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Abstract Cells adapt to familiar changes in their environment by activating predefined

regulatory programs that establish adaptive gene expression states. These hard-wired pathways,

however, may be inadequate for adaptation to environments never encountered before. Here, we

reveal evidence for an alternative mode of gene regulation that enables adaptation to adverse

conditions without relying on external sensory information or genetically predetermined cis-

regulation. Instead, individual genes achieve optimal expression levels through a stochastic search

for improved fitness. By focusing on improving the overall health of the cell, the proposed

stochastic tuning mechanism discovers global gene expression states that are fundamentally new

and yet optimized for novel environments. We provide experimental evidence for stochastic tuning

in the adaptation of Saccharomyces cerevisiae to laboratory-engineered environments that are

foreign to its native gene-regulatory network. Stochastic tuning operates locally at individual gene

promoters, and its efficacy is modulated by perturbations to chromatin modification machinery.

DOI: https://doi.org/10.7554/eLife.31867.001

Introduction
The capacity to adapt to changes in the external environment is a defining feature of living systems.

Cells can rapidly adapt to familiar changes that are commonly encountered in their native habitat by

sensing the parameters of the environment and engaging dedicated regulatory networks that have

evolved to establish adaptive gene expression states (Jacob and Monod, 1961; Thieffry et al.,

1998). However, dedicated sensory, signaling, and regulatory networks become inadequate, or

even detrimental, when cells are exposed to unfamiliar environments that are foreign to their evolu-

tionary history (Tagkopoulos et al., 2008). In principle, at least one gene expression state that maxi-

mizes the health/fitness of the cell always exists, despite the inability of the native regulatory

network to establish such a state. This is true because under any conceivable environment, the activi-

ties of some genes are beneficial, whereas those of others are futile or even actively detrimental

(Jacob and Monod, 1961; Tagkopoulos et al., 2008; Hottes et al., 2013). In fact, if the initial fit-

ness defect is not lethal, a population of cells may slowly adapt to an unfamiliar environment through

the accumulation of genetic mutations that rewire regulatory networks, thereby achieving more opti-

mal gene expression states (Tagkopoulos et al., 2008; Applebee et al., 2008; Philippe et al.,

2007; Goodarzi et al., 2010; Tenaillon et al., 2012; Rodrı́guez-Verdugo et al., 2016;

Blount et al., 2012; Van Hofwegen et al., 2016; Damkiær et al., 2013).
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Results

Adaptation through fitness-driven stochastic optimization of gene
expression
In this work we speculate whether cells have evolved alternative strategies for finding adaptive gene

expression states, on more physiological timescales, without relying on their hard-coded sensory

and regulatory systems. Since the perception of the external world may be of limited value under

unfamiliar conditions, perhaps a more effective strategy would be to focus on maximizing the inter-

nal health of the cell—without regard to the specific parameters of the outside world. This would be

a challenging strategy, as every gene in the genome would need to independently reach the expres-

sion level that maximizes the overall health of the cell, and these expression levels could vary signifi-

cantly from condition to condition. In particular, we asked whether individual genes could, in

principle, carry out a search process equivalent to gradient descent (Cauchy, 1847), where the

health consequence of stochastic alterations in gene expression could gradually tune the expression

of individual genes towards a level that is optimal for internal health. We reasoned that such an opti-

mization process would require the existence of: (1) a source of stochastic transitions in gene expres-

sion; (2) the ability of local chromatin to maintain a record of recent changes in transcription; and (3)

a central metabolic hub that integrates diverse parameters of intracellular health and continuously

broadcasts whether the overall health of the cell is improving or deteriorating. In fact, we find that

the foundations for meeting these requirements are already present in eukaryotic cells: (1) The

expression of many genes is dominated by noisy bursts of transcription—a widespread phenomenon

of largely unknown functional significance (Sanchez and Golding, 2013; Raj and van Oudenaarden,

2008; Blake et al., 2006; Raser and O’Shea, 2005; Elowitz et al., 2002); (2) Co-transcriptional his-

tone modification can modify eukaryotic chromatin in promoters and gene bodies, establishing a

short-term memory of recent transcriptional events (Li et al., 2007; Rando and Winston, 2012); and

(3) Global integrators of cell health have evolved in eukaryotes. A classic example is the mTOR path-

way, which integrates a vast array of intracellular parameters reflecting nutrient availability, energy,

eLife digest To survive, cells have to adapt to changes in their environment. Organisms can do

so by constantly modifying the expression of their genes. For example, bacteria exposed to high

temperatures turn on heat-shock genes to help them cope.

Responses to familiar environmental changes take place thanks to specific, hard-wired molecular

pathways. These transmit external signals to transcription factors, proteins that can bind DNA near a

gene to regulate its expression. Yet, such established responses may not exist for stressful

conditions that cells have never encountered during their evolutionary history. In this case, how can

organisms adjust which genes to express, and at what levels?

Here, Freddolino et al. theorize that, in a new environment, individual genes can randomly

increase or decrease their level of expression. If a change ends up being good for the survival of the

cell, it is further reinforced. This ‘stochastic tuning’ would allow organisms to find the optimal levels

of gene expression without using genetically predetermined pathways that involve transcription

factors.

Mathematical simulations suggest that this mechanism can improve the growth and survival of a

cell in a new environment. Diverse experiments demonstrate that a phenomenon consistent with

stochastic tuning occurs in yeasts. The organisms are genetically modified so that their transcription

factors can no longer activate URA3, a gene required to grow in conditions lacking a chemical called

uracil. Yet, these altered yeast cells still manage to boost their URA3 expression in a uracil-free

environment.

Stochastic tuning could thus work alongside other types of conventional gene regulation to help

cells adapt to new and challenging living conditions. For instance, this may be how cancerous cells

survive and thrive when facing chemotherapy drugs.

DOI: https://doi.org/10.7554/eLife.31867.002
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and the presence of diverse stresses (Conrad et al., 2014; González and Hall, 2017; Albert and

Hall, 2015; Saxton and Sabatini, 2017).

With the necessary components for gradient-based optimization of gene expression in place

(Figure 1A), the promoter of each gene would be able to conduct a simple search process that cul-

minates in finding the expression level that maximizes the overall health of the cell: if global fitness/

health is increasing and there was a previous increase in transcriptional output (representing larger

or more frequent transcriptional bursts), the promoter further increases its transcriptional activity

(Figure 1B). If fitness is decreasing and there was a previous increase in transcriptional activity, the

promoter decreases its transcriptional output. Transcriptional output is altered in the opposite direc-

tion in the event that there was a previous decrease in transcriptional output. For each gene, this

tuning process can be expressed as: DEt = k � sgn DFt � DEt�1ð Þ þ h (see Figures 1 and 2A); here, E

denotes the vector of gene-level transcription rates, F the current fitness/health of the cell, k is a pro-

portionality constant, h a noise term, and sgn is a function yielding �1 if its argument is negative, 0

if its argument is zero, and +1 if its argument is positive. One can easily see how the process

described here can tune the optimal expression of a single gene. What is remarkable, however, is

the ability of this hypothetical stochastic tuning process to find near-optimal gene-expression states

for a system with thousands of genes. As can be seen in the simulations presented in Figure 2, this

is achieved through a fitness-directed stochastic search culminating in individual genes reaching spe-

cific gene expression levels that maximize the health/fitness of the cell. Such a stochastic tuning

Figure 1. Stochastic tuning of gene expression by fitness optimization at gene promoters. (A) Each gene contains a noisy expression apparatus with

noise amplitude h that allows exploration of a range of transcriptional activities. Each transcription apparatus also maintains a record of its previous

change in transcriptional activity (DEt-1). The change in transcriptional activity has the potential to contribute to a change in global health (DFt) through

the downstream effect of the gene product’s activity (likely through a multi-step pathway; for example, the biosynthesis of a metabolite that is limiting

for growth). A global metabolic integrator can transduce this change in health/fitness to every gene’s expression apparatus. At any point in time, the

expression apparatus executes a change in transcriptional activity (DEt) proportional (k) to the sign (sgn) of the product of DEt-1 and DFt plus noise (h).

(B) A simple example of this can be seen for a gene that experiences a random burst in transcriptional activity. If this leads to an increase in fitness the

expression apparatus further increases transcriptional activity. Conversely, if there is a decrease in fitness, the expression apparatus decreases

transcriptional activity.

DOI: https://doi.org/10.7554/eLife.31867.003
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Figure 2. Simulation of fitness-directed stochastic tuning for a thousand-gene system. (A) Quantitative framework

describing stochastic tuning. The transcriptional activity state of the genome is represented by the vector E, here

schematically represented for a three-gene system. In any environment, there is an optimal transcriptional state

vector (Eoptimal) that yields maximum fitness. At any time (t), a cell with transcriptional activity state Et has global

health/fitness (Ft) defined as the negative of the Euclidean distance between the immediately preceding

transcriptional activity state Et-1 and Eoptimal. Each gene promoter (i) executes a change in transcriptional activity

DEit which has two components: (1) a step with magnitude of k and sign (sgn) matching that of the product of the

global change in fitness (DFt) experienced at time t and the preceding change in transcriptional activity DEi
t-1, and

(2) a noise component with a magnitude of h and a random sign (+/-). (B) The stochastic tuning process moves the

transcriptional activity state towards the optimum, resulting in increasing health/fitness over time. Simulated

trajectories are shown for a 1,000-gene system with k = 0.1, h = 0.1 (blue); k = 0.5, h = 0.5 (red). (C) The time

evolution of the transcriptional activity state vector as a system containing 1000 genes converges to optimal

transcriptional activities through stochastic tuning. The temporal profiles of 20 representative genes are shown,

starting from randomly assigned initial activities, and gradually converging to activities that are near optimal for

fitness (using parameters corresponding to the blue curve in panel B). (D) Trajectories of two representative genes

are shown for the same simulation as in panel C). Transcriptional activities start at randomly assigned initial values

and gradually converge to near the optimum (arrows).

DOI: https://doi.org/10.7554/eLife.31867.004
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mechanism would be highly valuable to free-living organisms, enabling them to optimize their global

gene expression patterns to match the specific requirements of any environment in which their dedi-

cated sensory and regulatory networks are inadequate or sub-optimal.

Fitness-directed tuning of gene expression in yeast
Informed by the simulations above, we sought to test for evidence of stochastic tuning in the eukary-

otic model organism Saccharomyces cerevisiae. We engineered conditions in which the expression

of a single gene was required for growth, but for which no regulatory input existed to drive appro-

priate expression levels. This was achieved by using a yeast strain (BY4743) that lacks the URA3

gene, which is essential when cells are grown in the absence of uracil. We placed a chromosomally

integrated copy of URA3 at a different locus under the control of a weak synthetic promoter, consist-

ing primarily of a pseudorandom sequence. All recognizable binding sites for native transcription

factors were removed from the generated promoter sequence (see Materials and Methods and

Supplementary file 1 for details), in an attempt to decouple it from any existing sensory and regula-

tory input. We henceforth refer to this synthetic promoter sequence as synprom (see

Supplementary file 1 for sequence). In the experiments described below, URA3 is typically tagged

with a fluorescent fusion, either mRuby (Kredel et al., 2009) or a superfolder GFP (Pédelacq et al.,

2006), and a copy of a mouse DHFR gene coupled to a different fluorescent protein is inserted at

the same location on the sister chromosome to act as an internal control. A schematic of the inser-

tion constructs is shown in Figure 3A. We also added the URA3 competitive antagonist 6-azauracil

(6AU) to the media to control the threshold level of URA3 production required for growth. The

growth condition, SC+glu-ura media, containing x mg/ml of 6AU, will henceforth be referred to as

ura-/6AUx.

Even with the challenging and specific experimental layout described here, with growth highly

dependent on URA3 expression, we expect that stochastic tuning might contribute to fitness

through mechanisms acting in cis at the promoter driving URA3, those acting in trans through modu-

lation of factors that (despite our best efforts) weakly affect the promoter driving URA3, and through

tuning of unrelated pathways that benefit survival and growth in the –URA condition. Nevertheless,

URA3 expression itself will clearly be the key driver of growth since it is the critical bottleneck for

nucleotide biosynthesis in the absence of uracil supplementation.

To look for evidence of fitness-directed stochastic tuning, we tracked the colony formation of

cells containing synprom-driven URA3 after plating on ura-/6AU15 plates. Lacking sufficient URA3

expression to overcome high 6AU levels, these non-growing cells would be expected to succumb to

starvation and die. Remarkably, however, after prolonged incubation we observed apparently sto-

chastic transitions to rapid growth, leading to the formation of macroscopic colonies over time

(Figure 3B). We eventually observed colony formation by roughly one cell in 103, a rate too high to

be driven by mutation-driven adaptation in the absence of growth.

Stochastic tuning of other synthetic and natural promoters
The synthetic promoter referred to as ‘synprom’ throughout the text is the combination of a pseudo-

random sequence with a small natural promoter-proximal region taken from the SAM3 gene, with

both stripped of all recognizable matches to known transcription factor binding sites (see Materials

and Methods for details). We also tested all combinations of five other synthetic promoter sequen-

ces and one other promoter proximal region, enumerated in Supplementary file 2. As shown in Fig-

ure 3—figure supplement 1, four of the six synthetic promoters support stochastic tuning, and the

ability of synprom5 (the purely artificial component of the synprom referred to in the remainder of

the text; see Supplementary file 2 for all synthetic promoter sequences) to undergo tuning remains

even with a different promoter proximal region. These findings highlight the universality of the

observed tuning phenomenon and minimize the possibility that our observations actually arise due

to the presence of some residual sequence-specific transcription factor binding site present in

synprom.

