

1
2 **Selective eradication of cancer displaying hyperactive Akt by exploiting the**
3 **metabolic consequences of Akt activation**
4

5 Veronique Nogueira^{1*}, Krushna C. Patra^{1,3}, and Nissim Hay^{1,2*}
6

7 ¹Department of Biochemistry and Molecular Genetics, College of Medicine, University of
8 Illinois at Chicago, Chicago, IL 60607, USA ²Research & Development Section, Jesse Brown
9 VA Medical Center, Chicago, IL 60612, USA

10
11
12 ³ Present address: Massachusetts General Hospital Cancer Center, Harvard Medical School,
13 Boston, MA 02114, USA

14

- 15 • Correspondence: Nissim Hay (nhay@uic.edu), Veronique Nogueira (vnogueir@uic.edu)
16 Tel: 312-355-1684

17 Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois
18 at Chicago, Chicago, IL 60607, USA

19
20
21 Conflict of Interest: There is no conflict of interest to declare
22
23
24
25
26
27
28
29
30
31
32

33

34 **Abstract**

35 Akt activation in human cancers exerts chemoresistance, but pan-Akt inhibition elicits adverse
36 consequences. We exploited the consequences of Akt-mediated mitochondrial and glucose
37 metabolism to selectively eradicate and evade chemoresistance of prostate cancer displaying
38 hyperactive Akt. PTEN-deficient prostate cancer cells that display hyperactivated Akt have high
39 intracellular reactive oxygen species (ROS) levels, which are due, in part, to Akt-dependent
40 increase of oxidative phosphorylation. High intracellular ROS levels selectively sensitize cells
41 displaying hyperactive Akt to ROS-induced cell death enabling a therapeutic strategy combining
42 a ROS inducer and rapamycin in PTEN-deficient prostate tumors in mouse models. This strategy
43 elicited tumor regression, and markedly increased survival even after the treatment was stopped.
44 By contrast, exposure to antioxidant increased prostate tumor progression. To increase glucose
45 metabolism Akt activation phosphorylates HK2 and induced its expression. Indeed, HK2
46 deficiency in mouse models of Pten-deficient prostate cancer elicited a marked inhibition of
47 tumor development and extended lifespan.

48

49

50

51 **Introduction**

52 One of the most frequent events in human cancer is hyperactivation of the serine/threonine
53 kinase Akt. Akt is hyperactivated in cancer by multiple mechanisms, largely through the
54 activation of its upstream regulator phosphoinositide 3-kinase (PI3K), which generates the
55 phosphatidylinositol-3,4,5-trisphosphate (PIP₃) required for Akt activation (Mayer & Arteaga,
56 2016). The activity of PI3K is negatively regulated by the tumor suppressor Phosphatase And
57 Tensin Homolog (PTEN), which is a PIP3 phosphatase, and therefore inhibits the PI3K/Akt
58 signaling pathway. PTEN expression is frequently lost in human cancers, specifically in
59 glioblastoma, melanoma, endometrial and prostate cancers (Hollander, Blumenthal et al., 2011).
60 The frequent activation of PI3K/Akt signaling in cancer and its ability to exert chemoresistance
61 led to the development of small molecule inhibitors of PI3K and Akt, which are currently being
62 tested in clinical trials (Kim, Dan et al., 2005, Zhang, Kwok-Shing Ng et al., 2017, Zheng, 2017).
63 There are three Akt genes in mammalian cells (*Akt1-3*), and their encoded proteins have a high
64 degree of identical amino acids. The expression pattern in mammalian tissues and organs is
65 different amongst the three isoforms. While Akt1 is ubiquitously expressed, Akt2 is expressed at
66 the highest level in insulin-responsive tissues, and Akt3 is expressed at the highest level in the
67 brain. The different mouse phenotypes with the individual Akt isoform germ line deletions can
68 be explained by their relative expression in the organs that determine the phenotype (Dummler &
69 Hemmings, 2007, Hay, 2011). The Akt inhibitors currently in clinical trials are pan-Akt
70 inhibitors that inhibit the different Akt isoforms to a similar extent. These pan-Akt inhibitors
71 exert undesired side effects, such as hyperglycemia, hyperinsulinemia, and diabetes (Wang,
72 Chen et al., 2017). Furthermore, genetic deletion of Akt1 and Akt2 in the mouse liver induces
73 liver damage, inflammation, and paradoxically hepatocellular carcinoma (HCC) (Wang, Yu et
74 al., 2016). Therefore, developing isoform-specific inhibitors could reduce the undesired systemic
75 consequences of pan-Akt inhibition, although this is challenging. Alternatively, a therapeutic
76 approach that selectively targets cancer cells displaying hyperactive Akt should be developed.

77 Perhaps the most evolutionarily conserved function of Akt is mediating cellular and
78 organismal metabolism. This conserved function of Akt is likely utilized by cancer cells to fulfill
79 their anabolic demands. Since PTEN is lost in approximately 40% of prostate cancers

80 (Pourmand, Ziae et al., 2007, Taylor, Schultz et al., 2010), we chose to work towards
81 developing a personalized therapeutic approach by using PTEN-deficient prostate cancer to
82 explore selective vulnerability as a consequence of Akt's metabolic activity. As we showed
83 previously, activation of Akt increases both glycolysis and oxidative phosphorylation (Gottlob,
84 Majewski et al., 2001, Robey & Hay, 2009). We also showed that Akt activation increases
85 intracellular ROS levels, in part by increasing oxidative phosphorylation. Since Akt does not
86 exert resistance to ROS-induced cell death, increasing ROS levels could selectively eradicate
87 cells displaying hyperactive Akt (Nogueira, Park et al., 2008). Here, we showed that human
88 PTEN-deficient and not PTEN-proficient prostate cancer cells have high intracellular ROS
89 levels, which are Akt-dependent. The high level of ROS can be exploited to selectively eradicate
90 human PTEN-deficient tumors in vivo as well as in a mouse model of Pten-deficient prostate
91 cancer. We used the natural compound phenylethyl isothiocyanate (PEITC) that depletes
92 intracellular glutathione (Xu & Thornalley, 2001) as a ROS inducer either alone or in
93 combination with the mTORC1 inhibitor rapamycin to selectively eradicate Pten-deficient cancer
94 cells in vivo. We also found that in PTEN-deficient prostate cancer, HK2 is induced because of
95 Akt activation to increase glycolysis. HK2 is the hexokinase isoform that is not highly expressed
96 in most mammalian tissues but is generally induced in cancer cells by multiple mechanisms
97 (Hay, 2016). Furthermore, HK2 is phosphorylated by Akt to increase its mitochondrial binding
98 (Miyamoto, Murphy et al., 2008) and therefore its glycolytic activity (DeWaal, Nogueira et al.,
99 2018). Here we showed that silencing HK2 in human PTEN-deficient prostate tumors and
100 deleting HK2 in a mouse model of Pten-deficient prostate cancer inhibits cancer development in
101 both cytostatic and cytotoxic manners. HK2 deficiency also overcame the chemoresistance of
102 PTEN-deficient prostate cancer cells.

103

104 **Results**

105 **PTEN-deficient human prostate cancer cells display high oxygen consumption, OXPHO 106 and high levels of ROS**

107 We employed three human prostate cancer cell lines: DU145, which is PTEN-proficient, and
108 PC3 and LNCaP, which are PTEN-deficient. As expected, the PTEN status in DU145, PC3 and
109 LNCaP cells determines Akt activity in these cells (Figure 1A). DU145 cells, which harbor wild-
110 type PTEN, exhibit low Akt activity. PTEN-deficient PC3 and LNCaP cells display

111 hyperactivated Akt. As we previously found, Akt elevates oxygen consumption and intracellular
112 ROS levels (Nogueira et al., 2008). We therefore determined these two parameters in prostate
113 cancer (CaP) cells in which PTEN is frequently lost. Basal oxygen consumption was the lowest
114 in the PTEN-proficient DU145 cells, while it was gradually increased in the PTEN-deficient PC3
115 and LNCaP cells (Figure 1B), following the pattern of Akt activity in which higher oxygen
116 consumption was correlated with higher Akt activity. Silencing Akt1 and Akt2 in PC3 cells
117 markedly decreased oxygen consumption, indicating that the high oxygen consumption in these
118 cells is Akt-dependent (Figure 1C). Interestingly, basal oxygen consumption in DU145 cells
119 reached the maximum capacity of the respiratory chain, while PC3 and LNCaP cells have a
120 larger spare capacity. Fig. 1B also shows that the ATP production capacity is two-fold higher in
121 PC3 and LNCaP cells compared to DU145 cells, agreeing with our previous observations that
122 Akt activation increases ATP production by both glycolysis and oxidative phosphorylation
123 (Gottlob et al., 2001). Since intracellular ROS are by-products of high OXPHO, we determined
124 intracellular ROS production at the cytosolic (Figure 1D) and mitochondrial (Figure 1E) levels,
125 and found that high Akt activity was correlated with high intracellular levels of ROS. Akt1 and
126 Akt2 knockdown in PC3 cells consistently decreased ROS levels, confirming that Akt regulates
127 intracellular ROS levels. (Figure 1F). Finally, we found that in PC3 and LNCaP cells
128 mitochondrial membrane potential is higher than in DU145 cells (Figure 1-figure supplement 1),
129 which is likely correlated with the higher respiratory chain activity in PC3 and LNCaP cells.

130 In our previous studies, we found that Akt activation increases ROS not only by increasing
131 oxygen consumption but also by inhibiting the expression of ROS scavengers downstream of
132 FOXO, such as MnSOD and catalase, and particularly sestrin3 (Sesn3) (Nogueira et al., 2008).
133 Sesn3 is a transcriptional target of FOXO (Chen, Jeon et al., 2010) and a member of a protein
134 family including Sesn1 and Sesn2, which reduce ROS by several mechanisms (Bae, Sung et al.,
135 2013, Kopnin, Agapova et al., 2007). Interestingly, in contrast to our findings in MEFs (Nogueira et
136 al., 2008), changes in MnSOD and catalase expression in the CaP cells did not correlate with
137 changes in ROS levels (Figure 1-figure supplement 2), which is consistent with what was
138 previously observed (Chowdhury, Raha et al., 2007). However, the pattern of Sesn3 expression was
139 consistent with ROS levels, and while DU145 cells express high levels of Sesn3, PC3 and LNCaP
140 cells express relatively low levels of Sesn3 (Figure 1-figure supplement 3). Interestingly,
141 downregulation of Sesn3 in DU145 cells or up-regulation of Sesn3 in PC3 cells (Figure 1-figure

142 supplement 4) was sufficient to modulate cytosolic ROS production in these cells (Figure 1-figure
143 supplement 5Sesn3 knockdown in DU145 cells increased ROS production, while overexpression of
144 Sesn3 in PC3 cells decreased ROS production. These results suggest that Sesn3 contributes to the
145 regulation of intracellular ROS downstream of Akt and FoxOs in CaP cells.

146 Taken together, these results show that PTEN-deficient prostate cancer cells display high
147 OXPHO and ROS levels in an Akt-dependent manner.

148

149 **PTEN-deficient prostate cancer cells are selectively sensitized to killing by a ROS inducer**

150 We previously reported that cells that display high Akt activity could be selectively killed by
151 increasing the intracellular level of ROS (Nogueira et al., 2008). This selectivity is due to the
152 high intracellular ROS levels exerted by Akt activation in combination with the inability of Akt
153 to protect against ROS-induced cell death. We therefore treated the prostate cancer cells with 2-
154 methoxyestradiol (2-ME), an endogenous metabolite of estradiol-17beta that increases ROS, or
155 with β -phenylethyl isothiocyanate (PEITC), a natural compound found in consumable
156 cruciferous vegetables that is known to increase intracellular ROS levels by depleting
157 intracellular glutathione (Ting, Lee et al., 2010) (Yu, Mandlekar et al., 1998) (See also Figure 2-
158 figure supplement 1 We found that CaP cells with high Akt activity due to the loss of PTEN
159 (LNCaP, PC3 cells) were more vulnerable to 2-ME- and PEITC-induced cell death than the
160 PTEN-proficient CaP cells (DU145 cells) (Figure 2 A, B, and Figure 2-figure supplement 2).
161 Consistently LNCaP and PC3 cells are more vulnerable to the glutathione reducing agent BSO
162 (Figure 2-figure supplement 3). Interestingly, NADP+/NADPH ratio is elevated in the PTEN-
163 deficient cells (Figure 2-figure supplement 4). The elevated NADP+/NADPH could be either
164 contributing to the high level of ROS or it is a result of increased NADPH consumption to
165 combat the high ROS level. Alternatively or additionally, higher NADPH is consumed for fatty
166 acid synthesis in the PTEN-deficient cells can contribute to the higher NADP+/NADPH ratio.

167

168 Silencing Sesn3 increased PEITC-induced cell death in DU145 cells, and overexpression of
169 Sesn3 in PC3 cells decreased their sensitivity to PEITC (Figure 2-figure supplement 5). The cell
170 death induced by PEITC is ROS-dependent since it is inhibited by the ROS scavenger N-acetyl
171 cysteine (NAC) (Figure 2-figure supplement 6). To determine if the hypersensitivity of PTEN-
172 deficient prostate cancer cells to ROS-induced cell death is PI3K/Akt dependent, we first restored

173 PTEN expression in the Pten-deficient cells and silenced Pten in the Pten-proficient cells. (Figure 2-
174 figure supplement 7). Oxygen consumption and ROS production were increased by silencing PTEN
175 in DU145 cells and decreased in PC3 and LNCaP cells expressing PTEN (Figure 2-figure
176 supplement 8). The silencing of PTEN in DU145 cells increased sensitivity to PEITC, whereas the
177 expression of PTEN in PC3 and LNCaP cells decreased their sensitivity to PEITC (Figure 2-figure
178 supplement 9). Like the silencing of PTEN in DU145 cells expression of activated myristoylated
179 Akt (mAkt) in DU145 cells increased ROS levels and renders the cells more sensitive to ROS-
180 induced cell death (Figure 2-figure supplement 10). Finally, the knockdown of Akt1 and Akt2 in
181 PC3 and LNCaP cells that reduced ROS levels also rendered them resistant to PEITC-induced cell
182 death (Figure 1F, Figure 2C, and Figure 2-figure supplement 11). We concluded that Akt activation
183 in Pten-deficient prostate cancer cells could not protect against oxidative stress-induced cell death
184 but rather sensitized the cells to ROS-induced cell death by increasing their intracellular ROS
185 levels.

186

187 **Treatment with PEITC and rapamycin inhibits and regresses tumor development in a
188 xenograft model and in a mouse model of prostate cancer**

189 We previously showed that rapamycin treatment could further sensitize cells displaying
190 hyperactive Akt to oxidative stress-induced cell death, which could be due, in part, to the further
191 activation of Akt by the inhibition of mTORC1 inhibitory activity on the PI3K/Akt signaling
192 (Nogueira et al., 2008). This was also observed in prostate cancer cells (Figure 2-figure
193 supplement 12). Thus, the combination of rapamycin and oxidative stress could not only
194 circumvent resistance to cell death but also selectively kill cells treated with rapamycin. Before
195 applying this strategy to animal models of prostate cancer, we first established our proof-of-
196 concept with prostate cancer cells in vitro. As shown in Figure 2D, rapamycin alone did not
197 induce cell death, but pretreatment with rapamycin augmented the ability of PEITC to induce
198 cell death in all 3 CaP cell lines. Although rapamycin treatment increased PEITC-induced cell
199 death in all cell lines, the LNCaP and PC3 cells with hyperactivated Akt were markedly more
200 sensitive to cell death induced by the combination of rapamycin and PEITC than DU145 cells
201 (Figure 2D). The synergistic effect of rapamycin and PEITC on cell death could be explained by
202 the induction of ROS exceeding the scavenging capacity (Figure 2-figure supplement 13). We
203 found that rapamycin, by itself, does not substantially affect oxygen consumption or intracellular

204 ROS induced by Akt (Figure 2-figure supplement 14). This contrasts with the catalytic inhibitor
205 of mTOR, torin1, which decreased oxygen consumption and ROS levels (Figure 2-figure
206 supplement 14). These results are consistent with previously published results showing that
207 while the mTOR kinase inhibitor inhibits OXPHO in an eIF4E-dependent manner, rapamycin
208 does not (Morita, Gravel et al., 2013). We concluded that combining rapamycin and PEITC
209 could be used to selectively kill prostate cancer cells expressing hyperactive Akt.

210 To examine the efficacy of the strategy to selectively eradicate prostate cancer cells
211 carrying activated Akt in vivo, we first employed xenografts of PC3 cells in athymic nude mice
212 and studied the effect of PEITC and rapamycin on the growth of tumors induced by PC3 cells
213 (Figure 2E). After tumor onset, the mice were either not treated or treated with either rapamycin
214 alone, PEITC alone or the combination of both rapamycin and PEITC. Rapamycin alone or
215 PEITC alone significantly attenuated the growth of the tumors, but the tumors remained
216 palpable. However, the combination of PEITC and rapamycin regressed tumor growth and
217 eradicated the tumors. Analyses of tumor sections near the endpoint of the experiment showed
218 that PEITC alone induced both a profound inhibition of BrdU incorporation and cell death, as
219 assessed by cleaved caspase 3, whereas rapamycin alone did not induce cell death but did inhibit
220 BrdU incorporation (Figure 2F-H). Cell death after treatment with both PEITC and rapamycin,
221 as measured by cleaved caspase 3, was profoundly higher than that induced by PEITC alone
222 (Figure 2F-H). When the PTEN-proficient DU145 xenografts were similarly treated, the effect of
223 rapamycin alone or PEITC alone on tumor growth was not as profound (Figure 2-figure
224 supplement 15). Importantly, the combination of rapamycin and PEITC did not decrease tumor
225 growth as it did for the PTEN-deficient PC3 xenografts. Thus, these results indicate that the
226 combination of rapamycin and PEITC could be an effective therapeutic strategy for PTEN-
227 deficient prostate cancer or prostate cancer in which Akt is hyperactivated.

228 To further address the feasibility of PEITC and rapamycin treatment for PTEN-
229 deficient prostate cancer, we employed a mouse model for prostate cancer in which prostate Pten
230 is specifically deleted by Cre recombinase driven by the probasin promoter (*Pbsn-Cre4;Pten^{ff}*
231 mice). Mice that are deficient for PTEN in the prostate display progressive forms of prostatic
232 cancer that histologically resemble human prostate cancer, ranging from mild prostatic
233 intraepithelial neoplasia (PIN) at 10 weeks of age to large multinodular malignant
234 adenocarcinoma with metastasis within 8 months (Trotman, Niki et al., 2003). Pten deletion

leads to Akt activation in the prostate and, similar to what we observed in vitro, an increase in oxidative stress, as measured by the increased level of 4-hydroxynonenal (4HNE) protein adducts (Figure 3A). Since the onset of PIN occurs within 2 months and invasive CaP occurs within 8 months, we could test the efficacy of our therapeutic approach at two different stages of prostate cancer, low-grade PINs and, later, high-grade PINs and CaP stages. The first strategy is depicted in Figure 3B. The treatment did not significantly affect the mice body weights (Figure 3-figure supplement 1), and the prostate weights did not significantly change in the control mice after treatment with rapamycin alone, PEITC alone or rapamycin and PEITC in combination (Figure 3-figure supplement 2). However, these treatments significantly decreased the prostate weights in the *Pbsn-Cre4;Pten^{ff}* mice, which was most profound when both rapamycin and PEITC were combined (Figure 3C). When tumor sections were analyzed after 8 months, we found that all treatments markedly inhibited proliferation, as measured by BrdU incorporation (Figures 3D and 3E), but PEITC also induced cell death, which was further exacerbated when PEITC was combined with rapamycin (Figures. 3D and 3F). Finally, the combination of rapamycin and PEITC treatment markedly increased survival (Figure 3G). Histopathological analysis showed that while two third and one third of untreated mice had high grade PIN and microinvasive carcinoma respectively, one third of mice treated with rapamycin and PEITC did not have any detectable PIN, 16% had low grade PIN and only one third had high grade PIN and 16% microinvasive carcinoma (Table 1, and Figure 3-figure supplement 3). By contrast, treating the mice with NAC to decrease the ROS levels markedly increased the prostate weights and tumor growth (Figure 3H). All NAC treated mice had carcinoma with the majority of mice (75%) displaying invasive carcinoma and 25% microinvasive carcinoma (Table 1 and Figure 3-figure supplement 3). The results indicate that high ROS levels are an impediment to tumor progression. Next, we wanted to know whether the efficacy of such a treatment was greater if the mice were treated at a younger age. Therefore the mice were treated at 2 months according to the protocol depicted in Figure 4A. One cohort of mice was sacrificed at 6 months, and another cohort of mice was left untreated for another 6 months and sacrificed at 12 months. A third cohort of mice was used to determine survival. As shown in Figures 4B and Figure 4-figure supplement 1, the treatments did not affect the body weights but significantly reduced the prostate weights of the *Pbsn-Cre4;Pten^{ff}* mice at the 6-month time point. Analysis of tumor sections at 6 months again showed a marked decrease in cell proliferation and a marked increase

266 in cell death with the combination of PEITC and rapamycin treatment (Figures 4C-E). Strikingly,
267 the effect of PEITC and rapamycin was sustained even in the cohort of mice that were left
268 untreated for another six months (Figures 4F-I). Interestingly, we found that BrdU incorporation
269 was still decreased (Figure 4H), and cell death was increased (Figure 4H). Finally, treatment
270 with PEITC and rapamycin profoundly increased survival, even though the treatment was
271 stopped at 6 months of age (Figure 4J). Taken together the results suggest that treatment with
272 rapamycin and PEITC not only attenuate prostate tumor growth but also regresses tumor
273 progression.

