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Abstract Mammalian sirtuin 6 (Sirt6) is a conserved NAD+-dependent deacylase and mono-ADP

ribosylase that is known to be involved in DNA damage repair, metabolic homeostasis,

inflammation, tumorigenesis, and aging. Loss of Sirt6 in mice results in accelerated aging and

premature death within a month. Here, we show that haploinsufficiency (i.e., heterozygous

deletion) of Trp53 dramatically extends the lifespan of both female and male Sirt6-deficient mice.

Haploinsufficiency of Trp53 in Sirt6-deficient mice rescues several age-related phenotypes of Sirt6-

deficient mice, including reduced body size and weight, lordokyphosis, colitis, premature

senescence, apoptosis, and bone marrow stem cell decline. Mechanistically, SIRT6 deacetylates p53

at lysine 381 to negatively regulate the stability and activity of p53. These findings establish that

elevated p53 activity contributes significantly to accelerated aging in Sirt6-deficient mice. Our

study demonstrates that p53 is a substrate of SIRT6, and highlights the importance of SIRT6-p53

axis in the regulation of aging.

DOI: https://doi.org/10.7554/eLife.32127.001

Introduction
Mammalian sirtuin 6 (Sirt6), a conserved NAD+-dependent deacylase and mono-ADP ribosylase, has

been implicated in a range of regulatory pathways involved in premature aging and other age-asso-

ciated pathologies (Kugel and Mostoslavsky, 2014). Mice deficient in Sirt6 exhibit severe prema-

ture aging phenotypes, including metabolic defects, lymphopenia, osteoporosis, genomic instability,

and early death by 4 weeks of age (Mostoslavsky et al., 2006). Additionally, the ectopic expression

of Sirt6 has been shown to extend the lifespan of male mice by 15% (Kanfi et al., 2012). Sirt6 was

first identified to deacetylate histone H3 at lysine 9 and 56 (in a NAD+-dependent manner) at the

telomeres, promoter regions of target genes and globally as well, to mediate DNA damage repair,

maintain telomeric metabolism, suppress NF-kB pathway in promoting longevity and regulate cell

cycle (Kawahara et al., 2009; Michishita et al., 2008; Michishita et al., 2009; Yang et al., 2009).

The intricate roles of Sirt6 in DNA damage repair and metabolic regulation have been reported to

stem from its inherent NAD+-dependent deacetylating activity on histones, CtIP, GCN5 and others,

apart from its NAD+-dependent mono-ADP ribosylase activity (Dominy et al., 2012; Kaidi et al.,

2010; Mao et al., 2011). These and other foundational studies have established the importance of

Sirt6 in the regulation of processes contributing to aging and longevity. Although Sirt6-mediated

Ghosh et al. eLife 2018;7:e32127. DOI: https://doi.org/10.7554/eLife.32127 1 of 20

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.32127.001
https://doi.org/10.7554/eLife.32127
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


regulation has been reported for several signaling pathways (for example, NF-kB, AKT, and IGF1)

(Kanfi et al., 2012; Kawahara et al., 2009; Pan et al., 2016; Xiao et al., 2010), the key mechanism

underlying the severe acceleration of aging and premature death in Sirt6-deficient mice remains

elusive.

Trp53, also denoted as p53, is a tumor suppressor gene that triggers cell cycle arrest, apoptosis,

and/or senescence (Rufini et al., 2013; Vousden and Prives, 2009). p53 has been widely implicated

in premature senescence and aging (Hinkal et al., 2009; Poyurovsky and Prives, 2010;

Varela et al., 2005). p53 was the first non-histone protein identified to undergo acetylation as a

post-translational modification (Gu and Roeder, 1997). Ever since, a range of lysine residues have

been identified across the domains of p53, with majority of acetylated lysine residues being concen-

trated in the C-terminus region of p53 (Brooks and Gu, 2011; Gu and Zhu, 2012; Gu and Roeder,

1997; Kruse and Gu, 2009). Lysine 382, localized in the C-terminus of p53, is identified to undergo

marked acetylation followed by lysine 381 and 373 (Gu and Roeder, 1997). Given the stunted half-

life of around 30 min for p53, these acetylations have been reported to impart stability to p53, which

then mediates a range of downstream functions in response to DNA damage, oncogenic stress, age-

associated abnormalities, tumor suppression and others (Donehower, 2009; Lozano, 2010;

Vousden and Prives, 2009).

In laminopathy-based progeria, mutant lamin A results in elevated p53 signaling and reducing

p53 level significantly ameliorates premature aging phenotypes and extends lifespan (Varela et al.,

2005), thus suggesting that activation of p53-dependent downstream signaling accelerates aging.

Interestingly, lamin A is an endogenous activator of SIRT6 and mutant lamin A results in compro-

mised SIRT6 deacetylase activity (Ghosh et al., 2015). Given that functional defects in Sirt6 and acti-

vation of p53 are both associated with laminopathy-based premature aging, it is conceivable to

speculate that loss of Sirt6 may also impact p53 signaling. To determine whether aberrant p53 sig-

naling contributes to the severe progeroid phenotypes in Sirt6-deficient mice, we generated Sirt6-

deficient mice with haploinsufficiency (i.e., heterozygous deletion) of p53 and monitored the growth

and survival of the compound mutant mice along with their wild-type and Sirt6 single knockout (KO)

eLife digest Almost without exception, mammals age as they grow older. Older mammals are

at greater risk of diseases like cancer, and have fewer stem cells that would otherwise help to keep

their organs healthy. Some of the proteins that regulate and impact upon aging have been

identified. One of these is an enzyme called SIRT6, which is thought to promote longevity. Mice

without any SIRT6 suffer from severe premature aging, and rather than living up to two years like

normal mice, SIRT6-deficient mice die within one month of their birth. The mutant mice also lose

stem cells and exhibit signs of organ degeneration and body wasting.

Another protein called p53 is well known for having the opposite effect to SIRT6: it accelerates

aging and helps to prevent tumor growth. However, it was unclear if p53 is also involved in the

processes that lead to the premature death of mice without SIRT6.

Now, Ghosh et al. report that mouse cells and tissues without SIRT6 have more p53 compared to

control samples. Biochemical experiments showed that the SIRT6 and p53 proteins physically

interact, and that SIRT6 could use its enzymatic activity to remove a chemical modification, called

acetylation, from p53. Without this specific acetylation, p53 became less stable and its levels

dropped. Consequently, p53 was stabilized in the SIRT6-deficient cells. When Ghosh et al. deleted

one copy of the gene that codes for p53 in SIRT6-deficient mice, mutant mice that had before only

lived for a month now lived for up to sixteen months. Additionally, the mice were healthier, showing

fewer signs of aging: for example, they had more immune cells and stem cells, straighter spines, and

showed less gut inflammation and less body wasting.

These findings suggest that SIRT6 does indeed inhibit p53 to counteract the normal aging

process. Future experiments may explore if this regulation also holds true in human cells. Detailed

knowledge of these molecular interactions could also open up more research into therapies against

cancer and aging.

DOI: https://doi.org/10.7554/eLife.32127.002
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littermates. We assessed and compared a range of premature aging-associated abnormalities in our

generated compound mutant mice (Sirt6-/-Trp53+/- mice), which have been previously reported in

Sirt6 single KO (Sirt6-/-Trp53+/+) mice (Mostoslavsky et al., 2006). Our findings, revealing the direct

link between Sirt6 and p53, underscore the critical role of the Sirt6-p53 regulatory axis in aging and

age-associated diseases, which has potential therapeutic implications in healthy aging management.