As shown in Figure 3C, we also observed similar tuning behavior for two high-noise natural pro-

moters, PHSP12 and PRGI1 (Tirosh et al., 2009; Tirosh et al., 2006), indicating that stochastic tuning

can function even when superimposed on naturally evolved regulatory sites. Across all promoters
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(natural and synthetic) tested here, the observed tuning rates, relative to the number of viable plated

cells, varied from 1 in 101 (PHSP12) to 1 in 105 (synprom5-arf1).

The apparently stochastic nature of colony formation in our experiments is reflected both in the

steady emergence of colonies over the course of days or weeks (Figure 3B–C and Figure 3—figure

supplement 1), and in the wide variance of colony sizes observed on ura-/6AU15 plates (Figure 3D).

Microscopy revealed that cells remain quiescent for days before transitioning to URA3 expression

and rapid growth, with a transition rate dependent on the choice of promoter (Figure 3E). Further-

more, the change that enables growth under the ura-/6AU15 condition must be passed from mother

to daughter cells, as colonies expand from a few points of initiation instead of showing random divi-

sion of cells throughout the microscopic field over time. While the presence of some deterministic

Figure 3. Stochastic tuning of yeast cells under uracil starvation. (A) Schematic of the constructs used in this study. All strains are diploid, containing

similar insertions at the LEU2 locus of both copies of chromosome III. X is either a synthetic promoter (synprom) or a natural promoter (PRGI1 or PHSP12)

unless otherwise noted, and Y is either the same promoter as X or is the strong constitutive promoter PADH1. ‘cyc’ indicates the well-characterized CYC1

transcriptional terminator (Russo and Sherman, 1989). (B) Stochastic colony formation on ura-/6AU15 plates for cells containing URA3-mRuby under

control of synprom and DHFR-GFP under control of PADH1. Error bars show central 95% credible intervals; colors show biological replicates performed

on different days. ‘x’ marks are shown at the bottom of the axis for days where zero visible colonies were present at all plated dilutions. Cells plated on

SC+glu uniformly form visible colonies within 1–2 days. (C) As in panel B, but with URA3-mRuby controlled by PRGI1 or PHSP12 as indicated. (D) Images of

colony growth on SC+glu and ura-/6AU15 plates taken at the specified number of days after plating (1 day for SC+glu, 12 days for ura-/6AU15). Growth

of colonies is nearly uniform on SC+glu plates but shows non-uniform stochastic emergence on ura-/6AU15. N.b. the plated dilutions for the two plate

types are not the same. URA3 expression for the experiment shown is controlled by PHSP12, but similar behavior was observed for all promoters

discussed here. (E) Early colony formation on ura-/6AU15 plates imaged by superimposed differential interference contrast and fluorescence

microscopy. Cells contain PHSP12-URA3-mRuby/PADH1-DHFR-GFP. Left panel: One day after plating. By this timepoint small, macroscopic colonies would

have formed on SC+glu plates, but instead cells remain in microcolonies having undergone no more than three doublings. Right panel: Same plate as

left, five days after plating. While most cells have not grown since the one-day timepoint, other cells having undergone successful tuning instead form

larger colonies with URA3 expression sustained throughout them.

DOI: https://doi.org/10.7554/eLife.31867.005

The following figure supplement is available for figure 3:

Figure supplement 1. Stochastic colony formation rates for cells with URA3 driven by a variety of synthetic promoters.

DOI: https://doi.org/10.7554/eLife.31867.006
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process, yielding colony formation over the observed timescales (dependent on the initial state of

each cell), cannot be ruled out, a far simpler explanation for the observed phenomenon of a long lag

followed by appearance of colonies over a wide range of times is that each cell independently

undergoes a random process that can eventually lead to growth. We confirmed that the appearance

of colonies is not simply due to aging of the plates; 6AU-containing plates which were pre-incubated

for a week or longer prior to plating of cells showed no change in colony formation rates (data not

shown).

Fitness-directed tuning operates independently of conventional
regulatory input and is transcriptionally driven
To provide further insights into the regulatory changes occurring during the onset of cell growth, we

performed flow cytometry time courses on cells challenged by, and subsequently growing in, liquid

ura-/6AU5 media, using cells with synprom-driven URA3-mRuby, and with a DHFR-GFP fusion driven

by either the constitutive ADH1 promoter (Figure 4A–B) or synprom (Figure 4C–D) itself. The use of

PADH1 to drive the second reporter allows us to control for extrinsic noise and global changes in

gene expression, whereas coupling synprom to the non-beneficial DHFR-GFP fusion allows us to test

whether the observed stochastic tuning is driven by any trans-acting input from some existing

Figure 4. Tuning is both promoter- and allele-specific. (A) Cell counts for synprom-URA3-mRuby/PADH1-DHFR-GFP cells in liquid ura-/6AU5 media.

Colors correspond to different biological replicates started on different days. Arrows indicate two timepoints from each strain for which fluorescence

cumulative distribution functions (CDFs) are shown below. Error bars for cell counts show central 95% credible intervals. (B) Flow cytometry cumulative

distributions of fluorescence levels for URA3-mRuby and DHFR-GFP during uracil starvation. In each CDF a given timepoint (solid line) is compared to

the distribution present for cells in logarithmic growth in SC+glu (rich) media (dashed lines). The values shown are log2 ratios to the median value of

cells growing exponentially in SC+glu. GFP signals are shown in green and mRuby signals in red. (C) Analogous to A, but we consider cells where

synprom drives both URA3-mRuby and DHFR-GFP. (D) Analogous to B, but for cells with synprom driving both URA3-mRuby and DHFR-GFP.

DOI: https://doi.org/10.7554/eLife.31867.007

The following figure supplements are available for figure 4:

Figure supplement 1. Promoter-specific stochastic tuning of URA3 expression by native promoters in S. cerevisiae.

DOI: https://doi.org/10.7554/eLife.31867.008

Figure supplement 2. Local tuning of URA3 expression.

DOI: https://doi.org/10.7554/eLife.31867.009
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regulatory network or whether it is truly specific to the allele needed for growth, as required by our

proposed tuning model.

Several patterns in the growth curves and flow cytometry data are immediately apparent. First, as

with the agar-based growth discussed above, cells show a lag of at least 72 hr with undetectable

growth, followed by the onset of steady growth until saturation. In the case of URA3-mRuby driven

by synprom and DHFR-GFP by the constitutive promoter PADH1, URA3-mRuby fluorescence increases

substantially in tandem with the onset of cell growth, and expression subsequently remains high until

saturation; in contrast, DHFR-GFP signals do not even recover to their initial levels (Figure 4B; com-

pare dashed and solid line distributions). This demonstrates that the URA3 induction resulting in

growth is promoter-specific and does not simply reflect a general increase in protein expression. We

observed qualitatively equivalent behavior when URA3 was driven by PRGI1 or PHSP12 (Figure 4—fig-

ure supplement 1). Even more strikingly, for cells with synprom driving both fluorescent fusions, we

observed a specific enhancement of URA3-mRuby expression over that of DHFR-GFP (Figure 4D),

showing that the transition to high URA3 expression is not only promoter-specific but allele-specific,

and thus must be driven at least partly by changes occurring in cis at the specific locus whose

expression is required for growth. As an additional test, we performed quantitative RT-PCR experi-

ments to measure the ratio of URA3 and DHFR mRNA expression in tuned cells either in liquid ura-/

6AU5 media or on ura-/6AU15 plates (see Figure 4—figure supplement 2). In both cases, we

observed a substantial increase in the URA3:DHFR ratio in the tuned cells, indicating that the

observed tuning occurs at least partly through a local cis-acting process at the locus required for

growth (although we cannot rule out additional changes in other promoters that also contribute to

survival and growth, which may account for the observed heterogeneity in expression levels between

replicates). Consistent with our proposed tuning model, the allele-specific nature of the transcrip-

tional induction supports a key role for a local tuning process that is independent of dedicated sen-

sory and regulatory input.

Varying the threshold level of URA3 required for growth shifts tuning
from stochastic to deterministic
The presence of the competitive URA3 inhibitor 6-azauracil allows us to vary the threshold level of

URA3 required for growth. Thus, it is instructive to consider how the concentration of 6AU may alter

stochastic tuning behavior, both in the context of the computational model described above and in

the actual behavior of the system. We made two crucial modifications to the numerical model

employed in Figure 2 to mimic our experimental setup. First, rather than having the entire gene

expression profile begin far from the optimal point, we begin with all genes but one (representing

URA3) at their optimal values, reflecting the fact that aside from the artificial stress of lacking appro-

priate URA3 regulation, the cells’ native regulatory network can provide an appropriate response to

ura-/6AU media. Second, we note that due to the presence of the competitive inhibitor 6AU, the

URA3 in the cell will not even be able to contribute meaningfully to nucleotide biosynthesis (and

thus impact the cell’s health/fitness) until it passes a threshold level. Thus, the tuning term

(Figure 2A) is not applied to the gene representing URA3 until after the concentration of URA3

passes a threshold. Aside from the modifications noted above, we model tuning in the ura-/6AU

environment as we did for the general case in Figure 2, and in particular, the fitness effects of

changing URA3 expression must compete with noisy gene expression from the other 999 genes in

the model gene expression profile to impact the direction of tuning.

The resulting URA3 expression profiles during simulated tuning in the presence of low or high

concentrations of 6AU are shown in Figure 5A. In the low 6AU case, the tuning mechanism pushes

URA3 expression almost deterministically to its optimal (high) value, whereas in the presence of high

6AU, the URA3 expression level undergoes a random walk until expression becomes high enough to

allow the tuning mechanism to ‘sense’ the gradient and drive the cells into a URA3+ state. The

effects on tuning rates of varying the 6AU concentration are plotted in Figure 5B, where we observe

that increasing 6AU concentrations both slow tuning and dramatically increase the variance in the

amount of time required for each individual cell to reach a URA+ state. This is precisely the behavior

observed experimentally with high 6AU concentrations (Figure 3). On the other hand, tuning in our

experimental system switched from slow and stochastic to rapid and deterministic in the presence of

low 6AU concentrations, with observable tuning occurring over the course of a few hours

(Figure 5C). Importantly, the tuning process is confined to the URA3-mRuby allele, despite the fact
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that DHFR-GFP is also being driven by the same synthetic promoter. This again demonstrates that

the tuning process occurs independently of conventional gene regulation by dedicated sensory and

regulatory input.

Tuning dynamics at the single-cell level
We utilized time-lapse fluorescence microscopy to monitor the correspondence between expression

of URA3-mRuby and cell division in PHSP12-URA3-mRuby/PADH1-DHFR-GFP cells that initiated the

tuning process. Consistent with our proposed tuning model, gene expression fluctuations that sur-

passed a threshold for alleviating the URA3 deficit were reinforced over long timescales and were

Figure 5. Numerical modeling and experimental validation of changes in tuning behavior as a function of 6AU concentration. We simulated the gene

expression dynamics of cells containing URA3 under the control of a non-native promoter, when exposed to uracil-depletion stress with varying

concentrations of the URA3 inhibitor 6AU. The model employed is equivalent to that in Figure 2A, with k = 0.1, h = 0.1, and the target expression

profile equal to that for the case shown in Figure 2B except for the case of the gene corresponding to URA3, whose optimal value was set to 80. (A)

Typical trajectories of URA3 expression levels for a cell in the presence of low (blue) or high (red) 6AU concentrations, which alter the minimum URA3

expression level at which fitness-directed stochastic tuning can occur. We show results for a starting URA3 level [URA3]=25, with optimal fitness

occurring at [URA3]=80. The initial and optimal URA3 levels are shown as gray lines. (B) Violin plots of the distributions of the minimum time required to

reach a URA3+state (defined as [URA3]>75) in the presence of increasing concentrations of 6AU (implemented as higher thresholds of URA3 required

for stochastic tuning to become active). In each case distributions reflect 50 independent trajectories simulated at each 6AU level. (C) Experimental

validation of model predictions. Cells were grown in liquid ura-/6AU1 media (-URA) for 3–4 hr and then had the expression of fluorescent reporter

proteins compared (using flow cytometry) with those of the equivalent cells grown in SC+glu (+URA) over the same time period. Values show log2 fold

changes from SC+glu to ura-/6AU1; error bars show bootstrap-based 95% confidence intervals. Biological replicates performed on different days are

shown side by side; the order of replicates is matched for URA3-mRuby and DHFR-GFP.

DOI: https://doi.org/10.7554/eLife.31867.010

Figure 6. Sustained trans-generational inheritance of URA3-mRuby expression in tuned microcolonies. Shown are fluorescence microscopy time courses

of microcolonies beginning after 12 hr of exposure to ura-/6AU5 media. A tuned colony is shown on top and a nearby untuned colony on the bottom.

Fluorescence values are uniformly scaled but are not otherwise processed.

