant correlation with longitudinal stiffness (Table 1). A multiple linear 225 

regression analysis with either DT- or DT-/α-tubulin ratio and fibrosis revealed that the variance 226 

was no different than fibrosis alone (Table 1). Fibrosis accounted for 45% of the variance in the 227 

longitudinal and nearly 70% in the transverse direction. These data indicate while tubulin content 228 

correlates with muscle stiffness, fibrosis accounts for the majority of the variance in muscle 229 

stiffness at the tissue level. 230 

 231 

 232 

Eliminating Nox2 ROS improves diaphragm muscle and respiratory function  233 

Diaphragm muscle and respiratory function are compromised in mdx mice (Huang et al., 2011; 234 

Ishizaki et al., 2008; Pal et al., 2014; Percival et al., 2012). We previously have shown that 235 

eliminating Nox2 ROS production protected against diaphragm alterations in young (4-6 wks) 236 

mdx mice (Pal et al., 2014). Given muscle dysfunction in dystrophy is progressive, we wanted to 237 

determine whether eliminating Nox2 ROS provided protection against muscle/diaphragm 238 

dysfunction in older dystrophic mice. Here, we show that diaphragm function is impaired in 239 

adult (16-24 wks) mdx muscle and eliminating Nox2 ROS partially protected against the force 240 

deficits (Fig 4A). Eliminating Nox2 ROS in adult dystrophic muscle also protected against 241 

alterations in diaphragm fiber cross sectional area, fiber type and central nuclei (Figure 4- S2). 242 

These results, in combination with our previous data (Pal et al., 2014), indicate the lack of Nox2 243 

ROS provides protection against pathophysiological alterations observed in dystrophic 244 

diaphragm muscle at different stages of disease pathology. In addition, eliminating Nox2 ROS 245 

protected against decrements in respiratory rate (f), minute ventilation (Mv), and peak inspiratory 246 

flow (PIF) in adult mdx mice (Table 3). A linear regression analysis demonstrated that fibrosis 247 

(Fig 4B) and both transverse and longitudinal diaphragm stiffness (Figure 4-figure supplement 2) 248 
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significantly correlated with peak diaphragm force. A multiple linear regression analysis 249 

revealed when either transverse or longitudinal diaphragm stiffness was included with fibrosis, 250 

the variance was no different than fibrosis alone (Table 2). These data indicate Nox2-derived 251 

ROS drive alterations in mdx diaphragm which lead to diaphragm and respiratory dysfunction. 252 

 253 

 254 

Taxol induced MT polymerization has no effect on tissue stiffness but induced ROS 255 

production 256 

To further elucidate the role of the MT network in tissue stiffness and ROS production, we 257 

incubated WT diaphragm with Taxol to polymerize the MT network. We observed similar 258 

alterations in the MT network between Taxol treated WT and mdx animals (Fig 1 F-I; Fig 5 A-259 

D). Taxol increased MT density (Fig 5D) and resulted in disorganization of the MT network (Fig 260 

5B-C). There was no difference in passive stiffness between Taxol and DMSO treated diaphragm 261 

tissue (Fig 5E-F); however, there was a difference in stretch induced ROS production (Fig 5G). 262 

These data, in combination with our previous data, support the idea that while alterations in the 263 

MT network increase ROS production, increases in DT-tubulin, MT density or MT 264 

disorganization do not influence tissue stiffness.  265 

  266 

Discussion 267 

Froehner and colleagues (Percival et al., 2007) originally demonstrated MT disorganization in 268 

dystrophic muscle and its subsequent restoration with the re-introduction of mini-dystrophin. In 269 

mdx mice, the MT network becomes altered at approximately 7-8 wks of age (Prins et al., 2009) 270 

and remains altered with age (9-11 months) (Kerr et al., 2015). It has been suggested that 271 

alterations in the MT network lead to increased Nox2 ROS production and altered 272 

mechanotransduction in adult mdx muscle (Kerr et al., 2015; Khairallah et al., 2012). However, 273 

Nox2 ROS is upregulated prior to changes in the MT network (Kerr et al., 2015; Prins et al., 274 

2009; N.P. Whitehead et al., 2010), raising the question whether increased Nox2 ROS drives 275 

changes in the MT network. In neurons, tubulin oxidation prevents MT polymerization (Clark et 276 

al., 2014; Landino et al., 2004; Wilson & Gonzalez-Billault, 2015); however, it is unclear what 277 

role increased ROS production plays in modulating the MT network of skeletal muscle. Our data 278 

show that diaphragm MT alterations are increased in adult dystrophic muscle and eliminating 279 

Noxβ ROS prevented the increase in α-, -, and DT-tubulin content (Fig. 1B-D), MT density 280 

(Fig. 1I), MT disorganization (Fig. 1G-H) and stiffness (Fig. 3C, G-H) observed in mdx mice. 281 

The MT network can be affected by muscle fiber type and regeneration (Percival et al., 2007; E. 282 