Results

Upregulation of p53 signaling upon deficiency of Sirt6
To determine whether p53 signaling is involved in the causation of premature senescence upon loss

of Sirt6, we first analyzed the expression of some classical downstream targets of p53 in Sirt6-profi-

cient (Sirt6+/+Trp53+/+) and deficient (Sirt6-/-Trp53+/+) primary mouse embryonic fibroblasts (MEFs)

obtained from littermates, and explored the possibility that functional cross-talk may occur between

these two proteins. To this end, 3 batches of primary MEF cells collected from independent batches

of embryos were analyzed. To avoid mutations in p53 pathway occurring spontaneously over serial

passaging of MEFs, only primary MEFs of P1 or P2 passage were used in experiments, unless stated

otherwise. Intriguingly, a range of downstream targets of p53, including p21, Puma, Noxa, Bax and

Ddit4 (Poyurovsky and Prives, 2010), were upregulated in Sirt6-/-Trp53+/+mouse embryonic

Figure 1. Heterozygosity of Trp53 rescues premature senescence in Sirt6-deficient scenario, (Trp53 has been denoted as p53 in the figures). (A)

Quantification for qPCR analyses for gene expression of p53 targets (with respect to Gapdh controls) in Sirt6+/+Trp53+/+ (WT) and Sirt6-/-Trp53+/+ (Sirt6

KO) MEFs, respectively. Data represent mean ± SEM, n = 3. *p<0.05, and **p<0.01 calculated using Student’s t-test. (B) Representative images of

senescence-associated b-galactosidase staining in Sirt6+/+Trp53+/+, Sirt6-/-Trp53+/+ and Sirt6-/-Trp53+/- MEFs at P6. Scale bar, 100 mm. (C) Quantification

of data presented in (B). Data represent mean ± SEM, approximately 100 cells were counted from each genotype in three replicates. P value calculated

using one-way ANOVA. (D) Graph showing survival of Sirt6+/+Trp53+/+, Sirt6-/-Trp53+/+ and Sirt6-/-Trp53+/- MEFs of passage 3 (P3) one week after

exposure to different doses of g-irradiation. Data represent mean ± SEM, n=3. (E) Graphical representation of cell viability of Sirt6+/+Trp53+/+,

Sirt6-/-Trp53+/+ and Sirt6-/-Trp53+/- MEFs at P3 as measured by MTT assay. Data represent mean ± SEM, n=3. P value calculated using one-way ANOVA.

(F) Quantification for qPCR analyses of gene expression of p53 targets (with respect to Gapdh controls) in liver from Sirt6+/+Trp53+/+(WT), Sirt6-/-Trp53+/

+(Sirt6 KO) and Sirt6-/-Trp53+/- (compound mutant) mice, respectively. Data represent mean ± SEM, n = 3. P value calculated using one-way ANOVA.

(G) Quantification for qPCR analyses of gene expression of p53 targets (with respect to Gapdh controls) in kidneys of Sirt6+/+Trp53+/+(WT),

Sirt6-/-Trp53+/+(Sirt6 KO) and Sirt6-/-Trp53+/- (compound mutant) mice, respectively. Data represent mean ± SEM, n = 3. P value calculated using one-

way ANOVA.

DOI: https://doi.org/10.7554/eLife.32127.003

The following figure supplement is available for figure 1:

Figure supplement 1. Attenuation of p53 downstream targets and rescue of premature senescence-associated phenotypes in Sirt6-deficient scenario

by haploinsufficiency of Trp53, (Trp53 has been denoted as p53 in the figures).

DOI: https://doi.org/10.7554/eLife.32127.004
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fibroblasts (MEFs) as compared to Sirt6+/+Trp53+/+MEFs (Figure 1A). Consistent with previous

reports stating that loss of Sirt6 results in premature senescence (Mao et al., 2012;

Mostoslavsky et al., 2006), Sirt6-/-Trp53+/+ MEFs exhibited enhanced senescence-associated b-

galactosidase activity and senescence-like flattened cellular morphology at passage 6 (P6)

(Figure 1B and C and Figure 1—figure supplement 1A). Sirt6-/-Trp53+/+ MEFs also exhibited

enhanced p16 levels at P6 (Figure 1—figure supplement 1B). However, haploinsufficiency of Trp53

significantly rescued the senescence-associated phenotypes in Sirt6-/- MEFs at P6 (Figure 1B and C

and Figure 1—figure supplement 1A, 3 independent batches of MEFs have been used in the study

which were obtained from independent batches of littermate embryos). Also, Trp53 haploinsuffi-

ciency significantly attenuated p16 levels and the enhanced expression of the downstream targets of

p53 in Sirt6-/-Trp53+/- MEFs (Figure 1—figure supplement 1B,C). Enhancement of sensitivity to

DNA damage upon loss of Sirt6 has been previously reported (Mostoslavsky et al., 2006). Again,

the increased sensitivity to DNA damage in Sirt6-/-Trp53+/+ MEFs treated with gamma-irradiation

was substantially attenuated in Sirt6-/-Trp53+/- MEFs (Figure 1D and Figure 1—figure supplement

1D). The decreased cell viability of Sirt6-/-Trp53+/+ MEFs was significantly improved in Sirt6-/-Trp53+/-

MEFs (Figure 1E). To further investigate the effects of partial ablation of p53 in Sirt6 knockout (KO)

background at the organismal level, we used compound heterozygous mating strategy to generate

Sirt6 KO mice with haploinsufficiency of p53 (Sirt6-/-Trp53+/- mice) as well as Sirt6-/-Trp53+/+ (Sirt6

KO) and Sirt6+/+Trp53+/+ (wild-type) littermates. The internal organs, such as kidneys, liver and

spleen from these mice were collected for further analyses. Consistent with our findings in MEFs

(Figure 1A), there was a significant upregulation of the expression of several downstream targets of

p53 in the liver, kidneys, and spleen of Sirt6-/-Trp53+/+ mice (Figure 1F and G and Figure 1E). How-

ever, Trp53 haploinsufficiency significantly suppressed the expression of those downstream targets

of p53 in the liver, kidneys, and spleen of Sirt6-/-Trp53+/- mice (Figure 1F and G and Figure 1—fig-

ure supplement 1E). This further suggests that the upregulation of these targets upon loss of Sirt6

is indeed a consequence of p53 activation.

Heterozygosity of Trp53 dramatically rescues longevity of Sirt6-
deficient mice
Next, we examined whether haploinsufficiency of Trp53 could rescue the accelerated aging pheno-

types of Sirt6-deficient mice. To this end, we employed compound heterozygous mating strategy to

mate Sirt6+/-Trp53+/+ mice (in pure FVB background) with Sirt6+/+Trp53+/- mice (in pure C57BL/6

background) to generate Sirt6+/-Trp53+/- mice and interbred them to generate Sirt6-/-Trp53+/- mice

along with Sirt6-/-Trp53+/+ and Sirt6+/+Trp53+/+ littermate mice. Given that mixed strains could pro-

duce false positive results, we used the litters containing all Sirt6+/+Trp53+/+, Sirt6-/-Trp53+/+ and

Sirt6-/-Trp53+/- mice for further analysis. Consistent with a previous report (Mostoslavsky et al.,

2006), majority of the Sirt6-/-Trp53+/+ mice exhibited severe premature aging and were much

smaller than their wild-type littermates at 3 weeks of age (Figure 2A). Interestingly, the

Sirt6-/-Trp53+/- mice appeared much healthier than the Sirt6-/-Trp53+/+ littermates post 3 weeks of

birth (Figure 2A). Though smaller than their littermate wild-type (Sirt6+/+Trp53+/+) controls, both

female and male Sirt6-/-Trp53+/- mice were significantly larger in body size than their Sirt6-/-Trp53+/+

littermates (Figure 2A n=25-35 for all three genotypes). The mean body weights of both female and

male Sirt6-/-Trp53+/- mice were also significantly more than that of Sirt6-/-Trp53+/+ littermates

(Figure 2B and C). The Sirt6-deficient mice mostly died within 4 weeks of birth, whereas the

Sirt6-/-Trp53+/- littermate mice exhibited striking extensions in lifespan: female mice exhibited a 16-

fold increase in maximum lifespan and 11-fold increase in median lifespan (Figure 2D); males

showed a 14-fold extension in maximum lifespan and a 7.5-fold extension in median lifespan

(Figure 2E). Given only 4 weeks of lifespan in Sirt6-/-Trp53+/+mice, the average lifespan of 30 and 44

weeks in male and female Sirt6-/-Trp53+/- mice, respectively, represents a significant lifespan exten-

sion by Trp53 haploinsufficiency. Also, the lifespan extension observed in the compound mutant

mice in our study (Figure 2A–E) was much higher than the lifespan extension observed because of

mixed background strains (Peshti et al., 2017), thus suggesting that the observed rescue in longev-

ity of sirt6-deficient mice is indeed a result of Trp53 heterozygosity.