DOI: https://doi.org/10.7554/eLife.31867.011
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sustained (inherited) across multiple generations as the tuned colony expanded (Figure 6). As

expected, there is no accompanying increase in DHFR-GFP. Similar trajectories were observed for

other tuning micro-colonies (Figure 7A). The apparently long autocorrelation time of URA3-mRuby

fluctuations through the duration of a tuning trajectory is consistent with our proposed fitness feed-

back reinforcement mechanism. In order to quantitatively determine the timescale of gene expres-

sion fluctuations, also known as mixing times (Sigal et al., 2006), we utilized fluorescence-activated

cell sorting (FACS) to sort a population of cells for the bottom 20%, the top 20%, and complete

(mock-sorted) distribution of URA3-mRuby expression and measured the timescales over which the

sorted fluorescence distributions converged to each other (Figure 7—figure supplement 1). For

cells growing under uracil-replete conditions (SC+glu), we observed a relatively fast mixing time on

the order of ~100 min (Figure 7—figure supplement 1; Supplementary file 3). On the other hand,

cells starving in ura-/6AU10 media had mixing times that ranged from 400 to 1200 min (Figure 7—

figure supplement 1; Supplementary file 3).

To determine the association of URA3-mRuby levels across generations with growth, we primed

cells with 12 hr of exposure to ura-/6AU5 media and then tracked the division of tuned vs. untuned

microcolonies of PHSP12-URA3-mRuby/PADH1-DHFR-GFP cells over 24 hr time courses in ura-/6AU5

media. By comparing the fluorescence of cells that are about to divide with those that are not, we

found that dividing cells have significantly higher levels of mRuby than non-dividing cells, whereas

the separation was much smaller for GFP (Figure 7C). Furthermore, the URA3-mRuby levels within

the tuning colony were highly heritable; as seen in Figure 7D, as the indicated colony tunes and

grows, cells within that colony maintain a high-mRuby state through subsequent divisions, and even

their internal rankings are mostly preserved. mRuby levels in other, non-tuned microcolonies are

almost uniformly lower than cells in the tuned colony. The fitness-driven optimization component of

our model (Figure 1) further predicts that fluorescence levels should not only be heritable, but also

that cells will continue to increase URA3 expression (possibly noisily) until they reach either a local

optimum fitness or some biological constraint on maximum gene expression. Consistent with our

expectation, we observed that the ratio of mRuby to GFP levels (the latter of which is fused to a

gene whose product is not needed for growth) became steadily higher in cell lineages that had been

dividing for longer (Figure 7E). These observations demonstrate that the level of URA3 expression is

correlated with fitness, is transmitted across several generations, and shows an ongoing upward

trend in tuned cells over the course of time. That last finding is particularly important because a

directed increase in URA3 once a lineage begins growing is predicted by our model for fitness-

directed tuning, but cannot be explained by other competing hypotheses. The images and data

shown in Figure 7 were taken for colonies within a single field of view of a 40x objective to ensure

internal consistency in illumination and normalization, but their behavior is representative of our

observations across multiple such windows. (e.g., Figure 7—figure supplement 2, panel A). Similar

quantitative analysis from another experiment beginning directly from growth in SC+glu (instead of

short-term pregrowth in ura-6AU media) is shown in Figure 7—figure supplement 2, panels B-D.

Growth on –ura/6AU media does not arise from genetic mutations
It is crucial to exclude the possibility that genetic mutations underlie the observed tuning transition

on –ura/6AU plates. The ongoing emergence of the tuned state in non-growing cells, over the

course of many days, makes mutational mechanisms unlikely. In addition, as seen by microscopy

(Figure 3E), no more than 1–3 cell divisions occur prior to the onset of sustained growth in a small

fraction of cells.

Nevertheless, given the phenomenon of stress-induced mutagenesis in non-growing bacterial

cells (Al Mamun et al., 2012), we wished to conclusively exclude any possibility of mutational mech-

anisms. To this end, we note that changes in URA3 expression occurring due to mutations should be

stably heritable in the progeny of the tuned cells, which would not be expected to revert to a URA3

low state even after restoration of uracil in the media. To test the reversibility of the URA3 high

state, we designed an experimental setup in which tuned colonies isolated from ura-/6AU plates

were grown for varying numbers of passages in uracil-replete media (SC+glu including uracil) and

then re-exposed to uracil starvation (Figure 8—figure supplement 1). If any genetic mutation were

responsible for increasing URA3 expression in the tuned cells, the phenotype should be stable for

many generations. On the other hand, stochastic tuning would predict that cells revert to a naı̈ve

state following sufficient growth in uracil-containing conditions, as they no longer benefit from URA3
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Figure 7. Heritability of elevated mRuby levels during tuning. (A) Formation of a microcolony over 24 hr of exposure to ura-/6AU5 media in PHSP12-

URA3-mRuby/PADH1-DHFR-GFP cells. GFP and mRuby are shown as transparent green and red overlays. (B) Snapshots equivalent to A) for a non-tuned

colony in the same field of view. (C) Observed cumulative distributions (empirical cumulative distribution function; ECDF) of mRuby (left) and GFP (right)

levels for cells that either do or do not divide in the timepoint following the measurement (analyzed in four-hour intervals). Values are pooled over all

timepoints except the first, for five colonies growing in a single field of view. p-values arise from a Wilcoxon rank sum test applied to the shift between

the non-dividing and dividing cells. D indicates a point estimate for the difference in fluorescence of the dividing vs. non-dividing cells, along with a

95% confidence interval (95% CI). Values shown are raw fluorescence normalized by the median value for all observations of each fluorescent protein;

note the different x scales for mRuby vs. GFP. (D) Lineage traces showing long term propagation/inheritance of URA3-mRuby protein levels. At each

specified timepoint, the average fluorescence of each cell is shown on the y axis, with lines connecting each cell to the cell(s) arising from it at the

subsequent timepoint; thus, forks in the lines indicate cell division. Colors specify which of five microcolonies a given cell is a part of; only the red

microcolony showed notable tuning over the course of the experiment. A black ‘*’ is shown for each transition between adjacent timepoints for which

the correlation of ranks between the timepoints in question is significant (p<0.05) using a Spearman correlation test, and a red ‘*’ is shown for

transitions where the same criterion holds considering only the rank ordering of cells in the red (tuned) colony (the colony shown in panel A). (E)

Observed distribution of mRuby/GFP ratios depending on time elapsed since a lineage of cells began to divide. The x axis divides the cells up by the

time (measured in four-hour intervals) that has elapsed since the first observed division event of an ancestor of that cell; ‘Undivided’ indicates cells in

lineages that have not yet divided in the analyzed trajectory, and 0 hr denotes cells that will divide before the next analyzed snapshot. Note that points

are plotted for each cell at each analyzed frame relative to its own growth history, and thus not all cells at a given x position necessarily arise from the

same time point in the image series.

DOI: https://doi.org/10.7554/eLife.31867.012

The following figure supplements are available for figure 7:

Figure supplement 1. Mixing times of mRuby levels for growing (uracil-replete) and uracil-starved cells.

DOI: https://doi.org/10.7554/eLife.31867.013

Figure supplement 2. Heritability of elevated mRuby levels during early tuning.

DOI: https://doi.org/10.7554/eLife.31867.014
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expression. As seen in Figure 8A, cells with synprom-driven URA3 show reversion toward the naı̈ve

colony formation rates upon growth in (uracil containing) SC+glu media, with recovery apparent

Figure 8. Effects of genetic and chemical perturbations on the efficacy of fitness-directed stochastic tuning and its

epigenetic reversion. (A) Time courses of recovery back to the naı̈ve state for tuned synprom-URA3-mRuby/PADH1-

DHFR-GFP cells grown in either SC+glu or SC+glu with 25 mM nicotinamide added (+NIC). Extremes are shown

for the colony formation times of cells never exposed to –ura conditions (Naı̈ve) and for single colonies isolated

after streaking out cells from ura-/6AU15 plates onto SC+glu (Streaked –URA colony). Colors of points indicate a

single lineage beginning from a single streaked out colony picked at the first SC+glu plate stage. The cells were

then repeatedly passaged in liquid SC+glu media and assessed for colony formation rates on ura-/6AU15 plates

on subsequent days, as detailed in Figure 8—figure supplement 1. (B) Colony formation rates on ura-/6AU15

plates in the presence of various genetic perturbations, assessed by colony counts from platings of selected

dilutions of cells. An ‘x’ followed by a dashed line indicates no observed colonies and is shown at the threshold of

detection from the experiment. All mutations are in a synprom-URA3-mRuby/leu2D0 background.

DOI: https://doi.org/10.7554/eLife.31867.015

The following figure supplements are available for figure 8:

Figure supplement 1. Recovery of cells taken from ura-/6AU plates toward a naı̈ve state.

DOI: https://doi.org/10.7554/eLife.31867.016

Figure supplement 2. Survival of cells in –ura media in the presence of genetic perturbations.

DOI: https://doi.org/10.7554/eLife.31867.017
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even after a single round of growth on an SC+glu plate, and subsequently becoming stronger with

additional SC+glu passages.

To conclusively exclude mutational mechanisms, we performed untargeted whole-genome re-

sequencing of a total of eight isolates with synprom-driven URA3-mRuby (four colonies from 6AU15

plates and four separate biological replicates taken after the onset of growth in 6AU5 liquid media;

see Materials and Methods for details). For each case, we scanned the region within 25 kb of the

LEU2 locus (where the URA3 cassettes were integrated) for mutations, since control of URA3 expres-

sion was shown in these cells to operate locally in cis (Figure 4 and Figure 4—figure supplement

2). The results are summarized in Supplementary file 4: Of the eight isolates, five show no muta-

tions within 25 kb of the URA3-mRuby insertion, two show SNPs of unknown fitness contribution in a

minority of the population, and one shows a duplication of the URA3-mRuby cassette (based on the

presence of a read density that is twice the level observed elsewhere for the same chromosome).

These data clearly indicate that the origin of growth-supporting URA3 expression levels in these cells

cannot be reliant on a mutational mechanism, as only one of the eight cases – that with the URA3

duplication – shows a mutation at high enough levels in the population to explain the onset of

growth (mutations present in less than half of the population must have arisen after one or more

cells in the population had already tuned and began growing, and thus by definition could not be

responsible for the initial onset of the growing state). The phenotypes caused by the sequence var-

iants observed in populations C2 and L4 are not immediately obvious, but even if they are beneficial,

their presence in a minority of cells excludes the possibility that they were responsible for the onset

of tuning. Note that it should not be surprising (and, indeed, would be expected) that beneficial

mutations might arise in a population once it had begun expanding in a new environment due to

stochastic tuning. Our findings are consistent with a non-genetically heritable basis for the observed

tuning in seven out of eight of the cases examined, as in all other growing lines, mutations near the

URA3 gene were either non-existent or present only in a minority of the population.

Excluding growth-selection on the basis of pre-existing variation in
URA3 expression level
A formal possibility for colony formation in a subset of the population is that growth occurs solely on

the basis of pre-existing URA3 levels in cells prior to being exposed to uracil deprivation. Micro-

scopic observations of starving cells (Figure 3E) argue against this possibility, as a substantial lag

passes before any cells begin sustained growth. Also, colony formation continues over the course of

many days (Figure 3B–D), demonstrating that even cells that were non-growing for a substantial

time period after exposure to URA- stress can eventually grow under this condition. Nevertheless, to

conclusively discount the possibility of pre-existing URA3 levels determining tuning, we sorted popu-

lations of cells on the basis of initial URA3 expression, isolated those with the highest mRuby levels

(the top 0.5–1%, well outside of the main distribution of the population) and plated them. These

experiments clearly showed that the ability to form colonies on ura-/6AU plates is not restricted to

cells with initially high URA3-mRuby expression (Supplementary file 5), as the highly fluorescent

cells do not form colonies on ura-/6AU plates at rates substantially higher than unsorted cells, and

certainly not at a sufficiently higher rate to fully explain the observed colony formation rates. These

data argue against the possibility that growth occurs only in cells that, by chance, already have high

levels of URA3 expression at the time of plating (although such cells may have some slight advan-

tage, given the nature of their initial state).

Stochastic tuning is affected by genetic perturbations to chromatin
modification machinery
The proposed fitness-directed tuning mechanism relies on the capacity of local chromatin to main-

tain a memory of recent changes in transcription, and to modulate the transcription rate based on

the fitness consequences of those changes, as conveyed by the proposed central metabolic integra-

tor of health/fitness. We hypothesized that chromatin modification machinery may be intimately

involved in these processes.

To probe the mechanistic basis of stochastic tuning, we focused on perturbations to histone acet-

ylation/deacetylation (deletions of GCN5, SIN3, HST3, HST4), and chromatin remodeling (deletions

of ASF1, ISW2, SWR1, UBP8), all of which provide potential pathways for coupling feedback from

Freddolino et al. eLife 2018;7:e31867. DOI: https://doi.org/10.7554/eLife.31867 13 of 34

Research article Computational and Systems Biology Chromosomes and Gene Expression

https://doi.org/10.7554/eLife.31867


the cell’s physiological state to allele-specific modulation of chromatin and transcription (See Table 1

for details). We selected these targets because of their association with genes showing particularly

high levels of noise (and thus, more likely to be driven by tuning) in single-cell proteomic analysis

(Newman et al., 2006). In our screening, homozygous replacements of HST3, HST4, SWR1, ISW2,

and UBP8 with a kanMX cassette showed little effect on colony formation rates on ura-/6AU plates,

and SIN3::kanMX/SIN3::kanMX strains showed severely compromised cell survival under growth-

arrested conditions; all were excluded from further analysis. On the other hand, we found that

genetic perturbations to the histone acetylation machinery through deletion of the key histone ace-

tyltransferase GCN5 essentially abolished tuning, whereas deletion of the histone chaperone ASF1,

in contrast, increased tuning rate by more than an order of magnitude (Figure 8B). At the same

time, we show that the observed tuning process does not rely on transcriptional memory mecha-

nisms grounded in chromatin localization, given the lack of effect of a NUP42 deletion (Figure 8B;

cf. (Guan et al., 2012)).