Ralston, Lu, & Ploug, 1999; Evelyn Ralston, Ploug, Kalhovde, & Lømo, 2001); both of which 283 

are altered in dystrophic muscle. Here we show that eliminating Nox2 ROS protected against 284 

alterations in fiber type switching and reduced central nuclei in dystrophic muscle. These data 285 

indicate Nox2 ROS, either directly or indirectly through alterations in fiber type or regeneration 286 

is modulating the MT network.  287 

 288 

Previous work has focused on either the cortical (Percival et al.; Prins et al.) or some 289 

undetermined combination of the cortical and intermyofibrillar MT network (Kerr et al.; 290 

Khairallah et al.). However, given the intermyofibrillar MT network surrounds the contractile 291 

apparatus, any alterations to this network likely affect force production. In addition, Nox2 is 292 

located in the plasma membrane and 60-90% of the plasma membrane in skeletal muscle is 293 

comprised by the t-tubules (Eisenberg & Kuda; Mobley & Eisenberg; Peachey, 1965).  294 

Therefore, the intermyofibrillar MT network may contribute more to muscle function and the 295 

mechanical activation of Nox2 ROS compared with the cortical MT network. To further explore 296 

whether the altered intermyofibbrillar MT network influenced diaphragm stiffness and ROS 297 
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production we incubated WT diaphragm with Taxol. Polymerizing the MT network with Taxol 298 

resulted in increased intermyofibrillar MT density (Fig. 5D) and disorganization (Fig. 5B-C), 299 

similar to the diaphragm from mdx mice, but no change in tissue stiffness was detected. We 300 

found that Taxol increased stretch dependent ROS production at the tissue level (Fig. 5F); 301 

similar to what Khairallah et al has shown in single FDB fibers (Khairallah et al., 2012). Taken 302 

together, we show that Nox2 ROS is an early event that modulates the MT network, potentially 303 

resulting in a feed forward mechanism where elevated Nox2 ROS production increases MT 304 

density and disorganization which in turn leads to additional Nox2 ROS production. We 305 

currently are investigating the mechanisms by which Nox2 ROS modulates the MT network. 306 

 307 

Respiratory insufficiency in the DMD patient is caused by respiratory muscle weakness, leading 308 

to impaired ventilation through an inability to inhale and exhale fully, ultimately resulting in a 309 

need for mechanical ventilation. Dystrophic muscle is characterized by increased fibrosis and 310 

while some show no link between altered collagen and stiffness (Chapman, Pichika, & Lieber, 311 

2015; Smith & Barton, 2014) others have implicated fibrosis in decreased function and stiffness 312 

(Cabrera et al., 2014; Desguerre et al., 2009; Ishizaki et al., 2008; Mead et al., 2014; Meyer & 313 

Lieber, 2011; Percival et al., 2012; Rowe et al., 2010; Wood et al., 2014). Lateral force 314 

transmission through the endomysial layer of skeletal muscle has been shown to be important in 315 

overall force production (Passerieux et al., 2007; Patel & Lieber, 1997; Purslow & Trotter, 1994; 316 

Trotter & Purslow, 1992) and, in mdx mice, force is compromised in the transverse direction 317 

(Kumar et al., 2004; Ramaswamy et al., 2011). The endomysial layer also has increased levels of 318 

fibrosis which affects force production and correlates with the age of loss of ambulation in 319 

dystrophic muscle (Desguerre et al., 2012; Desguerre et al., 2009). Here we show decreased 320 

diaphragm muscle (Fig 4A) and respiratory function (Table 3) and increased fibrosis (Fig 2B) 321 

and tissue stiffness (Fig. 3 C, G-H) in dystrophic muscle. Eliminating Nox2 ROS in dystrophic 322 

diaphragm muscle reduced fibrosis and tissue stiffness, increased force and prevented the decline 323 

in respiratory function.  Highlighting the importance of cell-cell interactions, our data 324 

demonstrate a stronger correlation between force and transverse stiffness (Fig S3) and fibrosis 325 

and transverse stiffness than longitudinal stiffness (Table 1). These data indicate that fibrosis is a 326 

crucial factor altering tissue stiffness and force production resulting in impaired cell-cell 327 

interactions.  Furthermore, a 26% increase in diaphragm force maintained respiratory function in 328 

the p47-/-/mdx mouse, likely decreasing the need to place patients on a ventilator. 329 

 330 

Several therapeutics designed to reduce fibrosis have proved beneficial in improving muscle 331 

function in dystrophic muscle (Cabrera et al., 2014; Huebner, Jassal, Halevy, Pines, & Anderson, 332 

2008; Percival et al., 2012; Turgeman et al., 2008; N. P. Whitehead, Kim, Bible, Adams, & 333 

Froehner, 2015). Therefore, based on our data, it is conceivable that decreased fibrosis reduces 334 

transverse muscle stiffness, improving lateral force transmission and thereby overall muscle 335 

function. In addition, it has been suggested that fibrosis induces a feed forward loop causing 336 

collagen producing myogenic cells not to differentiate into terminal satellite cells; inhibiting 337 

myogenesis and enhancing fibrosis (Alexakis, Partridge, & Bou-Gharios, 2007). These data are 338 

supported by the idea that progenitor cells take on a fibrogenic-like phenotype with aging; 339 

resulting in the loss of regenerative capacity in dystrophic muscle (Biressi, Miyabara, Gopinath, 340 