274

275 **HK2 expression is induced in Pten-deficient prostate cancer in an Akt-dependent manner**

276 Hexokinases catalyze the first committed step of glucose metabolism by phosphorylating
277 glucose. Hexokinase 2 (HK2), which is not expressed in most mammalian tissues, is markedly
278 induced in cancer cells by different mechanisms (Patra & Hay, 2013, Patra, Wang et al., 2013).
279 Previously, we showed that systemic deletion of HK2 in mice is well tolerated and a therapeutic
280 for lung cancer (Patra et al., 2013). HK2 is also directly phosphorylated by Akt which increased
281 its binding to mitochondria (Miyamoto et al., 2008), and therefore its activity (DeWaal et al.,
282 2018). We therefore examined the human prostate cancer cell lines DU145, PC3 and LNCaP for
283 the expression of HK2 and found that the PTEN-deficient PC3 and LNCaP cells expressed
284 higher levels of HK2 compared with the PTEN-proficient DU145 cells (Figure 5A and Figure 5-
285 figure supplement 1). The high level of HK2 in the PC3 and LNCaP cells was dependent on Akt
286 because treatment with the pan-Akt inhibitor MK2206 diminished HK2 expression (Figure 5A)
287 and because the knockdown of Akt1 and Akt2 in PC3 cells decreased HK2 expression (Figure 5-
288 figure supplement 2). In addition the knockdown of PTEN in DU145 cells increased HK2
289 expression whereas the expression of PTEN in PC3 and LNCaP cells decreased HK2 expression
290 (Figure 5-figure supplement 3). The knockdown of HK2 only modestly decreased the total
291 hexokinase activity in DU145 cells, while in PC3 and LNCaP cells, HK2 knockdown decreased
292 most of the total hexokinase activity (Figures 5B and 5C). The results suggest that in the PTEN-
293 deficient PC3 and LNCaP cells, HK2 is the major contributor of hexokinase activity. Indeed the
294 knockdown of hexokinase 1 (HK1) in PC3 cells had only a modest effect on the total hexokinase
295 activity (Figure 5-figure supplement 4) and no effect on cell proliferation in comparison with
296 HK2 knockdown (Figure 5-figure supplement 5).

297

298 **HK2 deficiency in Pten-deficient prostate cancer cells impairs proliferation and**
299 **tumorigenesis and overrides chemoresistance**

300 HK2 knockdown in PC3 and LNCaP cells markedly affected the proliferation of the cells, as
301 measured by the cell numbers and BrdU incorporation, whereas the proliferation of the DU145
302 cells was not significantly affected (Figures 5D-E). The knockdown of HK1, however, did not
303 affect the proliferation of PC3 cells and did not further decrease the attenuated proliferation
304 induced by HK2 knockdown (Figure 5-figure supplement 5). Furthermore, the knockdown of
305 HK2 impaired the anchorage-independent growth of PC3 cells (Figure 5F). PTEN-deficient
306 prostate cancer cells are relatively resistant to etoposide because of Akt activation (Figure 5-
307 figure supplement 6). However, HK2 knockdown re-sensitizes these cells to death induced by
308 etoposide (Figure 5G). The inducible knockdown of HK2 in PC3 cells in nude mice after tumor
309 onset substantially decreased tumor growth. Etoposide alone also inhibited tumor growth,
310 although to a lesser extent. However, the combination of HK2 knockdown and etoposide
311 prohibited tumor growth by both decreased proliferation and increased cell death (Figure 5H and
312 Figure 5-figure supplement 7). Finally, we observed that glycolysis, as measured by ECAR, was
313 significantly reduced in PC3 cells after HK2 knockdown as expected (Figure 5-figure
314 supplement 8), but this was associated with a compensatory increase in oxygen consumption
315 (OCR) (Figure 5-figure supplement 9). Consequently, the ROS levels were further increased in
316 PC3 cells (Figure 5-figure supplement 10), and therefore, the cells became more sensitive to
317 PEITC-induced cell death (Figure 5-figure supplement 11). These results suggest that HK2
318 depletion together with PEITC could be an additional therapeutic strategy for PTEN-deficient
319 prostate cancer cells.

320

321 **Hk2 deletion in *Pbsn-Cre4;Pten^{ff}* mice inhibits prostate tumor development by decreasing**
322 **proliferation and increasing cell death**

323 To further address the role of HK2 in prostate neoplasia *in vivo*, we crossed *Pbsn-Cre4;Pten^{ff}*
324 mice with *Hk2^{ff}* mice to generate *Pbsn-Cre4;Pten^{ff};Hk2^{ff}* mice. As shown in Figure 6A, HK2
325 expression was induced in the prostates of *Pbsn-Cre4;Pten^{ff}* mice compared with that of the
326 control mice. The deletion of HK2 in the *Pbsn-Cre4;Pten^{ff};Hk2^{ff}* mice markedly decreased the
327 prostate weights (Figure 6B) and substantially increased the survival compared with those of the

328 *Pbsn-Cre4;Pten^{ff}* mice (Figure 6C). Analysis of the prostate tumor sections showed that HK2
329 deletion not only inhibited tumor proliferation, as measured by BrdU incorporation, but also
330 significantly increased apoptosis, as measured by caspase-3 cleavage Figures 6D and E). We
331 concluded that HK2 is required for prostate cancer development and that its deletion induces
332 both cytostatic and cytotoxic effects.

333

334 **Discussion**

335 Akt is frequently hyperactivated in human cancers. However, systemic pan-Akt inhibition could
336 also exert toxicity and undesired effects, such as hyperinsulinemia, hyperglycemia, liver injury,
337 and inflammation (Wang et al., 2017). Therefore, alternative therapeutic approaches that can
338 selectively target cancer cells with hyperactive Akt are highly desired. Akt activation induces
339 metabolic changes that can be exploited to selectively target cancer cells displaying hyperactive
340 Akt. Akt is frequently hyperactivated in prostate cancer due to loss of the tumor suppressor
341 PTEN. We therefore exploited the metabolic consequences of Akt activation in PTEN-deficient
342 prostate cancer. Akt activation in PTEN-deficient prostate cancer elevates oxygen consumption
343 and intracellular ROS levels. Since Akt activation cannot protect cells against ROS-induced cell
344 death, the high level of ROS mediated by Akt activation renders cells with hyperactive Akt more
345 vulnerable to ROS-induced cell death. Rapamycin further induced Akt activity by inhibiting the
346 feedback inhibition of Akt by mTORC1(Nogueira et al., 2008). Since treatment with rapamycin
347 further increased ROS-induced cell death, we combined a ROS inducer with rapamycin as a
348 therapeutic approach to eradicating the PTEN-deficient prostate tumors of human xenografts in
349 mice and in a mouse model of prostate neoplasia. This therapeutic approach also converts the
350 cytostatic effect of rapamycin to a cytotoxic effect. This strategy was successful in eradicating
351 prostate tumors *in vivo*. In the mouse model of Pten-deficient prostate cancer, we found that this
352 strategy inhibited prostate tumor growth, which was sustained even six months after the
353 treatment was stopped. Interestingly six months after the treatment was stopped not only we
354 observed inhibition of proliferation but continuous increase in cell.

355 High ROS levels in cancer cells can contribute to tumorigenesis and promote pro-
356 oncogenic signaling. However, high ROS levels could also be impediment to tumor progression
357 and metastasis (Le Gal, Ibrahim et al., 2015, Piskounova, Agathocleous et al., 2015, Sayin,
358 Ibrahim et al., 2014). Indeed, we found that in contrast to treatment with a ROS inducer,

359 treatment with a ROS scavenger increased tumor development and invasiveness in *Pbsn-Cre*;
360 *Pten*^{ff} mice.

361 We found that high level of glycolysis in PTEN-deficient prostate cancer cells is
362 partially dependent on the ability of Akt to elevate HK2 expression. HK2 expression was not
363 detected in the prostates of normal mice but was markedly induced after the deletion of PTEN in
364 the prostates. In addition, HK2 is phosphorylated by Akt and increases the binding of HK2 to
365 mitochondria (Miyamoto et al., 2008, Roberts, Tan-Sah et al., 2014). Because the binding of
366 HK2 to mitochondria increases glycolysis (DeWaal et al., 2018), Akt likely not only increases
367 HK2 expression but also increases its activity in PTEN-deficient prostate cancer. HK2
368 knockdown in Pten-deficient prostate cancer cells in mice markedly inhibited their tumor growth
369 and overcame their resistance to etoposide. The deletion of HK2 in the prostates of *Pbsn-*
370 *Cre4;Pten*^{ff} mice inhibited tumor growth and markedly extended their survival. Interestingly,
371 unlike in other mouse models of cancer (Patra et al., 2013), HK2 deletion in the prostate of *Pbsn-*
372 *Cre; Pten*^{ff} mice is not only cytostatic but also cytotoxic.

373 In adult mice, HK2 is not expressed in most tissues, and high expression of HK2 is
374 limited to a small number of normal tissues (Patra & Hay, 2013, Patra et al., 2013). However,
375 HK2 expression is markedly elevated in cancer cells. Since systemic HK2 deletion is tolerated in
376 mice, HK2 inhibition is a viable approach to circumvent chemoresistance induced by Akt
377 activation in prostate cancer. Furthermore, it was recently demonstrated that it is feasible to
378 develop inhibitors that preferentially inhibit HK2 and not HK1 (Lin, Zeng et al., 2016). In
379 summary, we provided two therapeutic approaches exploiting the increased OXPHO and
380 glycolysis levels by Akt to selectively eradicate PTEN-deficient prostate cancer.

381

382 **Materials and Methods**

383

384 **Cell lines**

385 The DU145, PC3, LNCaP, 293FT and phoenix cells were purchased from ATCC. The DU145,
386 PC3, and LNCaP cells were maintained in RPMI-1640/10% FBS/1% pen-strep media. The
387 293FT and phoenix-amphotropic cells were maintained in DMEM/10% FBS/1% pen-strep
388 media. All cells were maintained in the exponential phase of growth at 37°C in a humidified 5%
389 CO₂ atmosphere. Tet-free FBS was used to maintain the Tet-ON HK2sh and Tet-ON control

390 (shScr) cells in the absence of doxycycline, and doxycycline induction was at 900ng/mL for the
391 inducible DU145, PC3 and LNCaP HK2 knockdown cell lines.

392 All cells were confirmed to be mycoplasma negative, using the Sigma LookOut Mycoplasma
393 PCR Detection Kit.

394

395 **Retrovirus and lentivirus production and infection**

396 pBabe-Puro-PTEN-HA was previously described by Furnari *et al.*(Furnari, Lin et al., 1997).
397 pBabe-Puro-mAkt was previously described in (Kennedy, Kandel et al., 1999). Human PTEN
398 was targeted in DU145 cells with an shRNA (5'-ACTTGAAGGCGTATACAGGA-3') cloned
399 into the pLenti6 lentiviral vector using the BLOCK-iT Lentiviral Expression System (Thermo
400 Fisher scientific). The sequences of the shRNAs targeting Akt1 and Akt2 to generate the PC3
401 Akt1/Akt2 double knockdown cells were described in (Nogueira et al., 2008). The sequences of
402 the shRNAs targeting human HK2 (HK2 shRNA3) used in this study were described in (Patra et
403 al., 2013). The pLKO.1 lentiviral vector containing human HK1 shRNA from Sigma was used
404 (stock # TRCN0000037656).

405 Amphotropic retrovirus production was performed as previously described (Skeen, Bhaskar et
406 al., 2006). Lentiviruses were made in 293FT cells using the virapower lentiviral system
407 (Invitrogen) according to the manufacturer's protocol. Viruses were collected 40-50 h after
408 transfection, and target cells were incubated with virus for 24 h in the presence of polybrene (8
409 μ g/ml). Cells were selected using 9 μ g/ml blasticidin, 1.3 μ g/ml puromycin or 0.2 mg/ml zeocin
410 for 4-6 days, and a mock infection plate was used as a reference. Cells were expanded for two
411 passages in drug-free media and frozen for subsequent use. Early passage cells were used for
412 every experiment.

413

414 **siRNA Transfection**

415 SMARTpool ON-TARGET plus SESN3 and control non-targeting siRNA were purchased from
416 Dharmacon. DU145 (8×10^4 cells/well) cells were plated in 6-well plates in DMEM
417 supplemented with 10% FBS. The next day, cells were transfected with 50 nM control-siRNA or
418 sestrin3-siRNA using DharmaFECT reagent (Dharmacon) according to the manufacturer's
419 instructions. Cells were split for ROS measurement or treatment with PEITC followed by

420 assessment of cell death 72 h after transfection.. The knockdown efficiency was analyzed by
421 either immunoblotting or real-time PCR.

422

423 **Immunoblot analysis**

424 For western blot analysis, 2×10^6 cells were plated on 10-cm plates and allowed to grow for 24 h.
425 The cells were then treated as described in the figure legends or harvested in PBS, and cell
426 pellets were washed and frozen at -80°C. Cell extracts were then made using ice-cold lysis buffer
427 [20 mM Hepes, 1% Triton X-100, 150 mM NaCl, 1 mM EDTA, 10 mM sodium pyrophosphate,
428 100 mM NaF, 5 mM iodo-acetic acid, 20 nM okadaic acid, 0.2 mM phenylmethylsulfonyl
429 fluoride and a complete protease inhibitor cocktail tablet (Thermo Fisher)]. For the tissue
430 extracts, frozen tissues collected by liquid nitrogen snap freezing were thawed and homogenized
431 in the same buffer. The extracts were run on 6 to 12% SDS-PAGE gels, transferred to PVDF
432 membranes, and probed with the following antibodies: anti-phospho-Akt Ser473, anti-panAkt,
433 anti-cleaved caspase-3, anti-HK1, anti-HK2 anti-PTEN (Cell Signaling Technology), anti-HA
434 (Covance), anti-4HNE (JaICA), anti-catalase, anti-CuZnSOD and anti-MnSOD (StressGen),
435 anti-SESN3 (ProteinTech) and anti-β-actin (Sigma). Immunoblots were quantified using the NIH
436 ImageJ software program by densitometric signal and normalized as described in figure legends.
437

438 **Cell death assays**

439 Cells were treated as described in the figure legends, and apoptosis and cell death was quantified
440 by DAPI staining as previously described (**Kennedy et al., 1999**) or by PI staining as previously
441 described (**Nogueira et al., 2008**). For DAPI staining, 13% formaldehyde was added directly to
442 medium. After 17h, media was removed and DAPI solution (1mM in PBS) added to plates. Cells
443 were then rinsed with PBS and visualized with immunofluorescence microscope. At least 5 fields
444 per plates were scored for percentage of apoptotic cells. For quantification of apoptosis by
445 cleaved caspase3/7 assay, cells (15×10^3 /well) were plated in a 48 - well plates. Upon treatment
446 to induce cell death, NucView-conjugated Caspase - 3 substrate (Nexcelom ViaStain™ Live
447 Caspase 3/7 Detection) was also added at a final concentration of 4μM. During apoptosis,
448 caspase 3/7 proteins cleave its substrate complex and thereby release the high-affinity DNA dye
449 (NucView), which translocates to the nucleus and binds to the DNA, producing a bright green
450 fluorescent signal. Thirty minutes before the end of the incubation, Hoechst 33342 is added to

451 each well (4 μ g/ml) and fluorescence was measured with the Celigo Image Cytometer. The
452 percentage of Green (apoptotic) to Total (Blue-Hoechst) is calculated.

453

454 **Measurement of ROS**

455 Intracellular ROS generation was assessed using 2',7'-dichlorofluorescein diacetate or
456 dihydroethidium (Molecular Probes) as described in (Nogueira et al., 2008).

457

458 **NADPH and GSH assays**

459 The intracellular levels of NADPH and total NADP (NADPH+NADP $^{+}$) were measured with
460 previously described enzymatic cycling methods, as described in (Jeon, Chandel et al., 2012).

461 The intracellular levels of GSH and total glutathione (GSSG + GSH) were measured with the use
462 of enzymatic cycling methods, as described previously (Rahman, Kode et al., 2006).

463

464 **Oxygen consumption assay**

465 For the oxygen consumption measurement, two instruments were used, a Clark-type oxygen
466 electrode and an XF96e Extracellular Flux analyzer (Agilent Seahorse). For the Clark-type
467 oxygen electrode method, 2 \times 10 6 cells were plated and cultured overnight. Cells were then
468 harvested, washed with PBS and resuspended in 500 μ l of fresh RPMI. The rate of oxygen
469 consumption was measured at 37°C using a Strathkelvin Model 782 oxygen meter equipped with
470 a Clark-type oxygen electrode. The results are expressed as the nanomoles of oxygen consumed
471 per minute and per million cells. For the Agilent Seahorse method, see below.

472

473 **Mitochondrial Membrane Potential**

474

475 MMP was determined with JC-1 dye (Thermofisher) using FACScan flow cytometer. JC-1 dye
476 accumulates in the mitochondrial membrane in a potential-dependent manner. High potential of
477 the inner mitochondrial membrane facilitates formation of the dye aggregates with both
478 excitation and emission shifted towards red light when compared with that for JC-1 monomers
479 (green light). Cells were seeded into 12-well black plate at a density of 10 \times 10 4 cells/well,
480 trypsinized and resuspended in JC-1 solution (10 μ g/ml) in RPMI and incubated in CO₂ incubator
481 at 37°C for 30 min. Before measurements, the cells were centrifuged and then washed twice with
482 the PBS and immediately analyzed by flow cytometry. Each experiment included a positive

483 control; 10 μ M of the FCCP was added to the cells as an uncoupler. Results are shown as a ratio
484 of fluorescence measured with red to green filters (aggregates to monomer fluorescence). Each
485 sample was run three times in triplicate.

486

487

488 **Measurement of the oxygen consumption rate (OCR) and the extracellular acidification
489 rate (ECAR)**

490 OCR and ECAR measurements were performed using the XF96e Extracellular Flux analyzer
491 (Agilent Technologies, Santa Clara, CA). Cells were plated on XF96 cell culture plates (Agilent
492 Technologies) at 3 \times 10 4 cells per well. The cells were incubated for 24 h in a humidified 37°C
493 incubator with 5% CO₂ in RMPI-1640 medium (10% FBS). One hour prior to performing an
494 assay, the growth medium in the wells of an XF cell plate was replaced by XF assay medium
495 (XF base medium lacking bicarbonate and HEPES containing 10 mM glucose, 1 mM sodium
496 pyruvate and 2 mM glutamine for OCR measurements and 2 mM glutamine only for ECAR
497 measurements), and the plate was transferred to a 37°C CO₂-free incubator. For OCR
498 measurement, successive injection of compounds measured ATP-coupled respiration (1 μ M
499 oligomycin), maximal respiration (0.5 μ M FCCP) and non-mitochondrial respiration (0.5 μ M
500 rotenone/antimycin A). Basal respiration, proton leakage and spare respiratory capacity were
501 then calculated using these parameters. For ECAR measurement, successive injection of
502 compounds measured glycolysis (10 mM glucose), glycolytic capacity (1 μ M oligomycin) and
503 non-glycolytic acidification (50 mM 2-deoxyglucose). The glycolytic reserve was then
504 calculated using these parameters. In a typical experiment, 3 baseline measurements were taken
505 prior to the addition of any compound, and 3 response measurements were taken after the
506 addition of each compound. The OCR and ECAR are reported as being normalized against cell
507 counts (pmoles/min/10 6 cells for OCR and mpH/min/10 6 cells for ECAR). The baseline OCR or
508 ECAR refers to the starting rates prior to the addition of a compound. Each experiment was
509 performed at least 3 times in triplicate.

510

511 **HK Activity**

512 Whole-cell HK activity was measured as described previously (Majewski, Nogueira et al., 2004).

513

514 **Cell proliferation and BrdU incorporation**

515 Cells (4×10^4) were plated on 6-cm dishes in triplicate and counted every day for 6 days. Media
516 was changed on the third day to ensure continuous natural growth. For BrdU incorporation, on
517 the third day of proliferation, a subset of cells was pulsed with 3 μ g/mL BrdU for 2 h and fixed
518 with 70% ethanol. In addition, immunostaining was performed with primary anti-BrdU
519 monoclonal antibodies (Dako) followed by a FITC-conjugated secondary antibody.

520

521 **Anchorage independent growth assay**

522 In brief, cells (20×10^3) were re-suspended in a single cell suspension in 10% FBS in RPMI
523 medium containing 0.35% agarose and plated onto a layer of 0.7% low-melt agarose-containing
524 medium in a 6-well dish. Cells were grown for 3 weeks in media, and doxycycline was replaced
525 every three days. Soft-agar colonies from the entire well were counted after 3 weeks. The
526 experiments were performed three times in triplicate.