Variations in colony formation rate are not a result of changes in
viability
In interpreting our data on the effects of genetic perturbations on tuning (Figure 8B), it was crucial

to consider the possibility that cells may lose viability at variable rates under different conditions,

which could contribute to the observed differences in colony formation rates. We thus performed

experiments to measure the rate of cell death in the presence of uracil starvation and compared the

results with the different colony formation rates observed. As shown in Figure 8—figure supple-

ment 2, the effects of a mutation on survival and tuning rates are not significantly correlated. For

example, deletion of GCN5 resulted in the nearly complete loss of stochastic tuning, deletion of

NUP42 had no effect, and deletion of ASF1 substantially enhanced tuning, yet none of these muta-

tions shows a change in survival rates during incubation in uracil-free media compared with wild type

cells sufficient to explain the observed change in colony formation rate (Figure 8—figure supple-

ment 2). Even for the poorest surviving strain, GCN5::kanMX/GCN5::kanMX, colony formation rates

after ten days are 100�1000 times lower than wild type cells even though survival rates are lower

only by a factor of ten.

Chemical perturbation of histone deacetylases inhibits the maintenance
of the tuned state
Given the apparent importance of chromatin modifications in fitness-directed tuning, we also tested

the effects of nicotinamide treatment (which inhibits the sirtuin class of histone deacetylases, or

HDACs (Bitterman et al., 2002)) on reversion of the tuned cells back to a naı̈ve state. As shown in

Figure 8A, we found that chemical inhibition of sirtuin HDACs by nicotinamide treatment substan-

tially accelerated the decay of a tuned population to the naı̈ve state, further highlighting the impor-

tance of histone modification in stochastic tuning. Combined with the data on knockout strains

described above, our results suggest a central role for chromatin modifications in the establishment

Table 1. Summary of genetic perturbations tested for effects on tuning rates.

Perturbation Direct effect Effect on tuning

GCN5::kanMX Deletion of histone acetyltransferase subunit (acts in ADA, SAGA, SLIK/SALSA complexes) Inhibits

SWR1::kanMX Deletion of H2AZ exchange factor No effect

UBP8::kanMX Deletion of SAGA complex de-ubiquitinase No effect

SIN3::kanMX Deletion of Rpd3S/L histone deacetylase components No effect

HST3::kanMX Deletion of Sir2-family histone deacetylase No effect

HST4::kanMX Deletion of Sir2-family histone deacetylase No effect

ISW2::kanMX Deletion of DNA translocase involved in chromatin remodeling No effect

ASF1::kanMX Deletion of nucleosome assembly factor Accelerates

NUP42::kanMX Deletion of nuclear pore complex component known to be involved in transcriptional memory No effect

DOI: https://doi.org/10.7554/eLife.31867.018
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and maintenance of the tuning process, although the molecular details cannot be discerned from

these data alone.

A biologically feasible implementation of stochastic tuning
The abstract model introduced in Figures 1–2 demonstrates the potential utility of fitness-directed

stochastic tuning to establish adaptive gene expression states without directly sensing the external

environment. In order to substantiate the biological feasibility of stochastic tuning, we implemented

its critical components in a plausible simulation incorporating generic features of chromatin modifi-

cation and the information flow of the Central Dogma of Molecular Biology. We therefore designed

and simulated a dynamical model tracking transcription rates, transcript levels, protein levels, and

histone modifications in a single cell, with parameter distributions sampled from experimental data

(Figure 9A; see Methods for details). We incorporated the possibility of adding or removing chro-

matin marks that can alter the transcription rates of the associated genes. Our model incorporates

two classes of marks: tuning marks (T), which link cellular fitness to transcriptional output by having

mark addition rates that are a function of the recent direction of change in global fitness and current

number of such marks at each promoter; and stabilizing marks (S), which are added at a rate depen-

dent on the number of tuning marks at each promoter (Figure 9B). At any time, the transcriptional

output of the promoter is a function of the density of both tuning marks and stabilizing marks. As

such, the tuning marks provide a critical connection between changes in global fitness and transcrip-

tion rates, whereas the more slowly changing stabilizing marks capture the average transcriptional

output over longer timescales, enabling a more stable optimization trajectory. Both T and S chroma-

tin marks come in two varieties: positive (activating) and negative (repressive).

Our aim was to develop a generic simulation consistent with our general knowledge of coupling

between chromatin modification and transcription (Li et al., 2007; Rando and Winston, 2012;

Zhou and Zhou, 2011; Mitra et al., 2006). As such, the tuning and stabilizing marks described here

need not correspond to any specific chemical moiety or be attributed to any particular histone modi-

fication enzyme. Modulation of enzyme activity by global fitness could be due to some as yet

unknown signaling pathway or, alternatively, be dependent on known metabolic substrates or cofac-

tors, such as acetyl-CoA and NAD+ (Lin et al., 2000; Thaminy et al., 2007; Tanner et al., 1999).

As shown in Figure 9C, the detailed model is capable of stochastic tuning of a single gene which

strongly impacts the fitness of the cell (as would be the case for URA3 in our experimental setup).

For most randomly generated gene-level parameters, stochastic tuning results in substantially higher

fitness compared to when cells undergo random fluctuations in transcription levels or when tran-

scription is fixed at a rate appropriate for a different environment, and in most cases, tuning is able

to consistently achieve near-optimal expression levels. The model is robust to variations in both the

sampled biological parameters (Figure 9C) and the parameters of the model itself (Figure 9D) and

can locate an optimal expression level regardless of the ratio between the initial and target protein

levels (Figure 9E). These results demonstrate that a generic, biologically feasible implementation of

fitness-directed stochastic tuning can in fact function even in the presence of the multiple layers of

noise and temporal delays acting between transcription rates (at which tuning occurs) and protein

levels (which dictate fitness). Note that we do not expect to find conditions where stochastic tuning

is the primary mechanism of gene expression modulation for every gene in the genome, even for

novel or extreme environments. Rather, we expect that the cells’ hard-wired transcriptional regula-

tory logic exerts the primary role in the transcriptional reprogramming of the majority of genes in

the genome. For its part, we expect that stochastic tuning plays the dominant role in modulating the

expression of few genes/pathways that represent critical bottlenecks for fitness (for example, induc-

tion of a drug efflux pump, or repression of an enzyme that activates a pro-drug chemotherapeutic

agent).

Discussion
We have described a mechanism of adaptation through fitness-directed optimization of gene

expression. In numerical simulations, the proposed framework has the remarkable capacity to simul-

taneously tune the expression of thousands of genes, enabling optimization of fitness without

directly sensing environmental parameters. The demonstration that a phenomenon consistent with

fitness-directed stochastic tuning operates in S. cerevisiae has important implications for the
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Figure 9. Construction and performance of a biologically feasible model for fitness-directed stochastic tuning. (A) Schematic of processes modeled in

the simulation. Transcripts are produced at a rate dependent upon the state of chromatin marks at each promoter; each transcript has a fixed, gene-

dependent probability of being translated at each timestep (producing a protein), and may also be degraded (again, with a gene-dependent

probability). Similarly, each copy of a protein may be degraded at each timestep with a protein-dependent probability. The fitness of the system is

Figure 9 continued on next page
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adaptation of eukaryotic microbes to novel or extreme environments where their genetically

encoded regulatory networks become inadequate. However, we speculate that stochastic tuning

operates in parallel with conventional regulation even in frequently encountered environments.

Indeed, hard-coded sensory and regulatory networks are unlikely to have the encoding capacity to

optimally respond to every conceivable subtle change in the environment—even within the native

habitat. We therefore favor a model in which dedicated regulatory networks quickly move the sys-

tem to a state reasonably well matched to a given condition, and stochastic tuning subsequently

optimizes expression to achieve a more precisely adapted state for every individual encounter.

The ability to discover optimal gene expression states through a stochastic fitness-directed search

may have provided significant advantage to early eukaryotic microbes. Microorganisms have evolved

stochastic search strategies in other contexts. Indeed, the proposed stochastic tuning mechanism is

reminiscent of the biased random walk phenomenon in bacterial chemotaxis, where stochastic transi-

tions in the rotation of the flagellar motor are biased towards the direction that increases chemoat-

tractant signaling over time (Macnab and Koshland, 1972). Detailed molecular mechanisms of

chemotaxis have been revealed over the course of the last few decades, demonstrating the versatil-

ity of molecular processes in implementing rather complex computations (reviewed in (Sourjik and

Wingreen, 2012)). Although our main focus here has been on establishing the phenomenology of

fitness-directed stochastic tuning, we have already identified some critical components. In particular,

histone acetylation/deacetylation (via GCN5 and sirtuins) seem to play a critical role, as deletion of

GCN5 almost entirely abolished tuning. This is consistent with the high degree of intrinsic noise

exhibited by the genes that are regulated by the SAGA complex, in which GCN5 is the catalytic sub-

unit (Newman et al., 2006). Previous work has shown that increased transcriptional noise is benefi-

cial for adaptation to acute environmental stress (Blake et al., 2006). Interestingly, however, early

work demonstrated that deletion of GCN5 further increases expression noise in the context of the

PHO5 promoter (Raser and O’Shea, 2004).

Figure 9 continued

calculated as the Euclidean distance between the current profile of protein counts present in the cell from a target optimum. Chromatin marks may be

added or removed at each promoter at each step, as shown in panel B). (B) Logic underlying changes in tuning and stabilizing mark counts at each

step. Tuning marks (T) may be added or removed at each step based on the recent history of changes in fitness, and whether each promoter currently

has a net positive (activating) or negative (repressive) T count. Stabilizing marks (S) provide longer term integration by adding activating or repressive

marks over time in response to the state of the tuning marks. Thus, if an unmodified promoter undergoes random addition of a positive tuning mark

(top path), and that addition proves favorable, it will undergo further addition of positive T marks. If fitness continues to increase, stabilizing marks (S)

will be added to stabilize its higher activity. Similar logic holds for the random addition of negative tuning marks (bottom path). In both cases, if the

random T-mark perturbation proves unfavorable, the promoter will be modified in the opposite direction, in this case returning it back to its original

unmodified state. (C) Distributions of fitness scores for a one-gene system obtained in twenty simulations using different randomly sampled biological

parameters (e.g., transcript stabilities, translation rates, etc.) – these different parameter sets are the ‘simulated replicates’ referred to on the x axis. The

median scores over the last quarter of the simulation are shown for 10 independent tuning trajectories (differing in their random number seeds). Each

simulation proceeded for 300,000 steps (83.3 hr of simulated time). Different colors indicate varying methods used to control transcription rates (as

shown in the legend): ‘Known optimum’ refers to a case where transcription rates are kept fixed at their predefined target values, ‘Stochastic tuning’ is

the full model described in the Methods section, ‘Random chromatin marks’ is equivalent to the tuning model except that the direction of T chromatin

mark addition is random instead of fitness directed, and ‘Fixed at baseline values’ shows the case where transcription rates are fixed at their initial

values (intended to correspond to the environment that the cells were in prior to the onset of stress exposure). Dashed vertical lines group simulations

performed with identical parameters. On the left axis we show ten sets of simulations where the target transcription rate was eight-fold higher than the

starting rate, and on the right axis simulations where the target transcription rate was eight-fold lower than the starting rate. (D) Robustness of tuning

against changing model parameters. Violin plots are defined as in panel C), but in this case show the distributions of fitness scores observed under

variations of the model parameters (e.g., magnitude of individual tuning and stabilizing marks) for a single, randomly chosen set of gene-specific

parameters. Plotted are the median fitness scores over the last quarter of each simulation, using either our central ‘baseline’ parameters for all model

parameters (leftmost replicate; see Supplementary file 8), or twofold changes (up or down) of each editable parameter in our model. (E) Tuning

performance of a single gene matching a wide range of biological challenges. For a fixed set of biological parameters (see Materials and Methods), we

performed 10 simulations each where the initial transcription rates were off from the target rate by a factor of 23, 22, 0, 2�2, and 2�3, running in order

from blue to red. A strong dashed black line shows the median obtained from the last quarter of a long (3 million step) simulation with transcription

rates fixed at their optimal values; the shaded region shows the extent of a region encompassing 95% of the timepoints observed in that window.

Regardless of initial conditions, the protein level approaches the optimal value and then stably oscillates around it, with amplitudes similar to those

observed in the control simulation with target transcription rates.

DOI: https://doi.org/10.7554/eLife.31867.019
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Taken together, these data suggest that stochastic tuning is not driven by noise alone; rather we

support a model in which the proper integration of noise, transcriptional memory, chromatin modifi-

cation, and cellular-health feedback work together to implement a directed search mechanism to

drive the expression level of individual genes to levels that maximize the overall health of the cell.

