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metabolic consequences of Akt activation

. . ]x 1 . 1,2%
Veronique Nogueira' , Krushna C. Patra'?, and Nissim Hay"

'Department of Biochemistry and Molecular Genetics, College of Medicine, University of
Ilinois at Chicago, Chicago, IL 60607, USA *Research & Development Section, Jesse Brown
VA Medical Center, Chicago, IL 60612, USA

3 Present address: Massachusetts General Hospital Cancer Center, Harvard Medical School,
Boston, MA 02114, USA

e (Correspondence: Nissim Hay (nhay@uic.edu), Veronique Nogueira (vnogueir@uic.edu)
Tel: 312-355-1684

Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois
at Chicago, Chicago, IL 60607, USA

Conflict of Interest: There is no conflict of interest to declare


mailto:nhay@uic.edu

33

34

35
36
37
38
39
40
41
42
43
44
45
46
47

48
49

Abstract

Akt activation in human cancers exerts chemoresistance, but pan-Akt inhibition elicits adverse
consequences. We exploited the consequences of Akt-mediated mitochondrial and glucose
metabolism to selectively eradicate and evade chemoresistance of prostate cancer displaying
hyperactive Akt. PTEN-deficient prostate cancer cells that display hyperactivated Akt have high
intracellular reactive oxygen species (ROS) levels, which are due, in part, to Akt-dependent
increase of oxidative phosphorylation. High intracellular ROS levels selectively sensitize cells
displaying hyperactive Akt to ROS-induced cell death enabling a therapeutic strategy combining
a ROS inducer and rapamycin in PTEN-deficient prostate tumors in mouse models. This strategy
elicited tumor regression, and markedly increased survival even after the treatment was stopped.
By contrast, exposure to antioxidant increased prostate tumor progression. To increase glucose
metabolism Akt activation phosphorylates HK2 and induced its expression. Indeed, HK2
deficiency in mouse models of Pten-deficient prostate cancer elicited a marked inhibition of

tumor development and extended lifespan.
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Introduction

One of the most frequent events in human cancer is hyperactivation of the serine/threonine
kinase Akt. Akt is hyperactivated in cancer by multiple mechanisms, largely through the
activation of its upstream regulator phosphoinositide 3-kinase (PI3K), which generates the
phosphatidylinositol-3,4,5-trisphophate (PIP3;) required for Akt activation (Mayer & Arteaga,
2016). The activity of PI3K is negatively regulated by the tumor suppressor Phosphatase And
Tensin Homolog (PTEN), which is a PIP3 phosphatase, and therefore inhibits the PI3K/Akt
signaling pathway. PTEN expression is frequently lost in human cancers, specifically in
glioblastoma, melanoma, endometrial and prostate cancers (Hollander, Blumenthal et al., 2011).
The frequent activation of PI3K/Akt signaling in cancer and its ability to exert chemoresistance
led to the development of small molecule inhibitors of PI3K and Akt, which are currently being
tested in clinical trials (Kim, Dan et al., 2005, Zhang, Kwok-Shing Ng et al., 2017, Zheng, 2017).
There are three Akt genes in mammalian cells (4k¢/-3), and their encoded proteins have a high
degree of identical amino acids. The expression pattern in mammalian tissues and organs is
different amongst the three isoforms. While Aktl is ubiquitously expressed, Akt2 is expressed at
the highest level in insulin-responsive tissues, and Akt3 is expressed at the highest level in the
brain. The different mouse phenotypes with the individual Akt isoform germ line deletions can
be explained by their relative expression in the organs that determine the phenotype (Dummler &
Hemmings, 2007, Hay, 2011). The Akt inhibitors currently in clinical trials are pan-Akt
inhibitors that inhibit the different Akt isoforms to a similar extent. These pan-Akt inhibitors
exert undesired side effects, such as hyperglycemia, hyperinsulinemia, and diabetes (Wang,
Chen et al., 2017). Furthermore, genetic deletion of Aktl and Akt2 in the mouse liver induces
liver damage, inflammation, and paradoxically hepatocellular carcinoma (HCC) (Wang, Yu et
al., 2016). Therefore, developing isoform-specific inhibitors could reduce the undesired systemic
consequences of pan-Akt inhibition, although this is challenging. Alternatively, a therapeutic

approach that selectively targets cancer cells displaying hyperactive Akt should be developed.

Perhaps the most evolutionarily conserved function of Akt is mediating cellular and
organismal metabolism. This conserved function of Akt is likely utilized by cancer cells to fulfill

their anabolic demands. Since PTEN is lost in approximately 40% of prostate cancers
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(Pourmand, Ziaee et al., 2007, Taylor, Schultz et al., 2010), we chose to work towards
developing a personalized therapeutic approach by using PTEN-deficient prostate cancer to
explore selective vulnerability as a consequence of Akt’s metabolic activity. As we showed
previously, activation of Akt increases both glycolysis and oxidative phosphorylation (Gottlob,
Majewski et al., 2001, Robey & Hay, 2009). We also showed that Akt activation increases
intracellular ROS levels, in part by increasing oxidative phosphorylation. Since Akt does not
exert resistance to ROS-induced cell death, increasing ROS levels could selectively eradicate
cells displaying hyperactive Akt (Nogueira, Park et al., 2008). Here, we showed that human
PTEN-deficient and not PTEN-proficient prostate cancer cells have high intracellular ROS
levels, which are Akt-dependent. The high level of ROS can be exploited to selectively eradicate
human PTEN-deficient tumors in vivo as well as in a mouse model of Pten-deficient prostate
cancer. We used the natural compound phenylethyl isothiocyanate (PEITC) that depletes
intracellular glutathione (Xu & Thornalley, 2001) as a ROS inducer either alone or in
combination with the mTORCI inhibitor rapamycin to selectively eradicate Pten-deficient cancer
cells in vivo. We also found that in PTEN-deficient prostate cancer, HK2 is induced because of
Akt activation to increase glycolysis. HK2 is the hexokinase isoform that is not highly expressed
in most mammalian tissues but is generally induced in cancer cells by multiple mechanisms
(Hay, 2016). Furthermore, HK?2 is phosphorylated by Akt to increase its mitochondrial binding
(Miyamoto, Murphy et al., 2008) and therefore its glycolytic activity (DeWaal, Nogueira et al.,
2018). Here we showed that silencing HK2 in human PTEN-deficient prostate tumors and
deleting HK2 in a mouse model of Pten-deficient prostate cancer inhibits cancer development in
both cytostatic and cytotoxic manners. HK2 deficiency also overcame the chemoresistance of

PTEN-deficient prostate cancer cells.

Results

PTEN-deficient human prostate cancer cells display high oxygen consumption, OXPHO
and high levels of ROS
We employed three human prostate cancer cell lines: DU145, which is PTEN-proficient, and

PC3 and LNCaP, which are PTEN-deficient. As expected, the PTEN status in DU145, PC3 and
LNCaP cells determines Akt activity in these cells (Figure 1A). DU145 cells, which harbor wild-
type PTEN, exhibit low Akt activity. PTEN-deficient PC3 and LNCaP cells display
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hyperactivated Akt. As we previously found, Akt elevates oxygen consumption and intracellular
ROS levels (Nogueira et al., 2008). We therefore determined these two parameters in prostate
cancer (CaP) cells in which PTEN is frequently lost. Basal oxygen consumption was the lowest
in the PTEN-proficient DU145 cells, while it was gradually increased in the PTEN-deficient PC3
and LNCaP cells (Figure 1B), following the pattern of Akt activity in which higher oxygen
consumption was correlated with higher Akt activity. Silencing Aktl and Akt2 in PC3 cells
markedly decreased oxygen consumption, indicating that the high oxygen consumption in these
cells is Akt-dependent (Figure 1C). Interestingly, basal oxygen consumption in DU145 cells
reached the maximum capacity of the respiratory chain, while PC3 and LNCaP cells have a
larger spare capacity. Fig. 1B also shows that the ATP production capacity is two-fold higher in
PC3 and LNCaP cells compared to DU145 cells, agreeing with our previous observations that
Akt activation increases ATP production by both glycolysis and oxidative phosphorylation
(Gottlob et al., 2001). Since intracellular ROS are by-products of high OXPHO, we determined
intracellular ROS production at the cytosolic (Figure 1D) and mitochondrial (Figure 1E) levels,
and found that high Akt activity was correlated with high intracellular levels of ROS. Aktl and
Akt2 knockdown in PC3 cells consistently decreased ROS levels, confirming that Akt regulates
intracellular ROS levels. (Figure 1F). Finally, we found that in PC3 and LNCaP cells
mitochondrial membrane potential is higher than in DU145 cells (Figure 1-figure supplement 1),
which is likely correlated with the higher respiratory chain activity in PC3 and LNCaP cells.

In our previous studies, we found that Akt activation increases ROS not only by increasing
oxygen consumption but also by inhibiting the expression of ROS scavengers downstream of
FOXO, such as MnSOD and catalase, and particularly sestrin3 (Sesn3) (Nogueira et al., 2008).
Sesn3 is a transcriptional target of FOXO (Chen, Jeon et al., 2010) and a member of a protein
family including Sesnl and Sesn2, which reduce ROS by several mechanisms (Bae, Sung et al.,
2013, Kopnin, Agapova et al., 2007). Interestingly, in contrast to our findings in MEFs (Nogueira et
al., 2008), changes in MnSOD and catalase expression in the CaP cells did not correlate with
changes in ROS levels (Figure 1-figure supplement 2), which is consistent with what was
previously observed (Chowdhury, Raha et al., 2007). However, the pattern of Sesn3 expression was
consistent with ROS levels, and while DU145 cells express high levels of Sesn3, PC3 and LNCaP
cells express relatively low levels of Sesn3 (Figure 1-figure supplement 3). Interestingly,

downregulation of Sesn3 in DU145 cells or up-regulation of Sesn3 in PC3 cells (Figure 1-figure
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supplement 4) was sufficient to modulate cytosolic ROS production in these cells (Figure 1-figure
supplement 5Sesn3 knockdown in DU145 cells increased ROS production, while overexpression of
Sesn3 in PC3 cells decreased ROS production. These results suggest that Sesn3 contributes to the
regulation of intracellular ROS downstream of Akt and FoxOs in CaP cells.

