
*For correspondence:
nrust@sas.upenn.edu

Competing interest: See
page 25

Funding: See page 24

Received: 25 September 2017
Accepted: 12 February 2018
Published: 08 March 2018

Reviewing editor: Doris Y Tsao,
California Institute of
Technology, United States

Copyright Meyer and Rust.
This article is distributed under
the terms of the Creative
Commons Attribution License,
which permits unrestricted use
and redistribution provided that
the original author and source are
credited.

Single-exposure visual memory judgments
are reflected in inferotemporal cortex
Travis Meyer, Nicole Rust*

Department of Psychology, University of Pennsylvania, Philadelphia, United States

Abstract Our visual memory percepts of whether we have encountered specific objects or
scenes before are hypothesized to manifest as decrements in neural responses in inferotemporal
cortex (IT) with stimulus repetition. To evaluate this proposal, we recorded IT neural responses as
two monkeys performed a single-exposure visual memory task designed to measure the rates of
forgetting with time. We found that a weighted linear read-out of IT was a better predictor of the
monkeys' forgetting rates and reaction time patterns than a strict instantiation of the repetition
suppression hypothesis, expressed as a total spike count scheme. Behavioral predictions could be
attributed to visual memory signals that were reflected as repetition suppression and were
intermingled with visual selectivity, but only when combined across the most sensitive neurons.
DOI: https://doi.org/10.7554/eLife.32259.001

Introduction
The everyday act of viewing the things around us leaves us with memories of the things that we have
encountered. Under the right conditions, this type of `visual recognition memory' can be quite
remarkable. For example, after viewing thousands of images, each only once and only for a few sec-
onds, we can determine with high accuracy the specific images that we have viewed ( Brady et al.,
2008 ; Standing, 1973 ). Additionally, we can remember not just the objects that we've seen, but
also the specific configurations and contexts we saw them in ( Brady et al., 2008 ), suggesting that
our brains store these memories with considerable visual detail. Where and how are visual memories
stored and where and how is the percept of visual memory signaled?

One candidate mechanism for signaling visual memory percepts is the adaptation-like response
reduction that occurs in high-level visual brain areas with stimulus repetition, known as `repetition
suppression' (Fahy et al., 1993 ; Li et al., 1993 ; Miller and Desimone, 1994 ; Riches et al., 1991 ;
Xiang and Brown, 1998 ). Consistent with that proposal, individual viewings of a novel image pro-
duce response reductions in inferotemporal cortex (IT) that can last tens of minutes to hours
(Fahy et al., 1993 ; Xiang and Brown, 1998 ). Signaling visual memories in this way is attractive from
a computational perspective, as it could explain how IT supports visual identity and visual memory
representations within the same network. That is, insofar as visual representations of different
images are reflected as distinct patterns of spikes across the IT population ( Figure 1 ; DiCarlo et al.,
2012 ; Hung et al., 2005 ), this translates into a population representation in which visual information
is reflected by the population vector angle ( Figure 1 ). If it were the case that visual recognition
memories were reflected by changes in the total numbers of spikes or equivalently population
response vector length, this could minimize interference when superimposing visual memories and
visual identity representations within the same network ( Figure 1 ).

While attractive, there are also reasons to question whether visual memory percepts manifest
purely as repetition suppression in IT cortex. For example, following many repeated image expo-
sures (e.g. hundreds to thousands), IT neurons exhibit tuning sharpening ( Anderson et al., 2008 ;
Freedman et al., 2006 ), and a subset of neurons reflect tuning peak enhancement ( Lim et al., 2015 ;
Woloszyn and Sheinberg, 2012 ), and these changes could happen during single-exposure memory
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as well. Similarly, in the case of highly familiar images, neurons in a brain area that lie beyond IT,
perirhinal cortex, are reported to signal familiarity with increases (as opposed to decreases) in firing
rate (Tamura et al., 2017 ) and highly familiar faces produce larger perirhinal fMRI BOLD responses
as compared to faces that are unfamiliar (Landi and Freiwald, 2017 ). In humans, tests of the hypoth-
esis that limited-exposure visual memory percepts are supported by repetition suppression signals
have produced mixed results, with some studies providing support ( Gonsalves et al., 2005 ; Turk-
Browne et al., 2006 ) and others refuting the hypothesis ( Ward et al., 2013 ; Xue et al., 2011 ). Addi-
tionally, studies have implicated factors beyond overall response strength in limited-exposure famil-
iarity, including the repeatability of human fMRI response patterns across exposures
(LaRocque et al., 2013 ; Xue et al., 2010 ) and synchronization between gamma band oscillations
and spikes in monkey hippocampus (Jutras et al., 2013 ). Notably, while a number of studies have
investigated limited-exposure repetition suppression effects in IT at the resolution of individual-units
(De Baene and Vogels, 2010 ; Li et al., 1993 ; McMahon and Olson, 2007 ; Ringo, 1996 ;
Sawamura et al., 2006 ; Verhoef et al., 2008 ; Xiang and Brown, 1998 ), no study to date has
attempted to determine whether these putative visual memory signals can in fact account for visual
memory behaviors.