Carlig, & Rando, 2014; Pessina et al., 2015). The reduction in fibrosis observed by eliminating 341 

Nox2 ROS in dystrophic muscle may implicate a role for improved satellite cell activity given 342 

the reduced central nuclei (Fig S2C) and the increased CSA (Fig S2A) and Type 2B fibers (Fig 343 

S2E) observed in the p47-/-/mdx mice. In addition, we previously demonstrated eliminating Nox2 344 

ROS improves autophagy in dystrophic muscle (Pal et al., 2014) and autophagy is necessary for 345 
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satellite cell differentiation and fusion (Fortini et al., 2016). Future experiments are needed to 346 

investigate the role of Nox2 ROS in the impairment of satellite cell function  347 

 348 

Tissue stiffness in leg muscle mirrors changes in the MT network; becoming altered in mdx 349 

animals at approximately 7-8 wks of age (Wolff et al., 2006) and remaining elevated in older 350 

animals (C. H. Hakim et al., 2011). Skeletal muscle stiffness has predominantly been assessed 351 

using atomic force microscopy (AFM) on single fibers (Canato et al., 2010; Kerr et al., 2015; 352 

Mathur et al., 2001; van Zwieten et al., 2013) or by passively lengthening muscle tissue (Chady 353 

H. Hakim & Duan, 2013; C. H. Hakim et al., 2011; Lopez et al., 2008; Rowe et al., 2010). In 354 

C2C12 cells and isolated adult myofibers, alterations to the MT network increased cell stiffness, 355 

measured via AFM, and altered mechanotransduction (Kerr et al., 2015; Khairallah et al., 2012). 356 

However, AFM uses a point specific bending moment evaluating only the near-membrane 357 

mechanical properties at that point (Kerr et al., 2015). While this approach is vital for 358 

understanding intracellular contributions to single cell signaling and near-membrane mechanics, 359 

it does not consider the ECM or cell-cell interactions in overall tissue mechanotransduction. 360 

Passive stretch takes into consideration both of these factors; however, it evaluates both the 361 

series (longitudinal) and parallel (transverse) elastic components together, making it difficult to 362 

assess the individual contributions to overall tissue stiffness. To address these limitations, we 363 

used two techniques to evaluate tissue stiffness, passive stretch and OCE. Interestingly, 364 

eliminating Nox2 ROS production partially prevented increases in tissue stiffness during passive 365 

lengthening (Fig 3C) similar to transverse stiffness measured using OCE (Fig 3G). In addition, 366 

we demonstrate a partial protection against force decrement (Fig 4A) and elevated transverse 367 

stiffness by eliminating Nox2 ROS production in the diaphragm (Fig 3G). These data highlight 368 

the importance of lateral (transverse) force transmission, and the significance of transverse 369 

stiffness in force production.  370 

 371 

In isolated muscle cells, DT-tubulin, the de-tyrosinated form of α-tubulin, has been suggested to 372 

stabilize the MT network resulting in increased stiffness and reduced force (Kerr et al., 2015; 373 

Robison et al., 2016). However, MT formation is sensitive to alterations in the extracellular 374 

environment (Myers et al., 2011; Andrew J. Putnam et al., 2003; A. J. Putnam et al., 2001) 375 

implicating fibrosis in altering tissue stiffness. Previous work in neurons (Bartolini et al., 2016; 376 

Cook, Nagasaki, & Gundersen, 1998; Infante, Stein, Zhai, Borisy, & Gundersen, 2000; Khawaja, 377 

Gundersen, & Bulinski, 1988; Morris, Nader, Ramalingam, Bartolini, & Gundersen, 2014; 378 

Skoufias & Wilson, 1998; Webster, Wehland, Weber, & Borisy, 1990) indicates DT-tubulin 379 

simply occurs temporally at the same time but was not the cause of MT stabilization and in 380 

skeletal muscle, Belanto et al (Belanto et al., 2016) recently demonstrated while DT-tubulin was 381 

elevated in mdx quadriceps muscle, the fraction of DT-/α-tubulin was no different than WT mice. 382 

Our data support the idea that while DT-tubulin is elevated in dystrophic diaphragm the DT-/α-383 

tubulin ratio is no different (Fig 1E), indicating elevated DT-tubulin is a function of elevated α-384 

tubulin and not the cause of stabilized MTs. Using the DT-/α-tubulin ratio as the indicator of 385 

stabilized MTs, our data demonstrate a significant but weak correlation with OCE longitudinal 386 

diaphragm stiffness and no correlation with transverse stiffness (Table 1). When included with 387 

fibrosis, while elevated DT-tubulin and the DT-/α-tubulin ratio correlated with tissue stiffness, 388 

MLR revealed neither influenced diaphragm tissue stiffness above fibrosis. These data suggest 389 

neither the absolute nor the relative amount of DT-tubulin influence tissue stiffness and fibrosis 390 

is the main determinant of diaphragm tissue stiffness.  391 

 392 

Nox2 protein level and ROS production are upregulated early in dystrophic muscle prior to the 393 

inflammatory response (Pal et al., 2014; N.P. Whitehead et al., 2010). Previously, we have 394 

shown that Nox2 ROS production initiates a feed forward loop exacerbating Nox2 ROS 395 
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production and inhibiting autophagic flux through activation of Src kinase (Pal et al., 2014). 396 