Taken together, these results show that PTEN-deficient prostate cancer cells display high
OXPHO and ROS levels in an Akt-dependent manner.

PTEN-deficient prostate cancer cells are selectively sensitized to killing by a ROS inducer
We previously reported that cells that display high Akt activity could be selectivity killed by
increasing the intracellular level of ROS (Nogueira et al., 2008). This selectivity is due to the
high intracellular ROS levels exerted by Akt activation in combination with the inability of Akt
to protect against ROS-induced cell death. We therefore treated the prostate cancer cells with 2-
methoxyestradiol (2-ME), an endogenous metabolite of estradiol-17beta that increases ROS, or
with B-phenylethyl isothiocyanate (PEITC), a natural compound found in consumable
cruciferous vegetables that is known to increase intracellular ROS levels by depleting
intracellular glutathione (Ting, Lee et al., 2010) (Yu, Mandlekar et al., 1998) (See also Figure 2-
figure supplement 1 We found that CaP cells with high Akt activity due to the loss of PTEN
(LNCaP, PC3 cells) were more vulnerable to 2-ME- and PEITC-induced cell death than the
PTEN-proficient CaP cells (DU145 cells) (Figure 2 A, B, and Figure 2-figure supplement 2).
Consistently LNCaP and PC3 cells are more vulnerable to the glutathione reducing agent BSO
(Figure 2-figure supplement 3). Interestingly, NADP+/NADPH ratio is elevated in the PTEN-
deficient cells (Figure 2-figure supplement 4). The elevated NADP+/NADPH could be either
contributing to the high level of ROS or it is a result of increased NADPH consumption to
combat the high ROS level. Alternatively or additionally, higher NADPH is consumed for fatty
acid synthesis in the PTEN-deficient cells can contribute to the higher NADP+/NADPH ratio.

Silencing Sesn3 increased PEITC-induced cell death in DU145 cells, and overexpression of
Sesn3 in PC3 cells decreased their sensitivity to PEITC (Figure 2-figure supplement 5). The cell
death induced by PEITC is ROS-dependent since it is inhibited by the ROS scavenger N-acetyl
cysteine (NAC) (Figure 2-figure supplement 6). To determine if the hypersensitivity of PTEN-
deficient prostate cancer cells to ROS-induced cell death is PI3K/Akt dependent, we first restored
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PTEN expression in the Pten-deficient cells and silenced Pten in the Pten-proficient cells. (Figure 2-
figure supplement 7). Oxygen consumption and ROS production were increased by silencing PTEN
in DU145 cells and decreased in PC3 and LNCaP cells expressing PTEN (Figure 2-figure
supplement 8). The silencing of PTEN in DU145 cells increased sensitivity to PEITC, whereas the
expression of PTEN in PC3 and LNCaP cells decreased their sensitivity to PEITC (Figure 2-figure
supplement 9). Like the silencing of PTEN in DU145 cells expression of activated myristoylated
Akt (mAkt) in DU145 cells increased ROS levels and renders the cells more sensitive to ROS-
induced cell death (Figure 2-figure supplement 10). Finally, the knockdown of Aktl and Akt2 in
PC3 and LNCaP cells that reduced ROS levels also rendered them resistant to PEITC-induced cell
death (Figure 1F, Figure 2C, and Figure 2-figure supplement 11). We concluded that Akt activation
in Pten-deficient prostate cancer cells could not protect against oxidative stress-induced cell death
but rather sensitized the cells to ROS-induced cell death by increasing their intracellular ROS

levels.

Treatment with PEITC and rapamycin inhibits and regresses tumor development in a
xenograft model and in a mouse model of prostate cancer

We previously showed that rapamycin treatment could further sensitize cells displaying
hyperactive Akt to oxidative stress-induced cell death, which could be due, in part, to the further
activation of Akt by the inhibition of mMTORCI inhibitory activity on the PI3K/Akt signaling
(Nogueira et al., 2008). This was also observed in prostate cancer cells (Figure 2-figure
supplement 12). Thus, the combination of rapamycin and oxidative stress could not only
circumvent resistance to cell death but also selectively kill cells treated with rapamycin. Before
applying this strategy to animal models of prostate cancer, we first established our proof-of-
concept with prostate cancer cells in vitro. As shown in Figure 2D, rapamycin alone did not
induce cell death, but pretreatment with rapamycin augmented the ability of PEITC to induce
cell death in all 3 CaP cell lines. Although rapamycin treatment increased PEITC-induced cell
death in all cell lines, the LNCaP and PC3 cells with hyperactivated Akt were markedly more
sensitive to cell death induced by the combination of rapamycin and PEITC than DU145 cells
(Figure 2D). The synergistic effect of rapamycin and PEITC on cell death could be explained by
the induction of ROS exceeding the scavenging capacity (Figure 2-figure supplement 13). We

found that rapamycin, by itself, does not substantially affect oxygen consumption or intracellular
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ROS induced by Akt (Figure 2-figure supplement 14). This contrasts with the catalytic inhibitor
of mTOR, torinl, which decreased oxygen consumption and ROS levels (Figure 2-figure
supplement 14). These results are consistent with previously published results showing that
while the mTOR kinase inhibitor inhibits OXPHO in an elF4E-dependent manner, rapamycin
does not (Morita, Gravel et al., 2013). We concluded that combining rapamycin and PEITC
could be used to selectively kill prostate cancer cells expressing hyperactive Akt.

To examine the efficacy of the strategy to selectively eradicate prostate cancer cells
carrying activated Akt in vivo, we first employed xenografts of PC3 cells in athymic nude mice
and studied the effect of PEITC and rapamycin on the growth of tumors induced by PC3 cells
(Figure 2E). After tumor onset, the mice were either not treated or treated with either rapamycin
alone, PEITC alone or the combination of both rapamycin and PEITC. Rapamycin alone or
PEITC alone significantly attenuated the growth of the tumors, but the tumors remained
palpable. However, the combination of PEITC and rapamycin regressed tumor growth and
eradicated the tumors. Analyses of tumor sections near the endpoint of the experiment showed
that PEITC alone induced both a profound inhibition of BrdU incorporation and cell death, as
assessed by cleaved caspase 3, whereas rapamycin alone did not induce cell death but did inhibit
BrdU incorporation (Figure 2F-H). Cell death after treatment with both PEITC and rapamycin,
as measured by cleaved caspase 3, was profoundly higher than that induced by PEITC alone
(Figure 2F-H). When the PTEN-proficient DU145 xenografts were similarly treated, the effect of
rapamycin alone or PEITC alone on tumor growth was not as profound (Figure 2-figure
supplement 15). Importantly, the combination of rapamycin and PEITC did not decrease tumor
growth as it did for the PTEN-deficient PC3 xenografts. Thus, these results indicate that the
combination of rapamycin and PEITC could be an effective therapeutic strategy for PTEN-
deficient prostate cancer or prostate cancer in which Akt is hyperactivated.

To further address the feasibility of PEITC and rapamycin treatment for PTEN-
deficient prostate cancer, we employed a mouse model for prostate cancer in which prostate Pten
is specifically deleted by Cre recombinase driven by the probasin promoter (Pbsn—Cre4;Pten’7f
mice). Mice that are deficient for PTEN in the prostate display progressive forms of prostatic
cancer that histologically resemble human prostate cancer, ranging from mild prostatic
intraepithelial neoplasia (PIN) at 10 weeks of age to large multinodular malignant

adenocarcinoma with metastasis within 8 months (Trotman, Niki et al., 2003). Pten deletion
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leads to Akt activation in the prostate and, similar to what we observed in vitro, an increase in
oxidative stress, as measured by the increased level of 4-hydroxynonenal (4HNE) protein
adducts (Figure 3A). Since the onset of PIN occurs within 2 months and invasive CaP occurs
within 8 months, we could test the efficacy of our therapeutic approach at two different stages of
prostate cancer, low-grade PINs and, later, high-grade PINs and CaP stages. The first strategy is
depicted in Figure 3B. The treatment did not significantly affect the mice body weights (Figure
3-figure supplement 1), and the prostate weights did not significantly change in the control mice
after treatment with rapamycin alone, PEITC alone or rapamycin and PEITC in combination
(Figure 3-figure supplement 2). However, these treatments significantly decreased the prostate
weights in the Pbsn-Cre4,;Pten’ mice, which was most profound when both rapamycin and
PEITC were combined (Figure 3C). When tumor sections were analyzed after 8 months, we
found that all treatments markedly inhibited proliferation, as measured by BrdU incorporation
(Figures 3D and 3E), but PEITC also induced cell death, which was further exacerbated when
PEITC was combined with rapamycin (Figures. 3D and 3F). Finally, the combination of
rapamycin and PEITC treatment markedly increased survival (Figure 3G). Histopathological
analysis showed that while two third and one third of untreated mice had high grade PIN and
microinvasive carcinoma respectively, one third of mice treated with rapamycin and PEITC did
not have any detectable PIN, 16% had low grade PIN and only one third had high grade PIN and
16% microinvasive carcinoma (Table 1, and Figure 3-figure supplement 3). By contrast, treating
the mice with NAC to decrease the ROS levels markedly increased the prostate weights and
tumor growth (Figure 3H). All NAC treated mice had carcinoma with the majority of mice
(75%) displaying invasive carcinoma and 25% microinvasive carcinoma (Table 1 and Figure 3-
figure supplement 3). The results indicate that high ROS levels are an impediment to tumor
progression. Next, we wanted to know whether the efficacy of such a treatment was greater if the
mice were treated at a younger age. Therefore the mice were treated at 2 months according to the
protocol depicted in Figure 4A. One cohort of mice was sacrificed at 6 months, and another
cohort of mice was left untreated for another 6 months and sacrificed at 12 months. A third
cohort of mice was used to determine survival. As shown in Figures 4B and Figure 4-figure
supplement 1, the treatments did not affect the body weights but significantly reduced the
prostate weights of the Pbsn-Cre4;Pten’” mice at the 6-month time point. Analysis of tumor