To evaluate the hypothesis that repetition suppression in IT accounts for familiarity judgments
during a visual memory task, we trained two monkeys to view images and report whether they were
novel (had never been seen before) or were familiar (had been seen exactly once), across a range of
delays between novel and familiar presentations. To explore the IT representation of visual memory
on both correct and error trials, we parameterized the task such that visual memories were remem-
bered over a timescale of minutes within experimental sessions that lasted approximately one hour.
We found that while both monkeys displayed characteristic forgetting functions and reaction time
patterns, these behavioral patterns were not well-predicted by a spike count decoder that embodied
the strictest interpretation of the repetition suppression hypothesis. These behavioral patterns were

eLife digest As we go about our daily lives, we store visual memories of the objects and scenes
that we encounter. This type of memory, known as visual recognition memory, can be remarkably
powerful. Imagine viewing thousands of images for only a few seconds each, for example. Several
days later, you will still be able to distinguish most of those images from previously unseen ones.
How does the brain do this?

Visual information travels from the eyes to an area of the brain called visual cortex. Neurons in a
region of visual cortex called inferotemporal cortex fire in a particular pattern to reflect what is
being seen. These neurons also reflect memories of whether those things have been seen before, by
firing more when things are new and less when they are viewed again. This decrease in firing, known
as repetition suppression, may be the signal in the brain responsible for the sense of remembering.

Meyer and Rust have now tested this idea by training macaque monkeys to report whether
images on a screen were new or familiar. The monkeys were very good at remembering the images
they had seen more recently, although they tended to forget some of the images with time. Then,
the rate at which the monkeys forgot the images was compared with the rate at which repetition
suppression disappeared in inferotemporal cortex. The results showed that the total number of
firing events in this region was not a great predictor of how long the monkeys remembered images.
However, a decrease in the number of firing events for a particular subset of the neurons did predict
the remembering and forgetting. Repetition suppression in certain inferotemporal cortex neurons
can thus account for visual recognition memory.

Brain disorders and aging can both give rise to memory deficits. Identifying the mechanisms
underlying memory may lead to new treatments for memory-related disorders. Visual recognition
memory may be a good place to start because of our existing knowledge of how the brain
processes visual information. Understanding visual recognition memory could help us understand
the mechanisms of memory more broadly.
DOI: https://doi.org/10.7554/eLife.32259.002
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better accounted for by a linear read-out that
weighted each neuron proportional to the
amount of visual memory information reflected in
its responses.

Results

The single-exposure visual memory
task
While compelling, the robustness with which
visual memories are stored also presents a chal-
lenge to investigating their underlying neural cor-
relates. Ideally, investigations of the neural
signals supporting a behavior are made in a con-
text where a task is parametrically varied from
easy-to-challenging, and one can evaluate the
degree to which behavioral sensitivities and
behavioral confusions are reflected in neural
responses (Parker and Newsome, 1998 ). Follow-
ing on visual recognition memory studies that
demonstrate a relationship between the time that
images are viewed and how well they are remem-
bered (Brady et al., 2009 ; Potter and Levy,
1969 ), we increased task difficulty by reducing
image viewing time from the 2±3 s used in the
classic human visual recognition memory studies
to 400 ms. To titrate task difficulty within this
regime, we explored a range of delays between
novel and repeated presentations.

In these experiments, two monkeys performed
a task in which they viewed images and indicated
whether they were novel or familiar with an eye
movement response. Monkeys initiated each trial

by fixating a point at the center of the screen, and this was followed by a brief delay and then the
presentation of an image ( Figure 2a ). After 400 ms of fixating the image, a go cue appeared, indi-
cating that the monkeys were free to make their selection via a saccade to one of two response tar-
gets (Figure 2a ). Correct responses were rewarded with juice. While the first image presented in
each session was always novel, the probability of subsequent images being novel versus familiar
quickly converged to 50%. Novel images were defined as those that the monkeys had never viewed
before (in the entire history of training and testing) whereas familiar images were those that had
been presented only once, and earlier in the same session. A representative set of images can be
found in Figure 2Ðfigure supplement 1 . Delays between novel and familiar presentations
(Figure 2b ) were pseudorandomly selected from a uniform distribution, in powers of two (n-
back = 1, 2, 4, 8, 16, 32 and 64 trials corresponding to mean delays of 4.5 s, 9 s, 18 s, 36 s, 1.2 min,
2.4 min, and 4.8 min, respectively). To prevent confusion, we emphasize that our usage of the term
`n-back' refers to the numbers of trials between novel and familiar presentations, in contrast to the
usage of this term in other studies that required a same/different comparison between the current
stimulus and a stimulus presented a fixed number of trials back (e.g. 2-back) in a block design (e.g.
Cornette et al., 2001 ).