Interestingly, recent data by Froehner and colleagues (N. P. Whitehead, Kim, Bible, Adams, & 397 

Froehner, 2015) have shown that simvastatin reduced Nox2 protein levels, oxidative stress and 398 

fibrosis in mdx mice. Here we provide evidence for an additional feedforward mechanism where 399 

Nox2 ROS alters the MT network, which in turn exacerbates Nox2 ROS production. We also 400 

demonstrate that eliminating Nox2 ROS production alleviates many of the pathophysiological 401 

alterations, such as fibrosis, which occur in dystrophic diaphragm muscle. Taken together, there 402 

is compelling evidence that Nox2 ROS production is a central event in exacerbating disease 403 

pathology, implicating Nox2 as a viable therapeutic target in muscular dystrophy.  404 

 405 

Materials and Methods 406 

Animals 407 

C57Bl/6J (WT) and C57Bl/10ScSn-Dmdmdx/J (mdx) were purchased from Jackson Laboratories 408 

(Bar Harbor, ME) and bred following their breeding strategy. Mice lacking p47phox (B6(Cg)-409 

Ncf1m1J/J, JaxMice) were crossed with mdx mice to generate Ncf1-/-::mdx (p47 (-/-)/mdx) mice 410 

(Pal et al., 2014)). At approximately 5 months of age and in accordance with National Institutes 411 

of Health guidelines and approved by the Institutional Animal Care and Use Committee of 412 

Baylor College of Medicine, mice were anesthetized by isoflurane (2%) inhalation and 413 

euthanized by rapid cervical dislocation followed by thoracotomy.   414 

 415 

Diaphragm passive stretch 416 

Diaphragm muscle was surgically dissected and sectioned into diaphragm strips with the rib end 417 

attached to a fixed hook and the other to the lever arm of a dual-mode lever system (305C-LR-418 

FP; Aurora Scientific Inc., Aurora, ON, Canada) using silk suture (4-0). The diaphragm was 419 

placed in a physiological saline solution containing (in mM): 2.0 CaCl2, 120.0 NaCl, 4.0 KCl, 420 

1.0 MgSO4, 25.0 NaHCO3, 1.0 KH2PO4, 10.0 glucose, pH 7.3 and continuously gassed with 421 

95% O2–5% CO2 at 25 °C. Muscle length was adjusted to elicit maximum twitch force (optimal 422 

length, Lo). A hand-held electronic caliper was used to measure Lo and the lever arm was 423 

programmed to passively stretch the diaphragm strip to 120% of Lo at 1 Lo/s for 5 min. At the 424 

end of the stretch protocol fiber bundles were removed from the rib, trimmed of excess 425 

connective tissue, blotted dry, and weighed.  Muscle weight and Lo were used to estimate 426 

absolute forces expressed as N/cm2 (Close, 1972).  427 

 428 

To determine tissue stiffness, the Veronda-Westman model (Veronda & Westmann, 1970) was 429 

employed to quantify Young’s modulus for the first stretch. The Veronda-Westman model 430 

describes a nonlinear relationship between stress and strain and previously has been utilized to 431 

study the elasticity of a number of biological tissues, such as breast and skin (Krouskop, 432 

Wheeler, Kallel, Garra, & Hall, 1998; Veronda & Westmann, 1970). Assuming the diaphragm 433 

tissue as an incompressible Veronda-Westman material, under uniaxial tension, the axial stress σ 434 

is related to the resulted stretch  through equation 1: (Oberai et al., 2009; Pavan, Madsen, 435 

Frank, Adilton, & Hall, 2010)  436 

 437 � =  � � − � e� λ +�− − � ,    Eq. 1   438 

    439 

 440 

where  = 1+ ε (ε is the strain), Ε is the Young’s modulus of the diaphragm tissue at zero strain 441 

and  is a nonlinear parameter representing the exponential increase rate of the Young’s modulus 442 

over the increase of strain. Young’s modulus was calculated through fitting the experimental data 443 

with Eq. 1 in Matlab (MathWorks; Natick, MA). 444 



10 

 

 445 

ROS Measurements 446 

Diaphragm intracellular ROS was measured using 6-carboxy-β′,7′-dichlorodihydrofluorescein 447 

diacetate (DCFH-DA) (Invitrogen, Carlsbad, CA). Prior to stretch, the diaphragm was incubated 448 

with DCFH-DA for 30 min, washed using the physiological saline solution and de-esterified for 449 

an additional 30 min at 25°C. All cell-loading and imaging was performed in the dark to prevent 450 

light induced oxidation of DCFH-DA. A Sutter Lamda DG-5 Ultra high-speed wavelength 451 

switcher was used to excite DCF at 470/20 nm and emission intensity was collected at 535/48 452 

nm on a charge coupled device (CCD) Camera (CoolSNAP MYO, Photometrics, Tucson, AZ) 453 

attached to an Axio Observer (Zeiss) inverted microscope (20× objective, 0.5 NA) at a rate of 0.2 454 