sections at 6 months again showed a marked decrease in cell proliferation and a marked increase
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in cell death with the combination of PEITC and rapamycin treatment (Figures 4C-E). Strikingly,
the effect of PEITC and rapamycin was sustained even in the cohort of mice that were left
untreated for another six months (Figures 4F-I). Interestingly, we found that BrdU incorporation
was still decreased (Figure 4H), and cell death was increased (Figure 4H). Finally, treatment
with PEITC and rapamycin profoundly increased survival, even though the treatment was
stopped at 6 months of age (Figure 4J). Taken together the results suggest that treatment with
rapamycin and PEITC not only attenuate prostate tumor growth but also regresses tumor

progression.

HK?2 expression is induced in Pten-deficient prostate cancer in an Akt-dependent manner

Hexokinases catalyze the first committed step of glucose metabolism by phosphorylating
glucose. Hexokinase 2 (HK2), which is not expressed in most mammalian tissues, is markedly
induced in cancer cells by different mechanisms (Patra & Hay, 2013, Patra, Wang et al., 2013).
Previously, we showed that systemic deletion of HK2 in mice is well tolerated and a therapeutic
for lung cancer (Patra et al., 2013). HK2 is also directly phosphorylated by Akt which increased
its binding to mitochondria (Miyamoto et al., 2008), and therefore its activity (DeWaal et al.,
2018). We therefore examined the human prostate cancer cell lines DU145, PC3 and LNCaP for
the expression of HK2 and found that the PTEN-deficient PC3 and LNCaP cells expressed
higher levels of HK2 compared with the PTEN-proficient DU145 cells (Figure SA and Figure 5-
figure supplement 1). The high level of HK2 in the PC3 and LNCaP cells was dependent on Akt
because treatment with the pan-Akt inhibitor MK2206 diminished HK2 expression (Figure 5A)
and because the knockdown of Aktl and Akt2 in PC3 cells decreased HK2 expression (Figure 5-
figure supplement 2). In addition the knockdown of PTEN in DU145 cells increased HK2
expression whereas the expression of PTEN in PC3 and LNCaP cells decreased HK2 expression
(Figure 5-figure supplement 3). The knockdown of HK2 only modestly decreased the total
hexokinase activity in DU145 cells, while in PC3 and LNCaP cells, HK2 knockdown decreased
most of the total hexokinase activity (Figures 5B and 5C). The results suggest that in the PTEN-
deficient PC3 and LNCaP cells, HK2 is the major contributor of hexokinase activity. Indeed the
knockdown of hexokinase 1 (HK1) in PC3 cells had only a modest effect on the total hexokinase
activity (Figure 5-figure supplement 4) and no effect on cell proliferation in comparison with

HK2 knockdown (Figure 5-figure supplement 5).

10
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HK?2 deficiency in Pten-deficient prostate cancer cells impairs proliferation and
tumorigenesis and overrides chemoresistance

HK2 knockdown in PC3 and LNCaP cells markedly affected the proliferation of the cells, as
measured by the cell numbers and BrdU incorporation, whereas the proliferation of the DU145
cells was not significantly affected (Figures 5D-E). The knockdown of HK1, however, did not
affect the proliferation of PC3 cells and did not further decrease the attenuated proliferation
induced by HK2 knockdown (Figure 5-figure supplement 5). Furthermore, the knockdown of
HK2 impaired the anchorage-independent growth of PC3 cells (Figure 5F). PTEN-deficient
prostate cancer cells are relatively resistant to etoposide because of Akt activation (Figure 5-
figure supplement 6). However, HK2 knockdown re-sensitizes these cells to death induced by
etoposide (Figure 5G). The inducible knockdown of HK2 in PC3 cells in nude mice after tumor
onset substantially decreased tumor growth. Etoposide alone also inhibited tumor growth,
although to a lesser extent. However, the combination of HK2 knockdown and etoposide
prohibited tumor growth by both decreased proliferation and increased cell death (Figure SH and
Figure 5-figure supplement 7). Finally, we observed that glycolysis, as measured by ECAR, was
significantly reduced in PC3 cells after HK2 knockdown as expected (Figure 5-figure
supplement 8), but this was associated with a compensatory increase in oxygen consumption
(OCR) (Figure 5-figure supplement 9). Consequently, the ROS levels were further increased in
PC3 cells (Figure 5-figure supplement 10), and therefore, the cells became more sensitive to
PEITC-induced cell death (Figure 5-figure supplement 11These results suggest that HK2
depletion together with PEITC could be an additional therapeutic strategy for PTEN-deficient

prostate cancer cells.

HK2 deletion in Pbsn-Cre4;Pter’” mice inhibits prostate tumor development by decreasing
proliferation and increasing cell death

To further address the role of HK2 in prostate neoplasia in vivo, we crossed Pbsn-Cred, Pten’”
mice with Hk2” mice to generate Pbsn-Cre4;Pten’W ;’HkZﬂf ‘mice. As shown in Figure 6A, HK2
expression was induced in the prostates of Pbsn-Cred4,Pten’’ mice compared with that of the
control mice. The deletion of HK2 in the Pbsn-Cre4;Pten”; Hk2"' mice markedly decreased the

prostate weights (Figure 6B) and substantially increased the survival compared with those of the

11
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Pbsn-Cred,;Pter’’ mice (Figure 6C). Analysis of the prostate tumor sections showed that HK2
deletion not only inhibited tumor proliferation, as measured by BrdU incorporation, but also
significantly increased apoptosis, as measured by caspase-3 cleavage Figures 6D and E). We
concluded that HK2 is required for prostate cancer development and that its deletion induces

both cytostatic and cytotoxic effects.

Discussion
Akt is frequently hyperactivated in human cancers. However, systemic pan-Akt inhibition could
also exert toxicity and undesired effects, such as hyperinsulinemia, hyperglycemia, liver injury,
and inflammation (Wang et al., 2017). Therefore, alternative therapeutic approaches that can
selectively target cancer cells with hyperactive Akt are highly desired. Akt activation induces
metabolic changes that can be exploited to selectively target cancer cells displaying hyperactive
Akt. Akt is frequently hyperactivated in prostate cancer due to loss of the tumor suppressor
PTEN. We therefore exploited the metabolic consequences of Akt activation in PTEN-deficient
prostate cancer. Akt activation in PTEN-deficient prostate cancer elevates oxygen consumption
and intracellular ROS levels. Since Akt activation cannot protect cells against ROS-induced cell
death, the high level of ROS mediated by Akt activation renders cells with hyperactive Akt more
vulnerable to ROS-induced cell death. Rapamycin further induced Akt activity by inhibiting the
feedback inhibition of Akt by mTORCI1(Nogueira et al., 2008). Since treatment with rapamycin
further increased ROS-induced cell death, we combined a ROS inducer with rapamycin as a
therapeutic approach to eradicating the PTEN-deficient prostate tumors of human xenografts in
mice and in a mouse model of prostate neoplasia. This therapeutic approach also converts the
cytostatic effect of rapamycin to a cytotoxic effect. This strategy was successful in eradicating
prostate tumors in vivo. In the mouse model of Pten-deficient prostate cancer, we found that this
strategy inhibited prostate tumor growth, which was sustained even six months after the
treatment was stopped. Interestingly six months after the treatment was stopped not only we
observed inhibition of proliferation but continuous increase in cell.

High ROS levels in cancer cells can contribute to tumorigenesis and promote pro-
oncogenic signaling. However, high ROS levels could also be impediment to tumor progression
and metastasis (Le Gal, Ibrahim et al., 2015, Piskounova, Agathocleous et al., 2015, Sayin,

Ibrahim et al., 2014). Indeed, we found that in contrast to treatment with a ROS inducer,

12
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treatment with a ROS scavenger increased tumor development and invasiveness in Pbsn-Cre;
Pten mice.

We found that high level of glycolysis in PTEN-deficient prostate cancer cells is
partially dependent on the ability of Akt to elevate HK2 expression. HK2 expression was not
detected in the prostates of normal mice but was markedly induced after the deletion of PTEN in
the prostates. In addition, HK2 is phosphorylated by Akt and increases the binding of HK2 to
mitochondria (Miyamoto et al., 2008, Roberts, Tan-Sah et al., 2014). Because the binding of
HK2 to mitochondria increases glycolysis (DeWaal et al., 2018), Akt likely not only increases
HK2 expression but also increases its activity in PTEN-deficient prostate cancer. HK2
knockdown in Pten-deficient prostate cancer cells in mice markedly inhibited their tumor growth
and overcame their resistance to etoposide. The deletion of HK2 in the prostates of Pbsn-
Cre4;,Pten’ mice inhibited tumor growth and markedly extended their survival. Interestingly,
unlike in other mouse models of cancer (Patra et al., 2013), HK2 deletion in the prostate of Pbsn-
Cre; Pter’’ mice is not only cytostatic but also cytotoxic.