527

528 **Real-Time PCR and Primers**

529 Total RNA was extracted using TRIzol reagent (Invitrogen), and first strand cDNA was
530 produced with SuperScript III reverse transcriptase (Invitrogen) following the standard protocol.
531 Quantitative PCR was performed with BIO-RAD iQ-SYBR green super-mix and the related
532 system. Samples were assayed in triplicate, and data were normalized to the actin mRNA levels.
533 The primer sequences for hSesn3 were 5'- ATG CTT TGG CAA GCT TTG TT -3' and 5'- GCA
534 AGA TCA CAA ACG CAG AA -3', and the primer sequences for hActin were 5'-CCA TCA
535 TGA AGT GTG ACG TGG -3' and 5'-GTC CGC CTA GAA GCA TTT GCG -3'.

536

537 **Mice strains and husbandry**

538 All mice in this study were from C57BL/6 background. The *Pbsn-Cre4;Pten^{ff}* mice were
539 described previously. *Pbsn-Cre4;Pten^{f/+}* mice were intercrossed to generate the following
540 genotypes for experiments: *Pten^{ff}*, *Pbsn-Cre4*, *Pten^{ff}* and *Pbsn-Cre4;Pten^{ff} ;Hk2^{ff}* were
541 described in (Patra et al., 2013). *Hk2^{ff}* and *Pbsn-Cre4;Pten^{ff}* mice were intercrossed to obtain
542 mice with the following genotypes: *Pbsn-Cre4;Pten^{ff};Hk2^{ff}* and *Pten^{ff};Hk2^{ff}* which were used
543 for experiments. All animal experiments were approved by the University of Illinois at Chicago
544 institutional animal care and use committee.

545

546 **Xenograft studies**

547 Male athymic mice (6 to 8 weeks old) were purchased from Charles River Laboratories and
548 maintained in accordance with the NIH Guide for the Care and Use of Laboratory Animals. Cells
549 (PC3 or DU145, 2×10^6 /0.1 ml PBS) were injected subcutaneously into both the left and right
550 flanks of each mouse. The mice were equally randomized into different treatment groups (see the
551 figure legend). When the tumors reached a size of 10 to 15 mm³, the animals were treated with
552 the indicated drugs (35 mg/kg PEITC, 2 mg/kg rapamycin, and a combination of
553 rapamycin/PEITC (1:1)) from Monday through Friday by intraperitoneal injection. All the drugs
554 were dissolved in solvent containing ethanol, cremophor-EL (Sigma), and PBS (1:1:8 volume
555 ratio). Control mice were injected with an equal volume of solvent as a control. The body
556 weights and tumor sizes of the mice were measured and recorded twice per week for the duration
557 of the experiment. When the tumor sizes reached the end-point criterion (e.g., a diameter greater
558 than 2 cm), the mice were euthanized, and xenograft tumors were collected. Tumor tissues from
559 representative mice from each group were sectioned, embedded in paraffin, and stained.

560 For the doxycycline inducible experiments, PC3 Tet-ON HK2sh cells (2×10^6 in 0.1 ml of PBS)
561 expressing doxycycline-inducible shRNA constructs were subcutaneously injected into male
562 nude mice. Once tumors were palpable, the mice were randomly assigned into different groups
563 and fed regular chow (control) or doxycycline chow (200 mg/kg of diet (Bio_Serv)), and they
564 received an IP injection of the vehicle solvent etoposide (10 mg/kg) as described above.

565

566 **Prostate tumor development and survival curves**

567 Control and *Pbsn-Cre4;Pten^{ff}* mice were treated with vehicle, rapamycin, PEITC or a
568 combination of rapamycin/PEITC at the same doses described above at 2 different ages, 2 and 4
569 months. A schematic and the frequency of treatment are described in the figure legends. At the
570 end of the study, prostate tissues will be collected for immunoblot analysis (snap-freezing in
571 liquid nitrogen) or histopathology (formalin fixation).

572 For the NAC study, a subset of four-month-old control and *Pbsn-Cre4;Pten^{ff}* mice received a
573 daily (5 days a week) intraperitoneal injection of N-acetyl-cysteine (200mg/kg, pH 7.4 in PBS)
574 or PBS for 12 consecutive weeks. At the end of the study, tissues will be collected for
575 immunoblot analysis (snap-freezing in liquid nitrogen) or histopathology (formalin fixation). For

576 the survival curve experiments, the mice were monitored until their death or until humane end-
577 point criteria was attained (e.g., distended abdomens).

578

579 **Histopathology and immunohistochemistry.**

580 Xenograft tumors (nude mice) and prostate tissues were collected at the indicated time points,
581 rinsed in PBS, and quickly fixed in 10% formalin overnight before being subsequently preserved
582 with 70% ethanol. The fixed tissues were then processed and embedded in paraffin. The paraffin
583 embedded tissues were processed, and 5 μ M slides were prepared for hematoxylin and eosin
584 (H&E) staining or immunostaining. For antigen retrieval, tissue sections were incubated at 95°C
585 in 10 mM citric acid (pH 6.0) for 30 min. Detection was achieved using ABC-DAB kits (Vector
586 Laboratories), an anti-BrdU mouse monoclonal antibody (Dako# M0744), and an anti-cleaved
587 caspase-3 (Asp175) antibody (Cell Signaling). For quantification, cells were counted from 4
588 section fields at a 40x magnification using four mice per condition.

589

590 **BrdU incorporation in mice**

591 For the BrdU labeling experiments, mice were injected intraperitoneally with BrdU (Sigma) in
592 PBS (0.5 mg BrdU/10 g of body weight) 2 h prior to sacrifice and tissue collection. Tumors were
593 collected and processed as described above. After dewaxing and rehydration, paraffin sections
594 were digested by pepsin followed by EcoRI and Exonuclease III. The slides were then incubated
595 with anti-BrdU and processed for immunohistochemistry as described above.

596

597 **Statistical analysis**

598 Statistical analysis was performed using unpaired Student's t-tests. Survival curves were
599 analyzed by log-rank tests, and the data are expressed as the mean \pm SEM as indicated in the
600 figure legends. Unless otherwise indicated, all the experiments were performed at least three
601 times in triplicate.

602

603 **Acknowledgements**

604 This work was supported by the ACS-IL grant 09-30 to V.N, the NIH grants R01AG016927,
605 R01 CA090764, and R01 CA206167, and the VA merit award BX000733 to N.H.

606

607 **Competing financial interests**

608 There are no competing financial interests.

609

610

611

612 **Table 1**
 613
 614

	Grade				
	No PIN	Low Grade PIN	High Grade PIN	Microinvasive Carcinoma	Invasive Carcinoma
<i>Pbsn-Cre4;Pten^{ff}</i> *			66%	33%	
<i>Pbsn-Cre4;Pten^{ff}</i> R+P **	33%	16%	33%	16%	
<i>Pbsn-Cre4;Pten^{ff}</i> +NAC ***				25%	75%

615
 616 * The anterior lobes of prostates from untreated mice were analyzed by histopathology at 8
 617 months (Percentage of mice with highest grade is indicated).
 618
 619 ** The anterior lobes of prostates from mice treated at 4 months with rapamycin and PEITC
 620 (R+P) were analyzed by histopathology at 8 months (Percentage of mice with highest grade is
 621 indicated).
 622
 623 *** The anterior lobes of prostates from mice treated at 4 months with NAC were analyzed by
 624 histopathology at 8 months (Percentage of mice with highest grade is indicated).
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640

641
642 **Figure legends**
643 **Figure 1: Akt activation in PTEN-deficient prostate cancer cells elevates oxygen**
644 **consumption and intracellular ROS levels.** The human CaP cells DU145, PC3 and LNCaP
645 were seeded in 10% FBS and harvested after two days to measure various parameters.
646 (A)Immunoblot showing the expression levels of PTEN, P-Akt (ser 473), pan-Akt and β -actin as
647 a loading control. (B) Oxygen consumption: OCR was measured using the Seahorse XF96^e
648 analyzer for all three CaP cell lines. After the OCR was established, oligomycin (1), FCCP (2)
649 and rotenone/antimycin A (3) were added sequentially. The traces shown are representative of
650 three independent experiments in which each data point represents technical replicates of four
651 wells each \pm SEM. (D, E) Relative ROS levels: CaP cells were incubated with H2DCFDA (D) or
652 DHE (E), and the levels of fluorescence were analyzed by flow cytometry as an indicator of ROS
653 levels. Data represent the mean \pm SEM of three independent experiments performed in triplicate.
654 *p < 0.01, ***p < 0.005 versus DU145. No significant differences between PC3 and LNCaP
655 were observed. (C, F) Akt1 and Akt2 were knocked down in PC3 cells, and the OCR (C) and
656 cytosolic ROS levels (F) were measured. The results are presented as the average of at least three
657 independent experiment performed in triplicate \pm SEM. ###p < 0.0001 versus PC3 LacZsh.
658 Insert in (C) shows the expression levels of Akt1, Akt2 and β actin as a loading control in PC3
659 cells in which Akt1 and Akt2 were knocked down.
660
661 **Figure 2: ROS inducers and the combination of a ROS inducer and rapamycin induce CaP**
662 **PTEN-deficient cell death in vitro and eradicate their tumors in vivo.**
663 (A) CaP cell lines were incubated with 2-ME for 24 h, the cells were fixed and apoptosis was
664 quantified by DAPI staining. The data represent the mean \pm SEM of three independent
665 experiments performed in triplicate. *p < 0.005, **p < 0.002 versus DMSO (0 μ M) for each cell
666 line. #p < 0.02, ##p < 0.01 versus DU145. (B) CaP cell lines were incubated with PEITC,
667 collected and fixed for estimation of cell death by PI staining or lysed to extract total protein.
668 They were then subjected to immunoblotting with cleaved caspase-3 and β -actin as a loading
669 control (insert). The data represent the mean \pm SEM of three independent experiments performed
670 in triplicate. *p < 0.005, ***p < 0.001 versus DMSO for each cell line. ###p < 0.0005 versus
671 DU145. (C) PC3 Akt1/2 knockdown cells were incubated with PEITC for 17 h, and then cell

death was estimated by PI staining as the percentage of apoptotic cells among total cells. The data represent the mean \pm SEM of three independent experiments performed in triplicate. **p < 0.001, ***p < 0.0001 versus DMSO for each cell line. ##p < 0.005, ###p < 0.0001 versus PC3 LacZsh. (D) CaP cells were incubated for 8 h with 20 nM rapamycin (RAPA) prior to the addition of PEITC (3 μ M). After 17 h of incubation with PEITC, the cells were fixed, and apoptosis was quantified by DAPI staining. The data represent the mean \pm SEM of three independent experiments performed in triplicate. ***p < 0.0001 versus PEITC for each cell line. ##p < 0.0005 versus DU145. (E- H) In vivo therapeutic effect of rapamycin + PEITC in mice inoculated with PC3 prostate cancer cells. Thirty-two nude mice were subcutaneously injected with PC3 cells in both flanks and randomly divided into four groups (8 mice per group, 16 tumors per group) for treatment with PEITC, rapamycin (RAPA), a combination of RAPA + PEITC, or a solvent control (Vehicle). (E) Graph presenting the tumor growth rates in each group. Treatment began on day 13 (~15 mm³, red arrow) and stopped on day 43 after tumor cell inoculation. The data represent the average size \pm SEM of 16 tumors up to day 43. The data collection from day 57 average the size of the 8 remaining xenograft tumors only. *p < 0.003, **p < 0.002 versus vehicle. #p < 0.03, ##p < 0.01 versus PEITC or RAPA. (F) Cross-sections of tumors collected from the experiment described in (E). At day 50 after tumor cell inoculation, the tumor cross-sections were subjected to hematoxylin and eosin (H & E, top) staining, BrdU staining (middle), and anti-cleaved caspase-3 staining (bottom). Scale bars: 100 μ m. (G, H) Histograms showing quantification of the positively stained cells in (F). The results are presented as the mean \pm SEM of the positively stained cells of four sections from four treated mice. The stained cells were counted in four random fields of each section. ***p < 0.0002 versus vehicle. ##p < 0.001 versus PEITC.

695

Figure 3: The effect of rapamycin, PEITC and the combination of rapamycin and PEITC on cell proliferation, cell death, survival and the tumors of *Pbsn-Cre4;Pten^{ff}* mice. (A) Tissue lysates were prepared from prostates isolated from 4 control mice (*Pten^{ff}* or *Pbsn-Cre4*) and 4 *Pbsn-Cre4;Pten^{ff}* mice. Immunoblot analysis shows the expression levels of PTEN, Akt-P (ser 473), total-Akt, p21, 4HNE and β -actin as a loading control. (B) Schematic of mouse treatment: control (*Pten^{ff}* or *Pbsn-Cre4*) and *Pbsn-Cre4;Pten^{ff}* mice were randomly divided into four groups of 9 to 16 mice at 4 months of age, and they received a daily (5 days a week)

703 intraperitoneal injection of drugs, PEITC (35 mg/kg BW), rapamycin (2 mg/kg BW), rapamycin
704 in combination with PEITC (1:1) or solvent control, for 6 consecutive weeks. Treatment was
705 then interrupted for 3 weeks and resumed at 6 months of age for another 6 weeks. The mice were
706 sacrificed at 8 months of age and examined for the presence of prostate hyperplasia. (C) Graphs
707 showing the relative prostate weight to total body weight (% body weight) of *Pbsn-Cre4;Pten^{ff}*
708 mice treated with vehicle (n=15 mice), rapamycin (RAPA, n=11), PEITC (n=9) or
709 RAPA+PEITC (n=16). The box plots represent the 25th to 75th percentiles (boxes) with the
710 median, and the whiskers represent the maximum and minimum values. *p=0.05, **p=0.002, ***p
711 < 0.0001 versus vehicle. ###p < 0.0005 versus PEITC. (D) The cross-sections of prostate tissues
712 collected at 8 months from *Pbsn-Cre4;Pten^{ff}* mice treated with different drugs were subjected to
713 H & E staining (top), BrdU staining (middle), and anti-cleaved caspase-3 staining (bottom).
714 Scale bars: 100 μ m (E-F) Histograms showing quantification of the positively stained cell cross-
715 sections shown in Figure 3D for BrdU (E) and cleaved caspase-3 (F). The results are presented
716 as the mean \pm SEM of positively stained cells of four sections from four treated mice. The
717 stained cells were counted in four random fields of each section. *p<0.002, **p < 0.005, ***p <
718 0.0002 versus vehicle. #p=0.04, ##p=0.01 versus PEITC. (G) A cohort of 20 *Pbsn-Cre4;Pten^{ff}*
719 mice treated with vehicle (n=10) or rapamycin in combination with PEITC (R+P; n=10) were
720 kept alive, and Kaplan-Meier curves of the percentage of mice survival is shown. The vehicle-
721 treated mice have a medium survival age of 322 days versus 443 days for the 'R+P' treated mice.
722 The p-values and median survival were calculated by log-rank tests. (H) Graph showing the
723 relative prostate weights of *Pbsn-Cre4;Pten^{ff}* mice (n=15) treated with N-acetyl-cysteine (NAC,
724 n=9) or PBS (n=6) at 8 months of age and 11 *Pten^{ff}* mice (NAC, n=7 and PBS, n=4). The data
725 represent the mean \pm SEM. **p=0.0006, ***p=0.0001 versus *Pten^{ff}*. #p=0.01, ##p=0.003 versus
726 PBS for each mice genotype.

727

728 **Figure 4: Early treatment of *Pbsn-Cre4;Pten^{ff}* mice with rapamycin + PEITC inhibits
729 tumor growth and increases survival, even after treatment was halted for six months.**

730 (A) Schematic of mice treatment: control and *Pbsn-Cre4;Pten^{ff}* mice were randomly divided
731 into four groups of 4 to 10 mice at 2 months of age, and they received IP drug injections as
732 indicated in the schematic. A pool of mice was sacrificed at 6 or 12 months of age and examined
733 for the presence of prostate hyperplasia. (B) Graphs showing the relative prostate weights of

734 *Pbsn-Cre4;Pten^{ff}* mice sacrificed at 6 months and treated with vehicle (n=9), RAPA (n=4),
735 PEITC (n=4) or RAPA+PEITC (n=8). The box plots represent the 25th to 75th percentiles (boxes)
736 with the median, and the whiskers represent the maximum and minimum values. *p=0.03,
737 **p=0.05, ***p < 0.0001 versus vehicle. #p= 0.05 versus PEITC. (C) Representative cross-
738 sections of prostate tissues were treated as described in Figure 4A and collected from *Pbsn-*
739 *Cre4;Pten^{ff}* mice treated with different drugs at 6 months. The sections were subjected to H & E
740 staining (top), BrdU staining (middle), and anti-cleaved caspase-3 staining (bottom). Scale bars:
741 100 μ m. (D, E) Histograms showing quantification of the positively stained cell cross-sections for
742 BrdU (D) and cleaved caspase-3 (E). The results are presented as the mean \pm SEM of the
743 positively stained cells of four sections from four treated mice. The stained cells were counted in
744 four random fields of each section. *p=0.03, **p<0.001, ***p < 0.0001 versus vehicle. #p <
745 0.05, ###p<0.0001 versus PEITC. (F) Graphs representing the relative prostate weights of *Pbsn-*
746 *Cre4;Pten^{ff}* mice sacrificed at 12 months and treated with vehicle (n=5), RAPA (n=7), PEITC
747 (n=6) or RAPA+PEITC (n=10). The box plots represent the 25th to 75th percentiles (boxes) with
748 the median, and the whiskers represent the maximum and minimum values. *p=0.03, **p=0.05,
749 ***p < 0.0001 versus vehicle. #p < 0.05 versus PEITC. (G) Representative cross-sections of
750 prostate tissues were treated with vehicle or RAPA+PEITC and collected at 12 months from
751 *Pbsn-Cre4;Pten^{ff}* mice left untreated for 6 months after the initial treatment. The sections were
752 subjected to H & E staining (top), BrdU staining (middle), and anti-cleaved caspase-3 staining
753 (bottom). Scale bars: 50 μ m for 5X objective (H&E), 100 μ m for 10X objective. (H, I)
754 Histograms showing quantification of the positively stained cell cross-sections for BrdU (H) and
755 cleaved caspase-3 (I). The results are presented as the mean \pm SEM of the positively stained cells
756 of four sections from four treated mice. The stained cells were counted in four random fields
757 from each section. **p=0.003, ***p<0.0001 versus vehicle. (H) A cohort of 30 *Pbsn-Cre4;Pten^{ff}*
758 mice treated with vehicle (n=15) or rapamycin in combination with PEITC (R+P; n=15) were
759 kept alive, and Kaplan-Meier curves of the percentage of survival of these mice is shown. The
760 vehicle-treated mice have a median survival age of 321 days versus 477 days for the 'R+P'
761 treated mice. The p-values and median survival for the indicated treatments were calculated by
762 log-rank tests.

763

764 **Figure 5: Depletion of HK2 in PTEN-deficient CaP cells inhibits proliferation, oncogenesis,**
765 **and tumorigenesis while overcoming chemoresistance.**

766 (A) DU145, PC3 and LNCaP cells were treated with MK-2206 (0.5 μ M - 24 h) to inhibit Akt.
767 The immunoblot is showing the protein levels of P-Akt, total Akt, HK2 and β actin as a loading
768 control. (B-G) DU145, PC3 and LNCaP cells expressing an inducible control (Scr) or HK2
769 shRNA were exposed to 900 ng/ml doxycycline for 5 days for HK2 deletion prior to analysis.
770 (B) Immunoblot showing the protein levels of P-Akt, total Akt, HK2, HK1 and β actin as a
771 loading control. (C) Graphs depicting the total hexokinase activity in these cells. The data
772 represent the mean \pm SEM of three independent experiments performed in triplicate. **p <
773 0.002, ***p < 0.001 versus shScr for each cell line. ##p < 0.001, ###p < 0.0001 versus DU145.
774 (D) Cell proliferation after HK2 deletion in the CaP cell lines. The data represent the mean \pm
775 SEM of three independent experiments performed in triplicate. *p=0.02, ***p < 0.001 versus
776 shScr for each cell line on day 6. ###p < 0.0005 versus DU145 shHK2 on day 6 (E) BrdU
777 incorporation after HK2 deletion. The data represent the mean \pm SEM of three independent
778 experiments performed in triplicate. ***p < 0.0001 versus shScr for each cell line. #p < 0.05
779 versus DU145. (F) Anchorage independent growth (soft-agar): PC3 Tet-ON control (SCR) and
780 HK2-sh cells were plated in 0.35% agarose-containing medium before and after HK2
781 knockdown with doxycycline as described in the experimental procedures, and they were
782 allowed to grow for approximately 3 weeks with bi-weekly media changes. The bar graphs
783 represent the average quantification of the soft agarose colonies in PC3 cells \pm SEM of three
784 independent experiments performed in triplicate. ***p < 0.0005 versus PC3 shScr +
785 Doxycycline. ‡p=0.02 versus PC3 shScr – Doxycycline. ###p < 0.0001 versus PC3 shHK2 –
786 Doxycycline. (G) After HK2 knockdown with doxycycline, cells were treated with etoposide for
787 24 h before apoptosis was assessed by DAPI staining, which is presented as the percentage of
788 apoptotic cells among total cells. The data represent the mean \pm SEM of three independent
789 experiments performed in triplicate. **p < 0.001, ***p < 0.0002 versus DMSO (0 μ M) for each
790 cell line. #p < 0.001, ###p < 0.0003 versus shScr. (H) In vivo therapeutic effect of etoposide in
791 mice inoculated with PC3 prostate cancer cells. Twenty-four nude mice were injected
792 subcutaneously with PC3 Tet-ON HK2sh cells in both flanks and randomly divided into four
793 groups (6 mice per group, 12 tumors per group) for treatment with etoposide or solvent control
794 (Vehicle). When the tumors were palpable, 2 groups were provided a doxycycline diet, while the

795 2 other groups remained on the control diet. Etoposide (or vehicle) treatment was started 3 days
796 after the diet was changed (day 13), and treatment was stopped on day 48 after tumor cell
797 inoculation. The data represent the average size \pm SEM of 12 xenograft tumors per group.
798 Statistical analysis from day 52 (end-point): ***p < 0.0001 versus the control diet vehicle. ##p <
799 0.005 versus the doxycycline diet vehicle.