Hz. Alterations in the rate of ROS production were baseline corrected and calculated over the 455 

final minute of the stretch period. 456 

 457 

Effect of Taxol on Tissue Stiffness and ROS Production 458 

WT diaphragm tissue was incubated with β0 M Taxol (Sigma-Aldrich, St. Louis, MO) or 459 

DMSO (Sigma-Aldrich, St. Louis, MO) control for 2 hr at RT. After 1 hr the tissue was 460 

incubated with DCFH-DA, de-esterified and passively stretched as described above.  461 

 462 

Optical coherence elastography 463 

Optical coherence elastography (OCE) is a novel technique for nondestructive assessment of mechanical 464 

properties of tissues (Kennedy, Wijesinghe, & Sampson, 2017; Larin & Sampson, 2017). The 465 

principle of OCE is based on producing a pressure wave on the sample and monitoring the propagation of 466 

the wave using phase-sensitive optical coherence tomography (OCT) imaging on nanometer scale. The 467 

velocity of the wave propagation in different directions along the surface is used to deduct tissue elasticity 468 

anisotropically (Li, Guan, Huang, Johnstone, & Wang, 2012; Wang et al., 2012). A home-built 469 

OCE system was utilized which contains a focused air-puff device for tissue stimulation (Wang 470 

et al., 2013) and a spectral-domain OCT system to capture the tissue mechanical response (Wang 471 

et al., 2014). The air-puff system provided a highly-localized (~150 µm in diameter), short-472 

duration (~1 ms), and low-pressure (below 10 Pa) air stream to stimulate the surface of the 473 

diaphragm tissue in a noncontact fashion. The induced tissue displacement had a micro-scale 474 

amplitude. The OCT system had an axial resolution of ~5 µm in tissue, an imaging beam 475 

diameter of ~4 µm at the focal plane, and a displacement sensitivity of ~11 nm with the phase of 476 

the OCT complex signal. The tissue displacement over time was detected using the temporal 477 

phase profile from the OCT system.  A previously reported shear wave imaging OCT approach 478 

(Wang & Larin) was utilized to capture the elastic wave propagation in a depth-resolved 2D field 479 

of view with a time resolution of 16 µs. Cross-correlation of tissue displacement profiles was 480 

used to measure the time delay formed by the wave propagation at different locations. The elastic 481 

wave velocity was thus quantified based on the slope from a linear fit of the time delay with 482 

respect to the wave propagation distance. A surface wave model (Doyle, 1997) that relates the 483 

sample Young’s modulus Ε to the wave velocity C was utilized to estimate the tissue elasticity 484 

through equation 2: (Li et al., 2012; Wang et al., 2012)       485 

       486 

 � = �× +� ×�. + . �     Eq. 2   487 

 488 

where ρ is the tissue density and ν is the Poisson’s ratio; diaphragm density was 1060 kg/m3 489 

(Mendez & Keys, 1960). Due to the nearly incompressibility of soft tissue, the Poisson’s ratio of 490 

0.5 was utilized (Mathur et al., 2001). The averaged wave velocity value from 0-0.1 mm depth 491 

range from the tissue surface was used for calculation of the Young’s modulus. For each 492 
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diaphragm sample, the elastic wave assessment was conducted in the transverse and longitudinal 493 

directions of the muscle fiber. 494 

 495 

Ex vivo force measurements 496 

Diaphragm muscle was surgically dissected from mice and sectioned into diaphragm strips with 497 

one end attached to a fixed hook and the other to a force transducer (F30, Harvard Apparatus) 498 

using silk suture (4-0) in a physiological saline solution continuously gassed with 95% O2–5% 499 

CO2 at 25°C.  Diaphragm strips were incubated at 25°C for 10 min and optimal muscle length 500 

(Lo) and voltage (Vmax) were adjusted to elicit maximum twitch force. Following a 5 min rest 501 

period, the diaphragm strip was stimulated at 150 Hz with pulse and train durations of 0.5 and 502 

250 ms, respectively.  Immediately after stimulation, Lo was determined using a hand-held 503 

electronic caliper and the diaphragm strip was placed at Lo in a 100 x 15 mm petri dish (VWR, 504 

Radnor, PA) for OCE measurements. Following OCE, the diaphragm was re-suspended from the 505 

force transducer at Lo and after a 5 min rest period stimulated again at 150 Hz to ensure OCE 506 

measurements did not compromise the diaphragms functional properties.  507 

 508 

To determine the force-frequency relationship, diaphragm strips were incubated at 30°C for 15 509 

min and Lo and Vmax were adjusted to elicit maximum twitch force. Following a 5 min rest 510 

period, force-frequency characteristics were measured at stimulation frequencies of 1, 5, 10, 20, 511 

40, 60, 80, and 100-Hz every minute with pulse and train durations of 0.5 and 250 ms. At the end 512 

of the contractile protocol Lo was measured using a hand-held electronic caliper. Following both 513 

stimulation protocols, fiber bundles were trimmed of excess bone and connective tissue, blotted 514 

dry, and weighed.  Muscle weight and Lo were used to estimate cross-sectional area and absolute 515 

forces expressed as N/cm2 (Close). 516 

 517 

Unrestrained whole-body plethysmography 518 

Respiratory function was monitored in unrestrained mice using Buxco small animal whole-body 519 

plethysmography (Data Sciences International, New Brighton, MN) and FinePointe software 520 