In adult mice, HK2 is not expressed in most tissues, and high expression of HK2 is
limited to a small number of normal tissues (Patra & Hay, 2013, Patra et al., 2013). However,
HK2 expression is markedly elevated in cancer cells. Since systemic HK2 deletion is tolerated in
mice, HK2 inhibition is a viable approach to circumvent chemoresistance induced by Akt
activation in prostate cancer. Furthermore, it was recently demonstrated that it is feasible to
develop inhibitors that preferentially inhibit HK2 and not HK1 (Lin, Zeng et al., 2016). In
summary, we provided two therapeutic approaches exploiting the increased OXPHO and

glycolysis levels by Akt to selectively eradicate PTEN-deficient prostate cancer.

Materials and Methods

Cell lines

The DU145, PC3, LNCaP, 293FT and phoenix cells were purchased from ATCC. The DU145,
PC3, and LNCaP cells were maintained in RPMI-1640/10% FBS/1% pen-strep media. The
293FT and phoenix-amphotropic cells were maintained in DMEM/10% FBS/1% pen-strep
media. All cells were maintained in the exponential phase of growth at 37°C in a humidified 5%

CO, atmosphere. Tet-free FBS was used to maintain the Tet-ON HK2sh and Tet-ON control

13
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(shScr) cells in the absence of doxycycline, and doxycycline induction was at 900ng/mL for the
inducible DU145, PC3 and LNCaP HK2 knockdown cell lines.
All cells were confirmed to be mycoplasma negative, using the Sigma LookOut Mycoplasma

PCR Detection Kit.

Retrovirus and lentivirus production and infection

pBabe-Puro-PTEN-HA was previously described by Furnari et al.(Furnari, Lin et al., 1997).
pBabe-Puro-mAkt was previously described in (Kennedy, Kandel et al., 1999). Human PTEN
was targeted in DU145 cells with an shRNA (5’-ACTTGAAGGCGTATACAGGA-3’) cloned
into the pLenti6 lentiviral vector using the BLOCK-iT Lentiviral Expression System (Thermo
Fisher scientific). The sequences of the shRNAs targeting Aktl and Akt2 to generate the PC3
Akt1/Akt2 double knockdown cells were described in (Nogueira et al., 2008). The sequences of
the shRNAs targeting human HK2 (HK2 shRNA3) used in this study were described in (Patra et
al., 2013). The pLKO.1 lentiviral vector containing human HK1 shRNA from Sigma was used
(stock # TRCNO000037656).

Amphotropic retrovirus production was performed as previously described (Skeen, Bhaskar et
al., 2006). Lentiviruses were made in 293FT cells using the virapower lentiviral system
(Invitrogen) according to the manufacturer’s protocol. Viruses were collected 40-50 h after
transfection, and target cells were incubated with virus for 24 h in the presence of polybrene (8
ng/ml). Cells were selected using 9 pg/ml blasticidin, 1.3 pg/ml puromycin or 0.2 mg/ml zeocin
for 4-6 days, and a mock infection plate was used as a reference. Cells were expanded for two
passages in drug-free media and frozen for subsequent use. Early passage cells were used for

every experiment.

siRNA Transfection

SMARTpool ON-TARGET plus SESN3 and control non-targeting siRNA were purchased from
Dharmacon. DU145 (8 x 10* cells/well) cells were plated in 6-well plates in DMEM
supplemented with 10% FBS. The next day, cells were transfected with 50 nM control-siRNA or
sestrin3-siRNA using DharmaFECT reagent (Dharmacon) according to the manufacturer's

instructions. Cells were split for ROS measurement or treatment with PEITC followed by
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assessment of cell death 72 h after transfection.. The knockdown efficiency was analyzed by

either immunoblotting or real-time PCR.

Immunoblot analysis

For western blot analysis, 2x10° cells were plated on 10-cm plates and allowed to grow for 24 h.
The cells were then treated as described in the figure legends or harvested in PBS, and cell
pellets were washed and frozen at -80°C. Cell extracts were then made using ice-cold lysis buffer
[20 mM Hepes, 1% Triton X-100, 150 mM NaCl, 1 mM EDTA, 10 mM sodium pyrophosphate,
100 mM NaF, 5 mM iodo-acetic acid, 20 nM okadaic acid, 0.2 mM phenylmethylsulfonyl
fluoride and a complete protease inhibitor cocktail tablet (Thermo Fisher)]. For the tissue
extracts, frozen tissues collected by liquid nitrogen snap freezing were thawed and homogenized
in the same buffer. The extracts were run on 6 to 12% SDS-PAGE gels, transferred to PVDF
membranes, and probed with the following antibodies: anti-phospho-Akt Ser473, anti-panAkt,
anti-cleaved caspase-3, anti-HK1, anti-HK2 anti-PTEN (Cell Signaling Technology), anti-HA
(Covance), anti-4HNE (JalCA), anti-catalase, anti-CuZnSOD and anti-MnSOD (StressGen),
anti-SESN3 (ProteinTech) and anti-R-actin (Sigma). Immunoblots were quantified using the NIH

Imagel software program by densitometric signal and normalized as described in figure legends.

Cell death assays

Cells were treated as described in the figure legends, and apoptosis and cell death was quantified
by DAPI staining as previously described (Kennedy et al., 1999) or by PI staining as previously
described (Nogueira et al., 2008). For DAPI staining, 13% formaldehyde was added directly to
medium. After 17h, media was removed and DAPI solution (ImM in PBS) added to plates. Cells
were then rinsed with PBS and visualized with immunofluorescence microscope. At least 5 fields
per plates were scored for percentage of apoptotic cells. For quantification of apoptosis by
cleaved caspase3/7 assay, cells (15x10°/well) were plated in a 48 - well plates. Upon treatment
to induce cell death, NucView-conjugated Caspase - 3 substrate (Nexcelom ViaStain™ Live
Caspase 3/7 Detection) was also added at a final concentration of 4uM. During apoptosis,
caspase 3/7 proteins cleave its substrate complex and thereby release the high-affinity DNA dye
(NucView), which translocates to the nucleus and binds to the DNA, producing a bright green
fluorescent signal. Thirty minutes before the end of the incubation, Hoechst 33342 is added to
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each well (4pg/ml) and fluorescence was measured with the Celigo Image Cytometer. The

percentage of Green (apoptotic) to Total (Blue-Hoechst) is calculated.

Measurement of ROS
Intracellular ROS generation was assessed using 2',7’-dichlorofluorescein diacetate or

dihydroethidium (Molecular Probes) as described in (Nogueira et al., 2008).

NADPH and GSH assays

The intracellular levels of NADPH and total NADP (NADPH+NADP") were measured with
previously described enzymatic cycling methods, as described in (Jeon, Chandel et al., 2012).
The intracellular levels of GSH and total glutathione (GSSG + GSH) were measured with the use
of enzymatic cycling methods, as described previously (Rahman, Kode et al., 2006).

Oxygen consumption assay

For the oxygen consumption measurement, two instruments were used, a Clark-type oxygen
electrode and an XF96e Extracellular Flux analyzer (Agilent Seahorse). For the Clark-type
oxygen electrode method, 2x10° cells were plated and cultured overnight. Cells were then
harvested, washed with PBS and resuspended in 500 pl of fresh RPMI. The rate of oxygen
consumption was measured at 37°C using a Strathkelvin Model 782 oxygen meter equipped with
a Clark-type oxygen electrode. The results are expressed as the nanomoles of oxygen consumed

per minute and per million cells. For the Agilent Seahorse method, see below.

Mitochondrial Membrane Potential

MMP was determined with JC-1 dye (Thermofisher) using FACScan flow cytometer. JC-1 dye
accumulates in the mitochondrial membrane in a potential-dependent manner. High potential of
the inner mitochondrial membrane facilitates formation of the dye aggregates with both
excitation and emission shifted towards red light when compared with that for JC-1 monomers
(green light). Cells were seeded into 12-well black plate at a density of 10x10%cells/well,
trypsinized and resuspended in JC-1 solution (10pg/ml) in RPMI and incubated in CO; incubator
at 37°C for 30 min. Before measurements, the cells were centrifuged and then washed twice with

the PBS and immediately analyzed by flow cytometry. Each experiment included a positive
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control; 10uM of the FCCP was added to the cells as an uncoupler. Results are shown as a ratio
of fluorescence measured with red to green filters (aggregates to monomer fluorescence). Each

sample was run three times in triplicate.

Measurement of the oxygen consumption rate (OCR) and the extracellular acidification
rate (ECAR)

OCR and ECAR measurements were performed using the XF96e Extracellular Flux analyzer
(Agilent Technologies, Santa Clara, CA). Cells were plated on XF96 cell culture plates (Agilent
Technologies) at 3x10* cells per well. The cells were incubated for 24 h in a humidified 37°C
incubator with 5% CO; in RMPI-1640 medium (10% FBS). One hour prior to performing an
assay, the growth medium in the wells of an XF cell plate was replaced by XF assay medium
(XF base medium lacking bicarbonate and HEPES containing 10 mM glucose, 1 mM sodium
pyruvate and 2 mM glutamine for OCR measurements and 2 mM glutamine only for ECAR
measurements), and the plate was transferred to a 37°C CO,-free incubator. For OCR
measurement, successive injection of compounds measured ATP-coupled respiration (1 pM
oligomycin), maximal respiration (0.5 uM FCCP) and non-mitochondrial respiration (0.5 uM
rotenone/antimycin A). Basal respiration, proton leakage and spare respiratory capacity were
then calculated using these parameters. For ECAR measurement, successive injection of
compounds measured glycolysis (10 mM glucose), glycolytic capacity (1 uM oligomycin) and
non-glycolytic acidification (50 mM 2-deoxyglucose). The glycolytic reserve was then
calculated using these parameters. In a typical experiment, 3 baseline measurements were taken
prior to the addition of any compound, and 3 response measurements were taken after the
addition of each compound. The OCR and ECAR are reported as being normalized against cell
counts (pmoles/min/10° cells for OCR and mpH/min/10° cells for ECAR). The baseline OCR or
ECAR refers to the starting rates prior to the addition of a compound. Each experiment was

performed at least 3 times in triplicate.