800

801 **Figure 6: Deletion of HK2 in the prostates of *Pbsn-Cre4;Pten^{ff}* mice extends survival and**

802 inhibits tumor growth by inhibiting proliferation and increasing cell death.

803 (A) Tissue lysates were prepared from prostates isolated from 3 control mice (*Pten^{ff};HK2^{ff}*), 3
804 *Pbsn-Cre4;Pten^{ff}* mice and 3 *Pbsn-Cre4;Pten^{ff};HK2^{ff}* mice. The immunoblot shows the
805 expression levels of PTEN, Akt-P (ser 473), total-Akt, HK2 and β -actin as a loading control. (B)
806 Graphs showing the relative prostate weights of control (n=23), *Pbsn-Cre4;Pten^{ff}* (PTEN KO,
807 n=21) and *Pbsn-Cre4;Pten^{ff};HK2^{ff}* (PTEN-HK2 DKO, n=29) mice. The box plots represent the
808 25th to 75th percentiles (boxes) with the median, and the whiskers represent the maximum and
809 minimum values. ***p < 0.0001 versus control. ### p < 0.0001 versus PTEN KO. The pictures
810 are representative of macroscopic views of the prostates (delineated by a white dash line) of
811 control (left panel), PTEN KO (middle panel) and (PTEN-HK2 DKO) (right panel) mice. (C) A
812 cohort of 43 PTEN KO and 40 PTEN-HK2 DKO mice were kept alive, and Kaplan-Meier curves
813 of the percentage of survival of these mice is shown. The PTEN KO mice have a media survival
814 age of 305 days versus 453 days for the PTEN HK2 DKO mice. The p-values and median
815 survival for the indicated treatments were calculated by log-rank tests. (D) The cross-sections of
816 prostate tissues collected at 8 months from control, PTEN KO and PTEN-HK2 DKO mice were
817 subjected to hematoxylin and eosin (H & E) staining (top), BrdU staining (middle), and anti-
818 cleaved caspase-3 staining (bottom). (E) Histograms showing quantification of the positively
819 stained cells in (D). The results are presented as the mean \pm SEM of the positively stained cells
820 of four sections from four treated mice. The stained cells were counted in four random fields of
821 each section. **p<0.0005, ***p < 0.0001 versus control. ##p < 0.0005, ###p<0.0001 versus
822 PTEN KO.

823

824 **Figure 1-Figure supplement 1:**

825 Mitochondrial membrane potential measured as JC-1 aggregate to monomer ratio. The data
826 represent the mean \pm SEM of three independent quantification experiments performed in
827 triplicate. *p < 0.05 versus DU145.

828 **Figure 1-Figure supplement 2:**

829 Immunoblot showing the expression levels of the detoxifying enzymes catalase, MnSOD and
830 Cu/ZnSOD (β actin as a loading control) in all three CaP cell lines

831 **Figure 1-Figure supplement 3:**

832 Level of SESN3 mRNA relative to that of actin in CaP cells, as assessed by quantitative RT-
833 PCR. The data represent the mean \pm SEM of three independent quantification experiments
834 performed in triplicate. ***p < 0.0001 versus DU145. (1s4-5) DU145 cells were transiently
835 transfected with hSESN3 or control RNAi (Dharmacon), and PC3 cells were transiently
836 transfected with lentivirus expressing hSESN3 or TOPO control 72 h prior to the experiments.

837 **Figure 1-Figure supplement 4:**

838 Immunoblot showing the expression levels of sestrin 3 (SESN3) and β actin as a loading control.

839 **Figure 1-Figure supplement 5:**

840 Level of ROS, as assessed by flow cytometry, after incubation with H2DCFDA. The data
841 represent the mean \pm SEM of three independent experiments performed in triplicate. *p=0.02,
842 **p=0.01 versus the control for each cell line.

843

844 **Figure 2-Figure supplement 1:**

845 Glutathion levels (Left) and GSH/GSSG ratio (Right) in CaP cells after 8h incubation with
846 DMSO or PEITC 6 μ M. The data represent the mean \pm SEM of two independent experiments
847 performed in duplicate.

848 **Figure 2-Figure supplement 2:**

849 (Left) Apoptosis was measured on live cells by caspase 3/7 activity assay after drug treatment: 2-
850 ME 1 μ M (14h) or 20nM Rapamycin (5h) followed by 6 μ M PEITC (8h). The data represent the
851 mean \pm SEM of two independent experiments performed in quadruplicate. (Right) Cell death
852 was assessed on fixed cells by DAPI staining after drug treatment: 2-ME 1 μ M (20h) or 20nM
853 Rapamycin (5h) followed by 6 μ M PEITC (17h). The data represent the mean \pm SEM of three
854 independent experiments performed in triplicate

855 **Figure 2-Figure supplement 3:**

856 CaP cell lines were incubated with BSO (2mM) for 36 and 42 h, the cells were fixed and cell
857 death was quantified by PI staining. The data represent the mean \pm SEM of three independent
858 experiments performed in triplicate.

859 **Figure 2-Figure supplement 4:**

860 NADP⁺/NADPH ratio in CaP cells. The data represent the mean \pm SEM of three measurements
861 performed in duplicate.

862 **Figure 2-Figure supplement 5:**

863 After modulation of SESN3 expression, PC3 and DU145 cells were treated with PEITC (0, 3
864 and 6 μ M) for 17 h, the cells were fixed and cell death was assessed by DAPI staining. The data
865 represent the mean \pm SEM of three independent experiments performed in triplicate. *p < 0.05,
866 **p < 0.01 versus the control for each cell line.

867 **Figure 2-Figure supplement 6:**

868 DU145, PC3 AND LNCaP cells were incubated with N-acetylcysteine (100 μ M NAC) for 2 h
869 prior to 17 h of incubation with PEITC (6 μ M) in the presence of NAC or not. The graphs
870 represent the cell death measured by PI staining (Left) or ROS levels after incubation with
871 H2DCFDA (Right). The data represent the mean \pm SEM of three independent experiments
872 performed in triplicate.

873 **Figure 2-Figure supplement 7:**

874 Immunoblot showing the expression of PTEN (and HA-Tag), and β actin as a loading control
875 after PTEN was downregulated in DU145 cells (1: control shLacZ, 2: shPTEN) or overexpressed
876 in PC3 and LNCaP cells (3: control pBP, 4: pBP-PTEN).

877 **Figure 2-Figure supplement 8: PTEN expression determines the levels of ROS and oxygen
878 consumption**

879 PTEN was downregulated in DU145 cells (1: control shLacZ, 2: shPTEN) or overexpressed in
880 PC3 and LNCaP cells (3: control pBP, 4: pBP-PTEN). (A, B) Relative ROS levels: cells were
881 incubated with H2DCFDA (A) or DHE (B), and the levels of fluorescence were analyzed by
882 flow cytometry as an indicator of ROS levels. (C) Basal oxygen consumption

883 **Figure 2-Figure supplement 9:**

884 Cells were incubated with PEITC or Rapamycin/PEITC for 17h and scored for apoptosis 17 h
885 later by DAPI staining. The data represent the mean \pm SEM of three independent experiments

886 performed in triplicate. *p< 0.05, **p< 0.001 versus the control for each cell line. ##p<0.05
887 versus PEITC

888 **Figure 2-Figure supplement 10:**

889 mAkt was stably overexpressed in DU145. Cells were then incubated for 17h with PEITC or
890 Rapamycin/PEITC before measurement of relative cytosolic ROS level (Left) or cell death
891 (Right).

892 **Figure 2-Figure supplement 11: ROS levels, and ROS-induced cell death are Akt-
893 dependent.**

894 Akt1 and Akt2 were knocked down in PC3 and LNCaP cells. Once cell lines were established,
895 mAkt was re-expressed in these cells. Cells were incubated with PEITC for 17 h, and then
896 cytosolic ROS levels (A) and cell death estimated by PI staining were measured (B). Another set
897 of cells was incubated with PEITC for 12h to estimate apoptosis by caspase 3/7 activity assay
898 (C) as the percentage of positive cells over total cells. The data represent the mean ± SEM of
899 three independent experiments performed in triplicate.

900 **Figure 2-Figure supplement 12: Rapamycin Elevates Akt Activity**

901 (A-C) DU145 (A), PC3 (B) and LNCaP cells (C) were treated with rapamycin (100nM). Total
902 cell extracts were prepared at different time points as indicated and subjected to immunoblotting
903 with antibodies specific for Akt and p-Akt. (D) quantification of immunoblots showing relative
904 Akt phosphorylation, quantified using the NIH ImageJ software program, and normalized to the
905 densitometric signal for total Akt as a control for protein expression. Values are expressed
906 relative to time 0 and data represent the mean ± SEM of three independent experiments.

907 **Figure 2-Figure supplement 13: Rapamycin increases the ROS levels induced by PEITC.**

908 When required, CaP cells were incubated with 20 nM rapamycin (RAPA) for 8 h before the
909 addition of PEITC (3 μ M). After 17 h of incubation with PEITC (\pm RAPA), the ROS levels in
910 live cells after incubation with H2DCFDA were measured by flow cytometry. The data represent
911 the mean ± SEM of three independent experiments performed in triplicate. *p<0.05,
912 ***p<0.0001 versus DMSO for each cell line. ###p< 0.0005 versus PEITC for each cell line.

913 **Figure 2-Figure supplement 14: Torin, not rapamycin, decreases the OCR and ROS levels
914 in PTEN-deficient CaP cells**

915 PC3 and LNCaP cells were incubated for 8 h with rapamycin (RAPA, 20 nM) or torin (250 nM)
916 before measurement of the OCR (Left) or cytoplasmic ROS levels (Right). The data represent

917 the mean \pm SEM of three independent experiments performed in triplicate. *p<0.05,
918 ***p<0.0001 versus DMSO for each cell line.

919 **Figure 2-Figure supplement 15: In vivo therapeutic effects of rapamycin + PEITC in mice**
920 **inoculated with DU145 prostate cancer cells.**

921 Twenty-four nude mice were injected subcutaneously with DU145 cells in both flanks and
922 randomly divided into four groups (4 mice per group, 8 tumors per group) for treatment with
923 PEITC, rapamycin (RAPA), a combination of RAPA + PEITC, or a solvent control (Vehicle).
924 The graph represents the tumor growth rate in each group. Treatment began on day 18 (~15
925 mm³) and stopped on day 55 after tumor cell inoculation. The data represent the average size \pm
926 SEM of 8 tumors up to day 57. Data collection on day 64 shows only the average sizes of the 4
927 remaining xenograft tumors. **p < 0.02 versus vehicle, #p= 0.02 versus RAPA.

928

929 **Figure 3-Figure supplement 1**

930 Graphs showing the body weights of control (left) and *Pbsn-Cre4;Pten^{ff}* (right) mice at the end-
931 point (8 months). The number of treated mice in the control group were vehicle (n=6), rapamycin
932 (RAPA, n=12), PEITC (n=8) and RAPA+PEITC (n=8), and the number of treated mice in the
933 *Pbsn-Cre4;Pten^{ff}* group were vehicle (n=15), RAPA (n=11), PEITC (n=9) and RAPA+PEITC
934 (n=16). No significant differences were detected.

935 **Figure 3-Figure supplement 2**

936 Graphs showing the relative prostate weights of the control mice sacrificed at 8 months. The box
937 plots represent the 25th to 75th percentiles (boxes) with the median, and the whiskers represent
938 the maximum and minimum values. No significant differences were detected.

939 **Figure 3-Figure supplement 3: Representative histopathological images.**

940 Representative images of different prostate tumor grades in the anterior lobe of the prostate of
941 untreated mice (-), rapamycin + PEITC, and NAC treated mice. Each individual image was
942 derived from different individual mice. Scale bars = 200 μ m for 20X magnification, 500 μ m for
943 10X magnification.

944

945 **Figure 4-Figure supplement 1**

946 (A) Graphs showing the body weights of control (left) and *Pbsn-Cre4;Pten^{ff}* (right) mice at 6
947 months. The number of treated mice in the control group were vehicle (n=5), RAPA (n=5),

948 PEITC (n=5) and RAPA+PEITC (n=7), and the number of treated mice in the *Pbsn-Cre4;Pten*^{fl/fl}
949 group were vehicle (n=9), RAPA (n=4), PEITC (n=4) and RAPA+PEITC (n=8). No significant
950 differences were detected. (B) Graphs showing the relative prostate weights of control mice
951 sacrificed at 6 months (left) and 12 months (right). The box plots represent the 25th to 75th
952 percentiles (boxes) with the median, and the whiskers represent the maximum and minimum
953 values. The number of control-treated mice at 12 months were vehicle (n=4), RAPA (n=4),
954 PEITC (n=4) and RAPA+PEITC (n=8). **p=0.005 versus vehicle.

955

956 **Figure 5-Figure supplement 1**

957 Total protein was extracted from CaP cells and subjected to immunoblotting with HK1, HK2 and
958 β actin as a loading control

959 **Figure 5-Figure supplement 2**

960 Expression levels of HK2 and β actin as a loading control in PC3 cells in which Akt1 and Akt2
961 were stably knocked down.

962 **Figure 5-Figure supplement 3**

963 Immunoblot showing the expression of HK2 (and β actin as loading control) in CaP cells where
964 PTEN is either downregulated (DU145) or overexpressed (PC3 and LNCaP)

965 **Figure 5-Figure supplement 4**

966 HK1 was stably knocked down in PC3 cells after HK2 knockdown. The immunoblot shows the
967 expression levels of HK1, HK2 and actin as a loading control in PC3 control, HK1 knockdown,
968 HK2 knockdown, and double HK1 and HK2 knockdown cells. The graph shows the total HK
969 activity in the same cells. The data represent the mean \pm SEM of three independent experiments
970 performed in duplicate. *p=0.005, ***p<0.0001 versus PC3 LacZsh ntsh. ###p< 0.0001 versus
971 PC3 LacZsh HK1sh. ‡p=0.01versus PC3 HK2sh ntsh.

972 **Figure 5-Figure supplement 5**

973 Cell proliferation after HK1 and/or HK2 deletion in PC3 cells. The data represent the mean \pm
974 SEM of three independent experiments performed in triplicate. ***p<0.0001 versus LacZsh cells
975 on day 6.

976 **Figure 5-Figure supplement 6: Etoposide-induced cell death is Akt-dependent.**

977 (A) After mAkt overexpression, DU145 cells were treated with etoposide for 24 h before cell
978 death was assessed by PI staining on live cells with Celigo Image cytometer (B) Akt1 and Akt2

979 were knocked down in PC3 and LNCaP cells. Cells were then incubated for 24h with Etoposide
980 before measurement of cell death by PI staining on live cells with Celigo Image cytometer. Data
981 are expressed as the percentage of dead cells among total cells and represent the mean \pm SEM of
982 two independent experiments performed in triplicate.

983 **Figure 5-Figure supplement 7: Data analysis for in vivo therapeutic study described in**
984 **Figure 5H.**

985 (A) Graphs showing the relative xenografts tumor weights of mice treated with Control
986 diet/Vehicle, Control diet/Etoposide, DOX diet/Vehicle and Dox diet/Etoposide. The data
987 represent the average size \pm SEM of 12 xenograft tumors per group. *p < 0.05, **p < 0.001
988 versus control diet vehicle. #p < 0.05 versus DOX diet vehicle. (B) The cross-sections of
989 xenograft tumors collected at end-point (day 52) were subjected to H & E staining, BrdU
990 staining, anti-cleaved caspase-3 staining and HK2 staining (from top to bottom). Scale bars:
991 100 μ m. (C, D) Histograms showing quantification of the positively stained cells in (B). The
992 results are presented as the mean \pm SEM of the positively stained cells of two sections from six
993 xenograft tumors. The stained cells were counted in three random fields of each section.
994 *p<0.05, ***p < 0.0005 versus the control diet vehicle. ###p < 0.0005 versus DOX diet vehicle.

995 **Figure 5-Figure supplement 8: The effect of HK2 knockdown on ECAR.**

996 PC3 cells expressing an inducible control (Scr) or HK2 shRNA were exposed to 900 ng/ml DOX
997 for 5 days for HK2 deletion before analysis. ECAR was measured after HK2 deletion using the
998 Seahorse XF96e analyzer.

999 **Figure 5-Figure supplement 9 The effect of HK2 knockdown on oxygen consumption.**

1000 PC3 cells expressing an inducible control (Scr) or HK2 shRNA were exposed to 900 ng/ml DOX
1001 for 5 days for HK2 deletion before analysis. OCR was measured after HK2 deletion using the
1002 Seahorse XF96e analyzer.

1003 **Figure 5-Figure supplement 10: The effect of HK2 knockdown on ROS levels.**

1004 PC3 cells expressing an inducible control (Scr) or HK2 shRNA were exposed to 900 ng/ml DOX
1005 for 5 days for HK2 deletion before analysis. Cells were incubated with H2DCFDA, and the level
1006 of fluorescence was analyzed by flow cytometry as an indicator of ROS levels after HK2
1007 deletion. The data represent the mean \pm SEM of three independent experiments performed in
1008 triplicate. ***p<0.005 versus PC3 shScr.

1009 **Figure 5-Figure supplement 11: The effect of HK2 knockdown on PEITC-induced cell**
1010 **death.**

1011 PC3 cells expressing an inducible control (Scr) or HK2 shRNA were exposed to 900 ng/ml DOX
1012 for 5 days for HK2 deletion before analysis. After HK2 knockdown with DOX, cells were
1013 treated with PEITC (0, 3 and 6 μ M) for 17 h before apoptosis was assessed by DAPI staining,
1014 which is presented as the percentage of apoptotic among total cells. The data represent the mean
1015 \pm SEM of three independent experiments performed in triplicate. *p < 0.02, ***p < 0.0001
1016 versus PC3 shScr.