The monkeys' performance on this task was systematic, as illustrated by smoothly declining `for-
getting functions', plotted as the proportion of trials that images were reported familiar as a function
of n-back (i.e. the number of trials between novel and familiar presentations; Figure 3a,c ). When
familiar images were immediately repeated (n-back = 1), both monkeys most often called them
familiar (proportion chose familiar = 0.98 and 0.94; Figure 3a,c ). Similarly, when images were novel,
monkeys were unlikely to call them familiar (proportion chose familiar = 0.13 and 0.07; Figure 3a,c ).
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(image identity)

Visual
memory
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N
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Figure 1. Multiplexing visual and visual memory
representations. Shown are the hypothetical population
responses to two images (A and B), each presented as
both novel and familiar, plotted as the spike count
response of neuron 1 versus neuron 2. In this scenario,
visual information (e.g. image or object identity) is
reflected by the population response pattern, or
equivalently, the angle that each population response
vector points. In contrast, visual memory information is
reflected by changes in population vector length (e.g. a
multiplicative rescaling with stimulus repetition).
Because visual memory does not impact vector angle
in this hypothetical scenario, superimposing visual
memories in this way would mitigate the impact of
single-exposure plasticity on the underlying perceptual
representation.

DOI: https://doi.org/10.7554/eLife.32259.003
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Between these two extremes, the proportion of familiar reports systematically decreased as a func-
tion of n-back ( Figure 3a,c ). In monkey 1, performance at 32 and 64 back fell below chance (32-
back = 0.46, 64-back = 0.27, chance = 0.50), indicating that this animal most often reported that
familiar images repeated after these longer delays were novel ( Figure 3a ). In monkey 2, perfor-
mance at 32 and 64 back remained above chance (32-back = 0.76, 64-back = 0.54), indicating higher
performance in this animal as compared to monkey 1 ( Figure 3c ).

We also analyzed reaction times for novel and familiar trials, parsed by correct and error trial out-
comes. Reaction times were measured relative to the onset of the go cue (which appeared 400 ms
after stimulus onset). We found that mean reaction times on correctly reported familiar trials system-
atically increased as a function of n-back, or equivalently, reaction times on correct trials increased
with increasing difficulty ( Figure 3b,d red). Conversely, reaction times on error trials decreased as a
function of n-back, or equivalently, reaction times on error trials decreased with increasing difficulty
(Figure 3b,d , cyan). In both animals, this led to an x-shaped pattern in the mean reaction times on

Figure 2. Single-exposure visual memory task. In this task, monkeys viewed images and reported whether they
were novel (i.e. had never been encountered before) or were familiar (had been encountered once and earlier in
the same session) across a range of delays between novel and repeated presentations. (a) Each trial began with
the monkey fixating for 200 ms. A stimulus was then shown for 400 ms, followed by a go cue, reflected by a
change in the color of the fixation dot. Targets, located above and below the image, were associated with novel
and familiar selections, and differed for each monkey. The image remained on the screen until a fixation break was
detected. Successful completion of the trial resulted in a juice reward. ( b) Example sequence where the upward
target was associated with novel images, and the downward target with familiar images. Familiar images were
presented with n-back of 1, 2, 4, 8, 16, 32, and 64 trials, corresponding to average delays of 4.5 s, 9 s, 18 s, 36 s,
1.2 min, 2.4 min, and 4.8 min, respectively. Additional representative images can be found in Figure 2Ðfigure
supplement 1 .

DOI: https://doi.org/10.7554/eLife.32259.004

The following figure supplement is available for figure 2:

Figure supplement 1. Representative images used in the experiment, sampled from http://commons.wikimedia.
org/wiki/Main_Page under the Creative Commons Attribution 4.0 International Public License https://
creativecommons.org/licenses/by/4.0/ .

DOI: https://doi.org/10.7554/eLife.32259.005
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familiar trials when plotted as a function of n-back. On novel trials, reaction times mimicked the pat-
tern observed for the low n-back familiar cases in that reaction times were faster on correct as com-
pared to error trials ( Figure 3b,d ).

From what underlying process might these x-shaped reaction time patterns arise? As is the case
for nearly any task, behavioral performance can be thought of as the outcome of passing a signal (in
this case a memory signal) through a decision process. The x-shaped patterns that we observed dif-
fer from the patterns reported for tasks that are well-accounted for by the standard drift diffusion
model (DDM) of decision making, such as the dot-motion-direction task ( Gold and Shadlen, 2007 ).
In agreement with standard DDM predictions, reaction times on correct trials increased as task per-
formance decreased (i.e. with n-back). However, reaction times on error trials decreased with n-back
whereas the standard DDM predicts that reaction times will be matched on correct and error trials

Figure 3. Behavioral performance of two monkeys on the single-trial visual recognition memory task. (a,c)
`Forgetting functions', plotted as the proportion of trials that each monkey reported images as familiar as a
function of the number of trials between novel and repeated presentations (n-back). Novel trials are indicated by
`N' and a break in the x-axis. The dotted line indicates chance performance on this task, 50%. Error bars depict
97.5% confidence intervals of the per-session means. (b,d) Mean reaction times, parsed according to trials in which
the monkeys answered correctly versus made errors. Reaction times were measured relative to onset of the go
cue, which was presented at 400 ms following stimulus onset. Error bars depict 97.5% confidence intervals
computed across all trials.