Consistent with previous reports (Jacks et al., 1994; Tyner et al., 2002), we found that Sirt6+/

+Trp53+/- mice had median lifespan of 56–64 weeks (Figure 2D and E), and mostly succumbed to

tumors by 72–80 weeks. However, at four weeks of age, the Sirt6+/+Trp53+/- mice exhibited no
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Figure 2. Haploinsufficiency of Trp53 significantly extends the lifespan of Sirt6-deficient mice, (Trp53 has been denoted as p53 in the figures). (A)

Representative images of Sirt6+/+Trp53+/+(WT), Sirt6-/-Trp53+/+ (Sirt6 KO), and -/-Trp53+/- (compound mutant) littermate mice at the age of 24 days. (B)

Mean body weights of WT, Sirt6 KO and compound mutant female mice at the age of ~24 days. Data represent mean ± SEM; n = 5. P value calculated

using one-way ANOVA. (C) Mean body weights of WT, Sirt6 KO and compound mutant male mice at the age of ~24 days. Data represent mean ± SEM;

n = 5. P value calculated using one-way ANOVA. (D) Kaplan-Meier survival curve of Sirt6+/+Trp53+/+(n = 30), Sirt6-/-Trp53+/+ (n = 30),

Sirt6-/-Trp53+/-(n = 31) and Sirt6+/+Trp53+/- (n = 35) female mice. P value calculated using log-rank (Mantel-Cox) test. (E) Kaplan-Meier survival curve of

Sirt6+/+Trp53+/+ (n = 30), Sirt6-/-Trp53+/+ (n = 30), Sirt6-/-Trp53+/- (n = 31) and Sirt6+/+Trp53+/- (n = 35) male mice. P value calculated using log-rank

(Mantel-Cox) test. (F) Graphical representation of increasing body weights in female Sirt6-/-Trp53+/- and WT littermate mice. Data represent mean ±

SEM. (G) Graphical representation of increasing body weights in male Sirt6-/-Trp53+/- and WT littermate mice. Data represent mean ± SEM.

DOI: https://doi.org/10.7554/eLife.32127.005

The following source data and figure supplement are available for figure 2:

Source data 1. Serum Igf-1 levels in 24-day old mice.

DOI: https://doi.org/10.7554/eLife.32127.007

Source data 2. Serum Igf-1 levels in 10-16 months old mice.

DOI: https://doi.org/10.7554/eLife.32127.008

Source data 3. Serum glucose levels in 24-day old mice.

DOI: https://doi.org/10.7554/eLife.32127.009

Source data 4. Serum glucose levels in 10-16 months old mice.

DOI: https://doi.org/10.7554/eLife.32127.010

Figure supplement 1. Analysis of serum IGF-1 and glucose levels in Sirt6+/+Trp53+/+, Sirt6-/-Trp53+/+ and Sirt6-/-Trp53+/- mice, (Trp53 has been

denoted as p53 in the figures).

DOI: https://doi.org/10.7554/eLife.32127.006
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significant differences from Sirt6+/+Trp53+/+ (wild-type) mice in either body size or body weight. The

body weights of Sirt6-/-Trp53+/- mice (both females and males) increased steadily with age as did

their wild-type (WT) littermates, although they always weighed less than their WT littermate mice

(Figure 2F and G). At 3 weeks of age, the Sirt6-/-Trp53+/- mice were more active than the

Sirt6-/-Trp53+/+mice but were less active than their WT littermates. While comparing p53 expression

levels in the cells and tissues of 3-week old mice, p53 protein level in Sirt6-/-Trp53+/- mice was

observed to be decreased as compared to Sirt6-/-Trp53+/+ mice, but was more than that of Sirt6+/

+Trp53+/+ mice (Figure 1—figure supplement 1F).

Next, we analyzed the GH/IGF1 axis in the mice by checking their serum IGF1 levels. As previ-

ously reported (Mostoslavsky et al., 2006), the serum IGF1 levels were drastically reduced in

Sirt6-/-Trp53+/+ mice as compared to Sirt6+/+Trp53+/+ mice at the age of around 24 days . Interest-

ingly, the serum IGF1 levels in Sirt6-/-Trp53+/- mice were significantly rescued with respect to

Sirt6-/-Trp53+/+ mice, but were less than that of their wild-type littermates (Figure 2—figure supple-

ment 1A). Also, the serum IGF1 levels of Sirt6-/-Trp53+/- mice were less than that of their wild-type

littermates during their terminal stage (10-16 months) (Figure 2—figure supplement 1B). Apart

from serum IGF1 levels, we also analyzed glucose levels in the mice. The Sirt6-/-Trp53+/+ mice dis-

played a minor drop in their serum glucose levels, while the compound mutant (Sirt6-/-Trp53+/-) mice

exhibited an almost comparable glucose level to their wild-type littermates at the age of 24 days

(Figure 2—figure supplement 1C). Although Sirt6-/-Trp53+/- mice, in their terminal lifespan, had

slightly reduced serum glucose levels than their wild-type littermates, the values did not reach signif-

icance (Figure 2—figure supplement 1D).

Amelioration of aging-associated phenotypes in Sirt6-deficient mice
upon haploinsufficiency of Trp53
The dramatic extension of lifespan in Sirt6-deficient mice upon haploinsufficiency of Trp53 encour-

aged us to further examine whether the premature aging-associated abnormalities previously

reported in Sirt6-deficient mice (Mostoslavsky et al., 2006) are rescued or not. As expected, at

around 24 days of age, the sizes of the internal organs of Sirt6-/-Trp53+/- mice, such as spleen, thy-

mus, kidney, liver, lungs and heart, were markedly larger than those of Sirt6-/-Trp53+/+ mice,

although they were smaller than those of wild-type (Sirt6+/+Trp53+/+) littermates (Figure 3A). Lordo-

kyphosis (increased curvature of the spine), a prominent phenotype of Sirt6-/-Trp53+/+ mice

(Mostoslavsky et al., 2006), was significantly improved in Sirt6-/-Trp53+/-mice, irrespective of gen-

der (Figure 3B and Figure 3—figure supplement 1A). Colitis, a characteristic feature previously

reported in Sirt6-deficient mice (Mostoslavsky et al., 2006), was largely rescued in Sirt6-/-Trp53+/-

mice when compared to the Sirt6-/-Trp53+/+ littermates (Figure 3C). When senescence was evalu-

ated, there was significantly less senescence-associated b-galactosidase activity in the organs from

Sirt6-/-Trp53+/- mice, such as spleen, liver and kidneys, as compared to Sirt6-/-Trp53+/+ mice

(Figure 3D), thus suggesting a marked rescue of premature senescence in the compound mutant

mice upon haploinsufficiency of Trp53. Taken together, these results are in line with our observation

of lifespan extension in Sirt6-deficient mice by haploinsufficiency of Trp53, and further confirm that

elevated p53 activity plays a significant role in accelerated aging and premature death in Sirt6-defi-

cient mice.

Regarding cancer incidence, some of the Sirt6+/+Trp53+/+ (WT) mice (approximately 6–8%) devel-

oped tumors at around 2–2.5 years, as expected. Approximately 26–28% of Sirt6+/+Trp53+/- mice

developed tumors by 17–20 months, regardless of gender as already reported (Jacks et al., 1994;

Tyner et al., 2002). The Sirt6-/-Trp53+/+ mice mostly died within 4 weeks of birth, and no incidence

of cancer was observed. Interestingly, around 32% of the Sirt6-/-Trp53+/- (compound mutant) mice

developed tumors during their terminal lifespan. However, the incidence of cancer in Sirt6-/-Trp53+/-

mice was earlier (9-16 months) than the Sirt6+/+Trp53+/- mice (17-20 months). The Sirt6+/+Trp53+/-

mice mostly developed sarcoma by 17-20 months (Figure 3—figure supplement 1B). However, the

Sirt6-/-Trp53+/- mice developed other types of tumors, such as kidney tumor (19%), prostate tumor

(17%), bladder tumor (16%), and pancreatic tumor (8%) (Figure 3—figure supplement 1C–F respec-

tively), while only 3% of them exhibited incidence of sarcoma. Taken together, sirt6 depletion

enhanced the onset and diversified the type of tumors in the Trp53+/- background, given that Sirt6 is

a tumor suppressor itself (Lerrer and Cohen, 2013; Sebastián et al., 2012 ).
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Apart from severe body wasting and loss of vigour in Sirt6-/-Trp53+/- mice in their terminal stage,

some female Sirt6-/-Trp53+/- mice succumbed to the disorder of incontinence at around 14-16

months, while around 95% of the Sirt6-/-Trp53+/- male mice exhibited penile protrusion at around 9-

11 months of age (Figure 3—figure supplement 1G). Also, the Sirt6-/-Trp53+/- mice remained sterile

throughout their lifespan.