(Data Sciences International, New Brighton, MN). The system was calibrated each day prior to 521 

data collection. On the day of data collection, animals were placed in individual chambers and 522 

given 30 min to acclimate; followed by 60 min of data collection. The software averaged the data 523 

over each minute and recorded a value every minute for 60 min. To ensure data was 524 

representative, breath frequency was used to ensure the mouse had not held its breath, buried its 525 

head under its body or was breathing too rapidly. Mean breath frequency was calculated and data 526 

which fell outside 1SD of the mean was excluded from the data analysis (Roberts, Holley-527 

Cuthrell, Gonzalez-Vega, Mull, & Heydemann, 2015). 528 

 529 

Western Blot 530 

Lysates from diaphragm tissue were extracted and quantified with the bicinchoninic acid (BCA) 531 

protein assay kit (Pierce, Rockford, IL), using BSA as the standard. Lysates were separated via 532 

SDS-PAGE and transferred to polyvinyldifluoride (PVDF) membranes. All tubulin blots were 533 

incubated in blocking buffer (5%, w/v, dried skimmed milk in Tris-buffered saline, pH 7.4, and 534 

0.2% Tween 20; TBST) for 60 min and incubated overnight with anti-α-tubulin (Santa Cruz 535 

Biotechnologies), anti--tubulin (Cell Signaling Technology), anti-detyrosinatedtubulin 536 

(Millipore) and anti-GAPDH (Millipore) in blocking buffer. Fibronectin and collagen blots were 537 

blocked for 60 min in blocking buffer as above except with .05% Tween 20 and incubated with 538 

anti-fibronectin (Millipore), anti-collagen (Abcam) and anti-GAPDH for 60 min at room 539 

temperature (RT). Tubulin and fibronectin blots were exposed to IRDye® Secondary Antibodies 540 

(LI-COR Biosciences) diluted in TBST for 60 min at RT and washed again. The LI -COr® 541 

Odyssey Infrared Imaging System was used for blot detection and ImageJ software for blot 542 
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analysis. The collagen blot was probed with secondary antibodies; ECL anti-mouse IgG HRP 543 

(NA931, GE Healthcare) and ECL Anti-rabbit IgG HRP (NA93401, GE Healthcare) for 60 min 544 

at RT. The membrane was imaged using the Chemidoc touch with Clarity and Clarity Max ECL 545 

reagent (Bio-Rad, Hercules, CA). Image analysis was performed using Biorad Image Lab 6.0 546 

software. 547 

 548 

Hydroxyproline Assay 549 

Diaphragm collagen content was measured using a hydroxyproline assay kit (Sigma-Aldrich, St. 550 

Louis, MO). Briefly, diaphragm tissue was homogenized and hydrolyzed in 200 µl of 6 M 551 

hydrochloric acid at 100 °C for 3 hours. Hydrolysate was transferred to a 96-well plate (Corning, 552 

Corning, NY) and evaporated in an oven at 60 °C. Following evaporation, the Chloromine 553 

T/Oxidation Buffer mixture was added to all wells and incubated for 5 min at RT. DMAB (4-554 

(Dimethylamino) benzaldehyde) was diluted in a Perchloric Acid/Isopropanol solution, added to 555 

all wells, and incubated for 90 min at 60 °C. A hydroxyproline standard curve (0-1.0 µg) was 556 

included in the assay to quantify hydroxyproline content in each sample. All samples, including 557 

the standard curve, were performed in duplicate and absorbance was measured at 560 nm. 558 

Results are reported as µg of hydroxyproline per mg of tissue (µg/mg). 559 

 560 

Immunofluorescence 561 

For fiber-type, serial diaphragm sections of 12-14 µm thickness were sectioned at −β4°C using a 562 

refrigerated cryostat (Shandon Cryotome E, Thermo). Sections were fixed with cold methanol 563 

for 20 min and incubated overnight in a humid box at 4°C with Anti-Type I (BA-F8) and anti-564 

Type IIA (SC-71) antibodies purchased from Developmental Studies Hybridoma Bank (DSHB; 565 

Iowa City, IA). Sections were then incubated for 3 hours with IgG1 and IgG2b isotype-specific 566 

secondary antibodies (Invitrogen, Waltham, MA). Slides were mounted with VECTASHIELD 567 

anti-fade mounting media containing DAPI (Vector Laboratories, Berlingame, CA). Images were 568 

acquired using a CCD camera (Digital Sight DS-Fi1, Nikon) attached to an upright microscope 569 

(Nikon Eclipse 80i, 10× objective, 0.45 NA). Images were analyzed using ImageJ software. 570 

 571 

For α–tubulin staining, diaphragm tissue was fixed at Lo using 10% neutral buffered formalin 572 

(VWR, Radnor, PA) for 2h at room temperature. The tissue was rinsed 3 times and stored in PBS 573 

(ThermoScientific, Waltham, MA) plus 1 mM EDTA (Invitrogen, Waltham, MA). Diaphragm 574 

fibers were mechanically dissociated from the fixed diaphragm strip into single fibers and placed 575 

in 35 mm glass bottom culture dishes (MatTek, Ashland, MA) containing PBS plus 1 mM 576 