DOI: https://doi.org/10.7554/eLife.32259.006
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(and thus reaction times on error trials should increase with n-back as well). While it is the case that
extensions to this framework can predict reaction time asymmetries ( Ratcliff and McKoon, 2008 ),
additional parameters are required for it to do so, and these additions make it less well-suited for
the purposes of this study (focused on evaluating the plausibility that IT visual memory signals can
quantitatively account for visual memory behavior). We have, however, determined that these
x-shaped reaction time patterns can be captured by a very simple, low-parameter extension to the
signal detection theory framework, as proposed by `strength theory' ( Murdock, 1985 ; Norman and
Wickelgren, 1969 ). Like signal detection theory, strength theory proposes that a noisy internal vari-
able (`memory strength') is compared to a criterion to determine whether an image is novel or famil-
iar (Figure 4 , left). Strength theory also predicts that during a visual memory task, reaction times will
be inversely related to the distance of this variable from the criterion, loosely analogous to a process
in which increased certainty produces faster responses (Figure 4 , middle). This leads to the qualita-
tive prediction that when images are repeated with short n-back, memories are strong, and this will
produce reaction times that are faster on correct as compared to error trials ( Figure 4 , red vs. blue).
In contrast, at long n-back, memories are weak, and this will produce reaction times that are slower
on correct as compared to error trials ( Figure 4 , green vs. purple). The combined consequence of
strong and weak memories is an x-shaped pattern.

In sum, the reproducible patterns reflected in both monkeys' forgetting functions, along with
their reaction time patterns, place non-trivial constraints on the candidate neural signals that account
for single-exposure visual memory behavior. The x-shaped patterns of reaction times that we
observe cannot be accounted for by a standard drift diffusion process, but they can, in principle, be
captured by the predictions of strength theory. However, a successful description of the neural sig-
nals supporting single-exposure visual memory behavior requires identifying a neural signal whose
sensitivity to the elapsed time between initial and repeated presentations of an image matches the
sensitivity reflected in the monkeys' behavior.
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Figure 4. Strength theory qualitatively predicts x-shaped reaction time patterns. Like signal detection theory,
strength theory proposes that the value of a noisy internal variable, memory strength, is compared to a criterion to
differentiate novel versus familiar predictions. Left: shown are the hypothetical distributions of memory strengths
across a set of images presented as novel (dashed lines) and as familiar (black), repeated after a short (top) versus
long (bottom) delay. The colored portions of each familiar distribution indicate the proportion of trials
corresponding to correct reports and errors, based on the position of the distribution relative to the criterion. In
the case of short n-back, memory strength is high, the proportion correct is high, and the proportion wrong is low.
In the case of long n-back, memory strength is low, the proportion correct is low and the proportion wrong is
high. Middle: strength theory proposes an inverted relationship between proportion and mean reaction times,
depicted here as linear. Right: passing the distributions on the left through the linear function in the middle
produces an x-shaped reaction time pattern.

DOI: https://doi.org/10.7554/eLife.32259.007
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Single-exposure visual memory signals in IT cortex
As monkeys performed this task, we recorded neural responses from IT using multi-channel probes
acutely lowered before the beginning of each session. For quality control, recording sessions were
screened based on their neural recording stability across the session, their numbers of visually
responsive units, and the numbers of behavioral trials completed (see Materials and methods). The
resulting data set included 15 sessions for monkey 1 (n = 403 units), and 12 sessions for monkey 2
(n = 396 units). Both monkeys performed many hundreds of trials during each session ( ~600±1000,
corresponding to ~300±500 images each repeated twice). The data reported here correspond to the
subset of images for which the monkeys' behavioral reports were recorded for both novel and famil-
iar presentations (e.g. trials in which the monkeys did not prematurely break fixation during either
the novel or the familiar presentation of an image).

We began by considering the proposal that the signals differentiating novel versus familiar pre-
sentations of images were systematically reflected as response decrements with stimulus repetition
(i.e. `repetition suppression'). As a first, simple illustration of the strength of these putative single-
exposure memory signals, shown in Figure 5a is a plot of the grand mean firing rate response of all
799 units parsed by n-back, plotted as a function of time relative to stimulus onset. This plot reveals
a fairly systematic decrement in the response with repetition that diminished with time since the
novel presentation. We quantified the magnitude of suppression as the decrement in the area under
each n-back trace relative to the novel trace, computed 150±400 ms after stimulus onset
(Figure 5b ). Consistent with a visual memory signal that degrades (or forgets) with time, immediate
stimulus repetition resulted in a decrement in the response of ~11% and suppression magnitudes
decreased systematically with n-back. Also, qualitatively consistent with the repetition suppression
hypothesis was the finding that when the same analysis was isolated to the units recorded from each
monkey individually, repetition suppression was stronger in the monkey that was better at the task
(monkey 2; Figure 5c±d ).