Rescue of bone marrow-derived stem cell decline and deteriorated
immune cell count in Sirt6-deficient mice upon heterozygosity of Trp53
Stem cell depletion is one of the hallmarks of premature aging and heterozygosity of Trp53 has

been reported to improve stem cell maintenance (Amir et al., 2017; Belle et al., 2015; López-

Otı́n et al., 2013; Lu et al., 2015).We therefore sought to examine the status of mesenchymal and

hematopoietic stem cells in the bone marrow of Sirt6+/+Trp53+/+, Sirt6-/-Trp53+/+and Sirt6-/-Trp53+/-

mice (isolation and purification of bone marrow-derived stem cells have been described in the meth-

ods). Consistent with the age-associated decline of bone marrow stem cells, we observed a notable

drop in the number of mesenchymal and hematopoietic stem cells derived from the bone marrow of

both male and female Sirt6-/-Trp53+/+ mice (Figure 4A–D). However, upon Trp53 haploinsufficiency,

the percentage of mesenchymal and hematopoietic stem cells in the bone marrow of Sirt6-/-Trp53+/-

Figure 3. Amelioration of premature-aging associated phenotypes in Sirt6 KO mice upon haploinsufficiency of p53, (Trp53 has been denoted as p53 in

the figures). (A) Representative images of spleens, thymus, livers, kidneys, lungs and hearts from 24 days old Sirt6+/+Trp53+/+, Sirt6-/-Trp53+/+, and

Sirt6-/-Trp53+/- mice. (B) Whole body X-ray images of female and male Sirt6+/+Trp53+/+, Sirt6-/-Trp53+/+ and Sirt6-/-Trp53+/- mice (note the

lordokyphosis/curved spine in Sirt6-/-p53+/+ mice) at the age of 24 days. (C) Histology of small intestinal cross-sections of WT, Sirt6 KO and compound

mutant mice to detect colitis, at the age of ~24 days. (D) Representative images of senescence-associated b-galactosidase staining in spleen, liver and

kidneys of 3 weeks old Sirt6+/+Trp53+/+ (WT), Sirt6-/-Trp53+/+ (Sirt6 KO) and Sirt6-/-Trp53+/- (compound mutant) mice.

DOI: https://doi.org/10.7554/eLife.32127.011

The following figure supplement is available for figure 3:

Figure supplement 1. Incidence of cancer and other age-associated disorders in Sirt6-/-Trp53+/- mice, (Trp53 has been denoted as p53 in the figures).

DOI: https://doi.org/10.7554/eLife.32127.012
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mice (both females and males) was partially, yet significantly restored as compared to their littermate

Sirt6-/-Trp53+/+ mice (Figure 4A–D).

It has been previously reported that CD4+CD8+ double-positive cells undergo drastic reduction

in the thymus of Sirt6-/-Trp53+/+mice post 3 weeks of birth (Mostoslavsky et al., 2006). Consistently,

we also observed a marked decline in the thymic CD4+CD8+ double-positive cells of Sirt6-/-Trp53+/+

mice at around 24 days of age (Figure 4E and F). However, there was a striking increase in the num-

ber of CD4+CD8+ double-positive cells in the thymus of Sirt6-/-Trp53+/- mice as compared to that in

the Sirt6-/-Trp53+/+ littermates (Figure 4E and F). We confirmed the previous observation that apo-

ptotic responses are upregulated in the thymus of Sirt6-deficient mice (Mostoslavsky et al., 2006)

(Figure 4G). Interestingly, this was partially rescued in both thymus and bone marrow stromal cells

(BMSCs) of Sirt6-/-Trp53+/- mice when compared to Sirt6-/-Trp53+/+ mice (Figure 4G and H). In addi-

tion, there was a significant increase in the number of B220+ cells (characterizing B cells across all

developmental stages) and CD11b+ cells (representing monocytes) in the spleen of Sirt6-/-Trp53+/-

Figure 4. Haploinsufficiency of Trp53 prevents bone marrow stem cell decline, suppresses apoptosis, and restores immune cell populations in Sirt6-

deficient mice, (Trp53 has been denoted as p53 in the figures). (A) Percentage of mesenchymal stem cell (MSC) population in the female Sirt6+/+Trp53+/

+, Sirt6-/-Trp53+/+ and Sirt6-/-Trp53+/- mice at the age of ~24 days. Data represent mean ± SEM; n=5. (B) Percentage of mesenchymal stem cell (MSC)

population in the male Sirt6+/+Trp53+/+, Sirt6-/-Trp53+/+ and Sirt6-/-Trp53+/- mice at the age of ~24 days. Data represent mean ± SEM; n=5. (C)

Percentage of hematopoietic stem cell (HSC) population in the female Sirt6+/+Trp53+/+, Sirt6-/-Trp53+/+ and Sirt6-/-Trp53+/- mice at the age of ~24 days.

Data represent mean ± SEM; n=5. (D) Percentage of hematopoietic stem cell (HSC) population in the male Sirt6+/+Trp53+/+, Sirt6-/-Trp53+/+ and

Sirt6-/-Trp53+/- mice at the age of ~24 days. Data represent mean ± SEM; n=5. (E) Representative flow cytometry analysis of CD4+CD8+ cells in the

thymus of Sirt6+/+Trp53+/+, Sirt6-/-Trp53+/+ and Sirt6-/-Trp53+/- mice at the age of ~24 days. Y-axis and X-axis represent the numbers of CD8+ cells and

CD4+ cells respectively. (F) Graphical representation of data presented in (E). Data represent mean ± SEM; n = 5. (G) Quantification of apoptotic cells in

the thymus of Sirt6+/+Trp53+/+, Sirt6-/-Trp53+/+ and Sirt6-/-Trp53+/- mice by Annexin V staining. Data represent mean ± SEM; n=4. (H) Quantification of

apoptotic cells in the thymus and bone marrow stroma of Sirt6+/+Trp53+/+, Sirt6-/-Trp53+/+ and Sirt6-/-Trp53+/- mice by Annexin V staining. Data

represent mean ± SEM; n=4. (I) Graphical representation of peripheral B cell population (B220+ cells) in the spleens from Sirt6+/+Trp53+/+,

Sirt6-/-Trp53+/+ and Sirt6-/-Trp53+/- mice. Data represent mean ± SEM; n=5. (J) Graphical representation of peripheral monocyte counts (CD11b+ cells)

in the spleens from Sirt6+/+Trp53+/+, Sirt6-/-Trp53+/+ and Sirt6-/-Trp53+/- mice. Data represent mean ± SEM; n=5. All P values have been calculated

using one-way ANOVA.

DOI: https://doi.org/10.7554/eLife.32127.013
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mice than that in Sirt6-/-Trp53+/+ littermates (Figure 4I and J), thus indicating that haploinsufficiency

of Trp53 rescues the total B cell count and the total monocyte count, respectively, in Sirt6-deficient

scenario.

SIRT6 is a NAD+-dependent deacetylase for p53 at lysine 381, but not
lysine 382
To further investigate the mechanistic link between Sirt6 deficiency and p53 activation and under-

stand how p53 is involved in the accelerated aging of Sirt6-deficient mice, we first tested if these

two proteins physically interact. To this end, we performed reciprocal co-immunoprecipitation

experiments to evaluate interactions between SIRT6 and p53 in HEK293 cells without any external

DNA damage, since DNA damage-mediated p53 upregulation could taint the results on interaction.