HK Activity
Whole-cell HK activity was measured as described previously (Majewski, Nogueira et al., 2004).
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Cell proliferation and BrdU incorporation

Cells (4x 10*) were plated on 6-cm dishes in triplicate and counted every day for 6 days. Media
was changed on the third day to ensure continuous natural growth. For BrdU incorporation, on
the third day of proliferation, a subset of cells was pulsed with 3 pg/mL BrdU for 2 h and fixed
with 70% ethanol. In addition, immunostaining was performed with primary anti-BrdU

monoclonal antibodies (Dako) followed by a FITC-conjugated secondary antibody.

Anchorage independent growth assay

In brief, cells (20 x 10%) were re-suspended in a single cell suspension in 10% FBS in RPMI
medium containing 0.35% agarose and plated onto a layer of 0.7% low-melt agarose-containing
medium in a 6-well dish. Cells were grown for 3 weeks in media, and doxycycline was replaced
every three days. Soft-agar colonies from the entire well were counted after 3 weeks. The

experiments were performed three times in triplicate.

Real-Time PCR and Primers

Total RNA was extracted using TRIzol reagent (Invitrogen), and first strand cDNA was
produced with SuperScript III reverse transcriptase (Invitrogen) following the standard protocol.
Quantitative PCR was performed with BIO-RAD iQ-SYBR green super-mix and the related
system. Samples were assayed in triplicate, and data were normalized to the actin mRNA levels.
The primer sequences for hSesn3 were 5’- ATG CTT TGG CAA GCT TTG TT -3’ and 5’- GCA
AGA TCA CAA ACG CAG AA -3, and the primer sequences for hActin were 5’-CCA TCA
TGA AGT GTG ACG TGG -3’ and 5’-GTC CGC CTA GAA GCA TTT GCG -3°.

Mice strains and husbandry

All mice in this study were from C57BL/6 background. The Pbsn-Cre4;Pten’’ mice were
described previously. Pbsn-Cre4;Pten’” mice were intercrossed to generate the following
genotypes for experiments: Pten’’, Pbsn-Cred, Pten’ and Pbsn-Cre4;Pten” :Hk2" were
described in (Patra et al., 2013). Hk2” and Pbsn-Cre4;Pter’’ mice were intercrossed to obtain
mice with the following genotypes: Pbsn-Cre4;Pten’’;Hk2" and Pten;Hk2" which were used
for experiments. All animal experiments were approved by the University of Illinois at Chicago

institutional animal care and use committee.
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Xenograft studies

Male athymic mice (6 to 8 weeks old) were purchased from Charles River Laboratories and
maintained in accordance with the NIH Guide for the Care and Use of Laboratory Animals. Cells
(PC3 or DU145, 2 x 10%0.1 ml PBS) were injected subcutaneously into both the left and right
flanks of each mouse. The mice were equally randomized into different treatment groups (see the
figure legend). When the tumors reached a size of 10 to 15 mm®, the animals were treated with
the indicated drugs (35 mgkg PEITC, 2 mg/kg rapamycin, and a combination of
rapamycin/PEITC (1:1)) from Monday through Friday by intraperitoneal injection. All the drugs
were dissolved in solvent containing ethanol, cremophor-EL (Sigma), and PBS (1:1:8 volume
ratio). Control mice were injected with an equal volume of solvent as a control. The body
weights and tumor sizes of the mice were measured and recorded twice per week for the duration
of the experiment. When the tumor sizes reached the end-point criterion (e.g., a diameter greater
than 2 cm), the mice were euthanized, and xenograft tumors were collected. Tumor tissues from
representative mice from each group were sectioned, embedded in paraffin, and stained.

For the doxycycline inducible experiments, PC3 Tet-ON HK2sh cells (2x10° in 0.1 ml of PBS)
expressing doxycycline-inducible shRNA constructs were subcutaneously injected into male
nude mice. Once tumors were palpable, the mice were randomly assigned into different groups
and fed regular chow (control) or doxycycline chow (200 mg/kg of diet (Bio_Serv)), and they

received an IP injection of the vehicle solvent etoposide (10 mg/kg) as described above.

Prostate tumor development and survival curves

Control and Pbsn-Cre4;Pten’ mice were treated with vehicle, rapamycin, PEITC or a
combination of rapamycin/PEITC at the same doses described above at 2 different ages, 2 and 4
months. A schematic and the frequency of treatment are described in the figure legends. At the
end of the study, prostate tissues will be collected for immunoblot analysis (snap-freezing in
liquid nitrogen) or histopathology (formalin fixation).

For the NAC study, a subset of four-month-old control and Pbsn—Cre4;Ptenf/ " mice received a
daily (5 days a week) intraperitoneal injection of N-acetyl-cysteine (200mg/kg, pH 7.4 in PBS)
or PBS for 12 consecutive weeks. At the end of the study, tissues will be collected for

immunoblot analysis (snap-freezing in liquid nitrogen) or histopathology (formalin fixation).For
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the survival curve experiments, the mice were monitored until their death or until humane end-

point criteria was attained (e.g., distended abdomens).

Histopathology and immunohistochemistry.

Xenograft tumors (nude mice) and prostate tissues were collected at the indicated time points,
rinsed in PBS, and quickly fixed in 10% formalin overnight before being subsequently preserved
with 70% ethanol. The fixed tissues were then processed and embedded in paraffin. The paraffin
embedded tissues were processed, and 5 uM slides were prepared for hematoxylin and eosin
(H&E) staining or immunostaining. For antigen retrieval, tissue sections were incubated at 95°C
in 10 mM citric acid (pH 6.0) for 30 min. Detection was achieved using ABC-DAB kits (Vector
Laboratories), an anti-BrdU mouse monoclonal antibody (Dako# M0744), and an anti-cleaved
caspase-3 (Aspl75) antibody (Cell Signaling). For quantification, cells were counted from 4

section fields at a 40x magnification using four mice per condition.

BrdU incorporation in mice

For the BrdU labeling experiments, mice were injected intraperitoneally with BrdU (Sigma) in
PBS (0.5 mg BrdU/10 g of body weight) 2 h prior to sacrifice and tissue collection. Tumors were
collected and processed as described above. After dewaxing and rehydration, paraffin sections
were digested by pepsin followed by EcoRI and Exonuclease I1I. The slides were then incubated

with anti-BrdU and processed for immunohistochemistry as described above.

Statistical analysis

Statistical analysis was performed using unpaired Student’s t-tests. Survival curves were
analyzed by log-rank tests, and the data are expressed as the mean £SEM as indicated in the
figure legends. Unless otherwise indicated, all the experiments were performed at least three

times in triplicate.
Acknowledgements

This work was supported by the ACS-IL grant 09-30 to V.N, the NIH grants RO1AG016927,
RO1 CA090764, and RO1 CA206167, and the VA merit award BX000733 to N.H.

20



607
608
609
610
611

Competing financial interests

There are no competing financial interests.

21



612
613
614

615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640

Table 1
Grade
Low High Microinvasive Invasive
No PIN Grade Grade Carcinoma Carcinoma
PIN PIN
Pbsn-Cred; Pten”
66% 33%
%
Pbsn-Cre4 ;Ptenf/ TR+P
33% 16% 33% 16%
kek
Pbsn-Cred. ;Ptenf/f
+NAC 25% 75%
sksksk

* The anterior lobes of prostates from untreated mice were analyzed by histopathology at 8
months (Percentage of mice with highest grade is indicated).

** The anterior lobes of prostates from mice treated at 4 months with rapamycin and PEITC
(R+P) were analyzed by histopathology at 8 months (Percentage of mice with highest grade is
indicated).

*#* The anterior lobes of prostates from mice treated at 4 months with NAC were analyzed by
histopathology at 8 months (Percentage of mice with highest grade is indicated).
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Figure legends

Figure 1: Akt activation in PTEN-deficient prostate cancer cells elevates oxygen
consumption and intracellular ROS levels. The human CaP cells DU145, PC3 and LNCaP
were seeded in 10% FBS and harvested after two days to measure various parameters.
(A)Immunoblot showing the expression levels of PTEN, P-Akt (ser 473), pan-Akt and B-actin as
a loading control. (B) Oxygen consumption: OCR was measured using the Seahorse XF96°
analyzer for all three CaP cell lines. After the OCR was established, oligomycin (1), FCCP (2)
and rotenone/antimycin A (3) were added sequentially. The traces shown are representative of
three independent experiments in which each data point represents technical replicates of four
wells each £ SEM. (D, E) Relative ROS levels: CaP cells were incubated with H2ZDCFDA (D) or
DHE (E), and the levels of fluorescence were analyzed by flow cytometry as an indicator of ROS
levels. Data represent the mean = SEM of three independent experiments performed in triplicate.
*p < 0.01, ***p < 0.005 versus DU145. No significant differences between PC3 and LNCaP
were observed. (C, F) Aktl and Akt2 were knocked down in PC3 cells, and the OCR (C) and
cytosolic ROS levels (F) were measured. The results are presented as the average of at least three
independent experiment performed in triplicate + SEM. ###p < 0.0001 versus PC3 LacZsh.
Insert in (C) shows the expression levels of Aktl, Akt2 and B actin as a loading control in PC3
cells in which Aktl and Akt2 were knocked down.