Predicting behavioral response patterns from neural signals
To quantitatively assess whether IT neural signals could account for the monkeys' behavioral reports,
we applied two types of linear decoding schemes to the IT data. The first, a spike count classifier
(SCC), is an instantiation of the strictest form of the repetition suppression hypothesis in that it dif-
ferentiated novel versus familiar responses based on the total number of spikes across the IT popula-
tion (i.e. every unit in the population received a weight of 1). The second, a Fisher Linear
Discriminant (FLD), is an extension of the SCC that allows for IT units to be differentially weighted
and allows for weights to be positive as well as negative (corresponding to repetition suppression
and enhancement, respectively).

Because the neural data collected in any individual recording session had too few units to fully
account for the monkeys' behavior (e.g. near 100% correct for 1-back familiar images), we
concatenated units across sessions to create a larger pseudopopulation, where responses were
quantified 150±400 ms following stimulus onset. When creating this pseudopopulation, we aligned
data across sessions in a manner that preserved whether the trials were presented as novel or famil-
iar as well as their n-back separation. More specifically, the responses for each unit always contained
sets of novel/familiar pairings of the same images, and pseudopopulation responses across units
were always aligned for novel/familiar pairs that contained the same n-back separation. Because dif-
ferent images were used in each session, aligning images this way implicitly assumes that the total
numbers of spikes are matched across different images, the data recorded in any one session is a
representative sample of those statistics, and that the responses of the units recorded in different
sessions are uncorrelated. When the number of images in a session exceeded the number required
to construct the pseudopopulation, a subset of images were selected randomly, and we confirmed
that our main results did not change for different random selections. In the case of the pooled data,
the resulting pseudopopulation consisted of the responses from 799 neurons to 107 images pre-
sented as both novel and familiar (i.e. 15, 15, 16, 17, 17, 15 and 12 trials at 1, 2, 4, 8, 16, 32 and 64-
back, respectively).

We begin by illustrating our procedure for computing neural predictions of the behavioral for-
getting functions and reaction time patterns with the FLD weighted linear read-out, applied to the
data pooled across the two subjects. We then present a more systematic comparison between
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different decoders applied to each monkey's individual data. To compute neural predictions for
behavioral forgetting functions, we began by training an FLD linear decoder to discriminate the
same images presented as novel versus as familiar (Figure 6a ) using the data corresponding to all
n-backs simultaneously. The FLD training procedure assigned a weight to each neuron proportional
to the amount of linearly-separable visual memory information reflected in its responses (i.e. it's d';
see Materials and methods), and a single criterion value to parse the combined, weighted popula-
tion responses for novel versus familiar predictions. A final parameter specified the size of the IT
population under consideration (detailed below). Shown in Figure 6b are the neural estimates of the
distributions of memory signal strength at each n-back, computed across many iterations of the

Figure 5. Average IT repetition suppression magnitudes. (a) Grand mean firing rates for all units, plotted as a
function of time aligned to stimulus onset, parsed by images presented as novel (black) versus familiar at different
n-back (rainbow). Traces were computed in 1 ms bins and smoothed by averaging across 50 ms. The dotted box
indicates the spike count window corresponding to the analysis presented in panels ( b±d). The absence of data at
the edges of the plot ( � 50:� 25 ms and 375:400 ms) reflects that the data are plotted relative to the centers of
each 50 ms bin and data were not analyzed before � 50 ms or after the onset of the go cue at 400 ms. (b) The
calculation of suppression magnitude at each n-back began by quantifying the grand mean firing rate response to
novel and familiar images within a window positioned 150 ms to 400 ms after stimulus onset. Suppression
magnitude was calculated separately for each n-back as (novel ± familiar)/novel. (c±d) Suppression magnitudes at
each n-back, computed as described for panel b but isolated to the units recorded in each monkey individually.
Error reflects SEM.

DOI: https://doi.org/10.7554/eLife.32259.008
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Figure 6. Transforming IT neural data into behavioral predictions. In all panels, behavioral and neural data correspond to the data pooled across the
two monkeys and methods are illustrated through application of only one linear decoder (the FLD). ( a) A cartoon depiction of how memory strength
was measured for each n-back. Shown are the hypothetical population responses of 2 neurons to different images (represented by different shapes)
shown as novel (black) versus as familiar (gray). The line depicts a linear decoder decision boundary optimized to classify images as novel versus as
familiar. Distributions across images within each class are calculated by computing the linearly weighted sum of each neuron's responses and

Figure 6 continued on next page
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cross-validated linear classifier training and testing procedure for the best sized population (n = 799
units). As expected, we found that the weighted population response strengths were largest for
novel images (Figure 6b , black) and were weakest for familiar images presented as immediate
repeats (Figure 6b , red). Between these two extremes, we observed a continuum of strengths
loosely organized according by n-back ( Figure 6b , rainbow). Finally, a neural prediction for the for-
getting function was computed as the fraction of each distribution that fell on the `familiar' side of
the criterion differentiating novel versus familiar predictions ( Figure 6c ). This analysis revealed a high
degree of alignment between the neural prediction at each n-back and behavior, including high per-
formance for familiar images presented at low n-back, performance at mid-range n-back that fell off
with a similar sensitivity, and performance at the longest n-back (64) that fell below chance
(Figure 6c ). Similarly, neural predictions for novel images were well-aligned with the monkeys'
behavioral reports (Figure 6c , `N').