Via co-immunoprecipitation with specific antibodies against SIRT6 and p53, we observed interaction

between the two proteins at the endogenous level (Figure 5A). To further confirm this interaction,

we ectopically expressed FLAG-tagged SIRT6 and p53 in HEK293 cells individually, and could

Figure 5. SIRT6 directly deacetylates p53 at lysine 381, but not K382. (A) Western blotting analysis of endogenous interaction between SIRT6 and p53

in mock CRISPR control cells and SIRT6 KO cells using specific antibodies for SIRT6 and p53, keeping respective IgG controls. (B) Western blotting

analysis to examine direct interaction between SIRT6 and p53 in vitro using recombinant human (rh) SIRT6 and eluted FLAG-tagged p53 from HEK293

cells. (C) Western blotting analysis of deacetylation of p53 in vitro with increasing concentration of recombinant (rh) SIRT6 and purified p53, in the

presence and absence of NAD+. (D) Quantification of data presented in (C). Data represent mean ± SEM, n = 3. calculated using Student’s t-test. (E)

Analyses of SIRT6-mediated deacetylation of p53 at lysine (K) 381, 373 or 382 in vitro by Western blotting using specific antibodies and PAN-acetyl

lysine antibodies. (F) Quantification of data presented in (E). Data represent mean ± SEM, n = 3. (G) Western blotting data showing acetylation at lysine

381 and 382 in immunoprecipitated FLAG-tagged p53 in SIRT6 KO cells and mock CRISPR control HEK293 cells. (H) Immunofluorescence staining of

p53 acetylation at K381 in HEK293 mock CRISPR and SIRT6 KO cells. Scale bar, 10 mm. (I) Immunofluorescence staining of p53 acetylation at K381 (red

fluorescence) in SIRT6 KO cells with ectopically expressed wild-type (WT) SIRT6 (green fluorescence). Scale bar, 10 mm. (J) Immunofluorescence staining

of p53 acetylation at K381 (red fluorescence) in SIRT6 KO cells with ectopically expressed catalytically inactive mutant SIRT6 (H133Y) (green

fluorescence). Scale bar, 10 mm. (K) Western blotting analysis of SIRT6-mediated deacetylation of WT and lysine 381 to arginine (K381R) mutant p53 by

antibodies against pan-acetyl lysine and acetylation at lysine 381 of p53. (L) Quantification of data presented in (K). Data represent mean ± SEM, n = 3.

*p<0.05 calculated using Student’s t-test.

DOI: https://doi.org/10.7554/eLife.32127.014

The following figure supplement is available for figure 5:

Figure supplement 1. Analyses of physical and functional interaction between SIRT6 and p53, (Trp53 has been denoted as p53 in the figures).

DOI: https://doi.org/10.7554/eLife.32127.015
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observe endogenous p53 and SIRT6 being pulled down in FLAG immunoprecipitates respectively

(Figure 5—figure supplement 1A and B). Next, to rule out the possibility of cell-specific effect on

the interaction between SIRT6 and p53, we used recombinant human SIRT6 (rh SIRT6) and FLAG-

p53 eluted from HEK293 cells for in vitro binding experiment and analyzed direct physical associa-

tion between SIRT6 and p53. Indeed, p53 could pull down SIRT6 in vitro, suggesting a direct interac-

tion between SIRT6 and p53 (Figure 5B).

Acetylation is one of the major post-translational modifications regulating the stability and activity

of p53 (Marouco et al., 2013; Reed and Quelle, 2014). A previous study has indicated that SIRT6,

as a NAD+-dependent deacetylase, is not responsible for p53 deacetylation at lysine (K) 382

(Michishita et al., 2005). However, given that multiple potential acetylation sites exist in p53 protein

(Marouco et al., 2013; Reed and Quelle, 2014), it is conceivable to speculate that SIRT6 may

deacetylate p53 at sites other than K382. To test this, we performed in vitro deacetylation assays

using eluted FLAG-p53 (purified from HEK293 cells) and recombinant SIRT6 (rh SIRT6). As predicted,

we observed that SIRT6 could deacetylate p53 in vitro (Figure 5C). In line with the nature of SIRT6

as a NAD+-dependent deacetylase, SIRT6-mediated p53 deacetylation in vitro was abrogated in the

absence of NAD+ (Figure 5C and D). In addition, this deacetylation was largely diminished in the

presence of the sirtuin inhibitor nicotinamide (Figure 5—figure supplement 1C and D). In accor-

dance with existing literature (Michishita et al., 2005), we observed no alteration in p53 acetylation

at lysine (K) 382 even with increasing concentration of rhSIRT6 in vitro (Figure 5E). However, when

checking the other two major sites of acetylation in the C-terminus of p53, that is lysine 381 and 373

(Gu and Roeder, 1997), the pan-acetylation (i.e., total acetylation) and acetylation at K381 of p53

was found to significantly reduce with increasing concentrations of SIRT6 (Figure 5E and F). No sig-

nificant change in the acetylation of p53 at K373 was observed in the presence of rhSIRT6

(Figure 5E and F). Consistently, p53 acetylation at K381 was upregulated in SIRT6-deficient cells

(SIRT6 KO cells) in comparison with mock CRISPR control cells, when assessed with western blotting

(Figure 5G). Again, no significant change in p53 acetylation at K382 was observed in SIRT6-deficient

cells when compared with mock CRISPR control cells (Figure 5G). In agreement with Western blot-

ting results, immunofluorescence staining also showed that p53 acetylation was upregulated at

K381, but not K382 in SIRT6-deficient cells (Figure 5H and Figure 5—figure supplement 1E). When

p53 lysine 381 was mutated to arginine (K381R, non-acetylatable mutant), p53 acetylation at this site

was no longer detectable, thus confirming the epitope specificity of the antibodies against p53 acet-

ylation at K381 (Figure 5—figure supplement 1F). Additionally, expression of the FLAG-tagged

wild-type (WT) form of SIRT6 attenuated the upregulated p53 K381 acetylation in SIRT6-deficient

HEK293 cells (Figure 5I). However, such attenuation in p53 acetylation at K381 was not observed

with the ectopic expression of the catalytically inactive form of SIRT6 (H133Y) (Figure 5J). Although

90–95% of the SIRT6 KO cells were stained with antibodies against p53 acetylated at K382, ectopi-

cally expressed SIRT6 (both active and catalytically inactive forms) had no effect on p53 acetylation

at K382 (Figure 5—figure supplement 1G). Next, we analyzed immunoprecipitated FLAG-tagged

WT p53 and K381R mutant p53 for acetylation in mock CRISPR control cells and SIRT6-deficient

cells. Consistent with data shown in Figure 5G, pan-acetylation of WT p53 was increased in the

SIRT6-deficient cells over control cells (Figure 5K and L) and the K381R mutation caused a signifi-

cant reduction in pan-acetylation of p53 in both control and SIRT6-deficient cells (Figure 5K). Sur-

prisingly, the increase in pan-acetylation of p53 was largely diminished for K381R mutant in SIRT6-

deficient cells as compared to control cells (Figure 5K and L). These findings support the idea that

the increased p53 pan-acetylation in the absence of SIRT6 is largely attributable to the acetylation

status at lysine 381 of p53 (Figure 5K and L). Also, endogenous p53 immunoprecipitated from

SIRT6 KO HEK293 cells exhibited more acetylation at K381 as compared to mock CRISPR cells, and

this increased acetylation of p53 at K381 went down with ectopic expression of wild-type (WT) SIRT6

(Figure 5—figure supplement 1H). To further substantiate the observation of upregulation of p53

acetylation at K381 upon Sirt6 deficiency, we tested the same in cells and tissues of mice, and simi-

larly observed upregulation of p53 acetylation at K381 in Sirt6-/-Trp53+/+ mice as compared to

Sirt6+/+Trp53+/+ littermate mice (Figure 5—figure supplement 1I and J).

SIRT6 negatively regulates the stability of p53
It is known that acetylation enhances the stability of p53 (Gu and Zhu, 2012; Kruse and Gu, 2009).

Indeed, HEK293 cells lacking SIRT6 (SIRT6 KO cells) had approximately two-fold increases in the
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total p53 protein level when compared with mock CRISPR control cells (Figure 6A and B). Immuno-

fluorescence staining further confirmed the increased endogenous levels of p53 in SIRT6 KO cells as

compared to control cells (Figure 6C). Similarly, liver and kidney tissues from Sirt6-deficient mice

exhibited a significant increase in p53 protein levels (Figure 6D and E). This increase in p53 expres-

sion was also observed in Sirt6 null (Sirt6-/-) primary mouse embryonic fibroblasts (passage P2 MEFs

were used to avoid alterations because of serial passaging) (Figures Figure 6—figure supplement

1A and B). Treatment with the protein synthesis inhibitor cycloheximide further confirmed the

enhanced stability of p53 in SIRT6-deficient cells (Figures Figure 6—figure supplement 1C and D).

However, we did not observe increased phosphorylation of p53 at serine 15 in SIRT6-deficient

Figure 6. SIRT6 negatively regulates the stability of p53. (A) Western blotting analysis of p53 protein expression in SIRT6 KO and control HEK293 cells.