Figure 2: ROS inducers and the combination of a ROS inducer and rapamycin induce CaP
PTEN-deficient cell death in vitro and eradicate their tumors in vivo.

(A) CaP cell lines were incubated with 2-ME for 24 h, the cells were fixed and apoptosis was
quantified by DAPI staining. The data represent the mean + SEM of three independent
experiments performed in triplicate. *p < 0.005, **p < 0.002 versus DMSO (0 puM) for each cell
line. #p < 0.02, ##p < 0.01 versus DU145. (B) CaP cell lines were incubated with PEITC,
collected and fixed for estimation of cell death by PI staining or lysed to extract total protein.
They were then subjected to immunoblotting with cleaved caspase-3 and B-actin as a loading
control (insert). The data represent the mean + SEM of three independent experiments performed
in triplicate. *p < 0.005, ***p < 0.001 versus DMSO for each cell line. ###p < 0.0005 versus
DU145. (C) PC3 Aktl/2 knockdown cells were incubated with PEITC for 17 h, and then cell
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death was estimated by PI staining as the percentage of apoptotic cells among total cells. The
data represent the mean = SEM of three independent experiments performed in triplicate. **p <
0.001, ***p < 0.0001 versus DMSO for each cell line. ##p < 0.005, ###p < 0.0001 versus PC3
LacZsh. (D) CaP cells were incubated for 8 h with 20 nM rapamycin (RAPA) prior to the
addition of PEITC (3 uM). After 17 h of incubation with PEITC, the cells were fixed, and
apoptosis was quantified by DAPI staining. The data represent the mean =+ SEM of three
independent experiments performed in triplicate. ***p < 0.0001 versus PEITC for each cell line.
##p < 0.0005 versus DU145. (E- H) In vivo therapeutic effect of rapamycin + PEITC in mice
inoculated with PC3 prostate cancer cells. Thirty-two nude mice were subcutaneously injected
with PC3 cells in both flanks and randomly divided into four groups (8 mice per group, 16
tumors per group) for treatment with PEITC, rapamycin (RAPA), a combination of RAPA +
PEITC, or a solvent control (Vehicle). (E) Graph presenting the tumor growth rates in each
group. Treatment began on day 13 (~15 mm’, red arrow) and stopped on day 43 after tumor cell
inoculation. The data represent the average size £ SEM of 16 tumors up to day 43. The data
collection from day 57 average the size of the 8 remaining xenograft tumors only. *p < 0.003,
**p < 0.002 versus vehicle. #p < 0.03, ##p < 0.01 versus PEITC or RAPA. (F) Cross-sections of
tumors collected from the experiment described in (E). At day 50 after tumor cell inoculation,
the tumor cross-sections were subjected to hematoxylin and eosin (H & E, top) staining, BrdU
staining (middle), and anti-cleaved caspase-3 staining (bottom). Scale bars: 100 um. (G, H)
Histograms showing quantification of the positively stained cells in (F). The results are presented
as the mean + SEM of the positively stained cells of four sections from four treated mice. The
stained cells were counted in four random fields of each section. ***p < 0.0002 versus vehicle.

##p < 0.001 versus PEITC.

Figure 3: The effect of rapamycin, PEITC and the combination of rapamycin and PEITC
on cell proliferation, cell death, survival and the tumors of Pbsn-Cre4;Pter’” mice. (A)
Tissue lysates were prepared from prostates isolated from 4 control mice (Pten’! or Pbsn-Cre4)
and 4 Pbsn-Cre4;Pten’ mice. Immunoblot analysis shows the expression levels of PTEN, Akt-P
(ser 473), total-Akt, p21, 4HNE and B-actin as a loading control. (B) Schematic of mouse
treatment: control (Pten’” or Pbsn-Cre4) and Pbsn-Cre4;Pten’ mice were randomly divided into

four groups of 9 to 16 mice at 4 months of age, and they received a daily (5 days a week)
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intraperitoneal injection of drugs, PEITC (35 mg/kg BW), rapamycin (2 mg/kg BW), rapamycin
in combination with PEITC (1:1) or solvent control, for 6 consecutive weeks. Treatment was
then interrupted for 3 weeks and resumed at 6 months of age for another 6 weeks. The mice were
sacrificed at 8 months of age and examined for the presence of prostate hyperplasia. (C) Graphs
showing the relative prostate weight to total body weight (% body weight) of Pbsn-Cre4;Pten’”
mice treated with vehicle (n=15 mice), rapamycin (RAPA, n=11), PEITC (n=9) or
RAPA+PEITC (n=16). The box plots represent the 25" to 75" percentiles (boxes) with the
median, and the whiskers represent the maximum and minimum values. *p=0.05, **p=002, ***p
< 0.0001 versus vehicle. ###p < 0.0005 versus PEITC. (D) The cross-sections of prostate tissues
collected at 8 months from Pbsn-Cre4;Pten’ mice treated with different drugs were subjected to
H & E staining (top), BrdU staining (middle), and anti-cleaved caspase-3 staining (bottom).
Scale bars: 100um (E-F) Histograms showing quantification of the positively stained cell cross-
sections shown in Figure 3D for BrdU (E) and cleaved caspase-3 (F). The results are presented
as the mean =+ SEM of positively stained cells of four sections from four treated mice. The
stained cells were counted in four random fields of each section. *p<0.002, **p < 0.005, ***p <
0.0002 versus vehicle. #p=0.04, ##p=0.01 versus PEITC. (G) A cohort of 20 Pbsn-Cre4;Pten’!
mice treated with vehicle (n=10) or rapamycin in combination with PEITC (R+P; n=10) were
kept alive, and Kaplan-Meier curves of the percentage of mice survival is shown. The vehicle-
treated mice have a medium survival age of 322 days versus 443 days for the ‘R+P’ treated mice.
The p-values and median survival were calculated by log-rank tests. (H) Graph showing the
relative prostate weights of Pbsn-Cre4;Pten” mice (n=15) treated with N-acetyl-cysteine (NAC,
n=9) or PBS (n=6) at 8 months of age and 11 Pren”’ mice (NAC, n=7 and PBS, n=4). The data
represent the mean = SEM. **p=0.0006, ***p=0.0001 versus Pren’’ . #p=0.01, ##p=0.003 versus
PBS for each mice genotype.

Figure 4: Early treatment of Pbsn-Cre4;Pter’ mice with rapamycin + PEITC inhibits
tumor growth and increases survival, even after treatment was halted for six months.

(A) Schematic of mice treatment: control and Pbsn-Cre4;Pten” mice were randomly divided
into four groups of 4 to 10 mice at 2 months of age, and they received IP drug injections as
indicated in the schematic. A pool of mice was sacrificed at 6 or 12 months of age and examined

for the presence of prostate hyperplasia. (B) Graphs showing the relative prostate weights of
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Pbsn-Cre4;Pten” mice sacrificed at 6 months and treated with vehicle (n=9), RAPA (n=4),
PEITC (n=4) or RAPA+PEITC (n=8). The box plots represent the 25Mto 75™ percentiles (boxes)
with the median, and the whiskers represent the maximum and minimum values. *p=0.03,
**%p=0.05, ***p < 0.0001 versus vehicle. #p= 0.05 versus PEITC. (C) Representative cross-
sections of prostate tissues were treated as described in Figure 4A and collected from Pbsn-
Cre4;Pten” mice treated with different drugs at 6 months. The sections were subjected to H & E
staining (top), BrdU staining (middle), and anti-cleaved caspase-3 staining (bottom). Scale bars:
100pm. (D, E) Histograms showing quantification of the positively stained cell cross-sections for
BrdU (D) and cleaved caspase-3 (E). The results are presented as the mean = SEM of the
positively stained cells of four sections from four treated mice. The stained cells were counted in
four random fields of each section. *p=0.03, **p<0.001, ***p < 0.0001 versus vehicle. #p <
0.05, ###p<0.0001 versus PEITC. (F) Graphs representing the relative prostate weights of Pbsn-
Cre4;Pten” mice sacrificed at 12 months and treated with vehicle (n=5), RAPA (n=7), PEITC
(n=6) or RAPA+PEITC (n=10). The box plots represent the 25" to 75™ percentiles (boxes) with
the median, and the whiskers represent the maximum and minimum values. *p=0.03, **p=0.05,
**%p < 0.0001 versus vehicle. #p < 0.05 versus PEITC. (G) Representative cross-sections of
prostate tissues were treated with vehicle or RAPA+PEITC and collected at 12 months from
Pbsn-Cre4;Pten’ mice left untreated for 6 months after the initial treatment. The sections were
subjected to H & E staining (top), BrdU staining (middle), and anti-cleaved caspase-3 staining
(bottom). Scale bars: 50um for 5X objective (H&E), 100um for 10X objective. (H, I)
Histograms showing quantification of the positively stained cell cross-sections for BrdU (H) and
cleaved caspase-3 (I). The results are presented as the mean + SEM of the positively stained cells
of four sections from four treated mice. The stained cells were counted in four random fields
from each section. **p=0.003, ***p<0.0001 versus vehicle. (H) A cohort of 30 Pbsn-Cre4;Pten’”
mice treated with vehicle (n=15) or rapamycin in combination with PEITC (R+P; n=15) were
kept alive, and Kaplan-Meier curves of the percentage of survival of these mice is shown. The
vehicle-treated mice have a median survival age of 321 days versus 477 days for the ‘R+P’
treated mice. The p-values and median survival for the indicated treatments were calculated by

log-rank tests.
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Figure S: Depletion of HK2 in PTEN-deficient CaP cells inhibits proliferation, oncogenesis,
and tumorigenesis while overcoming chemoresistance.