1017
1018
1019
1020

1021 **References**

1022 Bae SH, Sung SH, Oh SY, Lim JM, Lee SK, Park YN, Lee HE, Kang D, Rhee SG (2013)
1023 Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and
1024 prevent oxidative liver damage. *Cell Metab* 17: 73-84

1025 Chen CC, Jeon SM, Bhaskar PT, Nogueira V, Sundararajan D, Tonic I, Park Y, Hay N (2010)
1026 FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. *Dev
1027 Cell* 18: 592-604

1028 Chowdhury SK, Raha S, Tarnopolsky MA, Singh G (2007) Increased expression of
1029 mitochondrial glycerophosphate dehydrogenase and antioxidant enzymes in prostate cancer cell
1030 lines/cancer. *Free Radic Res* 41: 1116-24

1031 DeWaal D, Nogueira V, Terry AR, Patra KC, Jeon SM, Guzman G, Au J, Long CP, Antoniewicz
1032 MR, Hay N (2018) Hexokinase-2 depletion inhibits glycolysis and induces oxidative
1033 phosphorylation in hepatocellular carcinoma and sensitizes to metformin. *Nature
1034 communications* 9: 446

1035 Dummler B, Hemmings BA (2007) Physiological roles of PKB/Akt isoforms in development
1036 and disease. *Biochem Soc Trans* 35: 231-5

1037 Furnari FB, Lin H, Huang HS, Cavenee WK (1997) Growth suppression of glioma cells by
1038 PTEN requires a functional phosphatase catalytic domain. *Proc Natl Acad Sci U S A* 94: 12479-
1039 84

1040 Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N (2001) Inhibition of early
1041 apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and
1042 mitochondrial hexokinase. *Genes Dev* 15: 1406-18

1043 Hay N (2011) Akt isoforms and glucose homeostasis - the leptin connection. *Trends Endocrinol
1044 Metab* 22: 66-73

1045 Hay N (2016) Reprogramming glucose metabolism in cancer: can it be exploited for cancer
1046 therapy? *Nat Rev Cancer* 16: 635-49

1047 Hollander MC, Blumenthal GM, Dennis PA (2011) PTEN loss in the continuum of common
1048 cancers, rare syndromes and mouse models. *Nat Rev Cancer* 11: 289-301

1049 Jeon SM, Chandel NS, Hay N (2012) AMPK regulates NADPH homeostasis to promote tumour
1050 cell survival during energy stress. *Nature* 485: 661-5

1051 Kennedy SG, Kandel ES, Cross TK, Hay N (1999) Akt/Protein kinase B inhibits cell death by
1052 preventing the release of cytochrome c from mitochondria. *Mol Cell Biol* 19: 5800-10

1053 Kim D, Dan HC, Park S, Yang L, Liu Q, Kaneko S, Ning J, He L, Yang H, Sun M, Nicosia SV,
1054 Cheng JQ (2005) AKT/PKB signaling mechanisms in cancer and chemoresistance. *Front Biosci*
1055 10: 975-87

1056 Kopnin PB, Agapova LS, Kopnin BP, Chumakov PM (2007) Repression of sestrin family genes
1057 contributes to oncogenic Ras-induced reactive oxygen species up-regulation and genetic
1058 instability. *Cancer Res* 67: 4671-8

1059 Le Gal K, Ibrahim MX, Wiel C, Sayin VI, Akula MK, Karlsson C, Dalin MG, Akyurek LM,
1060 Lindahl P, Nilsson J, Bergo MO (2015) Antioxidants can increase melanoma metastasis in mice.
1061 *Science translational medicine* 7: 308re8

1062 Lin H, Zeng J, Xie R, Schulz MJ, Tedesco R, Qu J, Erhard KF, Mack JF, Raha K, Rendina AR,
1063 Szewczuk LM, Kratz PM, Jurewicz AJ, Cecconie T, Martens S, McDevitt PJ, Martin JD, Chen
1064 SB, Jiang Y, Nickels L et al. (2016) Discovery of a Novel 2,6-Disubstituted Glucosamine Series
1065 of Potent and Selective Hexokinase 2 Inhibitors. *ACS Med Chem Lett* 7: 217-22

1066 Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K, Chandel NS, Thompson CB,
1067 Robey RB, Hay N (2004) Hexokinase-mitochondria interaction mediated by Akt is required to
1068 inhibit apoptosis in the presence or absence of Bax and Bak. *Mol Cell* 16: 819-30

1069 Mayer IA, Arteaga CL (2016) The PI3K/AKT Pathway as a Target for Cancer Treatment. *Annu
1070 Rev Med* 67: 11-28

1071 Miyamoto S, Murphy AN, Brown JH (2008) Akt mediates mitochondrial protection in
1072 cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. *Cell Death Differ* 15:
1073 521-9

1074 Morita M, Gravel SP, Chenard V, Sikstrom K, Zheng L, Alain T, Gandin V, Avizonis D,
1075 Arguello M, Zakaria C, McLaughlan S, Nouet Y, Pause A, Pollak M, Gottlieb E, Larsson O, St-
1076 Pierre J, Topisirovic I, Sonenberg N (2013) mTORC1 controls mitochondrial activity and
1077 biogenesis through 4E-BP-dependent translational regulation. *Cell Metab* 18: 698-711

1078 Nogueira V, Park Y, Chen CC, Xu PZ, Chen ML, Tonic I, Unterman T, Hay N (2008) Akt
1079 determines replicative senescence and oxidative or oncogenic premature senescence and
1080 sensitizes cells to oxidative apoptosis. *Cancer Cell* 14: 458-70

1081 Patra KC, Hay N (2013) Hexokinase 2 as oncogene. *Oncotarget* 4: 1862-3

1082 Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z, Wheaton W, Chandel N, Laakso M, Muller
1083 WJ, Allen EL, Jha AK, Smolen GA, Clasquin MF, Robey RB, Hay N (2013) Hexokinase 2 is
1084 required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse
1085 models of cancer. *Cancer Cell* 24: 213-28

1086 Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestone SE, Zhao Z, Leitch AM,
1087 Johnson TM, DeBerardinis RJ, Morrison SJ (2015) Oxidative stress inhibits distant metastasis by
1088 human melanoma cells. *Nature* 527: 186-91

1089 Pourmand G, Ziae AA, Abedi AR, Mehrsai A, Alavi HA, Ahmadi A, Saadati HR (2007) Role
1090 of PTEN gene in progression of prostate cancer. *Urol J* 4: 95-100

1091 Rahman I, Kode A, Biswas SK (2006) Assay for quantitative determination of glutathione and
1092 glutathione disulfide levels using enzymatic recycling method. *Nat Protoc* 1: 3159-65

1093 Roberts DJ, Tan-Sah VP, Ding EY, Smith JM, Miyamoto S (2014) Hexokinase-II positively
1094 regulates glucose starvation-induced autophagy through TORC1 inhibition. *Mol Cell* 53: 521-33

1095 Robey RB, Hay N (2009) Is Akt the "Warburg kinase"? -Akt-energy metabolism interactions and
1096 oncogenesis. *Semin Cancer Biol* 19: 25-31

1097 Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lindahl P, Bergo MO (2014) Antioxidants
1098 accelerate lung cancer progression in mice. *Science translational medicine* 6: 221ra15

1099 Skeen JE, Bhaskar PT, Chen CC, Chen WS, Peng XD, Nogueira V, Hahn-Windgassen A,
1100 Kiyokawa H, Hay N (2006) Akt deficiency impairs normal cell proliferation and suppresses
1101 oncogenesis in a p53-independent and mTORC1-dependent manner. *Cancer Cell* 10: 269-80

1102 Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P,
1103 Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE, Wilson M, Soccia
1104 ND, Lash AE, Heguy A, Eastham JA et al. (2010) Integrative genomic profiling of human
1105 prostate cancer. *Cancer Cell* 18: 11-22

1106 Ting CM, Lee YM, Wong CK, Wong AS, Lung HL, Lung ML, Lo KW, Wong RN, Mak NK
1107 (2010) 2-Methoxyestradiol induces endoreduplication through the induction of mitochondrial
1108 oxidative stress and the activation of MAPK signaling pathways. *Biochem Pharmacol* 79: 825-41

1109 Trotman LC, Niki M, Dotan ZA, Koutcher JA, Di Cristofano A, Xiao A, Khoo AS, Roy-Burman
1110 P, Greenberg NM, Van Dyke T, Cordon-Cardo C, Pandolfi PP (2003) Pten dose dictates cancer
1111 progression in the prostate. *PLoS Biol* 1: E59

1112 Wang Q, Chen X, Hay N (2017) Akt as a target for cancer therapy: more is not always better
1113 (lessons from studies in mice). *Br J Cancer* 117: 159-163

1114 Wang Q, Yu WN, Chen X, Peng XD, Jeon SM, Birnbaum MJ, Guzman G, Hay N (2016)
1115 Spontaneous Hepatocellular Carcinoma after the Combined Deletion of Akt Isoforms. *Cancer*
1116 Cell 29: 523-35

1117 Xu K, Thornalley PJ (2001) Involvement of glutathione metabolism in the cytotoxicity of the
1118 phenethyl isothiocyanate and its cysteine conjugate to human leukaemia cells in vitro. *Biochem*
1119 *Pharmacol* 61: 165-77

1120 Yu R, Mandlekar S, Harvey KJ, Ucker DS, Kong AN (1998) Chemopreventive isothiocyanates
1121 induce apoptosis and caspase-3-like protease activity. *Cancer Res* 58: 402-8

1122 Zhang Y, Kwok-Shing Ng P, Kucherlapati M, Chen F, Liu Y, Tsang YH, de Velasco G, Jeong
1123 KJ, Akbani R, Hadjipanayis A, Pantazi A, Bristow CA, Lee E, Mahadeshwar HS, Tang J, Zhang
1124 J, Yang L, Seth S, Lee S, Ren X et al. (2017) A Pan-Cancer Proteogenomic Atlas of
1125 PI3K/AKT/mTOR Pathway Alterations. *Cancer Cell* 31: 820-832 e3

1126 Zheng HC (2017) The molecular mechanisms of chemoresistance in cancers. *Oncotarget* 8:
1127 59950-59964

1128

1129

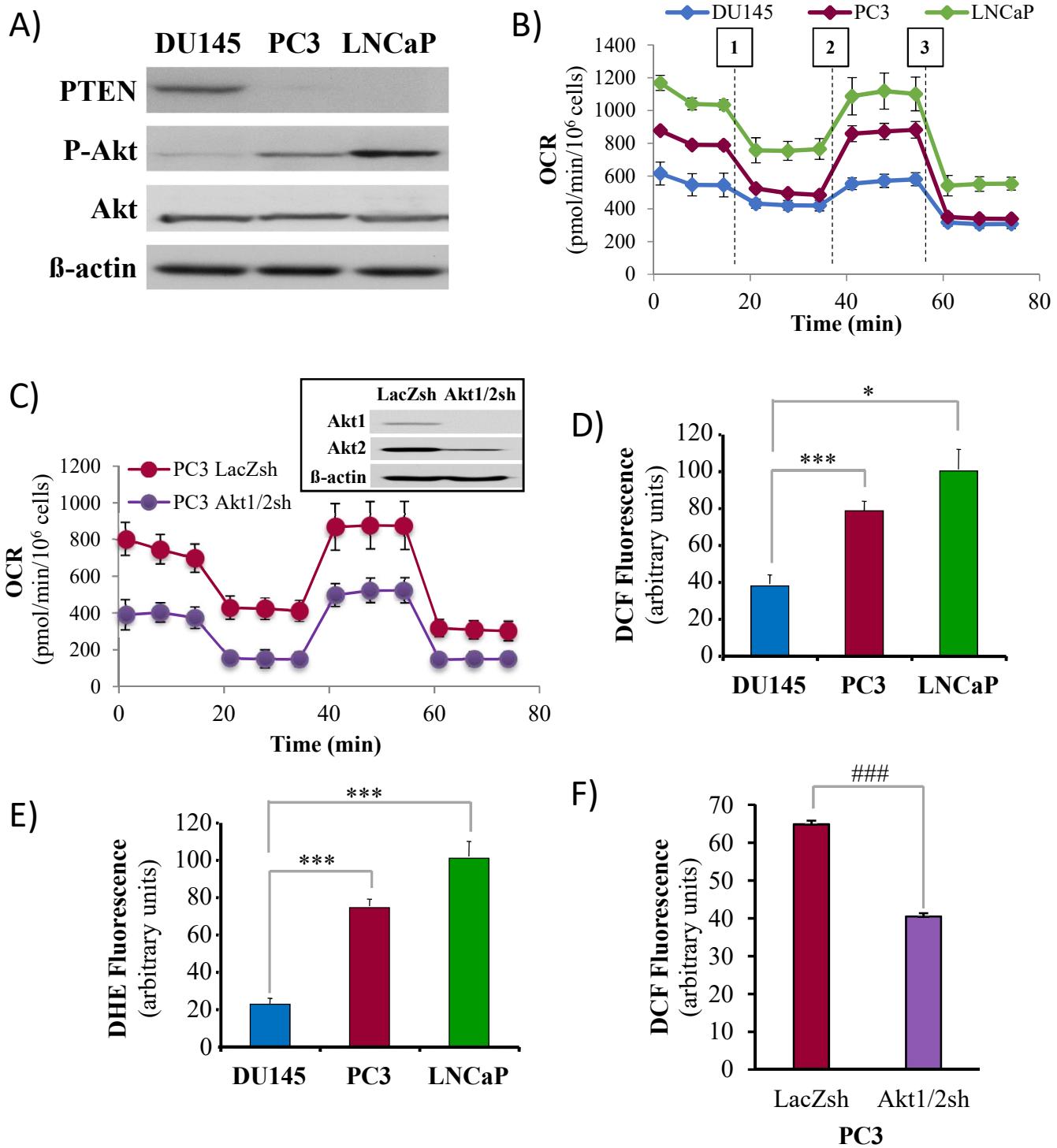


Fig 1

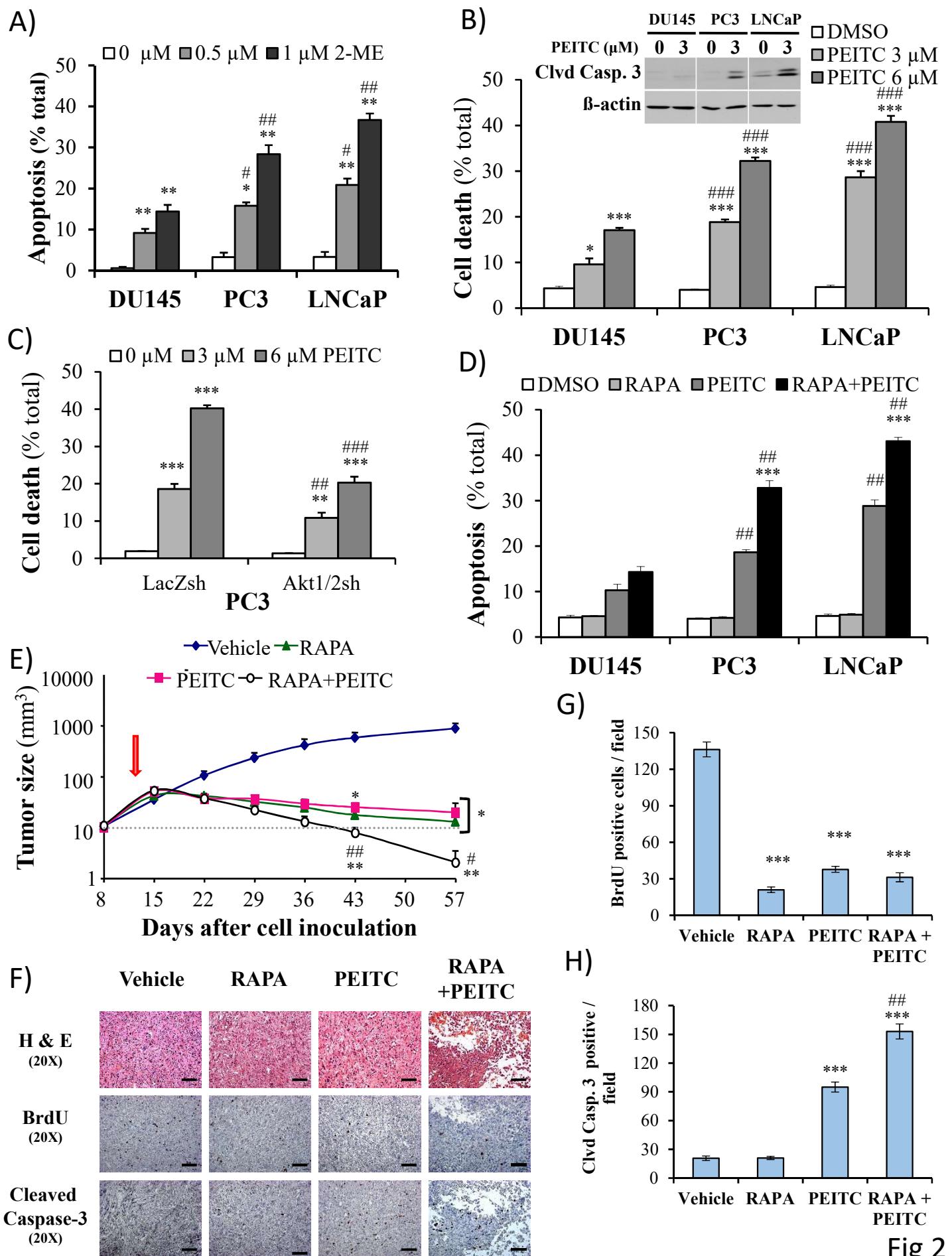


Fig 2

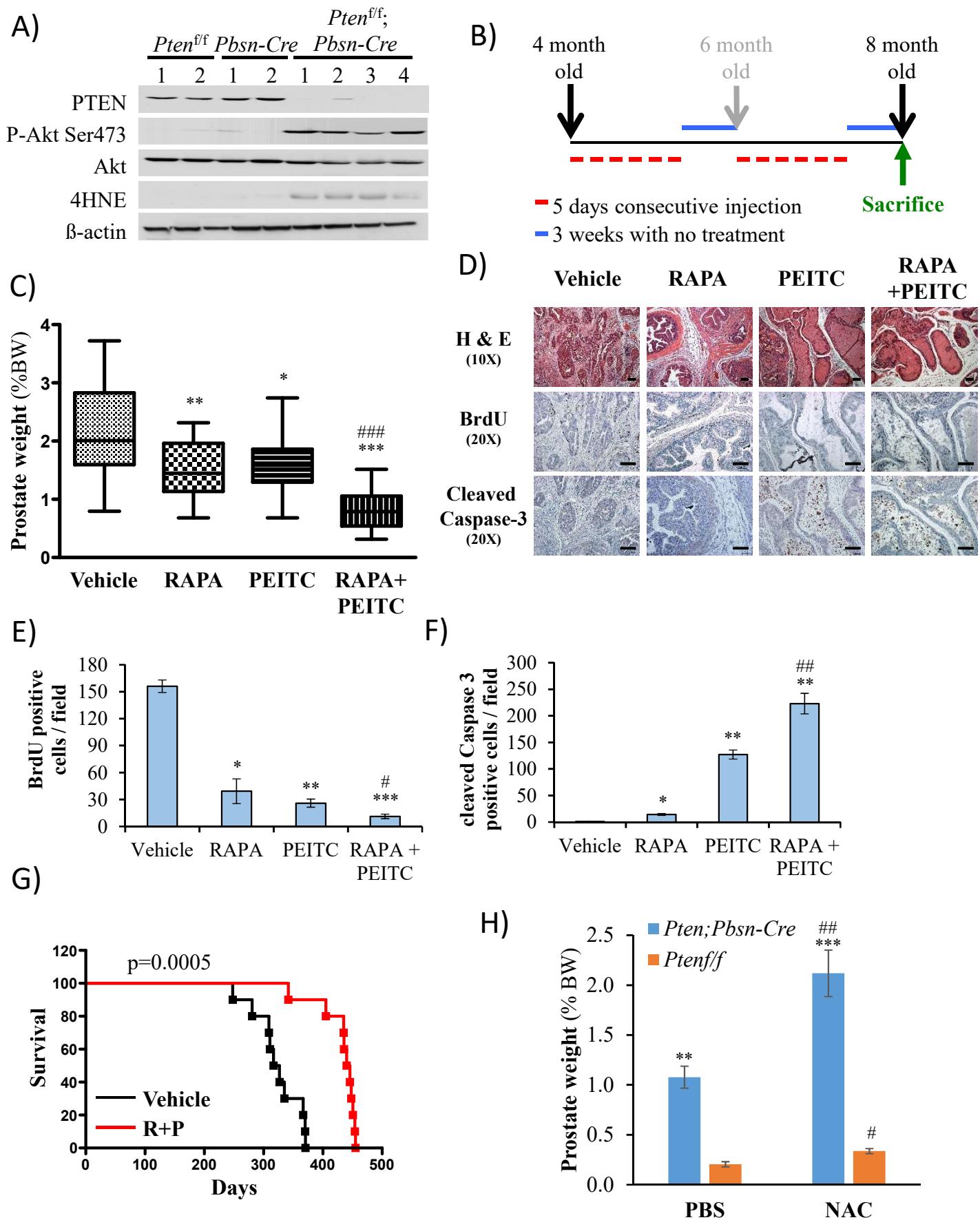
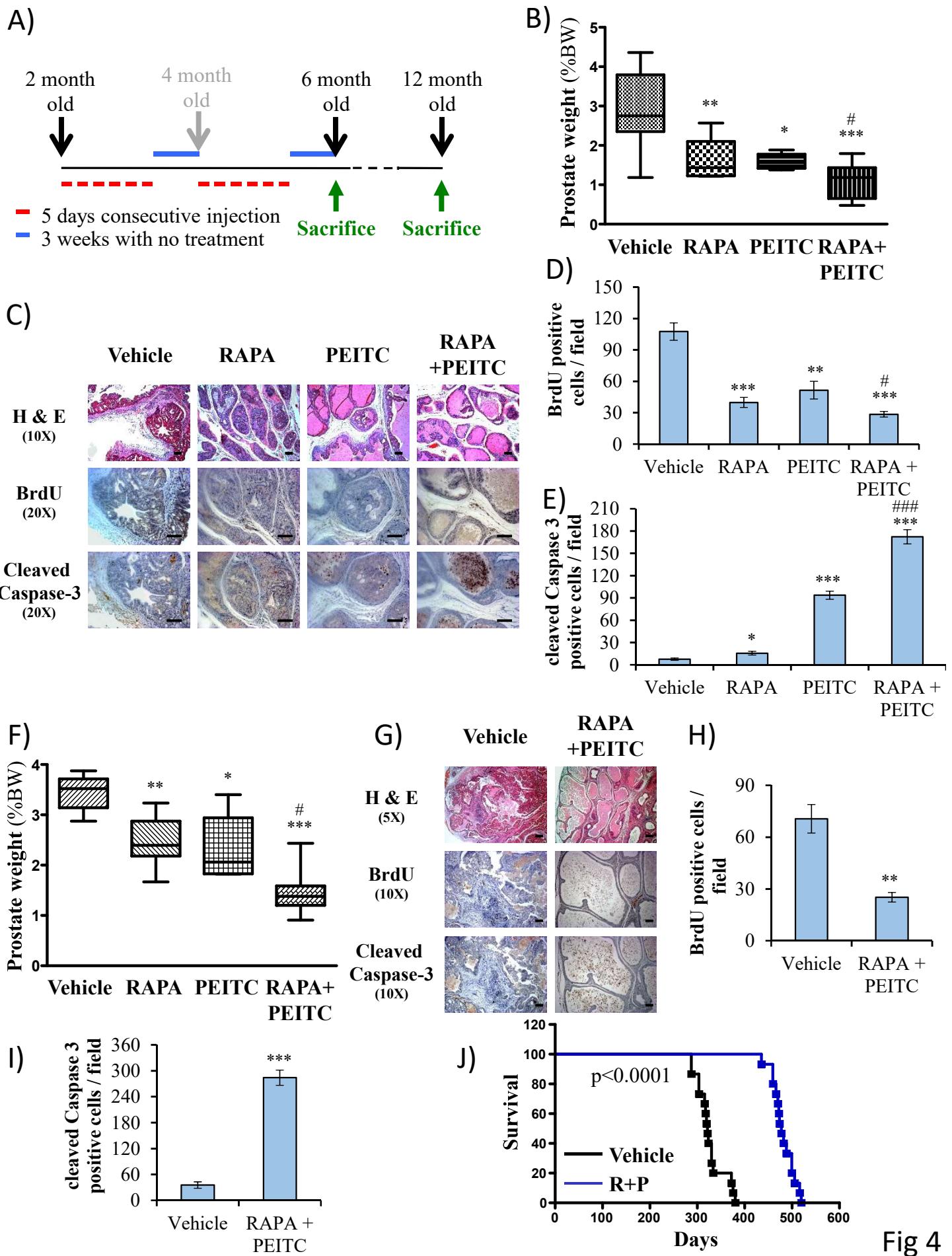