(B) Quantification of data presented in (A). Data represent mean ± SEM, n = 3. **p<0.01 calculated using Student’s t-test. (C) Immunofluorescence

staining to confirm enhanced p53 expression in HEK293 mock CRISPR and SIRT6 KO cells. Scale bar, 10 mm. (D) Western blotting analysis of p53

protein expression in liver of wild-type (WT) and Sirt6-/- mice. (E) Western blotting analysis of p53 protein expression in kidneys of wild-type (WT) and

Sirt6-/- mice. (F) Western blotting analysis of p53 and phosphorylation of p53 at serine 15 in HEK293 mock CRISPR and SIRT6 KO cells in response to 10

Gy of g-irradiation. (G) qPCR analysis of p53 expression in HEK293 mock CRISPR and SIRT6 KO cells (with respect to Gapdh controls). Data represent

mean ± SEM, n = 3. (H) qPCR analysis of p53 expression in Sirt6+/+ and Sirt6-/- MEFs (with respect to Gapdh controls). Data represent mean ± SEM,

n = 3. (I) qPCR analysis of p53 expression in liver of Sirt6+/+ and Sirt6-/- mice (with respect to Gapdh controls). Data represent mean ± SEM, n = 3. (J)

qPCR analysis of p53 expression in kidneys of Sirt6+/+ and Sirt6-/- mice (with respect to Gapdh controls). Data represent mean ± SEM, n = 3.

DOI: https://doi.org/10.7554/eLife.32127.016

The following figure supplements are available for figure 6:

Figure supplement 1. Analyses of the stability of p53 in the presence and absence of SIRT6.

DOI: https://doi.org/10.7554/eLife.32127.017

Figure supplement 2. Acetyl mimic mutant p53 K381Q confers stability to p53 and imparts senescence-like properties to cells.

DOI: https://doi.org/10.7554/eLife.32127.018
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HEK293 cells compared with wild-type cells without irradiation (Figure 6F). This phosphorylation of

p53 robustly increased in both wild type and Sirt6-deficient cells upon irradiation (Figure 6F). This

suggests that the upregulation of p53 in SIRT6-deficient cells is unlikely a direct consequence of

increased DNA damage in the absence of SIRT6 (Figure 6F). Furthermore, we observed no signifi-

cant increase in p53 mRNA levels in the absence of Sirt6 in HEK293 cells, MEF cells or mice tissues

(Figure 6G–J). Hence, it is likely that SIRT6 regulates p53 at the post-translational level.

Since we observed that SIRT6 deacetylates p53 at lysine 381 and loss of SIRT6 conferred stability

to p53, we further sought to examine the importance of p53 acetylation at K381 on the stability of

p53. To address this, we generated another mutant construct of p53, with lysine 381 mutated to glu-

tamine (K381Q) by site-directed mutagenesis, which mimics the acetyl form of p53 at K381. FLAG-

tagged WT p53, K381R mutant (lysine to arginine, non-acetylatable mutant), and K381Q mutant

(lysine to glutamine, acetyl mimic mutant) were ectopically expressed in HEK293 cells individually,

followed by treatment with cycloheximide to examine the stability of different mutants of p53. As

predicted, we observed a significant drop in the stability of p53 K381R mutant, which was further

intensified upon cycloheximide treatment (Figure 6—figure supplement 2A and B). On the other

hand, p53 K381Q mutant displayed improved stability, as evidenced by the comparable protein

expression levels before and after cycloheximide treatment (Figure 6—figure supplement 2A and

B). These findings reinstate that loss of SIRT6 leads to upregulation of p53 acetylation at K381, which

further confers stability to p53. In agreement with increase in the expression of senescent biomarker

p16 in SIRT6 KO cells with respect to control cells, we also observed an increase in the expression of

p16 in cells with ectopic expression of p53 K381Q mutant (Figure 6—figure supplement 2C and

D). This data suggests that hyperacetylation of p53 at K381 imparts senescence-like properties to

cells, thus contributing to the premature senescence observed in Sirt6-deficient cells.

Discussion
Although recent studies have reported that p53 upregulates SIRT6 expression (Jung et al., 2016;

Zhang et al., 2014), the mechanistic explanation of this regulation remains largely unclear. On the

other hand, there is no existing literature about the regulation of p53 by SIRT6. In this study, we

show that loss of SIRT6 results in increased acetylation of p53, leading to elevated apoptosis and

senescence at the cellular level and to accelerated aging in mice. Haploinsufficiency of Trp53 signifi-

cantly reduced premature senescence, substantially restored immune cell and stem cell populations,

and dramatically extended the lifespan of Sirt6-deficient mice. These data identified a novel SIRT6-

p53 axis in the regulation of senescence and aging. Our study reveals a direct link between SIRT6

and p53, wherein the stability of p53 is regulated through SIRT6-mediated deacetylation of p53 at

K381. Hence, these findings not only establish p53 as a substrate for SIRT6, but also identify SIRT6-

mediated p53 deacetylation as a critical mechanism to suppress cellular senescence and organismal

aging. Although we have identified lysine 381 of p53 as a major site of deacetylation by SIRT6, we

cannot exclude the possibility that SIRT6 might target other lysine residues of p53 for deacetylation

or other post-translational modifications. This would require further investigation in the future.

Sirt6-/-Trp53+/+ mice have been reported to die because of acute aging-associated degenerative

processes, such as severe organ degeneration, body wasting, abruptly lowered serum IGF-1 levels,

gut inflammation and chronic metabolic disorders (Mostoslavsky et al., 2006). The Sirt6-/-Trp53+/-

mice showed signs of severe body wasting during their terminal lifespan (around 12-16 months).

Around 32% of the Sirt6-/-Trp53+/- (compound mutant) mice also developed cancer during their ter-

minal lifespan. Some Sirt6-/-Trp53+/- female mice succumbed to the disorder of incontinence, that is

uncontrolled urination at around 14-16 months, while around 95% of Sirt6-/-Trp53+/- male mice

exhibited penile protrusion at around 9-11 months of age (Figure 1G). Taken together, the

Sirt6-/-Trp53+/- mice died of disorders which are both overlapping with and distinct from

Sirt6-/-Trp53+/+ mice.

Although mixed genetic background has been reported to extend the lifespan of a percentage of

Sirt6-deficient mice (Peshti et al., 2017), all the analyses in our study have been done on littermate

Sirt6-/-Trp53+/+ and Sirt6-/-Trp53+/- mice (both on mixed backgrounds), where the Sirt6-/-Trp53+/+

mice had reduced lifespan of around 4 weeks and the Sirt6-/-Trp53+/- mice exhibited extended maxi-

mal lifespan over the littermate Sirt6-/-Trp53+/+ mice (Figure 2A–E). This limits the possibility of

mixed genetic background effects in our study. Moreover, the median lifespan for both male and
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female Sirt6-/-Trp53+/- mice on mixed background observed in our study is significantly longer than

that of the reported Sirt6-/-Trp53+/+ mice on mixed background (Peshti et al., 2017). This suggests

that the observed lifespan extension of compound mutant mice is indeed attributable largely, if not

all, to Trp53 heterozygosity. Moreover, Peshti et al. (2017) reported gender-specific differences in

lifespan extension upon Sirt6 deficiency in mixed genetic background. Although we did observe that

the maximal lifespan of the female Sirt6-/-Trp53+/- mice was slightly more than the male

Sirt6-/-Trp53+/- mice (Figure 2D and E), the differences were not as striking as reported, suggesting

further lifespan extension in Sirt6-deficient mice by Trp53 haploinsufficiency reduces the percentage

of gender-specific difference in lifespan. However, retinal disorders were prominently observed in

our Sirt6-/-Trp53+/- mice similar with that reported in Peshti et al. (2017), consistent with a previous

report stating that Sirt6 plays critical roles in the maintenance of retinal functions (Silberman et al.,

2014). Another possibility cannot be eliminated that the very short lifespan of Sirt6 KO mice could

result from oversensitivity to p53 activation associated with the genetic backgrounds used in the

respective studies, thus resulting in enhanced cell death even at low DNA damage levels, thereby

accelerating aging. Reducing Trp53 levels by haploinsufficiency likely reduces this effect and hence

delays aging, thereby allowing longer lifespan. Regarding cancer incidence, the types of tumors

exhibited by Sirt6-/-Trp53+/- and Sirt6+/+Trp53+/- mice were very distinct. Given that Sirt6 has already

been established as a potent tumor suppressor by several independent studies (Lerrer and Cohen,

2013; Sebastián et al., 2012), this explains as to why Sirt6-/-Trp53+/- mice exhibit an earlier onset of

tumorigenesis and mostly develop tumors other than sarcoma. Hence, sirt6 depletion enhanced the

onset and diversified the type of tumors in the Trp53+/- background.