EDTA. Fibers were permeabilized with 0.1% Triton X-100 in PBS plus 1 mM EDTA for 10 min. 577 

After rinsing three times with PBS plus 1 mM EDTA, a blocking agent was added (0.1% 578 

saponin, 10% FBS in PBS plus 1 mM EDTA) for 1 h at RT. Fibers were incubated with an 579 

Alexa-Fluor 488 conjugated α-tubulin antibody (Life Technologies, Waltham, MA) for 2 d at 4 580 

°C. Diaphragm fibers were washed with PBS and mounted with VECTASHIELD anti- fade 581 

mounting media containing DAPI (Vector Laboratories, Berlingame, CA) prior to microscopy. 582 

Fibers were imaged using a Zeiss LSM 780 confocal microscope (Zeiss, Oberkochen, Germany). 583 

Microtubule organization was analyzed using custom software (Liu & Ralston, 2014) and 584 

microtubule density was assessed by summing 10 images from the intra-myofibrillar region of 585 

each fiber (> 3 µm from surface), converted to a binary image and quantified using ImageJ 586 

software. Images were subjected to background subtraction and contrast enhancement using 587 

Image J for figure presentation only.   588 

 589 

Histology 590 

Using a refrigerated cryostat (Shandon Cryotome E, Thermo), 12-14 m thick serial sections 591 

were cut from the mid-belly region of the diaphragm at −β4°C. Sections were stained using 592 
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Masson’s Trichrome for fibrosis and Hematoxylin and Eosin for cross sectional area (CSA) and 593 

centralized nuclei. Images were acquired using a CCD camera (Digital Sight DS-Fi1, Nikon) 594 

attached to an upright microscope (Nikon Eclipse 80i, 10× objective, 0.45 NA). Images were 595 

analyzed using ImageJ software. 596 

 597 

Statistical Analysis 598 

Data are reported as mean ± SEM, unless otherwise specified. A 1-way ANOVA was used to 599 

measure statistical differences between groups. A 2-way RM ANOVA was used to determine 600 

statistical differences between groups for the force-frequency data. For CSA, a Kruskal-Wallis 601 

ANOVA was used to determine differences between groups. Tukey’s post-hoc test was used 602 

when statistical differences were identified. Linear regression and multiple linear regression 603 

models were used to determine correlations between variables. Statistical analysis was performed 604 

in Origin Pro (OriginLab Corporation, Northhampton, MA) with significance set a priori at p ≤ 605 

0.05. 606 
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Table 1. Tubulin and stiffness correlations 861 

 862 
 863 

Most variables significantly correlated with both transverse and longitudinal stiffness. MLR 864 

revealed fibrosis accounted for the majority of the variance observed in either stiffness measure. 865 

p≤0.05 *Significant correlation in at least nanimals=6. 866 

 867 

 868 

Table 2. Force and stiffness correlations 869 

 870 
MLR revealed fibrosis accounted for a majority of the variance observed in diaphragm muscle 871 

function. p≤0.05 *Significant difference between groups in at least nanimals=6. 872 

 873 

 874 

 875 

Table 3. Respiratory function 876 

 877 
Dystrophic mice lacking Nox 2 ROS production maintained respiratory function similar to WT 878 

levels. p≤0.05 *Significant difference vs. mdx in at least nanimals=9. 879 

 880 

  881 

Adj  R
2

Fibrosis

α-
tubulin

β-
tubulin

DT-

tubulin

DT-/α-
tubulin

MLR 

(fibrosis/glu)

MLR 

(fibrosis/ratio)

Transverse 0.69 * 0.46 * 0.51 * 0.51 * 0.10 0.69 0.67

Longitudinal 0.44 * 0.20 * 0.40 * 0.41 * 0.19 * 0.44 0.49

Adj  R
2

Fibrosis

MLR 

(fibrosis/trans)

MLR 

(fibrosis/long)

MLR 

(fibrosis/long/trans)

Force 0.57 0.52 0.52 0.49

WT mdx p47
(-/-)

/mdx

f (breath/min) 408.2 ± 14.5 * 279.8  ± 18.3 377.3 ± 17.0 *

Tv (ml) 0.25 ± .009 0.24 ± .008 0.26 ± .012

Mv (ml) 100.3 ± 5.6 * 65.9 ± 17.6 99.2 ± 8.6 *

PIF (ml/s) 7.6 ± 0.30 * 5.9 ± 0.56 8.0 ± 0.51 *

PEF (ml/s) 4.2 ± 0.25 3.2 ± 0.24 4.4 ± 0.39 *

Ti (s) 0.057 ± .002 * 0.080 ± .007 0.057 ± .002 *

Te (s) 0.129 ± .009 * 0.190 ± .012 0.138 ± .008 *
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Figure 1. Eliminating Nox 2 ROS production prevents alterations in tubulin content and 882 

the microtubule network. A. Representative western blot images of α-, -, and DT-tubulin 883 

content in all three genotypes. B-D. Eliminating Nox2 ROS production decreases absolute α-, - 884 