Fig 3

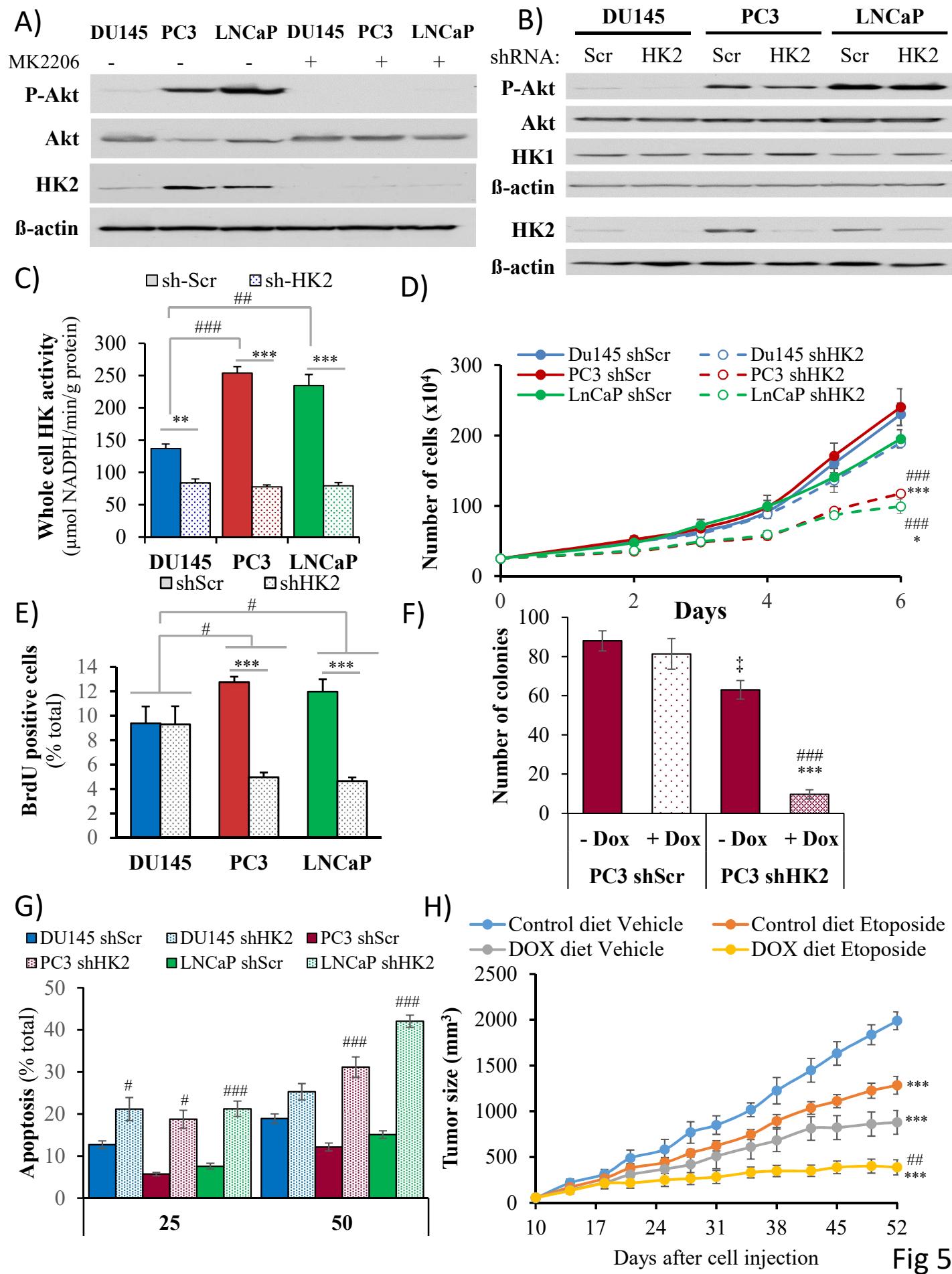


Fig 5

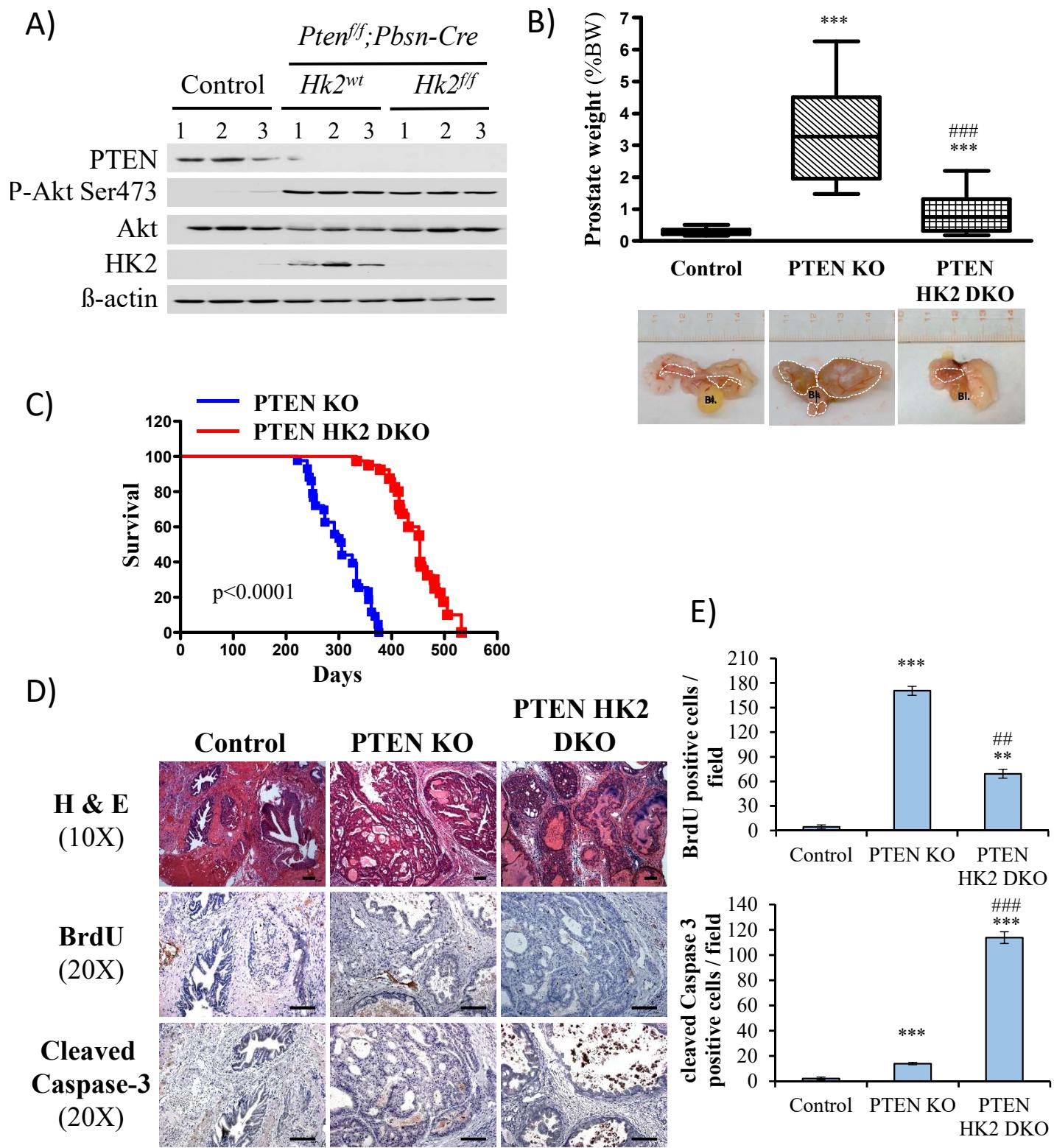


Fig 6

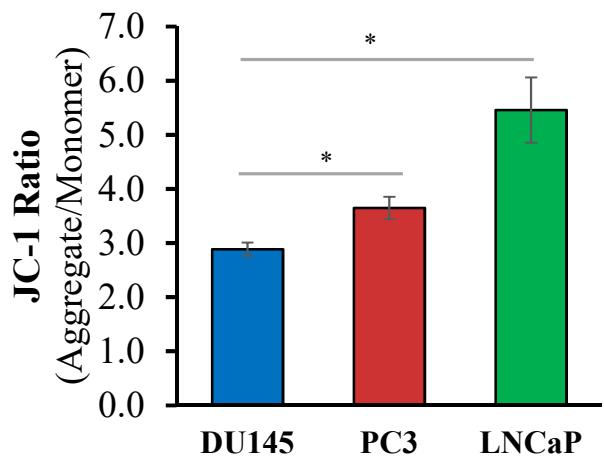


Figure 1s1

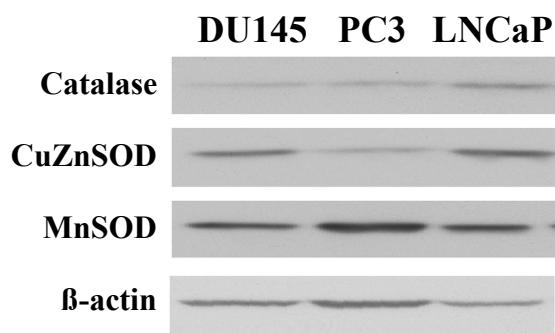


Figure 1s2

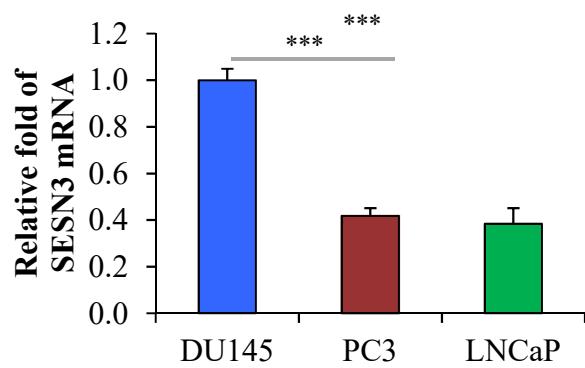


Figure 1s3

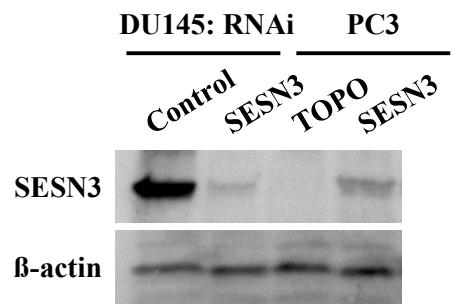


Figure 1s4

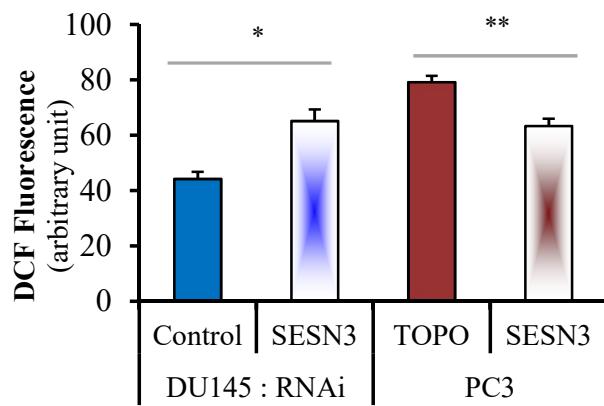


Figure 1s5

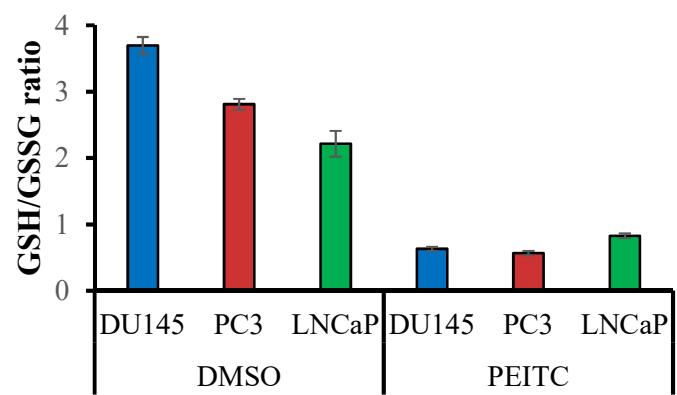
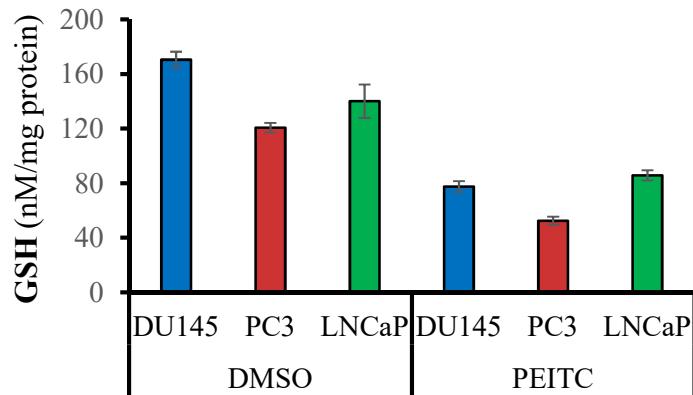



Figure 2s1

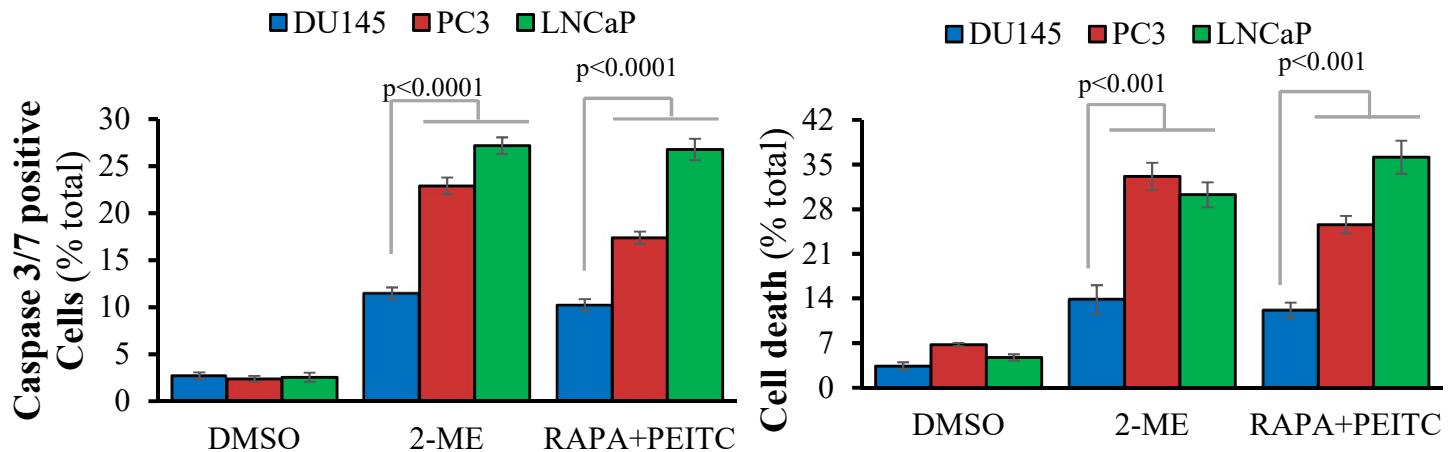


Figure 2s2

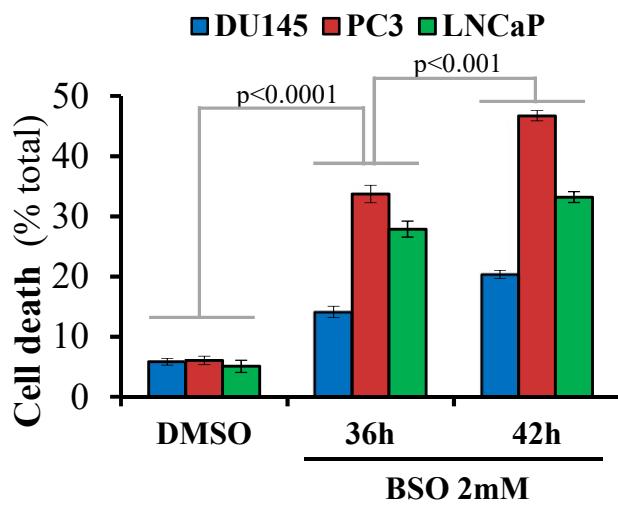


Figure 2s3

Figure 2s4

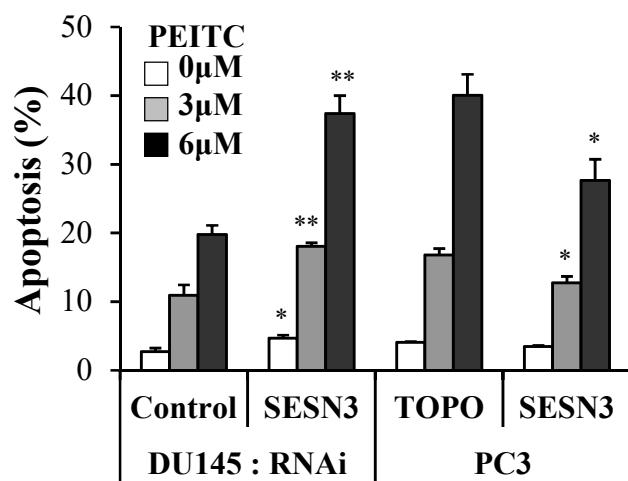


Figure 2s5

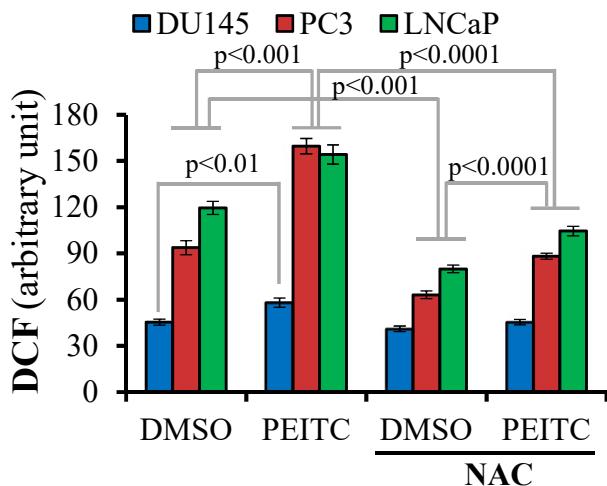
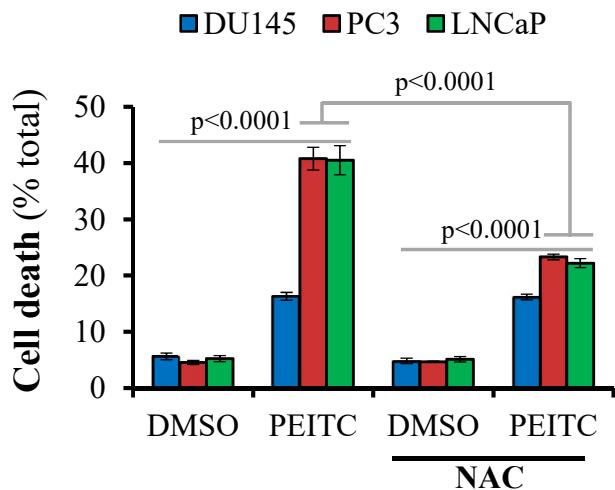