The dramatic lifespan extension observed in the mouse model reported in this study is signifi-

cantly longer than any other rescue reported so far in mammalian aging models. The lifespan exten-

sion reported here is six times longer than the highest rescue of premature aging achieved so far in

Sirt6-deficient mice (Kawahara et al., 2009). This suggests that the activated p53 pathway may be

one of the most critical mechanisms underlying the accelerated aging and premature death in the

absence of Sirt6. This further reinstates the importance of the SIRT6-p53 axis in cellular senescence

and organismal aging. To also note here is that, though significant, the lifespan extension and phe-

notype amelioration by Trp53 haploinsufficiency in Sirt6-deficient mice represent a partial rescue

when compared with the wild-type mice. Given that Sirt6 regulates a range of pathways such as NF-

kB, IGF1, AKT and others (Dominy et al., 2012; Kanfi et al., 2012; Kawahara et al., 2009;

Pan et al., 2016; Xiao et al., 2010), it is tempting to speculate that these pathways may work in

orchestra to contribute to the severe premature aging in mice in the absence of Sirt6. It is conceiv-

able that Sirt6 null mice with Trp53 haploinsufficiency can serve as a better model in evaluating the

contribution of other signaling pathways to the premature aging in the absence of Sirt6. In addition,

targeting multiple signaling pathways at the same time may further extend the lifespan in Sirt6-defi-

cient mice. Given the recent report stating that inhibition of the interaction between FOXO4 and

p53 rescues p53-mediated senescence and aging (Baar et al., 2017), it would be interesting to ana-

lyze if a similar administration of FOXO4 inhibitor could ameliorate aging-associated abnormalities in

Sirt6-deficient mice.

Although the mammalian SIRT1 protein is also known to deacetylate p53 (Langley et al., 2002),

the lack of any significant rescue of the abnormalities of Sirt1-deficient mice by loss of p53

(Kamel et al., 2006) clearly suggests, when viewed alongside our results, distinct roles for SIRT1 and

for SIRT6 in the modulation of p53 activity and aging/longevity. In addition, the upregulation of p53

stability and activity in Sirt6-null scenario and the severe premature aging observed in Sirt6-deficient

mice, clearly suggest the insufficiency of endogenous SIRT1 in compensating the hyperactivity of

p53 under Sirt6-deficient conditions.

Apart from a better understanding of the contribution of different pathways regulated by SIRT6

to the aging process at the organismal level, the extended lifespan in Sirt6-deficient mice with Trp53

haploinsufficiency also provides an opportunity to understand the in vivo role for Sirt6 in develop-

ment, particularly during the maturation as the compound mutant mice survived remarkably long

enough with growth retardation (Figure 2). On the other hand, given both SIRT6 and p53 are potent

tumor suppressors (Donehower and Lozano, 2009; Sebastián et al., 2012) and their regulatory

roles in aging, this study opens a new window for future study in the control of choice between

aging and cancer development by the balance and cross-talk of p53 and SIRT6. p53 has been widely

implicated in premature senescence and aging and is the focus of a large number of studies to
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develop therapies. For example, independent studies have reported the efficacy of p53 inhibitors in

promoting neuroprotection against age-associated neurodegenerative diseases (Culmsee et al.,

2001; Duan et al., 2002; Zhu et al., 2002). Hence, identification of SIRT6 as a negative regulator of

p53 unveils new avenues of research not only for basic scientists but also for those working to

develop intervention and therapies against cancer and aging.

Materials and methods

Cell culture, transfection, recombinant proteins, reagent treatment and
antibodies
HEK293 cells have been purchased from ATCC. HEK293 cells and mouse embryonic fibroblasts

(MEFs) were cultured in DMEM supplemented with 10% fetal bovine serum (FBS) in 37˚C incubators

with 5% CO2 and atmospheric oxygen conditions. HEK293 SIRT6 KO cells were a kind gift from Dr.

Baohua Liu (Shenzhen University, China). Cell lines have been authenticated by short tandem repeat

(STR) profile analysis and genotyping. Mycoplasm contamination were routinely examined by PCR.

For analyzing effects of knocking down Trp53 (alternatively denoted as p53), we generated

Sirt6-/-Trp53+/- compound mutant MEFs along with their WT (Sirt6+/+Trp53+/+) and Sirt6 KO

(Sirt6-/-Trp53+/+) littermates at E12.5. Mycoplasma contamination was analyzed by DNA staining

with DAPI. Transfection was performed with X-tremeGENE HP DNA Transfection Reagent (Roche,

USA) and Lipofectamine 3000 (Invitrogen, USA). FLAG-tagged full length SIRT6 construct was

obtained from addgene. Flag-tagged SIRT6 catalytically inactive mutant was kindly provided by Dr.

Katrin Chua (Stanford school of Medicine, USA). FLAG-p53 and HA-P300 constructs were provided

by Dr. Zhenkun Lou (Mayo clinic, USA). The point mutant constructs (p53 K381R, p53 K381Q) were

generated using a site-directed mutagenesis kit (Agilent Technologies, QuikChange II XL). Antibod-

ies against rabbit anti SIRT6, rabbit anti Acetyl p53 K373, rabbit anti Acetyl p53 K382 were obtained

from Cell Signaling. Antibodies against rabbit anti Acetyl p53 K381 and rabbit anti H3 were pur-

chased from Abcam. Rabbit anti H3K9ac, mouse anti g-H2AX, and rabbit anti-PAN acetyl lysine anti-

bodies were purchased from Millipore (Bedford, MA, USA). Rabbit anti H3K56ac antibody was

purchased from Upstate. Anti p53 (DO-1), p53 (FL-393), and IgG antibodies were purchased from

Santa Cruz (Santa Cruz, CA, USA). Mouse anti FLAG M2 antibody was purchased from Sigma. PE

anti-mouse CD105 and FITC anti-mouse CD34 antibodies were purchased from eBiosciences. PE

anti-mouse CD11b, APC anti-mouse CD44, PE-Cy5 anti-mouse CD8, and FITC anti-mouse CD4 anti-

bodies were purchased from Biolegend. PE anti-mouse Sca-1, APC anti-mouse c-Kit, FITC anti-

mouse CD31, and PerCP anti-mouse B220 antibodies were purchased from BD pharmingen. G aga-

rose beads were purchased from Invitrogen, USA and anti-FLAG M2 affinity beads were purchased

from Sigma. Cycloheximide (purchased from Sigma Aldrich) was used at a working concentration of

150 mg/ml. Recombinant Human SIRT6 protein was expressed in BL21 (DE3) strain using pET28a-

sumo vector and was purified using Superdex200 gel-filtration column.

In vitro SIRT6 deacetylation assay
SIRT6-mediated deacetylation was assayed on eluted p53 (overexpressed as a FLAG-tagged protein

along with HA-tagged P300 and immunoprecipitated from HEK293 cells using FLAG antibodies, fol-

lowed by elution with 3X FLAG peptide from Sigma) using the assay buffer as described in SIRT6

direct fluorescent screening assay kit by Cayman chemical (USA). Eluted acetyl p53 was incubated

with recombinant human SIRT6 (rhSIRT6) for 45 min at 37˚C, in the presence or absence of NAD+

and nicotinamide. Acetylation of p53 was detected using antibodies against PAN-acetyl lysine (K),

acetyl K381, acetyl K382 and acetyl K373.

Generation of compound mutant mice
All animal works were performed with permission from local animal ethic committee (CULATR) and

according to the guidelines and regulations. The Sirt6co floxed mutant mice have been purchased

from Jackson laboratories and mated with b-actin-cre mice to generate Sirt6+/-Trp53+/+ mice.

Sirt6-/-Trp53+/- compound mutant mice were generated by compound heterozygous mating strategy

since Sirt6 KO mice die within a month and p53 KO mice develop tumors very early and die prema-

turely. Briefly, Sirt6+/-Trp53+/+ and Sirt6+/+Trp53+/- mice were bred to generate Sirt6+/-Trp53+/-
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mice. Then Sirt6+/-Trp53+/- mice were interbred to generate Sirt6-/-Trp53+/- mice. Litters containing

WT (Sirt6+/+Trp53+/+), Sirt6 KO (Sirt6-/-Trp53+/+) and compound mutant mice (Sirt6-/-Trp53+/-) were

used for further analysis.