To produce neural predictions for reaction times, we turned to strength theory ( Figure 4 ). Shown
in Figure 6d is the first step required for making those predictions: a plot of the neural predictions
for the proportions of `correct' and `error' trials, plotted as a function of n-back. Note that the cor-
rect predictions simply replicate the forgetting function shown in Figure 6c , and the error predic-
tions are simply those same values, subtracted from 1. While these plots directly follow from
Figure 6c , we include them to illustrate that they qualitatively reflected an inverted version of the
monkeys' behavioral reaction time plots, including an x-shaped pattern. To determine the degree to
which these qualitative relationships quantitatively predict the monkeys' reaction times, we exam-
ined the relationship between the proportions plotted in Figure 6d and the monkeys' mean reaction
times, and found it to be approximately linear ( Figure 6e ). We thus fit a two parameter linear func-
tion to convert the neural predictions of these proportions into reaction times ( Figure 6e , black
line). The resulting neural predictions were largely aligned with the monkeys' mean reaction times
(Figure 6f ), including increasing reaction times as a function of n-back on correctly reported familiar
trials, decreasing reaction times as a function of n-back on familiar trials in which the monkeys' made
errors, and the characteristic x-shaped pattern. Additionally, shorter mean reaction times for novel
images on correct versus error trials were largely well-predicted by the neural data.

One important step in the procedure, not detailed above, involved determining the appropriate
IT population size for making neural and behavioral comparisons. Because there really wasn't a way

Figure 6 continued

subtracting a criterion. (b) Distributions of the linearly weighted IT population response, as a measure of memory strength, shown for novel images
(black dotted) and familiar images parsed by n-back (rainbow), for a population of 799 units. To compute these distributions, a linear decoder was
trained to parse novel versus familiar across all n-back via an iterative resampling procedure (see Materials and methods). (c) Black: the neural
prediction of the behavioral forgetting function, computed as the fraction of each distribution in panel b that fell on the `familiar' (i.e. left) side of the
criterion. Behavioral data are plotted with the same conventions as Figure 3a,c . Prediction quality (PQ) was measured relative to a step function
benchmark (gray dotted) with matched average performance (see text). (d) The first step in the procedure for estimating reaction times, shown as a plot
of the proportions of each distribution from panel b predicted to be correct versus wrong, as a function of n-back. Solid and open circles correspond to
novel and familiar trials, respectively. Note that the red curve (correct trials) simply replots the predictions from panel c and the blue curve (error trials)
simply depicts those same values, subtracted from 1. (e) A plot of the proportions plotted in panel d versus the monkeys' mean reaction times for each
condition, and a line fit to that data. ( f) The final neural predictions for reaction times, computed by passing the data in panel d through the linear fit
depicted in panel e. Behavioral data are plotted with the same conventions as Figure 3b,d . Also shown are the benchmarks used to compute PQ
(labeled), computed by passing the benchmark values showing in panel c through the same process. (g) Mean squared error between the neural
predictions of the forgetting function and the actual behavioral data, plotted as a function of population size. Solid lines correspond to the analysis
applied to recorded data; the dashed line corresponds to the analysis applied to simulated extensions of the actual data (see Figure 6Ðfigure
supplement 1 ). Insets indicate examples of the alignment of the forgetting function and FLD neural prediction at three different population sizes,
where green corresponds to the actual behavioral forgetting function and black corresponds to the neural prediction. PCF = proportion chose familiar.
The red dot indicates the population size with the lowest error (n = 799 units). ( h) Overall population d' for the novel versus familiar task pooled across
all n-back, plotted as a function of population size with the highlighted points from panel g indicated. ( i) The analysis presented in panel g was
repeated for spike count windows 150 ms wide shifted at different positions relative to stimulus onset. Shown is the minimal MSE for each window
position. All other panels correspond to spikes counted 150±400 ms.

DOI: https://doi.org/10.7554/eLife.32259.009

The following figure supplement is available for figure 6:

Figure supplement 1. Extrapolating SCC and FLD predictions to larger sized populations.