Indeed, histone modification is tightly coupled with gene expression. Co-transcriptional histone

modification can store recent memory of transcriptional activity (Li et al., 2007; Rando and Win-

ston, 2012) and histone modification can, in turn, affect transcription rate (Stasevich et al., 2014).

There has been a longstanding debate on the functional significance of this reciprocal coupling. Our

model and results help to unify these phenomena and support their functional relevance as requisite

components of a stochastic tuning-based cellular adaptation framework.

We note that our experimental setup for demonstrating stochastic tuning has superficial similari-

ties to a series of experiments performed in S. cerevisiae by the Braun lab, in which they sought to

determine whether glucose-driven repression of the GAL1 promoter could be overcome to allow

expression of a HIS3 construct in glucose-containing media (Stern et al., 2007; Stolovicki et al.,

2006). While the authors observed consistent emergence of growth in a large fraction of cells that

they initially noted could be attributed to either genetic or epigenetic mechanisms (Stolovicki et al.,

2006), subsequent analysis has shown that in that experimental system, genetic mutations are the

primary mechanism of adaptation, possibly driven by hypermutability of the genes involved in the

response of interest (David et al., 2010; Moore et al., 2014; David et al., 2013). These mutational

mechanisms stand in clear contrast to the rapidly reverting epigenetic stochastic tuning observed in

our experiments.

In addition to perception of environmental parameters, cells also possess a variety of hard-wired

homeostatic mechanisms sensing and responding to internal parameters, optimizing resource alloca-

tion in response to parameters such as growth rate (Klumpp et al., 2009; Klumpp and Hwa, 2014;

Brauer et al., 2008; Barenholz et al., 2016; Keren et al., 2013) and metabolite/nutrient pools

(Potrykus et al., 2011; Broach, 2012). However, while these mechanisms allow cells to sense their

internal state, they still reflect specific evolved responses to alter resource allocation and gene

expression in a predefined way in response to stress, standing in contrast with the ability of stochas-

tic tuning to conduct a search and discover arbitrary gene expression states that are adaptive under

extreme and unfamiliar environments.

The widely varying tuning rates for different promoters (Figure 3B–C and Figure 3—figure sup-

plement 1) clearly indicate that sequence features can influence tuning efficacy. By design, all but

one promoter driving URA3 in our experiments contained a TATA box, which has been linked to

high intrinsic noise (Newman et al., 2006), condition-specific expression variability (Tirosh et al.,

2006) and reliance on chromatin-mediated regulation (Tirosh et al., 2008; Basehoar et al., 2004).

Indeed, replacement of the (TATA-containing) PSAM3 derived sequence in synprom with a similarly

generated sequence from the TATA-free PARF1 promoter substantially reduced tuning rates under

the conditions tested (Figure 3—figure supplement 1). We also note that when we performed

experiments similar to those described above with the repressed natural promoter PGAL1, we

observed dramatically lower rates of colony formation (less than 1 in 107), and those colonies that

did form appeared to be non-reverting genetic mutants (data not shown). Exploring the full impor-

tance of transcriptional noise for tuning efficiency, as well as that of other features such as propensity

for nucleosome positioning, will be important in future work.

Fitness-directed stochastic tuning requires feedback of the global state of health to every pro-

moter in the genome. The dependence of many histone modification enzymes on metabolic inter-

mediates and cofactors (e.g., NAD+ for the sirtuin family of histone deacetylases (Lin et al., 2000;

Thaminy et al., 2007); SAM for histone methyltransferases (Luka et al., 2009), and acetyl-CoA for

histone acetyltransferases (Tanner et al., 1999)) provides support for potential direct feedback of

global fitness-related parameters to the epigenome (Katada et al., 2012; Kurdistani, 2014), and

indeed we showed that chemical manipulation of sirtuin activity had substantial effects on retention

of epigenetic memory. These enzymes may very well serve as distinct channels of health-related

information utilized by stochastic tuning. In this regard, chromatin itself may function as a global

health integrator, with histone modifications and their effect on gene expression being highly contin-

gent on the current trajectory of cellular fitness. Alternatively, cells may utilize a single global health

integrator (such as the mTOR system) as hypothesized in our idealized model. The mTOR pathway

integrates diverse parameters of internal health including energy, nutrient availability, and cellular

Freddolino et al. eLife 2018;7:e31867. DOI: https://doi.org/10.7554/eLife.31867 18 of 34

Research article Computational and Systems Biology Chromosomes and Gene Expression

https://doi.org/10.7554/eLife.31867


stresses (González and Hall, 2017). Intriguingly, the mTOR pathway has recently been shown to reg-

ulate histone acetylation states through a variety of mechanisms (Chen et al., 2012;

Workman et al., 2016)

Fitness-directed stochastic tuning has important implications for gene regulation. Beyond a

potentially widespread mechanism of cellular adaptation, stochastic tuning brings together seem-

ingly unrelated phenomena under a unifying conceptual framework. These are areas of study at the

frontier of genetics and biochemistry, including stochastic gene expression, transcriptional memory,

and metabolic modulation of epigenetic states. Stochastic tuning may have initially evolved as a

mechanism for adaptation of single-cell eukaryotes to extreme environments. However, once avail-

able, it may have found additional utility as a versatile mechanism for controlling and fine-tuning

gene expression in the context of physiological and developmental processes in metazoans. This is

consistent with the evolutionary arc of an ancient set of molecular mechanisms that now serve as key

mediators of differentiation (Álvarez-Errico et al., 2015; Ziller et al., 2015; Meissner, 2010).

Exploring this possibility represents an important area for future research. Optimization of cellular

health through the fitness-directed stochastic tuning mechanism may also play an important role in

allowing cancer cells to survive and thrive in a variety of microenvironments unfamiliar to their

evolved regulatory networks, and in the face of extreme challenges imposed by chemotherapy and

radiation. Indeed, stochastic tuning may underlie the epigenetically mediated metastatic potential

and chemotherapy resistance observed in a variety of cancer types (Wu and Roberts, 2013; Perez-

Plasencia and Duenas-Gonzalez, 2006; Lv et al., 2016; Li et al., 2015; Borley and Brown, 2015;

Bonito et al., 2016; Shaffer et al., 2017). Our observations support the existence of a fitness-

directed tuning process that operates at the level of transcription. However, in principle, tuning

could also occur at any point along the hierarchy of gene expression where noise, memory, and

feedback of global fitness can drive the activity of gene products towards levels that optimize the

overall health of the cell. In particular, searching for evidence of tuning at the level of translation

would be an important focus for future research.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

gene (Saccharomyces
cerevisiae)

URA3 NA YEL021W

gene (Entacmaea quadricolor) mRuby DOI: 10.1371/journal.
pone.0004391

gene (Aequorea victoria) GFP DOI: 10.1038/nbt1172 Codon optimized for S. cereivisiae;
sequence available as Supplementary file 3

genetic reagent (S. cerevisiae) PHSP12 NA Promoter region upstream of YFL014W

genetic reagent (S. cerevisiae) PADH1 NA Promoter region upstream of YOL086C

genetic reagent (S. cerevisiae) PRGI1 NA Promoter region upstream of YER067W

genetic reagent (S. cerevisiae) synprom This paper Synthetic promoter sequence. See
Supplementary Material for complete
sequence, and methods for
details of construction

genetic reagent (S. cerevisiae) GCN5::kanMX PMID: 10436161 Knockout cassette obtained
from the yeast knockout collection strain

genetic reagent (S. cerevisiae) ASF1::kanMX PMID: 10436161 Knockout cassette obtained
from the yeast knockout collection strain

genetic reagent (S. cerevisiae) NUP42::kanMX PMID: 10436161 Knockout cassette obtained from
the yeast knockout collection strain

strain background (S. cerevisiae) BY4743 PMID: 9483801

chemical compound, drug 6-azauracil ACROS Organics Product code 153970050 Stock solution 10 mg/mL in
1 M ammonium hydroxide

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

chemical compound, drug Nicotinamide Sigma Product number N0636 Stock solution 1 M in water;
filter sterilized

software, algorithm tuning_simple This paper Octave implementation
provided as Source Code 2

software, algorithm tuning This paper Python implementation
provided as Source Code 3

Media and strains
For routine growth of strains, we used YPD broth (10 g/L yeast extract, 20 g/L peptone, 20 g/L dex-

trose) or YPD agar plates (YPD broth +20 g/L Bacto agar). We used standard recipes based on SC

+glucose (SC+glu) (Kaiser et al., 1994) for all physiological experiments. SC/loflo refers to SC made

with low fluorescence yeast nitrogen base (US Biologicals). In the case of SC+glu, we used dropout

supplement powders interchangeably from ForMedium (DSCK012) and US Biologicals (D9515),

although they differ slightly in the concentrations of adenine and para-amino benzoic acid supplied.

SC+glu derivatives lacking particular nutrients are specified as SC+glu-NUTRIENT; e.g., SC+glu-ura

for SC+glu lacking uracil. We also refer to the commonly used mixture of SC+glu-ura with 6-azauracil

added as ura-/6AUi, where i is the final concentration of 6AU in microgram/mL. The agar for all

plates used in physiological experiments was either Noble agar (Difco) or quadruple-washed Bacto

agar. For the removal of the GAL-GIN11 cassette in counter-selections (see below), cells were plated

on YPGA agar plates (10 g/L yeast extract, 20 g/L peptone, 20 g/L galactose, 20 g/L agar, 100

microgram/mL ampicillin). All growth was at 30˚C; liquid phase growth included shaking at 200–220

rpm in an Innova 42 incubator (New Brunswick).

As diagrammed in Figure 3A, we constructed two classes of insertion cassettes. Each follows the

pattern of having a promoter, a functional reporter protein fused to a fluorescent protein, and then

ends with a CYC1 terminator. For URA3, the native sequence from S. cerevisiae was used, with the

exception of one silent SNP and an A160S mutation that does not appear to alter enzyme function.

The red fluorescent protein mRuby is described in (Kredel et al., 2009). For DHFR, we used murine

DHFR from pSV2-dhfr (Subramani et al., 1981) with an L22R mutation making it methotrexate-resis-

tant (Simonsen and Levinson, 1983). GFP refers in all cases to superfolder GFP (Pédelacq et al.,

2006) codon-optimized for S. cerevisiae using web-based tools from IDT (Integrated DNA Technolo-

gies); see Supplementary file 3 for the corresponding nucleotide sequence. In each case, the

reporter and fluorescent protein were separated by a short A/G/S containing linker. All constructs

were cloned in bacterial hosts using pBAD-derived plasmids; separate plasmids were constructed

with each promoter of interest downstream of a region homologous to the upstream target site in

the S. cerevisiae genome, and URA3-mRuby-cyc or DHFR-GFP-cyc upstream of a region homologous

to the downstream target site in the S. cerevisiae genome. All constructs were chromosomally inte-

grated at the leu2D0 locus of our yeast strains. Double-stranded DNA for transformation in yeast

was then generated by first amplifying the promoter and reporter constructs separately, using pri-

mers yielding 20–40 bp overlaps; we then used crossover PCR to generate the complete construct

of interest and subsequent amplification to generate a sufficient quantity for transformation. All PCR

used for strain construction was performed using Q5 high fidelity polymerase (NEB); routine PCRs

for strain validation were instead performed using OneTaq or Taq polymerase (NEB).

Promoters for ADH1, HSP12, and RGI1 were cloned from our wild type strain (BY4743 or its hap-

loid progenitors BY4741/BY4742) and included the entire region from 1700 to 1800 bp upstream of

the start codon to the base immediately prior to the start codon. The ADH1 promoter was selected

as a classic constitutive promoter (DeMarini et al., 2001); HSP12 and RGI1 were chosen as they

show high variance in expression between conditions (Tirosh et al., 2009; Tirosh et al., 2006), a

characteristic expected to be favorable for stochastic tuning. Synprom was designed in two stages:

the bulk of the DNA is a 600 bp random sequence generated using a Markov model to match the

trinucleotide frequencies present across all natural S. cerevisiae promoters. To this sequence we

appended the 200 bp immediately prior to the start codon of SAM3, to provide native transcription

and translation start sites. The resulting sequence was then modified to remove all recognizable
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binding sites for yeast transcription factors (TFs) as follows: we used the set of position weight matri-

ces and match thresholds in ScerTF (Spivak and Stormo, 2012) to identify all recognizable TF bind-

ing sites in the promoter, and randomized the sequences of only those regions and their immediate

surroundings until no recognizable TF binding sites remained. The resulting perturbed sequence is

given as Supplementary file 1. The required sequences were synthesized as gBlocks from Inte-

grated DNA Technologies and combined via Gibson assembly (Lartigue et al., 2009).

All yeast strains were derived from BY4741 or BY4742 (Brachmann et al., 1998), which includes a

complete deletion of the URA3 ORF (BY4741: Mat a his3D1 leu2D0 met15D0 ura3D0; BY4742: Mat a

his3D1 leu2D0 lys2D0 ura3D0). Insertions of URA3 or DHFR fusion proteins were always at the leu2D0

locus unless otherwise noted. To facilitate consistent insertion, we replaced the leu2D0 allele of

BY4741/BY4742 with a LEU2-GAL-GIN11 cassette (Akada et al., 2002), which allows growth in leu-

cine-free media but inhibits growth in the presence of galactose. We note that at least in our copy

of the BY474x strains, the leu2D0 deletion runs only from ChrIII:84799—ChrIII:93305, rather than

extending to position 93576 as annotated. Nevertheless, the deletion is sufficient to remove the

entire leu2 open reading frame.