and DT-tubulin content in dystrophic diaphragm muscle. E. The relative amount of DT-/α-885 

tubulin is not different between groups. F. Representative images of diaphragm myofibers 886 

stained with α-tubulin. G-I. The lack of Nox 2 ROS prevents microtubule disorganization and 887 

the increase in microtubule density seen in mdx muscle.  p≤0.05 *Significant difference between 888 

groups in at least (A-E) nanimals= 6 and (F-I) nanimals= 3 and nfibers= 15. 889 

 890 

Figure 2. Genetic deletion of Nox2 ROS production reduced fibrosis.  891 

A. Representative trichrome images of fibrosis in all three genotypes. Eliminating Nox2 ROS 892 

production in dystrophic muscle reduced fibrosis compared with mdx mice. B. Hydroxyproline 893 

levels were elevated in dystrophic muscle and eliminating Nox2 ROS reduced hydroxyproline 894 

content compared with mdx mice. C. Representative western blot images for fibronectin and 895 

collagen I content in all three genotypes. Fibronectin and collagen I content were elevated in mdx 896 

diaphragm and eliminating Nox2 ROS reduced both toward WT levels. p≤0.05 * Significant 897 

difference between groups in at least nanimals=6 for trichrome and hydroxyproline and nanimals=3 898 

for fibronectin and collagen I. 899 

 900 

Figure 3. The lack of Nox2 ROS reduces muscle stiffness and stretch induced ROS. 901 

A. Image of the passive stretch experimental set-up. B. Average passive diaphragm force 902 

recorded during stretch for each genotype. C. Eliminating Nox2 ROS production reduced 903 

diaphragm tissue stiffness. D. Stretch induced ROS in mdx muscle was elevated above WT levels 904 

and eliminated in p47-/-/mdx diaphragm. E. Image of the OCE experimental set-up. F. 905 

Representative OCT image of the diaphragm taken prior to OCE experiments. G. Transverse 906 

diaphragm muscle stiffness increased in mdx compared with WT mice; eliminating Nox2 ROS 907 

resulted in a decrease toward WT (p=0.09). H. Genetic inhibition of Nox2 ROS reduced 908 

longitudinal diaphragm stiffness to WT values. I. Muscle function was not altered following 909 

OCE measurements. p≤0.05 *Significant difference between groups in at least nanimals=6 per 910 

group. 911 

 912 

 913 

Figure 4. Eliminating Nox2 ROS protects against muscle and respiratory dysfunction. 914 

A. WT was significantly different from mdx and p47-/-/mdx animals at all stimulation 915 

frequencies. The p47-/-/mdx animals were different from mdx at 60-100 Hz and trended towards 916 

significance at 40 Hz (p=0.098). B. Fibrosis significantly correlated with muscle force. p≤0.05 917 

*Significant difference between groups in at least nanimals=6. 918 

 919 

Figure 5. Taxol induced MT polymerization has no effect on tissue stiffness but induced 920 

ROS production. A. Representative images of MT network in control (DMSO) and Taxol 921 

treated diaphragm (β0 M for β hr). B-D. Taxol induced MT disorganization and increased 922 

microtubule density compared with control.  E. Average passive diaphragm force recorded 923 

during stretch was not affected by Taxol. F. Polymerizing the MT network had no effect on 924 

diaphragm tissue stiffness. G. MT network polymerization enhanced stretch induced ROS in 925 

Taxol treated diaphragm. p≤0.05 *Significant difference between groups in at least (A-D) 926 

nanimals= 3 and nfibers= 15 and (E-G) nanimals= 5. 927 

 928 

Supplemental Figure Legends 929 

 930 
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 931 

Figure 3- video 1 932 

Longitudinal.  Following the application of the air puff (<1 ms in duration), the displacement of 933 

the diaphragm tissue was monitored as the wave propagated down longitudinal axis while 934 

imaged at 62.5 kHz with OCE. Visualization is 5000 times slower than the actual speed.  935 

 936 

Figure 4-figure supplement 1 Eliminating Nox2 ROS protects against phenotypic 937 

alterations in dystrophic diaphragm muscle. 938 

A-B. Eliminating Nox2 ROS increased median cross sectional area compared with mdx 939 

diaphragm. C. In dystrophic diaphragm lacking Nox2 ROS production the number of centralized 940 

nuclei were reduced compared with mdx diaphragm tissue. D. Representative hematoxylin and 941 

eosin stained images of diaphragm cross-section showing central nuclei (arrow head) and smaller 942 

fibers (arrow). E. Fiber type distribution was maintained by eliminating Nox2 ROS production in 943 

dystrophic diaphragm muscle.  F. Representative immunofluorescently labeled diaphragm cross-944 

sectional images showing fiber type distribution. Type I (red), IIA (green), IIB/IIX (white x, 945 

unstained and viewed from bright field overlay). p≤0.05 *Significant difference between groups 946 

in at least nanimals=3. 947 

 948 

Figure 4-figure supplement 2 Linear correlation of stiffness measured by OCE and the 949 

peak force 950 

There was a significant correlation between peak force and transverse as well as peak force and 951 

longitudinal diaphragm stiffness.  952 

 953 
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