DOI: https://doi.org/10.7554/eLife.32259.010
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to do this a priori , we applied a fitting approach in which we computed the mean squared error
(MSE) between the actual forgetting functions and their neural predictions at a range of population
sizes, including simulated extensions of our population up to sizes 50% larger than the maximal size
we recorded (Figure 6Ðfigure supplement 1 ). The existence of a minimum in these plots follows
from the fact that they depict the error between the neural prediction and the behavioral forgetting
function (as opposed to overall neural population d' for this task, which continued to increase with
increasing population size; Figure 6h ). When too few units were included in the population, neural
d' was too low and high performance at low n-back was underestimated ( Figure 6g , left inset). In
contrast, when too many units were included in the population, neural population d' was too high
and performance at low n-back was over-saturated ( Figure 6g , right inset). Additionally, for popula-
tions that were too large, performance fell off with n-back with a slope that was too steep. Of inter-
est was the question of whether a global alignment of behavioral and neural sensitivity produced an
accurate neural prediction of the shape for forgetting function with n-back. In the case of the FLD
applied to the pooled data, the best population size fell near the maximal size of the total number
of units that we recorded (n = 799, Figure 6g , red dot). The analyses presented thus far were com-
puted based on spike count windows 150±400 ms following stimulus onset. A complementary plot
illustrates how the position of the spike count window relative to stimulus onset impacted the best
MSE (across all population sizes) for spike count windows 150 ms wide (Figure 6i ). Consistent with
the arrival of a visual memory signal that is delayed relative to onset but remains relatively constant
thereafter, error was high for windows that began earlier than 150 ms following stimulus onset and
then saturated. This suggests that the 150±400 ms position of the spike count window used to ana-
lyze the data throughout this report was a reasonable selection.

As a final step for our procedure, we determined a measure of prediction quality for both the for-
getting function and reaction time patterns. Our measure benchmarked the MSE between the
behavioral patterns and neural predictions by the worst-possible fit given that our procedure
involves a global alignment of behavioral and neural data ( Figure 6g ). The upper bound of our mea-
sure, 100% `prediction quality' (PQ), reflects a neural prediction that perfectly replicates the behav-
ioral data. The lower bound (0% PQ) was computed as the MSE between the actual behavioral
function and a predicted forgetting function that took the shape of a step, matched for global per-
formance (percent correct across all conditions; Figure 6c,f , dotted). The rationale behind the step
is that under a reasonable set of assumptions (i.e. that performance as a function of n-back should
be continuous, have non-positive slope, and be centered around chance), a step reflects the worst
possible fit of the data. Finally, PQ was calculated as the fractional distance of the MSE between
these two benchmarks. In the case of the FLD applied to the pooled data, PQ was 94% for the for-
getting function and 86% for the reaction time data ( Figure 6c,f ). We emphasize that these numbers
reflect the quality of generalized neural predictions to the behavioral reports, as these neural predic-
tions were not fit directly to the behavioral data in a manner not already accounted for by the PQ
measure.

A weighted linear read-out of IT more accurately predicted behavior
than a total spike count decoding scheme
Our methods for determining predictions of the SCC decoder differed only in the algorithm used to
combine the spike counts across the population into a measure of memory strength ( Figure 6b ). In
the case of the SCC, the weight applied to each unit was 1, and the training procedure determined
a single criterion value to parse the total population spike counts into novel versus familiar predic-
tions. The same cross-validated procedure used for the FLD was applied to the SCC to determine
distributions analogous to those depicted in Figure 6b . When applied to the data pooled across the
two monkeys, the best sized SCC decoded population was 559 units ( Figure 7a ). Additionally, we
found that while the SCC was a better predictor of behavior than the FLD for smaller sized popula-
tions (less than 400 neurons), the FLD was a better predictor of behavior overall ( Figure 7a ). Exami-
nation of a plot of overall population d' as a function of population size ( Figure 7b ) reveals that the
minimal error fell at the same population d' for both decoding schemes, consistent with the notion
that our procedure involved a global matching of overall performance between the behavioral and
neural data. The fact that the lowest MSE differed between the two decoding schemes reflects dif-
ferences in the shapes of the neural predictions following global performance matching. Figure 7b
also reveals systematically better global performance of the SCC as compared to the FLD for
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matched sized populations, which is likely a consequence of the fact that a smaller number of param-
eters are fit with the SCC read-out and the estimation of FLD weights is a noisy process.

A comparison of SCC and FLD MSE plots isolated to each monkey's data revealed that the FLD
decoder was a better predictor of behavior in both individuals ( Figure 7c±d ). Why was the FLD
weighted linear decoder a better predictor of the behavioral forgetting function? This was because
the spike count decoding scheme under-predicted memory strength, particularly at the longest