Strains containing the fusion proteins were constructed by transforming the LEU2-GAL-GIN11

containing cells with appropriate double-stranded oligos (see above) and selection on YPGA plates,

allowing replacement of the LEU2-GAL-GIN11 cassette with the desired insert. Insertions were con-

firmed by PCR product sizing. Diploid strains were derived by mating one BY4741-derived (mat a)

strain with one BY4742-derived (mat a), and subsequently plating on SC+glu-lys-met or SC+glu-lys-

met-cys. All transformations were carried out using the LiAc-PEG-ssDNA method (Gietz and Woods,

2002).

Knockout strains were generated by beginning from appropriate haploids containing either a

leu2::promoter-URA3 or leu2::promoter-DHFR construct or simply leu2D0, amplifying an appropriate

kanMX knockout cassette from the corresponding strain in the S. cerevisiae gene deletion collection

(Giaever et al., 2002), and selecting on YPD+G418 plates. We confirmed the presence of kanMX at

the appropriate site and absence of the native gene by PCR. Diploid knockout strains containing

appropriate deletions and a URA3-mRuby insertion at leu2D0 were generated by mating these hap-

loids as noted above.

Colony formation assays
Experiments showing colony formation rates over time all follow a common formula. Cells were

grown overnight in SC+glu media, and then in the morning back-diluted 1:200 into fresh, pre-

warmed SC+glu. The cells were grown for four to five hours at 30˚C with shaking and then pelleted,

washed once with 25 mL deionized (DI) water, pelleted, washed with 1 mL water, pelleted, and

resuspended in 1 mL water. Specified dilutions were made in DI water from this final cell suspension.

Cells were then either plated on full plates at pre-chosen dilutions (100 microliters of an appropri-

ate cell suspension), or a dilution series was spotted onto appropriate agar plates (10 microliters per

spot). Plates were imaged and counted every 1–2 days for the duration of the experiment (lasting

between a few days and weeks, depending on the experiment in question). Plates were wrapped in

parafilm after ~3 days to minimize drying. Plating was performed identically on SC+glu plates (to

establish the number of cells being plated) and plates containing one or more test conditions (e.g.,

ura-/6AU).

Cells were counted either directly from the plates or from stored digital images. Direct plate

counts were done manually for all visible colonies; for those counted from saved images, we

imposed a minimum size threshold of 0.2 mm in diameter (rounding up to the nearest pixel). Times

for counts were rounded to the number of days since plating.

Death rate assays
To determine the survival rates of cells undergoing uracil starvation in the presence of various other

perturbations, we measured the death rates of cells lacking any copy of URA3 in SC-ura+glu media.

Cells were pregrown and washed as described above for plating assays, but then resuspended in liq-

uid SC-ura+glu media and incubated at 30˚C. Aliquots were regularly removed and spotted on SC

+glu plates to determine the number of viable colonies. Survival rates are for leu2D0 homozygotes
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(the original BY4743 diploid, possibly with a homozygous deletion of a specified gene) with no avail-

able copy of URA3.

Flow cytometry
Cells were analyzed by flow cytometry on an LSR Fortessa (Becton Dickinson) at the Columbia Uni-

versity Microbiology and Immunology Flow Cytometry Core Facility or University of Michigan Flow

Cytometry Core. Cells to be used in these experiments were initially prepared and washed following

the same pregrowth procedure as given above for colony formation assays, except that growth was

in low fluorescence SC/loflo media instead of SC. A flask containing 25 mL of prewarmed media

(generally ura-/6AU5 made from an SC-ura/loflo base) was then inoculated with 200 microliters of

the cell suspension, and cells were grown with shaking at 30˚C. Subsequent data acquisition varied

depending on the experiment to be performed.

For the long time courses shown in Figure 4 and its supplement, for an initial timepoint, 200

microliters of the washed cell suspension were combined with 500 microliters of 2x PBS/E (1x PBS

with 10 mM EDTA added), 290 microliters DI water, and 10 microliters of flow cytometry counting

beads (Invitrogen CountBright beads). At subsequent timepoints, snapshots were taken by combin-

ing 490 microliters of the growing cells, 10 microliters counting beads, and 500 microliters 2x PBS/E.

In either case, cells were run on the Fortessa, with signals recorded for forward and side scatter,

mRuby (using the Texas Red laser/filter set), and GFP (using the FITC laser/filter set).

Data were analyzed using the flowCore and flowViz modules of R (Ellis et al., 2006; Ellis et al.,

2009). Beads and cells were first identified based on their forward scatter and side scatter (FSC/

SSC) values (using permissive gates that capture the vast majority of each population) and fluores-

cence (beads were required to show very high fluorescence). For each growth phase (exponential in

SC+glu, starving in ura-/6AU, growing in ura-/6AU), we obtained empirical autofluorescence correc-

tions by analyzing populations in a similar growth state lacking the fluorescent tag on URA3. Guided

by exploratory analysis, we fit a linear model for starving cells predicting mRuby and GFP autofluor-

escence as a function of the observed forward and side scatter, and used constant autofluorescence

values characteristic of each of the two growing phases (obtained from cells with no fluorescent pro-

tein in a similar physiological state, either uracil-starved or undergoing stochastic tuning-driven

growth). During analysis of liquid phase fluorescent populations (shown in Figure 4 and its supple-

ment), the predicted autofluorescence values were subtracted from the observed value; in these

cases, an additional gate was applied to remove events with very low forward scatter values, which

had a very high variance in fluorescence and were well below the size of the main population.

For the use of FACS followed by plating to test the colony formation rates of highly fluorescent

cells, cells were prepared as described above, sorted using a BD FACSAria, and then subsequently

plated in equal quantities on SC+glu and ura-/6AU15 plates.

For the short timescale tuning data shown in Figure 5C, the cells were grown for 3–4 hr side by

side in SC/loflo + glu and –ura/loflo/6AU1 media, and then placed on ice and run directly on the

flow cytometer. For each biological replicate (performed on different days), we grew leu2::synprom-

URA3-mRuby/leu2::synprom-DHFR-GFP and nonfluorescent leu2::URA3/leu2D0 cells in parallel to

allow direct comparison of the observed fluorescence levels. Analysis was performed separately for

each biological replicate. We first normalized all fluorescence signals by the FSC-A signal raised to

the power of 1.5, which we found empirically to be an effective correction removing most of the

dependence of the fluorescence on cell size. Next, a mapping of FSC signals to expected autofluor-

escence on each channel was fitted using the R loess function (with default parameters), and the

expected autofluorescence subtracted from the observed value for each cell to yield what we refer

to as the blanked fluorescence. We then calculated and compared the changes in the median

blanked fluorescence of the populations for the same cells grown in SC+glu vs. ura-/6AU1 media.

Confidence intervals were calculated by bootstrapping with 200 bootstrap replicates.

Whole genome sequencing
Cells for whole genome sequencing were taken directly from the growth condition of interest (ura-/

6AU15 plate or ura-/6AU5 liquid media) and flash frozen in 15% glycerol or 1x TES (10 mM Tris, pH

7.5; 10 mM EDTA, 0.5% SDS). One reference sample grown under unselective conditions was taken

for each starting strain to use as a baseline. Genomic DNA was isolated using a YeaStar Genomic
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DNA kit (Zymo Research) according to the manufacturer’s instructions. Samples were then barcoded

and prepared for sequencing using a Nextera XT kit (Illumina, Inc.) and sequenced as part of a

pooled library on a NextSeq (Illumina, Inc.).

Sequencing reads were clipped to remove adapters and commonly observed artifactual end

sequences with cutadapt (Martin, 2014), and then further trimmed using Trimmomatic 0.30

(Bolger et al., 2014) to remove very low quality (<3) end bases, retain only the portion of the read

with a quality score above 15 in a four base sliding average window, and remove reads less than 10

bp long. Surviving trimmed reads were then aligned to the reference genome using Bowtie 2.1

(Langmead et al., 2009); the reference genome was constructed from the S. cerevisiae S288c

genome (GenBank BK006934 – BK006949), deleting the URA3 ORF and inserting the sequence for

the appropriate URA3 and DHFR constructs in separate copies of chromosome III at the LEU2 locus.

Read data used in this analysis are available from the Short Read Archive under accession

SRP117724.

After alignment, mutational calls and read depths were obtained using the mpileup and depth

modules of samtools 0.1.18 (Li et al., 2009), respectively. Reads for called variants within 25 kb of

the insertion site were examined manually and compared to the sequenced parental strain; validated

variants are listed in Supplementary file 4.

RNA isolation
RNA was isolated using an adaptation of the hot acid phenol method (Collart and Oliviero, 2001).

Cells for RNA isolation were grown under appropriate conditions (either in liquid phase or on agar

plates), and then snap-frozen in 1x TES (10 mM Tris, pH 7.5; 10 mM EDTA; 0.5% SDS) and stored

below �70˚C. Snapshots of 200 to 600 microliters were taken from growing liquid phase cultures,

whereas from agar plates we harvested 1–20 colonies of <0.5 mm diameter taken from the same

plate as each biological replicate. RNA was isolated by rapidly thawing the cell suspension and mix-

ing 1:1 with a 5:1 acid phenol:chloroform solution, then incubating 60 min at 65˚C with occasional

vigorous vortexing. The solution was then chilled on ice for 5 min, and centrifuged 5 min at 16,000 x

g at 4˚C. The aqueous phase was mixed 1:1 with additional acid phenol:chloroform, chilled, and cen-

trifuged as before. The aqueous phase was then mixed 1:1 with a 24:1 chloroform:isoamyl alcohol

solution, and centrifuged 5 min at 4˚C. The resulting aqueous phase was transferred to a fresh tube

and combined with 1/10 vol 3 M sodium acetate, 2 volumes of 1:1 ethanol:isopropanol, and 1/800—

1/200 vol Glycoblue (Ambion), and then precipitated for at least 1 hr at �20˚C and then at least 1 hr

at �80˚C. RNA was recovered by centrifuging 15 min at 16,000 x g at 4˚C, washed with ice cold 75%

ethanol, spun an additional 5 min, and then air-dried and resuspended in RNAse-free water. The

samples were then further purified using a Zymo RNA clean and concentrator five according to the

manufacturer’s instructions, including an on-column DNase digestion.

Quantitative RT-PCR
Total RNA was purified from cells in the desired growth condition using the hot acid-phenol proce-

dure described above. cDNA pools were generated for each sample using random hexamer-primed

reverse transcription with Protoscript II (New England Biolabs) following the manufacturer’s instruc-

tions. cDNA pools were used directly in qPCR reactions without further purifications, assembling

reactions using iTaq Universal SYBR Green Supermix (BioRad) following the manufacturer’s instruc-

tions, in GeneMate PCR plates. Plates were sealed with Microseal ‘B’ adhesive film (BioRad) and run

on a BioRad CFX96 detection system. Ct values calculated by the instrument software were then

exported for subsequent analysis. All isolated RNA was quantified on a Bioanalyzer (Agilent) and

found to have an RIN >= 6.8.

For comparison of URA3 and DHFR expression, we calculated separate DCt values for each qPCR

run replicate by taking the median of all technical replicates from that run. Values plotted in Fig-

ure 4—figure supplement 2 reflect DCt data from 1 to 2 technical replicate wells on each of two to

four separate, independently assembled runs; we plot the median of day-wise data points for each

separate biological sample. Primer locations and sequences are given in Supplementary file 7. We

performed a no-reverse transcriptase control reaction for each sample to ensure that DNA contami-

nation did not contribute to the observed signal (data not shown).
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qRT-PCR data were analyzed using a Bayesian hierarchical model treating the DCt value between

the URA3 and DHFR primers as follows:

DCt(sample,day)~T(ms(sample), srep, nrep)

ms(sample)~T(mc(class), sc(class), nbio)

Parameters not otherwise specified were assigned appropriate uninformative priors. Here ‘sam-

ple’ refers to a single biological sample and ‘class’ to a single growth condition. The key parameter

of interest is mc for each class of cells under study, the overall average URA3:DHFR difference for

cells grown under that condition. We fitted the model using JAGS (Plummer, 2003), and then report

credible intervals and other inferences from the posterior distribution on mc. Each of the DCt(sample,

day) values used the median across 1–2 technical replicates for each primer pair.

Cell count data analysis
Data were analyzed using custom-written python and R scripts. Source code for the nontrivial analy-

sis of flow cytometry data is provided as Source code 1. Uncertainties for cell counts (shown in plat-

ing and flow cytometry data) were calculated by treating each observed count as a Poisson random

variable; using Bayesian inference with the Jeffreys prior (Jeffreys, 1961), the posterior distribution

for the rate parameter I (the concentration of cells) is given in closed form by

I ~ Gamma(0:5þ
Pn

i¼0
in, n)

Where n is the number of observations and the in are the observed counts. Error bars then indi-

cate a central 95% credible interval for I given the observed data.