Figure 2s6

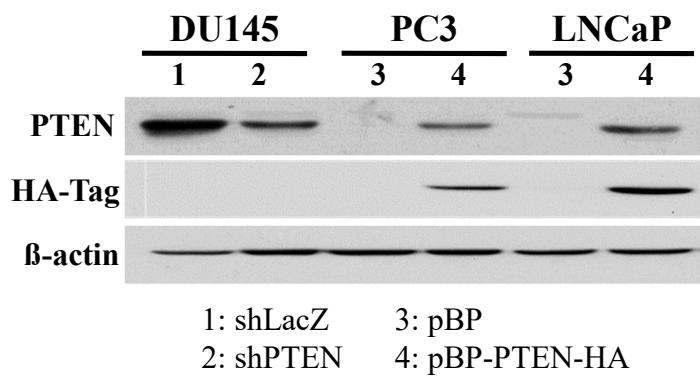


Figure 2s7

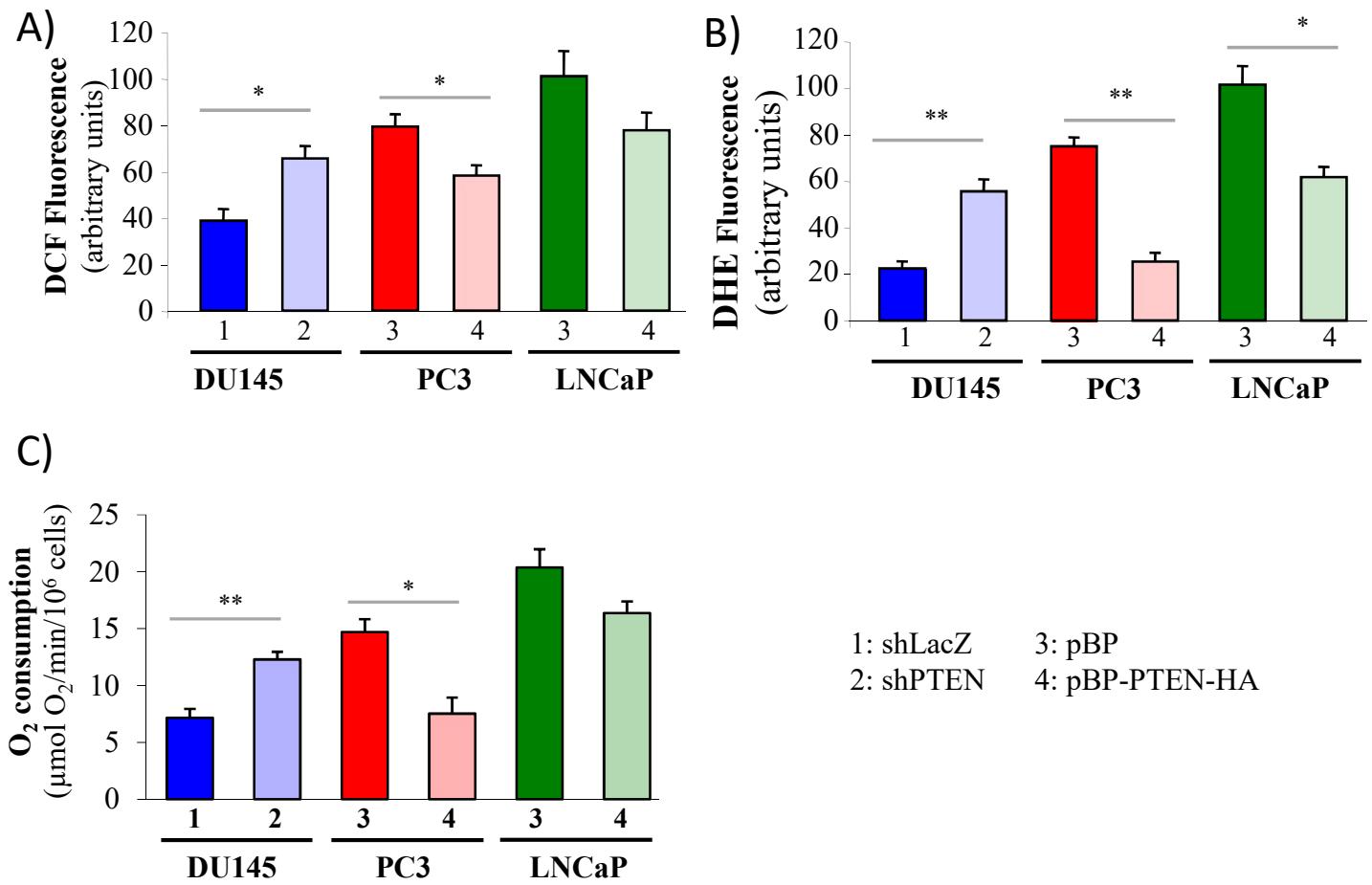


Figure 2s8

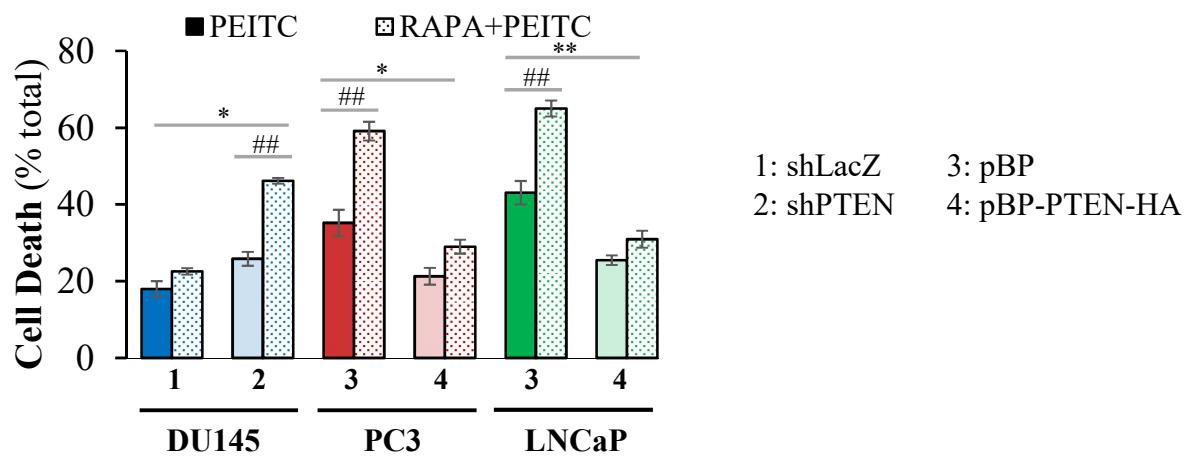


Figure 2s9

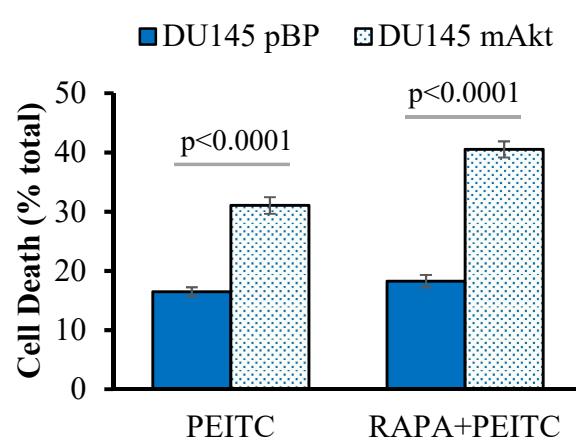
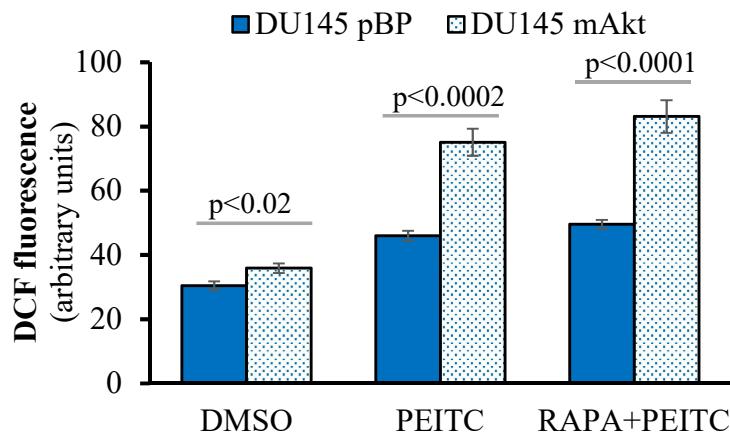



Figure 2s10

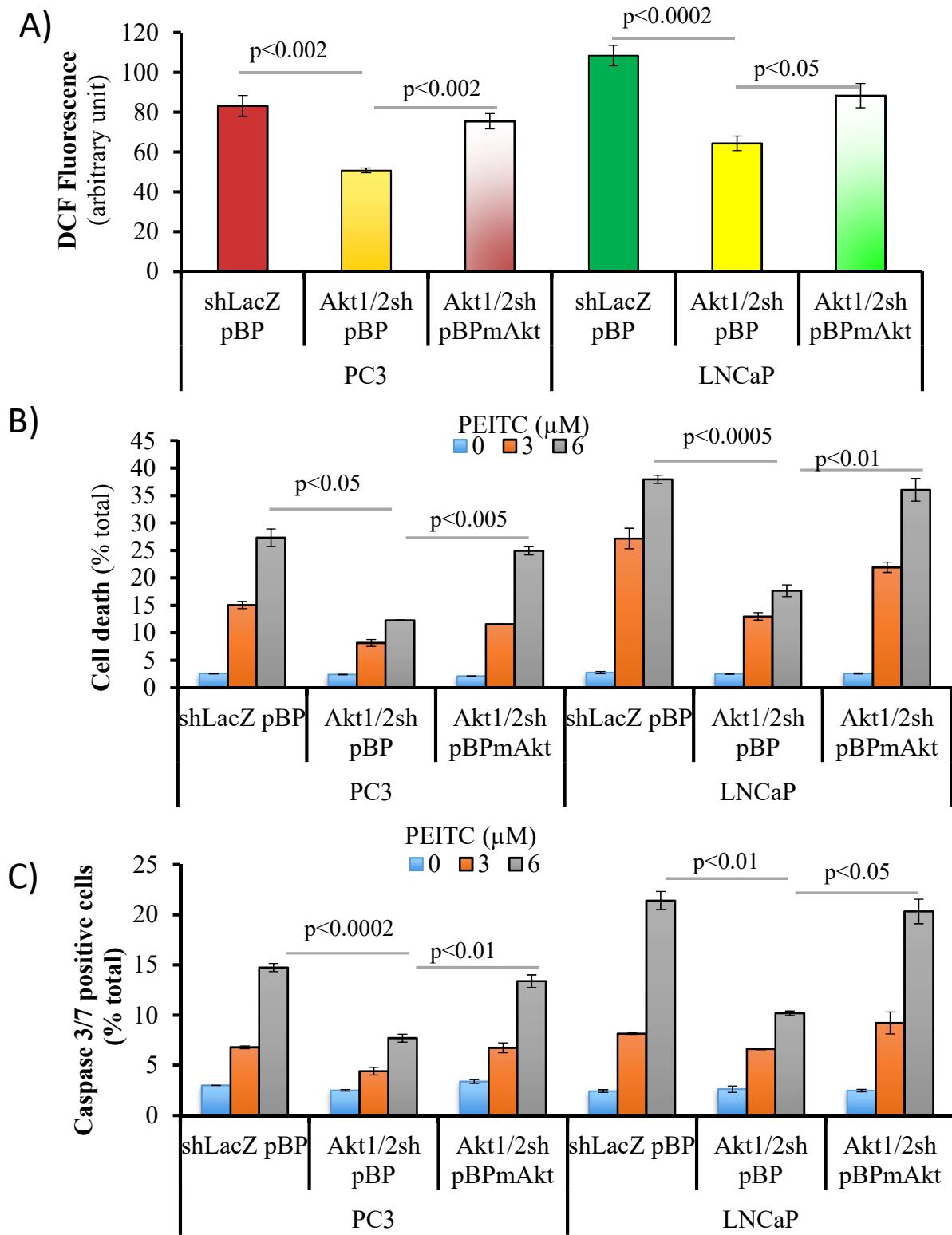


Figure 2s11

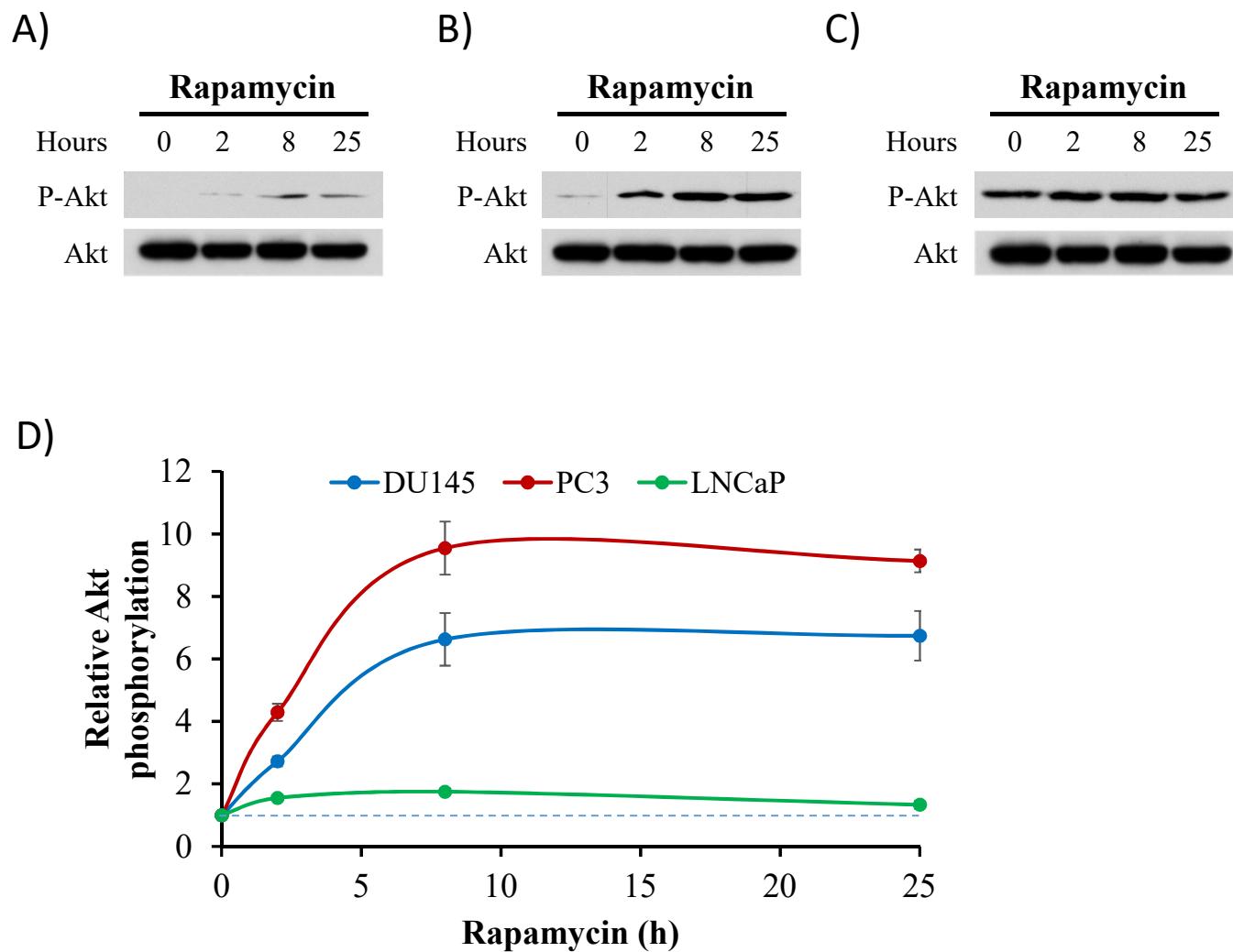


Figure 2s12

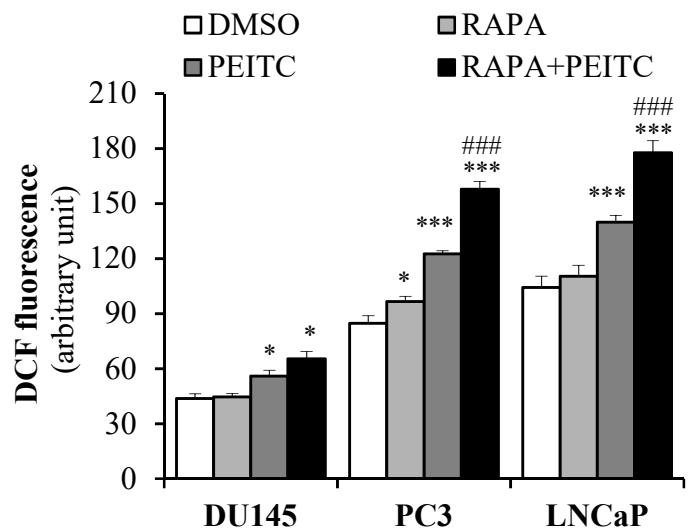


Figure 2s13

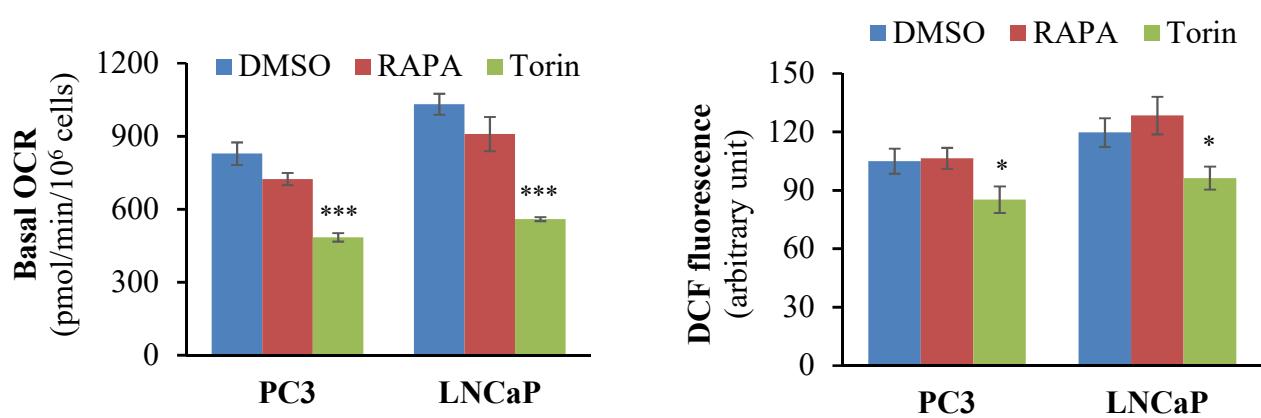


Figure 2s14

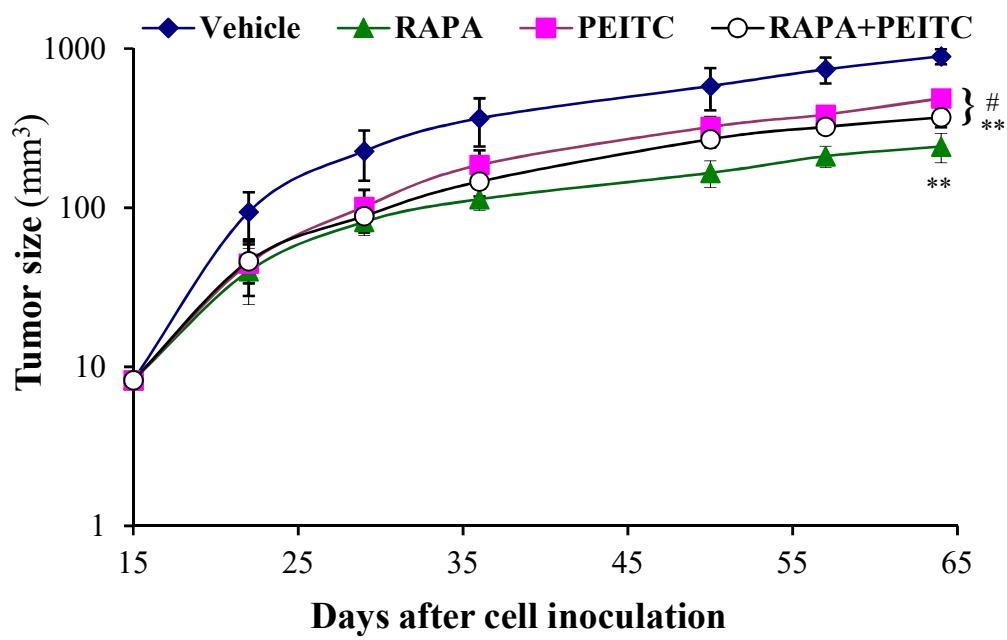


Figure 2s15

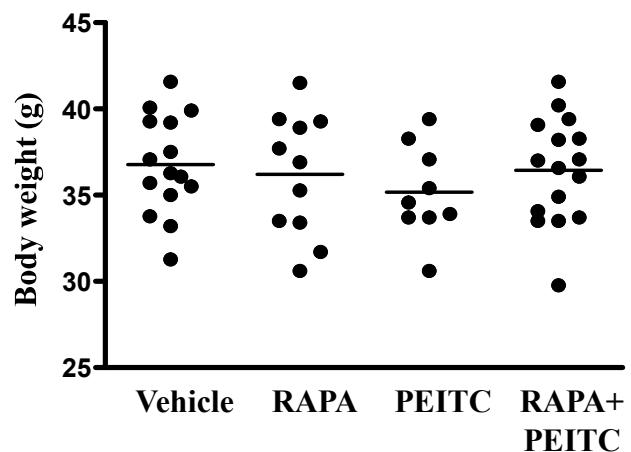
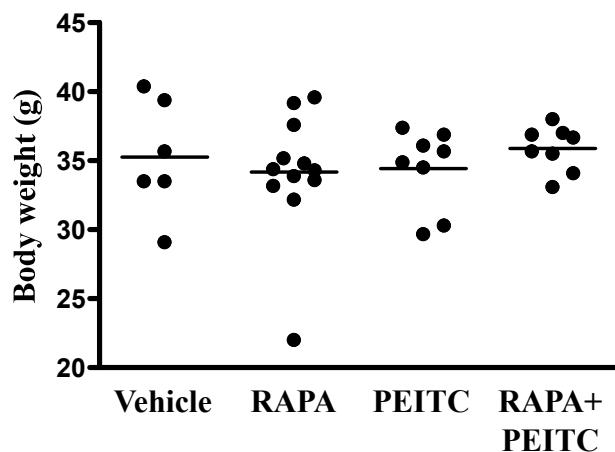