(A) DU145, PC3 and LNCaP cells were treated with MK-2206 (0.5uM - 24 h) to inhibit Akt.
The immunoblot is showing the protein levels of P-Akt, total Akt, HK2 and 8 actin as a loading
control. (B-G) DU145, PC3 and LNCaP cells expressing an inducible control (Scr) or HK2
shRNA were exposed to 900 ng/ml doxycycline for 5 days for HK2 deletion prior to analysis.
(B) Immunoblot showing the protein levels of P-Akt, total Akt, HK2, HK1 and B actin as a
loading control. (C) Graphs depicting the total hexokinase activity in these cells. The data
represent the mean + SEM of three independent experiments performed in triplicate. **p <
0.002, ***p<0.001 versus shScr for each cell line. ##p < 0.001, ###p < 0.0001 versus DU145.
(D) Cell proliferation after HK2 deletion in the CaP cell lines. The data represent the mean =+
SEM of three independent experiments performed in triplicate. *p=0.02, ***p<0.001 versus
shScr for each cell line on day 6. ###p < 0.0005 versus DU145 shHK2 on day 6 (E) BrdU
incorporation after HK2 deletion. The data represent the mean = SEM of three independent
experiments performed in triplicate. ***p<0.0001 versus shScr for each cell line. #p < 0.05
versus DU145. (F) Anchorage independent growth (soft-agar): PC3 Tet-ON control (SCR) and
HK2-sh cells were plated in 0.35% agarose-containing medium before and after HK2
knockdown with doxycycline as described in the experimental procedures, and they were
allowed to grow for approximately 3 weeks with bi-weekly media changes. The bar graphs
represent the average quantification of the soft agarose colonies in PC3 cells =+ SEM of three
independent experiments performed in triplicate. ***p < 0.0005 versus PC3 shScr +
Doxycycline. {p=0.02 versus PC3 shScr — Doxycycline. ###p < 0.0001 versus PC3 shHK2 —
Doxycycline. (G) After HK2 knockdown with doxycycline, cells were treated with etoposide for
24 h before apoptosis was assessed by DAPI staining, which is presented as the percentage of
apoptotic cells among total cells. The data represent the mean = SEM of three independent
experiments performed in triplicate. **p < 0.001, ***p < 0.0002 versus DMSO (0 uM) for each
cell line. #p < 0.001, ###p < 0.0003 versus shScr. (H) In vivo therapeutic effect of etoposide in
mice inoculated with PC3 prostate cancer cells. Twenty-four nude mice were injected
subcutaneously with PC3 Tet-ON HK2sh cells in both flanks and randomly divided into four
groups (6 mice per group, 12 tumors per group) for treatment with etoposide or solvent control

(Vehicle). When the tumors were palpable, 2 groups were provided a doxycycline diet, while the
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2 other groups remained on the control diet. Etoposide (or vehicle) treatment was started 3 days
after the diet was changed (day 13), and treatment was stopped on day 48 after tumor cell
inoculation. The data represent the average size + SEM of 12 xenograft tumors per group.
Statistical analysis from day 52 (end-point): ***p < 0.0001 versus the control diet vehicle. ##p <
0.005 versus the doxycycline diet vehicle.

Figure 6: Deletion of HK2 in the prostates of Pbsn-Cre4;Pter’’ mice extends survival and
inhibits tumor growth by inhibiting proliferation and increasing cell death.

(A) Tissue lysates were prepared from prostates isolated from 3 control mice (Pren”;HK2™), 3
Pbsn-Cre4;:Pten’’ mice and 3 Pbsn-Cred;Pten’” ;HK2f/f/ mice. The immunoblot shows the
expression levels of PTEN, Akt-P (ser 473), total-Akt, HK2 and B-actin as a loading control. (B)
Graphs showing the relative prostate weights of control (n=23), Pbsn-Cre4;Pter’ (PTEN KO,
n=21) and Pbsn-Cre4;Pten’;HK2" (PTEN-HK2 DKO, n=29) mice. The box plots represent the
25™ to 75" percentiles (boxes) with the median, and the whiskers represent the maximum and
minimum values. ***p < 0.0001 versus control. ### p < 0.0001 versus PTEN KO. The pictures
are representative of macroscopic views of the prostates (delineated by a white dash line) of
control (left panel), PTEN KO (middle panel) and (PTEN-HK2 DKO) (right panel) mice. (C) A
cohort of 43 PTEN KO and 40 PTEN-HK2 DKO mice were kept alive, and Kaplan-Meier curves
of the percentage of survival of these mice is shown. The PTEN KO mice have a media survival
age of 305 days versus 453 days for the PTEN HK2 DKO mice. The p-values and median
survival for the indicated treatments were calculated by log-rank tests. (D) The cross-sections of
prostate tissues collected at 8 months from control, PTEN KO and PTEN-HK2 DKO mice were
subjected to hematoxylin and eosin (H & E) staining (top), BrdU staining (middle), and anti-
cleaved caspase-3 staining (bottom). (E) Histograms showing quantification of the positively
stained cells in (D). The results are presented as the mean = SEM of the positively stained cells
of four sections from four treated mice. The stained cells were counted in four random fields of
each section. **p<0.0005, ***p < 0.0001 versus control. #p < 0.0005, ###p<0.0001 versus
PTEN KO.

Figure 1-Figure supplement 1:
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Mitochondrial membrane potential measured as JC-1 aggregate to monomer ratio. The data
represent the mean + SEM of three independent quantification experiments performed in
triplicate. *p < 0.05 versus DU145.

Figure 1-Figure supplement 2:

Immunoblot showing the expression levels of the detoxifying enzymes catalase, MnSOD and
Cu/ZnSOD (B actin as a loading control) in all three CaP cell lines

Figure 1-Figure supplement 3:

Level of SESN3 mRNA relative to that of actin in CaP cells, as assessed by quantitative RT-
PCR. The data represent the mean = SEM of three independent quantification experiments
performed in triplicate. ***p < 0.0001 versus DU145. (1s4-5) DU145 cells were transiently
transfected with hSESN3 or control RNAi (Dharmacon), and PC3 cells were transiently
transfected with lentivirus expressing hSESN3 or TOPO control 72 h prior to the experiments.
Figure 1-Figure supplement 4:

Immunoblot showing the expression levels of sestrin 3 (SESN3) and B actin as a loading control.
Figure 1-Figure supplement 5:

Level of ROS, as assessed by flow cytometry, after incubation with H2DCFDA. The data
represent the mean = SEM of three independent experiments performed in triplicate. *p=0.02,

*#p=0.01 versus the control for each cell line.

Figure 2-Figure supplement 1:

Glutathion levels (Left) and GSH/GSSG ratio (Right) in CaP cells after 8h incubation with
DMSO or PEITC 6uM. The data represent the mean = SEM of two independent experiments
performed in duplicate.

Figure 2-Figure supplement 2:

(Left) Apoptosis was measured on live cells by caspase 3/7 activity assay after drug treatment: 2-
ME 1uM (14h) or 20nM Rapamycin (5h) followed by 6uM PEITC (8h). The data represent the
mean = SEM of two independent experiments performed in quadruplicate. (Right) Cell death
was assessed on fixed cells by DAPI staining after drug treatment: 2-ME 1uM (20h) or 20nM
Rapamycin (5h) followed by 6uM PEITC (17h). The data represent the mean = SEM of three
independent experiments performed in triplicate

Figure 2-Figure supplement 3:
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CaP cell lines were incubated with BSO (2mM) for 36 and 42 h, the cells were fixed and cell
death was quantified by PI staining. The data represent the mean + SEM of three independent
experiments performed in triplicate.

Figure 2-Figure supplement 4:

NADP'/NADPH ratio in CaP cells. The data represent the mean = SEM of three measurements
performed in duplicate.

Figure 2-Figure supplement 5:

After modulation of SESN3 expression, PC3 and DU145 cells where treated with PEITC (0, 3
and 6 uM) for 17 h, the cells were fixed and cell death was assessed by DAPI staining. The data
represent the mean = SEM of three independent experiments performed in triplicate. *p < 0.05,
**p < 0.01 versus the control for each cell line.

Figure 2-Figure supplement 6:

DU145, PC3 AND LNCaP cells were incubated with N-acetylcysteine (100 pM NAC) for 2 h
prior to 17 h of incubation with PEITC (6 uM) in the presence of NAC or not. The graphs
represent the cell death measured by PI staining (Left) or ROS levels after incubation with
H2DCFDA (Right). The data represent the mean £ SEM of three independent experiments
performed in triplicate.

Figure 2-Figure supplement 7:

Immunoblot showing the expression of PTEN (and HA-Tag), and B actin as a loading control
after PTEN was downregulated in DU145 cells (1: control shLacZ, 2: shPTEN) or overexpressed
in PC3 and LNCaP cells (3: control pBP, 4: pBP-PTEN)).

Figure 2-Figure supplement 8: PTEN expression determines the levels of ROS and oxygen
consumption

PTEN was downregulated in DU145 cells (1: control shLacZ, 2: shPTEN) or overexpressed in
PC3 and LNCaP cells (3: control pBP, 4: pBP-PTEN). (A, B) Relative ROS levels: cells were
incubated with H2DCFDA (A) or DHE (B), and the levels of fluorescence were analyzed by
flow cytometry as an indicator of ROS levels. (C) Basal oxygen consumption

Figure 2-Figure supplement 9:

Cells were incubated with PEITC or Rapamycin/PEITC for 17h and scored for apoptosis 17 h
later by DAPI staining. The data represent the mean + SEM of three independent experiments
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performed in triplicate. *p< 0.05, **p< 0.001 versus the control for each cell line. ##p<0.05
versus PEITC

Figure 2-Figure supplement 10:

mAkt was stably overexpressed in DU145. Cells were then incubated for 17h with PEITC or
Rapamycin/PEITC before measurement of relative cytosolic ROS level (Left) or cell death
(Right).