Recovery experiments
Experiments to examine the reversion of tuned colonies toward a naı̈ve state were performed as

shown in Figure 8—figure supplement 1. Single colonies from a ura-/6AU15 plate were streaked

out onto SC +glu and allowed to grow. From that plate, single colonies were again picked and

underwent repeated passages in liquid media; each ‘passage’ refers to a 200-fold dilution, which is

then allowed to grow for 48 hr (96 hr for the very first transfer). Cells were also taken for plating

from the original ura-/6AU15 plate, the first SC +glu plate stage, and several subsequent time points

during liquid culture. Cells taken from plates were immediately diluted in water and spotted on

SC +glu and ura-/6AU15 to track colony formation rates; cells taken from liquid passages were

streaked out on SC +glu plates prior to use in spottings, in order to obtain a consistent physiological

state. Plots for ‘naı̈ve’ cells refer to cells treated identically, except that they had initially been grown

on SC +glu plates instead of ura-/6AU15 plates. Recovery was assessed based on the amount of

time required for 1 in 10,000 cells spotted on the new ura-/6AU15 plate to form countable colonies

(using linear interpolation of colony counts between observed data points); in the event that one

dilution yielded no colonies passing our size threshold, but the next (10-fold more concentrated)

spot gave an uncountable haze, we assigned a count of 1 to the more concentrated spot.

Numerical simulations
The numerical simulations shown in Figures 2 and 5 were performed by implementing the model

described in the text using the Matlab programming language and simulated using Matlab (Math-

works, Inc.) or GNU Octave version 3.8.1 (Eaton et al., 2009), with qualitatively equivalent results

obtained in either case. All simulations were performed using the same initial conditions (but differ-

ent random seeds, for the sampling shown in Figure 5). Octave code implementing this model is

provided as Source code 2.

The physiological tuning model employed for Figure 9 and the accompanying text was imple-

mented in python, and simulated using python 2.7.6, making heavy use of the numpy (Svd et al.,

2011) and scipy (Jones et al., 2001) libraries, with data analysis and plotting using matplotlib

(Hunter, 2007) and pandas (McKinney, 2010). The details of the physiological model itself are given

below.

Biologically feasible simulation of stochastic tuning
To provide a suitable mechanistic model for stochastic tuning, we developed a discrete-time model

tracking the temporal evolution of transcription rates ri,t (continuous, changed in response to

Freddolino et al. eLife 2018;7:e31867. DOI: https://doi.org/10.7554/eLife.31867 24 of 34

Research article Computational and Systems Biology Chromosomes and Gene Expression

https://doi.org/10.7554/eLife.31867


random fluctuations and potentially tuning input), copy number of each transcript per cell xi, and

copy number of each protein per cell pi, considered separately for each gene i.

Transcriptional regulation lies at the center of our consideration for fitness-directed tuning. In the

physiological model, there is a time-dependent probability ri,t for a single transcript to be generated

from gene i at each timestep; the probabilities ri,t are updated in response to changing fitness as

described below. In addition, each copy of the transcript present in the cell has a fixed probability di

of being degraded at each timestep. The net change at each timestep t in the transcript level xi for

each gene i is thus given by

xi,t ~xi,t-1 - binom(xi,t-1, di)+bern(ri,t-1)

Here binom/bern are binomial and Bernoulli random variables, respectively. Terms using binomial

distributions allow a uniform probability for each present copy of a protein or transcript to be

degraded or translated, whereas the Bernoulli term captures the probability of a transcript arising

from each gene in a single timestep. We used a timestep of 1 s for all simulations described here.

Protein production in our physiological model arises from similar principles. At each timestep,

each copy of a transcript from gene i has a fixed gene-dependent probability li of being translated

to produce a single copy of the corresponding protein. In addition, each copy of that protein already

present in the cell has a gene-dependent probability ei of being degraded. Thus, the net rate of

change in the protein copy number pi at each time t is governed by the equation

pi,t ~pi,t-1 - binom(pi,t-1, ei)+binom(xi,t-1,li)

The fixed, gene-specific parameters di, ei, and li were drawn from distributions that are them-

selves fits to appropriate experimental data; we then modified the fitted parameters to yield distri-

butions that are contained within the physiological distributions, while excluding the extreme ends

of the available range. The parameters used for the physiological rate distributions are summarized

below:

Transcription rates (used to initialize the transcription rate distribution, and separately to set the

target transcription rate distribution): Transcripts per hour are gamma distributed with shape = 5

and rate = 2 (obtained by fitting data from (Holstege et al., 1998) and excluding extreme values)

Transcript degradation rates di: Half lives in minutes have a gamma distribution with shape = 12.0

and rate = 0.75 (obtained by fitting data from (Holstege et al., 1998) and then modifying to exclude

extreme values).

Protein degradation rates ei: Half lives in hours have a scaled t distribution with mean = 1,

sigma = 0.382, and 80 degrees of freedom (fit based on data from (Christiano et al., 2014), but

modified to exclude long half-lives, consistent with the induction of autophagy in stressed cells

(Cebollero and Reggiori, 2009)).

Protein synthesis rates li: log2 synthesis rates per transcript have a scaled t distribution with

mean=-5, sigma = 0.5, and 80 degrees of freedom (in units of s�1); based on protein abundance

data from (Kulak et al., 2014) combined with the other parameters defined above, and modified to

exclude extreme values).

As described in the main text, our model permits two classes of ‘marks’ (representing histone

modifications) that alter transcription rates: tuning marks (T), which change in level on the basis of

recent changes in fitness and the current tuning mark state at each gene, and stabilizing marks (S),

which change in abundance based on the tuning mark levels at each promoter. The number of each

mark type at each promoter may be positive or negative, reflecting the possibility of distinct activat-

ing (+) or repressing (-) chromatin modifications.

The rate of change in the tuning marks proceeds according to the following principles. At each

timestep, marks may be added or removed on the basis of recent changes in fitness; each mark may

decay with a fixed probability; and marks may be added or removed in an undirected manner due

to random drift. Referring to the number of tuning marks at a particular gene i as mi, the change in

tuning marks at each timestep due to the tuning contribution alone is given by

Dmi,tuning ~sgn(DFt) * sgn(mi) * randint(1,5) * bern(ptunestep)

Here sgn(x) is one if x is positive, �1 if x is negative, and 0 if x is zero. D F indicates the difference

in mean fitness between the previous nwindow steps and the nonoverlapping block of nwindow steps

before that; thus, sgn(DFt) will be positive if the cells are becoming healthier, and negative if the cells

are becoming less healthy. The fitness itself, Ft, is calculated as the Euclidean distance between the

observed vector of protein levels pt at a particular timestep, and the median observed in the last

quarter of a long (10 times the normal simulation length) trajectory where all transcription rates are
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fixed at their target values (note that oscillation still occurs, even in this case of known-correct tran-

scription rates, due to the inherent randomness in transcript and protein production and degrada-

tion). In the context of our model, DF represents the direction of change in global cellular health,

and ptunestep indicates the probability that tuning marks will be added/removed at a particular time-

step. The combination of signs of the change in fitness (DF) and marks (mi) ensures that if the fitness

is increasing and a given promoter has a positive number of tuning marks, the number of tuning

marks at that promoter will increase further, whereas if the fitness was decreasing, the number of

tuning marks will be decreased. The inverse directions apply for promoters with negative levels of T

marks. Note that for control simulations where the effects of tuning are removed, the sign of the fit-

ness-dependent term above is instead taken to be random.

The removal and random drift of tuning marks are governed by the equations

Dmi,removal ~ �1 * sgn(mi) * binom(mi, pdecay)

and

Dmi,random ~ (1–2*bern(0.5)) * bern(prandom) respectively. The first equation here indicates that

each individual mark may be removed with probability pdecay at each timestep, and in addition, the

second equation dictates that each promoter may have a single mark of random sign added at each

timestep, with probability prandom. The overall equation for the change in tuning marks at promoter i

at each timestep is thus given by the sum of the terms above:

Dmi,t ~ D Ft * sgn(mi,t-1) * randint(1,5) * bern(ptunestep) - sgn(mi) * binom(mi, pdecay) + (1–2*bern(0.5))

* bern(prandom)

The stabilizing marks (S), in contrast, do not vary directly in response to fitness, but rather, at

each timestep may be added or removed from each promoter depending on its current state of T

marks (see Figure 9B): if the promoter has a high transcription rate due to high T levels, the net S

count will be increased (with a probability at each timestep proportional to the current magnitude of

the T level), and if the promoter has low T levels, the net S count is decreased. The effect of the sta-

bilizing marks is to slowly shift the baseline transcription rate of genes over time. The change in num-

ber of S marks ni at gene i at each timestep is given by:

Dni,t ~ sgn(mi,t-1) * bern(abs(mi,t-1) * ps_mark / mmax)

Here ps_mark is a probability of changing S marks at each time step, and mmax the maximum num-

ber of T marks allowed at a given promoter, whether positive (activating) or negative (repressive).

Every gene in the model is taken to have a baseline transcription rate, ri,0, drawn from the physio-

logical distributions defined above. The time-dependent instantaneous transcription rate of a given

gene, ri,t, is then calculated from the number of tuning marks (mi) and stabilizing marks (ni). The

effects of tuning and stabilizing marks in the model are multiplicative, such that the transcription

rate ri at gene i with mi tuning marks and ni stabilizing marks is given by

ri,t = ri,0 * a * exp(b); where a = 2*((mi,t / mmax)+1) and b = mS * ni,t
Here mS represents the magnitude of the effects of a single S mark, and the number of T marks is

constrained to the interval [-mmax, mmax]. The various fixed model parameters (e.g., mS, pdecay, etc.)

were chosen to be physiologically plausible while supporting tuning. The values of these parameters

used in Figure 9C and E are taken as a baseline and shown in Supplementary file 8; note, however,

that as shown in Figure 9D, the performance of the model is robust to changes in those parameters.

A python implementation of the model, along with sample inputs corresponding to the simula-

tions described here, are included as Source code 3.

Fluorescence tracking of sorted populations
In order to measure the mixing times under different stress conditions, synprom-URA3-mRuby/syn-

prom-DHFR-GFP cells were grown overnight in SC +glu media. The next morning, the cells were

back-diluted 1:100 into fresh, prewarmed low fluorescence SC +glu or ura-/6AU10. The cells in ura-/

6AU10 media were kept in a 30˚C incubated shaker for 24 hr before sorting, whereas the cells in the

complete media were sorted after four hours of growth at 30˚C. The cells were sorted based on their

mRuby fluorescence level into three populations of the top 20%, bottom 20%, and the complete dis-

tribution (mock-sorted) of cells. In order to minimize the effects of both autofluorescence and size-

fluorescence correlations, the cells (including those in the mock-sorted population) were tightly

gated on FSC-A levels. The sorted cells were kept on ice until they were spun down and transferred

to pre-warmed media identical to that in which they had previously been incubated (that is, cells

from complete media to complete media and cells from ura-/6AU to fresh ura-/6AU). The cells were
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incubated at 30˚C thereafter. A sample of each population was analyzed using flow cytometry at dif-

ferent time intervals, with T = 0 being the time that the fresh media was added to the samples. The

last time point for the cells in SC +glu media was 630 min, and for the ura-/6AU cells was 6660 min.

We calculated the distribution of mRuby fluorescence values for each sample at each time point

by smoothing the observed values using a kernel density estimator. We then measured the pairwise

mRuby fluorescence distribution overlap of the top 20%, bottom 20% and the complete distribution

at each time point for each growth condition. The distribution overlap was calculated by numerically

integrating the area under the (normalized) kernel density distribution estimates of both populations

being compared.

An increasing overlap relative to t = 0 signifies the amount that the two populations have moved

towards each other, and therefore the higher the overlap, the more mixed the two populations have

become. Therefore, we calculated f tð Þ ¼ max xð Þ�x tð Þð Þ
xt¼0

, where x is the overlap between the two distribu-

tions and max(x) is the maximum observed overlap. f(t) can be modeled as an exponential decay

process according to:

f tð Þ ¼ ae�
t
t

where t provides a timescale for the mixing time (in particular, t ln(2) is the half-life of the decay

process). We used nonlinear curve fitting in Matlab to estimate the values of the parameters in the

above equation for cells grown under each of the physiological conditions described above and

report the estimated half-lives to give insight into the mixing times active in the populations studied

here.

Fluorescence microscopy time courses on immobilized cells
The images shown and analyzed in Figure 6, Figure 7, and panel A of Figure 7—figure supplement

2 were obtained on a Zeiss Axio Observer Z1, using a 40x objective lens. PHSP12-URA3-mRuby/

PADH1-DHFR-GFP cells were grown overnight in SC +glu liquid media, and then back-diluted 100x

into SC/loflo + glu media and grown four additional hours with shaking at 30˚C. Cells were spun

down, and then incubated in ura-/loflo/6AU5 liquid for 12–13 hr. The cells were then pipetted onto

the prepared slides. In order to prepare slides, we added 200 mL of ura-/loflo/6AU5 media contain-

ing 1% agar to each well of a two-well slide. Using a 22 mm coverslip, the surface of the media in the

wells containing the solid media was flattened. After adding the cells on to the wells, we allowed

extra media to be absorbed and then added a cover slip on top. The cells were imaged on DIC,

GFP, brightfield, and mRuby channels; snapshots were taken once every 30 min for approximately

24 hr.