Figure 3s1

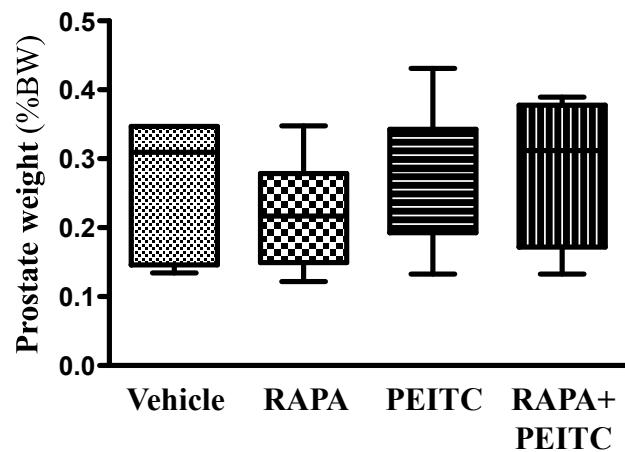


Figure 3s2

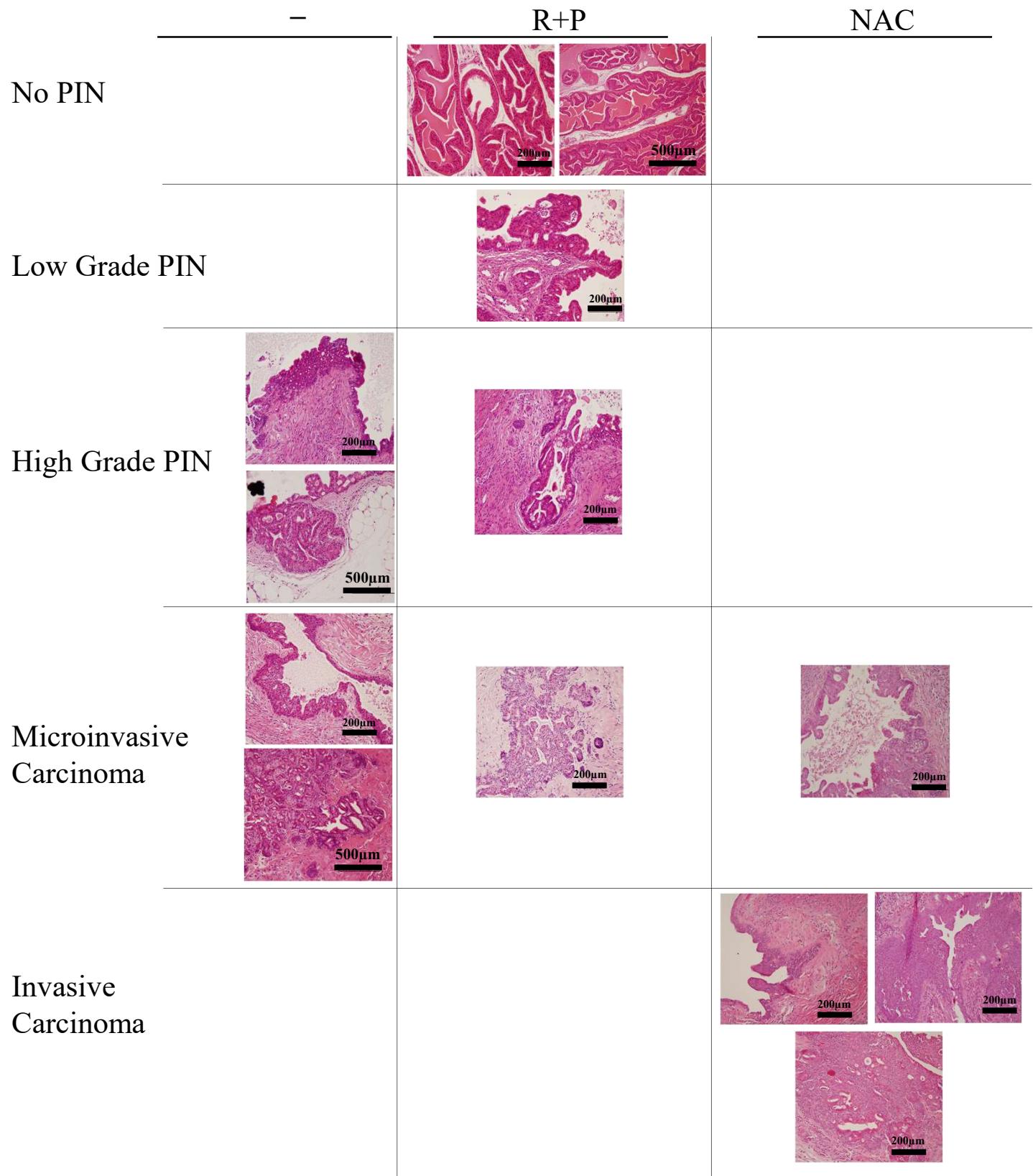


Figure 3s3

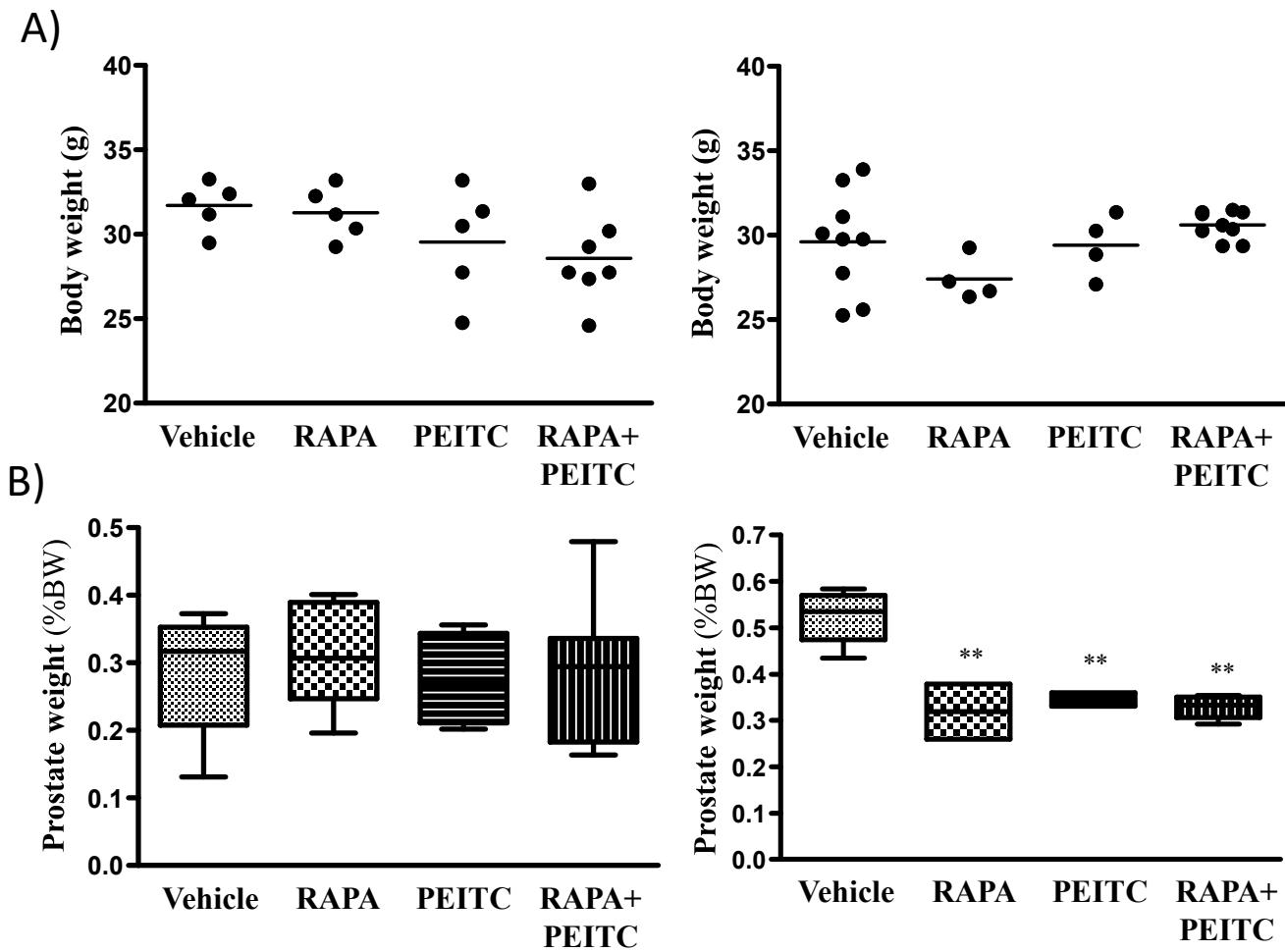


Figure 4s1

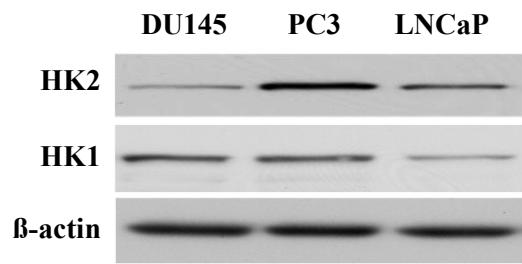


Figure 5s1

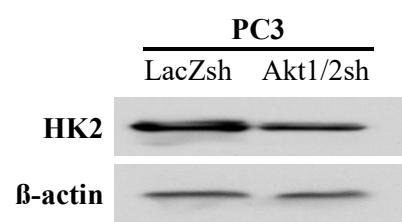


Figure 5s2

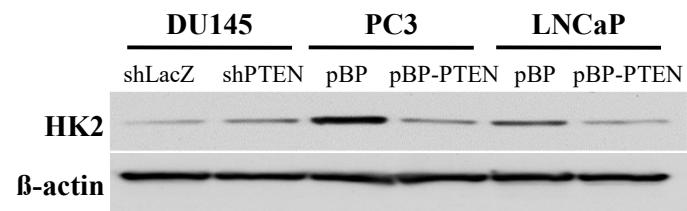


Figure 5s3

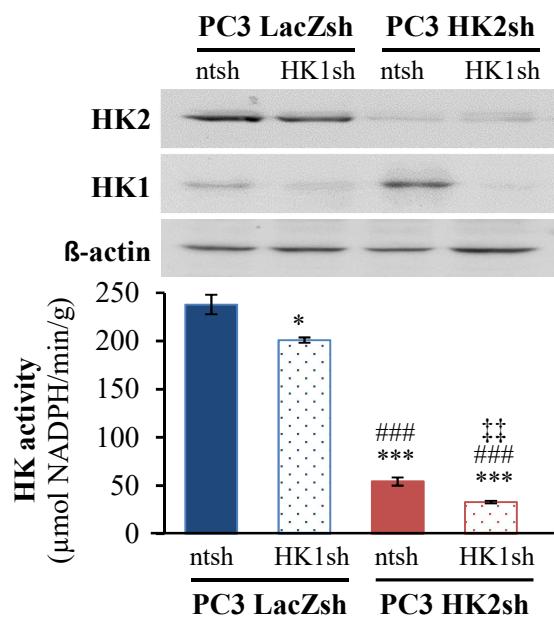


Figure 5s4

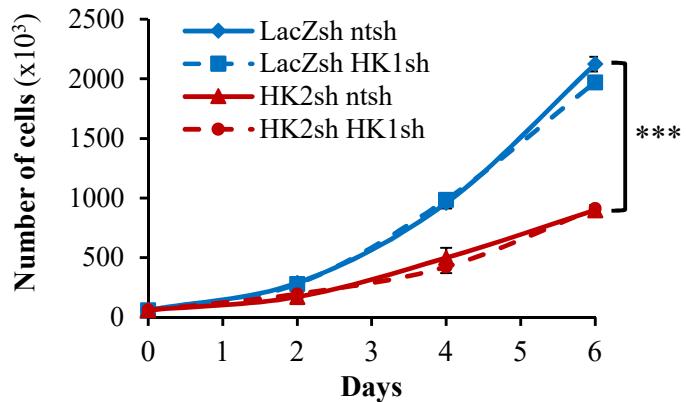


Figure 5s5

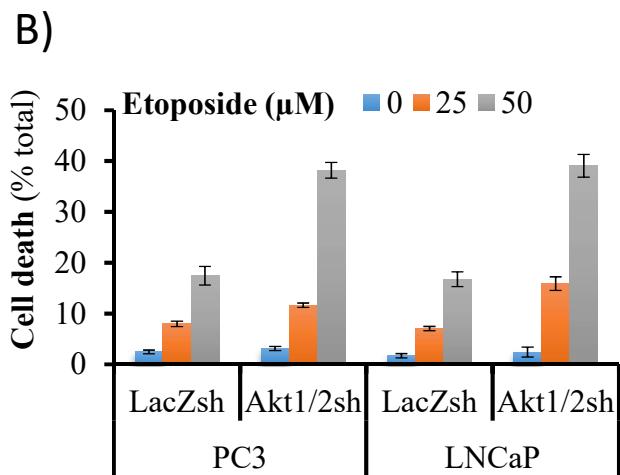
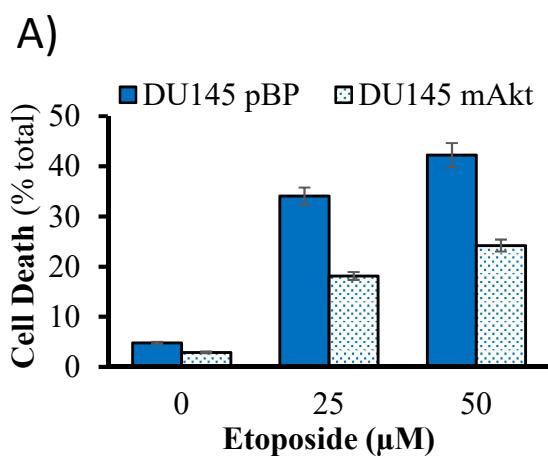



Figure 5s6

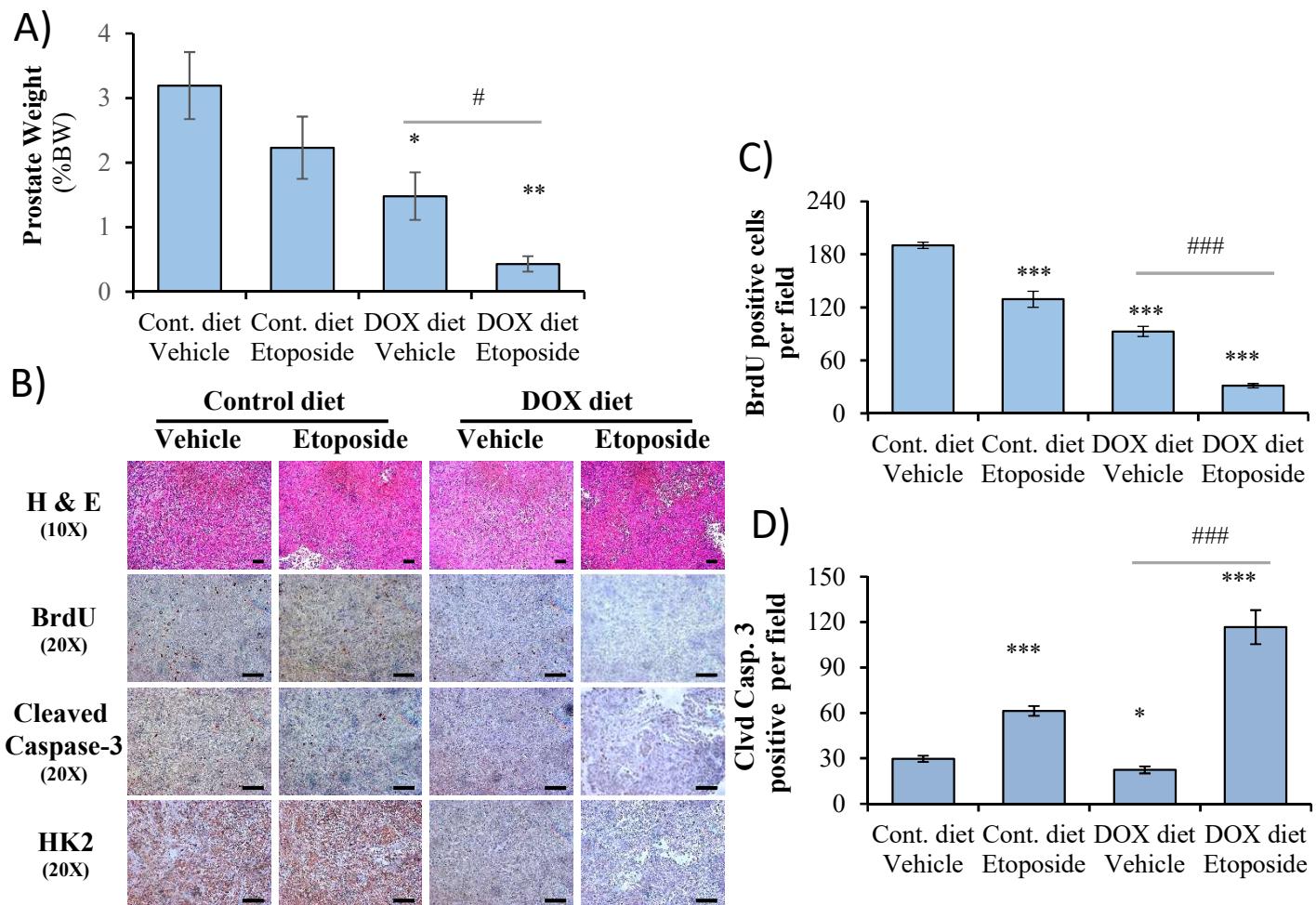


Figure 5s7

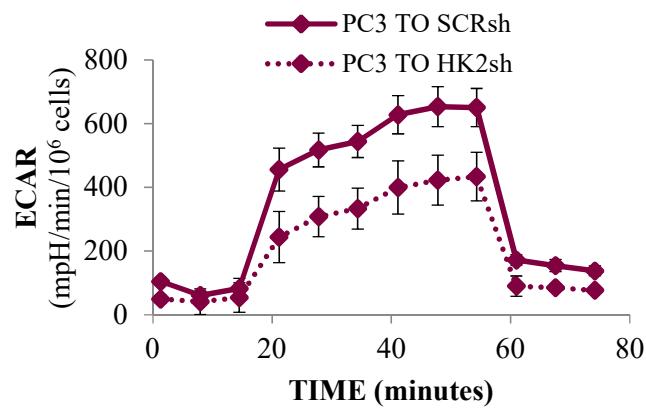


Figure 5s8

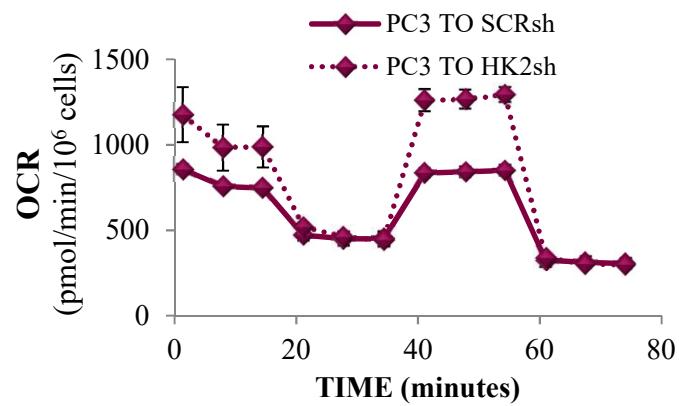


Figure 5s9

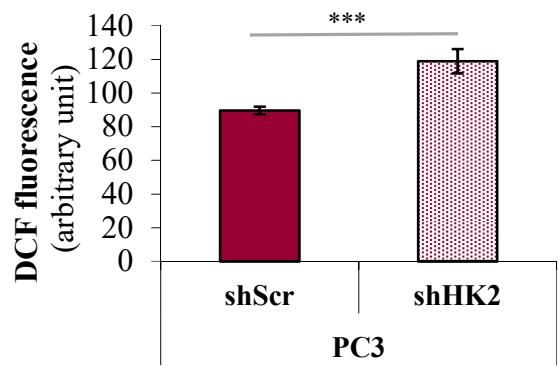


Figure 5s10

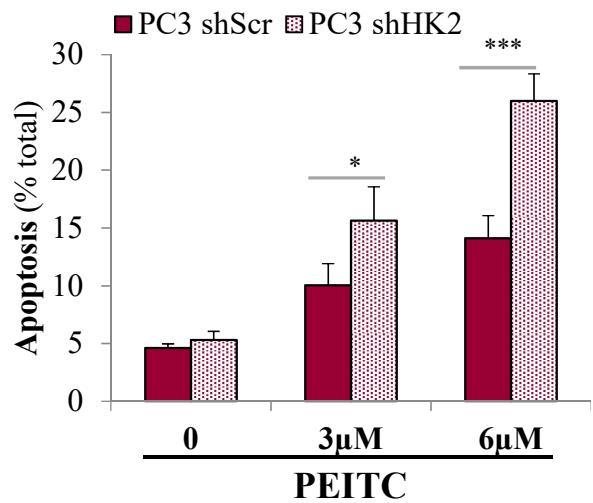


Figure 5s11