Figure 2-Figure supplement 11: ROS levels, and ROS-induced cell death are Akt-
dependent.

Aktl and Akt2 were knocked down in PC3 and LNCaP cells. Once cell lines were established,
mAkt was re-expressed in these cells. Cells were incubated with PEITC for 17 h, and then
cytosolic ROS levels (A) and cell death estimated by PI staining were measured (B). Another set
of cells was incubated with PEITC for 12h to estimate apoptosis by caspase 3/7 activity assay
(C) as the percentage of positive cells over total cells. The data represent the mean = SEM of
three independent experiments performed in triplicate.

Figure 2-Figure supplement 12: Rapamycin Elevates Akt Activity

(A-C) DU145 (A), PC3 (B) and LNCaP cells (C) were treated with rapamycin (100nM). Total
cell extracts were prepared at different time points as indicated and subjected to immunoblotting
with antibodies specific for Akt and p-Akt. (D) quantification of immunoblots showing relative
Akt phosphorylation, quantified using the NIH ImageJ software program, and normalized to the
densitometric signal for total Akt as a control for protein expression. Values are expressed
relative to time 0 and data represent the mean = SEM of three independent experiments.

Figure 2-Figure supplement 13: Rapamycin increases the ROS levels induced by PEITC.
When required, CaP cells were incubated with 20 nM rapamycin (RAPA) for 8 h before the
addition of PEITC (3 uM). After 17 h of incubation with PEITC (= RAPA), the ROS levels in
live cells after incubation with H2ZDCFDA were measured by flow cytometry. The data represent
the mean = SEM of three independent experiments performed in triplicate. *p<0.05,
*#%p<0.0001 versus DMSO for each cell line. ###p< 0.0005 versus PEITC for each cell line.
Figure 2-Figure supplement 14: Torin, not rapamycin, decreases the OCR and ROS levels
in PTEN-deficient CaP cells

PC3 and LNCaP cells were incubated for 8 h with rapamycin (RAPA, 20 nM) or torin (250 nM)
before measurement of the OCR (Left) or cytoplasmic ROS levels (Right). The data represent
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the mean = SEM of three independent experiments performed in triplicate. *p<0.05,
*#%p<0.0001 versus DMSO for each cell line.

Figure 2-Figure supplement 15: In vivo therapeutic effects of rapamycin + PEITC in mice
inoculated with DU14S prostate cancer cells.

Twenty-four nude mice were injected subcutaneously with DU145 cells in both flanks and
randomly divided into four groups (4 mice per group, 8 tumors per group) for treatment with
PEITC, rapamycin (RAPA), a combination of RAPA + PEITC, or a solvent control (Vehicle).
The graph represents the tumor growth rate in each group. Treatment began on day 18 (~15
mm?3) and stopped on day 55 after tumor cell inoculation. The data represent the average size +
SEM of 8 tumors up to day 57. Data collection on day 64 shows only the average sizes of the 4

remaining xenograft tumors. **p < 0.02 versus vehicle, #p= 0.02 versus RAPA.

Figure 3-Figure supplement 1

Graphs showing the body weights of control (left) and Pbsn-Cre4;Pten’” (right) mice at the end-
point (8 months). The number of treated mice in the control group were vehicle (n=6), rapamycin
(RAPA, n=12), PEITC (n=8) and RAPA+PEITC (n=8), and the number of treated mice in the
Pbsn-Cre4;Pten” group were vehicle (n=15), RAPA (n=11), PEITC (n=9) and RAPA+PEITC
(n=16). No significant differences were detected.

Figure 3-Figure supplement 2

Graphs showing the relative prostate weights of the control mice sacrificed at 8 months. The box
plots represent the 25th to 75th percentiles (boxes) with the median, and the whiskers represent
the maximum and minimum values. No significant differences were detected.

Figure 3-Figure supplement 3: Representative histopathological images.

Representative images of different prostate tumor grades in the anterior lobe of the prostate of
untreated mice (-), rapamycin + PEITC, and NAC treated mice. Each individual image was
derived from different individual mice. Scale bars = 200um for 20X magnification, 500pm for

10X magnification.
Figure 4-Figure supplement 1

(A) Graphs showing the body weights of control (left) and Pbsn-Cre4;Pten’” (right) mice at 6

months. The number of treated mice in the control group were vehicle (n=5), RAPA (n=5),
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PEITC (n=5) and RAPA+PEITC (n=7), and the number of treated mice in the Pbsn-Cre4,Pten’”
group were vehicle (n=9), RAPA (n=4), PEITC (n=4) and RAPA+PEITC (n=8). No significant
differences were detected. (B) Graphs showing the relative prostate weights of control mice
sacrificed at 6 months (left) and 12 months (right). The box plots represent the 25th to 75th
percentiles (boxes) with the median, and the whiskers represent the maximum and minimum
values. The number of control-treated mice at 12 months were vehicle (n=4), RAPA (n=4),

PEITC (n=4) and RAPA+PEITC (n=8). **p=0.005 versus vehicle.

Figure 5-Figure supplement 1

Total protein was extracted from CaP cells and subjected to immunoblotting with HK1, HK2 and
B3 actin as a loading control

Figure 5-Figure supplement 2

Expression levels of HK2 and B actin as a loading control in PC3 cells in which Aktl and Akt2
were stably knocked down.

Figure 5-Figure supplement 3

Immunoblot showing the expression of HK2 (and B actin as loading control) in CaP cells where
PTEN is either downregulated (DU145) or overexpressed (PC3 and LNCaP)

Figure 5-Figure supplement 4

HK1 was stably knocked down in PC3 cells after HK2 knockdown. The immunoblot shows the
expression levels of HK1, HK2 and actin as a loading control in PC3 control, HK1 knockdown,
HK2 knockdown, and double HK1 and HK2 knockdown cells. The graph shows the total HK
activity in the same cells. The data represent the mean + SEM of three independent experiments
performed in duplicate. *p=0.005, ***p<0.0001 versus PC3 LacZsh ntsh. ###p< 0.0001 versus
PC3 LacZsh HK1sh. {p=0.01versus PC3 HK2sh ntsh.

Figure 5-Figure supplement 5

Cell proliferation after HK1 and/or HK2 deletion in PC3 cells. The data represent the mean +
SEM of three independent experiments performed in triplicate. ***p<0.0001 versus LacZsh cells
on day 6.

Figure 5-Figure supplement 6: Etoposide-induced cell death is Akt-dependent.

(A) After mAkt overexpression, DU145 cells were treated with etoposide for 24 h before cell
death was assessed by PI staining on live cells with Celigo Image cytometer (B) Aktl and Akt2
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were knocked down in PC3 and LNCaP cells. Cells were then incubated for 24h with Etoposide
before measurement of cell death by PI staining on live cells with Celigo Image cytometer. Data
are expressed as the percentage of dead cells among total cells and represent the mean = SEM of
two independent experiments performed in triplicate.

Figure 5-Figure supplement 7: Data analysis for in vivo therapeutic study described in
Figure SH.

(A) Graphs showing the relative xenografts tumor weights of mice treated with Control
diet/Vehicle, Control diet/Etoposide, DOX diet/Vehicle and Dox diet/Etoposide. The data
represent the average size + SEM of 12 xenograft tumors per group. *p < 0.05, **p < 0.001
versus control diet vehicle. #p < 0.05 versus DOX diet vehicle. (B) The cross-sections of
xenograft tumors collected at end-point (day 52) were subjected to H & E staining, BrdU
staining, anti-cleaved caspase-3 staining and HK2 staining (from top to bottom). Scale bars:
100um. (C, D) Histograms showing quantification of the positively stained cells in (B). The
results are presented as the mean £ SEM of the positively stained cells of two sections from six
xenograft tumors. The stained cells were counted in three random fields of each section.
*p<0.05, ***p < 0.0005 versus the control diet vehicle. ###p < 0.0005 versus DOX diet vehicle.
Figure 5-Figure supplement 8: The effect of HK2 knockdown on ECAR.

PC3 cells expressing an inducible control (Scr) or HK2 shRNA were exposed to 900 ng/ml DOX
for 5 days for HK2 deletion before analysis. ECAR was measured after HK2 deletion using the
Seahorse XF96e analyzer.

Figure 5-Figure supplement 9 The effect of HK2 knockdown on oxygen consumption.

PC3 cells expressing an inducible control (Scr) or HK2 shRNA were exposed to 900 ng/ml DOX
for 5 days for HK2 deletion before analysis. OCR was measured after HK2 deletion using the
Seahorse XF96e analyzer.

Figure 5-Figure supplement 10: The effect of HK2 knockdown on ROS levels.

PC3 cells expressing an inducible control (Scr) or HK2 shRNA were exposed to 900 ng/ml DOX
for 5 days for HK2 deletion before analysis. Cells were incubated with H2DCFDA, and the level
of fluorescence was analyzed by flow cytometry as an indicator of ROS levels after HK2
deletion. The data represent the mean + SEM of three independent experiments performed in

triplicate. ***p<0.005 versus PC3 shScr.

34



1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020

1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048

Figure 5-Figure supplement 11: The effect of HK2 knockdown on PEITC-induced cell
death.

PC3 cells expressing an inducible control (Scr) or HK2 shRNA were exposed to 900 ng/ml DOX
for 5 days for HK2 deletion before analysis. After HK2 knockdown with DOX, cells were
treated with PEITC (0, 3 and 6 uM) for 17 h before apoptosis was assessed by DAPI staining,
which is presented as the percentage of apoptotic among total cells. The data represent the mean
+ SEM of three independent experiments performed in triplicate. *p < 0.02, ***p < 0.0001
versus PC3 shScr.
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