The additional imaging time series analyzed in panels B-D of Figure 7—figure supplement 2

were obtained for PHSP12-URA3-mRuby/PADH1-DHFR-GFP cells immobilized to thin-bottomed growth

chambers and grown in ura-/6AU5 media. To prepare the slides, cells were grown overnight in

SC +glu liquid media, and then back-diluted 100x into SC/loflo + glu media and grown four addi-

tional hours with shaking at 30˚C. During that incubation, a coverslip/incubation chamber (Nunc) was

treated for five minutes with poly-D-lysine solution (MPI Biomedical), washed three times with sterile

deionized water, and then allowed to dry.

After the pregrowth period, cells were diluted 10x into additional prewarmed SC/loflo + glu, and

then pipetted onto the poly-D-lysine treated cover slip and allowed to settle for 30 min at room tem-

perature. The media was removed, and non-adherent cells were washed away with two 1 mL rinses

of sterile deionized water. The cells were then covered with 2 mL of ura-/loflo/6AU5 media, and

then placed in a preheated microscopy incubation chamber (OKO) at 30˚C and 90% relative humid-

ity. Cells were imaged on DIC, GFP, and mRuby channels; snapshots taken once every 30 min for 24

hr on a Nikon Eclipse Ti microscope using a 20x objective.

For comparative visualization purposes (Figure 7A–B), the DIC or brightfield channel of each

image was rescaled using the ImageMagick ‘normalize’ operator, and the fluorescence channels

were normalized by subtracting the minimum pixel value within a given field of view, and then sub-

jecting the remaining data to a median filter over a 5 � 5 pixel window. The fluorescence channels

were then stacked on the DIC or brightfield to generate the images shown. Un-normalized data

were used for all quantitative analysis.
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For the quantitative analysis in Figure 7C–E and Figure 7—figure supplement 2, segmentation

and lineage tracking were performed manually to identify cell division events and define cell interiors

at the plotted timepoints. The fluorescence of each cell for each channel was then taken to be the

average value of all pixels within the defined cell interior, with the mode value of all pixels in a

defined window around the cell subtracted as background. For the purpose of classifying cells based

on their division state, a cell was classified as ‘dividing’ if it gave rise to a daughter cell before the

next analyzed snapshot. Timepoints prior to three hours were excluded from quantitative analysis of

dividing vs. nondividing cells for the populations pregrown in SC/loflo + glu, as a large fraction of

cells in all of our microscopy experiments did undergo a single division before arresting, likely using

residual nutrients from their previous growth in complete media.
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Álvarez-Errico D, Vento-Tormo R, Sieweke M, Ballestar E. 2015. Epigenetic control of myeloid cell
differentiation, identity and function. Nature Reviews Immunology 15:7–17. DOI: https://doi.org/10.1038/
nri3777, PMID: 25534619

Freddolino et al. eLife 2018;7:e31867. DOI: https://doi.org/10.7554/eLife.31867 30 of 34

Research article Computational and Systems Biology Chromosomes and Gene Expression

https://trace.ddbj.nig.ac.jp/DRASearch/study?acc=SRP117724
https://trace.ddbj.nig.ac.jp/DRASearch/study?acc=SRP117724
https://trace.ddbj.nig.ac.jp/DRASearch/study?acc=SRP117724
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652631
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652631
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652631
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652632
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652632
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652632
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652633
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652633
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652633
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652634
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652634
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652634
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652635
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652635
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652635
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652636
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652636
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652636
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652637
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652637
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652637
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652638
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652638
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN07652638
https://doi.org/10.1002/yea.841
http://www.ncbi.nlm.nih.gov/pubmed/11921088
https://doi.org/10.1126/science.1226683
https://doi.org/10.1126/science.1226683
http://www.ncbi.nlm.nih.gov/pubmed/23224554
https://doi.org/10.1016/j.ceb.2014.12.001
http://www.ncbi.nlm.nih.gov/pubmed/25554914
https://doi.org/10.1128/JB.01976-07
https://doi.org/10.1128/JB.01976-07
http://www.ncbi.nlm.nih.gov/pubmed/18487343
https://doi.org/10.1038/nri3777
https://doi.org/10.1038/nri3777
http://www.ncbi.nlm.nih.gov/pubmed/25534619
https://doi.org/10.7554/eLife.31867


Barenholz U, Keren L, Segal E, Milo R. 2016. A Minimalistic Resource Allocation Model to Explain Ubiquitous
Increase in Protein Expression with Growth Rate. PLoS One 11:e0153344. DOI: https://doi.org/10.1371/journal.
pone.0153344, PMID: 27073913

Basehoar AD, Zanton SJ, Pugh BF. 2004. Identification and distinct regulation of yeast TATA box-containing
genes. Cell 116:699–709. DOI: https://doi.org/10.1016/S0092-8674(04)00205-3, PMID: 15006352

Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. 2002. Inhibition of silencing and
accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. Journal of
Biological Chemistry 277:45099–45107. DOI: https://doi.org/10.1074/jbc.M205670200, PMID: 12297502

Blake WJ, Balázsi G, Kohanski MA, Isaacs FJ, Murphy KF, Kuang Y, Cantor CR, Walt DR, Collins JJ. 2006.
Phenotypic consequences of promoter-mediated transcriptional noise. Molecular Cell 24:853–865.
DOI: https://doi.org/10.1016/j.molcel.2006.11.003, PMID: 17189188

Blount ZD, Barrick JE, Davidson CJ, Lenski RE. 2012. Genomic analysis of a key innovation in an experimental
Escherichia coli population. Nature 489:513–518. DOI: https://doi.org/10.1038/nature11514, PMID: 22992527

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics
30:2114–2120. DOI: https://doi.org/10.1093/bioinformatics/btu170, PMID: 24695404

Bonito NA, Borley J, Wilhelm-Benartzi CS, Ghaem-Maghami S, Brown R. 2016. Epigenetic regulation of the
homeobox gene MSX1 associates with platinum-resistant disease in high-grade serous epithelial ovarian
cancer. Clinical Cancer Research 22:3097–3104. DOI: https://doi.org/10.1158/1078-0432.CCR-15-1669,
PMID: 26763252

Borley J, Brown R. 2015. Epigenetic mechanisms and therapeutic targets of chemotherapy resistance in epithelial
ovarian cancer. Annals of Medicine 47:359–369. DOI: https://doi.org/10.3109/07853890.2015.1043140,
PMID: 26158617

Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. 1998. Designer deletion strains derived
from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption
and other applications. Yeast 14:115–132. DOI: https://doi.org/10.1002/(SICI)1097-0061(19980130)14:2<115::
AID-YEA204>3.0.CO;2-2, PMID: 9483801

Brauer MJ, Huttenhower C, Airoldi EM, Rosenstein R, Matese JC, Gresham D, Boer VM, Troyanskaya OG,
Botstein D. 2008. Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast.
Molecular Biology of the Cell 19:352–367. DOI: https://doi.org/10.1091/mbc.E07-08-0779, PMID: 17959824

Broach JR. 2012. Nutritional control of growth and development in yeast. Genetics 192:73–105. DOI: https://doi.
org/10.1534/genetics.111.135731, PMID: 22964838

Cauchy A. 1847. Methode generale pour la resolution des systemes d’equations simultanees. Comptes Rendus
Hebdomadaires Des Seances De l’Academie Des Sciences 25:536–538.

Cebollero E, Reggiori F. 2009. Regulation of autophagy in yeast Saccharomyces cerevisiae. Biochimica Et
Biophysica Acta (BBA) - Molecular Cell Research 1793:1413–1421. DOI: https://doi.org/10.1016/j.bbamcr.2009.
01.008, PMID: 19344676

Chen H, Fan M, Pfeffer LM, Laribee RN. 2012. The histone H3 lysine 56 acetylation pathway is regulated by
target of rapamycin (TOR) signaling and functions directly in ribosomal RNA biogenesis. Nucleic Acids Research
40:6534–6546. DOI: https://doi.org/10.1093/nar/gks345, PMID: 22553361
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Thieffry D, Huerta AM, Pérez-Rueda E, Collado-Vides J. 1998. From specific gene regulation to genomic
networks: a global analysis of transcriptional regulation in Escherichia coli. BioEssays 20:433–440. DOI: https://
doi.org/10.1002/(SICI)1521-1878(199805)20:5<433::AID-BIES10>3.0.CO;2-2, PMID: 9670816

Tirosh I, Barkai N, Verstrepen KJ. 2009. Promoter architecture and the evolvability of gene expression. Journal of
Biology 8:95. DOI: https://doi.org/10.1186/jbiol204, PMID: 20017897

Tirosh I, Weinberger A, Bezalel D, Kaganovich M, Barkai N. 2008. On the relation between promoter divergence
and gene expression evolution. Molecular Systems Biology 4:159. DOI: https://doi.org/10.1038/msb4100198,
PMID: 18197176

Tirosh I, Weinberger A, Carmi M, Barkai N. 2006. A genetic signature of interspecies variations in gene
expression. Nature Genetics 38:830–834. DOI: https://doi.org/10.1038/ng1819, PMID: 16783381

Van Hofwegen DJ, Hovde CJ, Minnich SA. 2016. Rapid evolution of citrate utilization by Escherichia coli by
direct selection requires citT and dctA. Journal of Bacteriology 198:1022–1034. DOI: https://doi.org/10.1128/
JB.00831-15, PMID: 26833416

Workman JJ, Chen H, Laribee RN. 2016. Saccharomyces cerevisiae TORC1 controls histone acetylation by
signaling through the Sit4/PP6 phosphatase to regulate sirtuin deacetylase nuclear accumulation. Genetics 203:
1733–1746. DOI: https://doi.org/10.1534/genetics.116.188458, PMID: 27343235

Wu JN, Roberts CW. 2013. ARID1A mutations in cancer: another epigenetic tumor suppressor? Cancer Discovery
3:35–43. DOI: https://doi.org/10.1158/2159-8290.CD-12-0361, PMID: 23208470

Zhou BO, Zhou JQ. 2011. Recent transcription-induced histone H3 lysine 4 (H3K4) methylation inhibits gene
reactivation. Journal of Biological Chemistry 286:34770–34776. DOI: https://doi.org/10.1074/jbc.M111.273128,
PMID: 21849496

Ziller MJ, Edri R, Yaffe Y, Donaghey J, Pop R, Mallard W, Issner R, Gifford CA, Goren A, Xing J, Gu H, Cachiarelli
D, Tsankov A, Epstein C, Rinn JR, Mikkelsen TS, Kohlbacher O, Gnirke A, Bernstein BE, Elkabetz Y, et al. 2015.
Dissecting neural differentiation regulatory networks through epigenetic footprinting. Nature 518:355–359.
DOI: https://doi.org/10.1038/nature13990, PMID: 25533951

Freddolino et al. eLife 2018;7:e31867. DOI: https://doi.org/10.7554/eLife.31867 34 of 34

Research article Computational and Systems Biology Chromosomes and Gene Expression

https://doi.org/10.1038/nature13714
http://www.ncbi.nlm.nih.gov/pubmed/25252976
https://doi.org/10.1038/msb4100147
http://www.ncbi.nlm.nih.gov/pubmed/17453047
https://doi.org/10.1534/genetics.106.055442
http://www.ncbi.nlm.nih.gov/pubmed/16510783
https://doi.org/10.1128/MCB.1.9.854
https://doi.org/10.1128/MCB.1.9.854
http://www.ncbi.nlm.nih.gov/pubmed/9279398
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1126/science.1154456
http://www.ncbi.nlm.nih.gov/pubmed/18467556
https://doi.org/10.1074/jbc.274.26.18157
http://www.ncbi.nlm.nih.gov/pubmed/10373413
https://doi.org/10.1126/science.1212986
http://www.ncbi.nlm.nih.gov/pubmed/22282810
https://doi.org/10.1074/jbc.M706384200
https://doi.org/10.1074/jbc.M706384200
http://www.ncbi.nlm.nih.gov/pubmed/17977840
https://doi.org/10.1002/(SICI)1521-1878(199805)20:5%3C433::AID-BIES10%3E3.0.CO;2-2
https://doi.org/10.1002/(SICI)1521-1878(199805)20:5%3C433::AID-BIES10%3E3.0.CO;2-2
http://www.ncbi.nlm.nih.gov/pubmed/9670816
https://doi.org/10.1186/jbiol204
http://www.ncbi.nlm.nih.gov/pubmed/20017897
https://doi.org/10.1038/msb4100198
http://www.ncbi.nlm.nih.gov/pubmed/18197176
https://doi.org/10.1038/ng1819
http://www.ncbi.nlm.nih.gov/pubmed/16783381
https://doi.org/10.1128/JB.00831-15
https://doi.org/10.1128/JB.00831-15
http://www.ncbi.nlm.nih.gov/pubmed/26833416
https://doi.org/10.1534/genetics.116.188458
http://www.ncbi.nlm.nih.gov/pubmed/27343235
https://doi.org/10.1158/2159-8290.CD-12-0361
http://www.ncbi.nlm.nih.gov/pubmed/23208470
https://doi.org/10.1074/jbc.M111.273128
http://www.ncbi.nlm.nih.gov/pubmed/21849496
https://doi.org/10.1038/nature13990
http://www.ncbi.nlm.nih.gov/pubmed/25533951
https://doi.org/10.7554/eLife.31867