Whole cell lysate collection, tissue sample collection, western blotting,
and co-immunoprecipitation
Cells were harvested, washed with 1x PBS and resuspended in suspension buffer (0.1M NaCl, 10

mM Tris-HCl, pH 7.5, 1 mM EDTA, 1 mM DTT, pH 8.0, protease inhibitors, phosphatase inhibitors)

followed by addition of an equal volume of laemmli buffer (0.1 M Tris-HCl, pH 7.0, 4% SDS, 20%

glycerol, 1 mM DTT, protease inhibitors, phosphatase inhibitors) and boiled for 10 min. Tissue sam-

ples were minced and dounced thoroughly with suspension buffer, followed by addition of an equal

volume of laemmli buffer and boiled immediately for 15 min. Western blotting was done as previ-

ously illustrated (Liu et al., 2005). Relative band intensity was measured by Image J and normalized

to corresponding controls. Statistical analysis was performed using at least three independent immu-

noblots, which were quantified and two-tailed student’s T test was used for calculating P values. Co-

immunoprecipitation analyses were performed as described below. Briefly, cells were lysed with pre-

chilled RIPA buffer containing 250 mM or 500 mM NaCl, protease inhibitors and phosphatase inhibi-

tors. Primary antibodies or appropriate control IgGs were added to the lysates and incubated for 2

hr at 4˚C on a rocking platform followed by addition of agarose beads and incubation was done O/

N at 4˚C. The beads were washed thrice with RIPA buffer (500 mM NaCl), resuspended with laemmli

buffer and boiled for 10 min. The protein suspension was collected by centrifugation and stored at

�80˚C for western analysis.

qPCR
Total RNA from cells or tissues (after douncing) was isolated using Trizol (Invitrogen) and 2 ml of the

total extracted RNA was used for reverse-transcription reaction to generate cDNA using PrimeScript

RT mastermix from Takara. Relative expression of the target genes was measured by qPCR and

were normalized against respective Gapdh expression levels.

Immunofluorescence staining and confocal microscopy
Cells were grown on chamber slides, fixed with 4% paraformaldehyde (in PBS), washed once in PBS,

washed again with PBTr (PBS containing 0.1% Triton X-100) and blocked with 5% serum (FBS) in

PBTr for 1 hr at RT (room temperature). Primary antibody was then diluted in PBTr and incubated O/

N at 4˚C. The slides were washed three times in PBTr, incubated with FITC-, TRITC-coupled second-

ary antibodies, or with Alexa-fluor 488/562 (donkey anti-rabbit), diluted in PBTr for 60–75 min at RT,

washed three times with PBTr, then two times with PBS followed by mounting with SlowFadeÂ Gold

antifade reagent with DAPI (Invitrogen, USA), sealed with nail polish and subjected for confocal

microscopic analysis at room temperature. Images were obtained using 63X, 1.4 NA oil objective

(Carl Zeiss LSM 700 inverted confocal microscope equipped with ZEN 2010 software version

6.0.0.309) with 405 nm, 488 nm and 555 nm laser illumination (standard excitation and emission filter

sets). Images were processed using ZEISS ZEN lite software.

Senescence-associated b-galactosidase staining
Senescence-associated b-galactosidase staining kit from Cell Signaling was used. Tissues were fixed

with gelatin and cryopreserved before cutting sections. These cryosections were then immersed in

1x PBS and incubated at 37˚C for 20–30 min, followed by a wash with 1x PBS. Then the slides were

incubated with fixative solution for 10–15 min, washed one with 1x PBS, and incubated with b-galac-

tosidase staining solution for O/N at 37˚C in dark. The slides were then washed once with 1x PBS

and mounted with SlowFadeÂ Gold antifade reagent (Invitrogen). For cells, 105 cells were plated

onto six well plates, grown O/N in 37˚C incubator, followed by aspiration of growth medium and

washing twice with 1x PBS. The rest of the procedures were similar to that of staining of slides as

mentioned above.
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Serum glucose and IGF-1 assay
Serum glucose and IGF-1 levels in mice were assayed using kits from Abcam and R and D Systems

respectively, following the manufacturer’s protocols.

Immunostaining for FACS analysis
107 bone marrow cells were resuspended in 1x RBC lysis solution and kept on ice for 5 min, followed

by centrifugation at 500 g for 5 min and washing with ice cold 1x PBS. The bone marrow stromal

cells were then stained with 0.5 ml each of PE-Sca1, APC-cKit and FITC-CD34 for hematopoietic

stem cell profile analysis and 0.5 ml each of PE-CD105, APC-CD44 and FITC-CD31 for mesenchymal

stem cell analysis. Only Sca-1+c-Kit+CD34- cells were counted as hematopoietic stem cells and only

CD105+CD44+CD31- cells were counted as mesenchymal stem cells in flow cytometric analysis.

Mono-stained cells and cells stained with isotype controls were also analyzed simultaneously. Stain-

ing was done for 20–30 min on ice in dark, followed by washing with pre-chilled 1x PBS, and resus-

pension in 1x PBS and then taken for FACS analysis using BD FACSCantoII Analyzer. Similarly,

thymic cells were stained with 0.5 ml of FITC-CD4 and PE/Cy5-CD8, keeping mono-stained and iso-

type control stained cells following the protocol mentioned above. Also, splenic cells were stained

with 0.5 ml of PerCP-B220 and PE-CD11b separately keeping isotype controls, and similar proce-

dures were followed to prepare for FACS analysis.

Annexin-V staining
Analysis of apoptosis was done using TACS Annexin V-Biotin Apoptosis Detection kit from R and D

systems. Cells from thymus and bone marrow stromal cells from tibia and femur of mice were

flushed out using ice-cold 1x PBS. 106 cells were washed once with ice cold 1x PBS, stained with pro-

pidium iodide and Annexin-V Biotin for 15 min in dark at RT, followed by centrifugation at 500 g for

5 min. Then the cells were incubated with FITC labelled Streptavidin antibody (BD Pharmingen, BD

Biosciences, San Jose, USA) for 15 min in dark at RT, followed by centrifugation at 500 g for 5 min,

resuspension in pre-chilled 1x PBS and flow cytometric analysis.

Isolation of bone marrow stromal cells, thymic and splenic cells
After sacrificing the mice by cervical dislocation, both femurs and tibias were dissected, their ends

were cut with a sharp and sterile scissor, and the bone marrow stromal cells were flushed out with

pre-chilled 1x PBS using a 231/2 needle and were passed through 70-mm cell strainer for filtering out

the clustered cells. The viable cell number was then calculated using hemocytometer after dilution

with Trypan blue. Thymic and splenic cells were also isolated by flushing the thymus and spleen of

mice using pre-chilled 1x PBS and cell number was calculated in a similar way.

MTT assay
Measurement of cell viability was performed using TACS Cell Proliferation Assay Kit (R and D sys-

tems). Briefly, around 5000 MEF cells were seeded onto 96 well plates in triplicates and grown for

48 hr. 10 ml of MTT reagent was added to each well, keeping triplicate controls of non-treated blank

sets for each cell type. The cells were placed back in 37˚C incubator for 4 hr, and development of

purple coloration was monitored. Then 100 ml of detergent reagent was added to each well, and the

plate was left covered in dark for 2–4 hr, followed by measurement of absorbance at 570 nm in a

microplate reader. Average values of blanks were subtracted from average values from triplicate

readings and graph was plotted to analyze the same.

X-ray imaging
X-ray imaging of the whole body of mice was done using UltraFocus1000 (fully-shielded X-ray cabi-

net) from Faxitron.

Statistical analysis
Quantifications have been represented as mean ± SEM, n >= 3 for all experiments performed. Statis-

tical significance was analyzed by two-tailed unpaired Student’s t-test and one-way ANOVA using

GraphPad Prism software. Kaplan-Meier Survival curves have been plotted using GraphPad Prism

software, and Log-rank (Mantel-Cox) test has been employed to calculate statistical significance.
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Since our sample sizes varied from 3 to 6, it was difficult to conclude whether normal distribution

was achieved or not. Given that parametric tests are more sensitive and powerful in determining sta-

tistically significant differences which non-parametric tests might overlook, we either used Student’s

t-test or ANOVA to calculate statistical significance in our results.
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