Figure 7. The FLD decoder is a better predictor of behavioral performance than the SCC. ( a) Plot of mean square error as a function of population size,
computed as described for Figure 6g for the data pooled across both monkeys, and shown for both the FLD (black) and SCC (red) decoders. Dots
correspond to the population size with the smallest error (FLD = 799 units; SCC = 625 units). (b) Plot of overall population d' computed as described in
Figure 6h but shown for both the FLD and SCC decoders. Dots correspond to the same (optimal) population sizes indicated in panel a. ( c±d) The same
analysis shown in panel a, but isolated to the data collected from each monkey individually. Best population sizes, Monkey 1: FLD = 800 units;
SCC = 625 units; Monkey 2: FLD = 525 units; SCC = 316 units. (e) Gray: predicted forgetting functions, computed as described for Figure 6c , but
plotted after subtracting the false alarm rate for novel images (i.e. a single value across all n-back). Red: the actual forgetting functions, also plotted
after subtracting the novel image false alarm rate. These plots are a revisualization of the same data plotted before false alarm rate subtraction in
Figure 7Ðfigure supplement 1a-b . PQ: prediction quality, computed as described in panel 6 c.

DOI: https://doi.org/10.7554/eLife.32259.011

The following figure supplement is available for figure 7:

Figure supplement 1. FLD and SCC predictions for each monkey.

DOI: https://doi.org/10.7554/eLife.32259.012
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delays. While this is discernable in plots of the raw alignment of the behavioral and neural data for
each monkey plotted with the same conventions as Figure 6f (Figure 7Ðfigure supplement 1a±b ),
it is more easily observed in a visualization of the data in which the proportion of familiar choices for
both the behavioral data and neural predictions are plotted after subtracting the false alarm rate for
the novel images (Figure 7e ), thus producing plots analogous to the suppression plots presented in
Figure 5c±d . For example, in monkey 1, the SCC decoder predicted that the monkey would report
64-back familiar images as familiar at a rate lower than the false alarm rate for novel images, whereas
the actual forgetting function reflected a small amount of remembering after a 64-back delay
(Figure 7e ). Similarly, in monkey 2, the SCC predicted rate of remembering at 64-back under-pre-
dicted the actual rate reflected in the behavior ( Figure 7e ). In contrast, the FLD better predicted the
behavior across all n-back in both animals (Figure 7e ). Lower MSE for the FLD as compared to SCC
translated into higher neural PQ in each monkey ( Figure 7e ± labeled; not shown for the pooled
data: SCC PQ = 83%, FLD PQ = 94%). The same behavioral and neural comparisons, plotted with
the same conventions as Figure 6c and Figure 6f , are shown in Figure 7Ðfigure supplement 1 .
We note that while the FLD PQ was lower in monkey two as compared to monkey 1 (monkey 1 FLD
PQ = 92%, monkey 2 FLD PQ = 70%), this was not due to a lower MSE of the fits in monkey 2
(Figure 7c±d ) but rather due to the fact that the forgetting function for monkey two better resem-
bled the step benchmark for computing PQ, thus reducing the PQ dynamic range ( Figure 7Ðfigure
supplement 1a±b ).

Together, these results suggest that a weighted linear read-out was a better description of the
transformation between IT neural signals and single-exposure visual memory behavior than a total
spike count decoding scheme.

The single-unit correlates of the weighted linear decoding scheme
The results presented above suggest that the SCC under-predicted memory strength as a function
of n-back whereas the FLD prediction was more accurate. At least two different scenarios might lead
to this result. First, it could be the case that visual memory may be reflected as net repetition sup-
pression in some units and net repetition enhancement in others (across all n-back). In this scenario,
the FLD would preserve both types of memory information (by assigning positive and negative
weights for enhancement and suppression, respectively), whereas these two types of effects would
cancel in a SCC decoding scheme, resulting in information loss. Alternatively, it might be the case
that the repetition suppression hypothesis is approximately correct insofar as the IT units that carry
visual memory signals systematically reflect visual memory with net repetition suppression, however,
repetition suppression may be stronger at longer n-back for some units than others. In this scenario,
better FLD behavioral predictions would result from preferentially weighting the neurons with the
strongest (by way of longest lasting) visual memory signals. As described below, our results suggest
that the latter scenario is a better description of our data.

To distinguish between these two scenarios, we began by examining the distributions of unit d'
as a proxy for the FLD decoding weights. In both monkeys, the unit d' means were significantly
shifted toward positive values ( Figure 8a±b ; Wilcoxon sign rank test, monkey one mean = 0.05,
p=6.8*10 � 17; monkey two mean = 0.12, p=1.9*10 � 41). In both monkeys, units with negative d' were
also present (proportion of negative units for monkey 1 = 32%; monkey 2 = 19%), although from
raw d' values alone, the degree to which negative d' resulted from reliable net repetition enhance-
ment versus from noise is unclear. A comparison of the mean responses to novel as compared to
familiar images for each unit revealed that very few units with negative d' had statistically distin-
guishable responses (bootstrap statistical test; criterion p<0.01; monkey 1: positive d' units = 14;
negative d' units = 3; monkey 2: positive d' units = 75; negative d' units = 2). While a screen of
p<0.01 can under-estimate the contributions of a unit to population performance, additional analy-
ses, described below, confirm that negative d' units made a measurable but modest contribution to
the differences between the SCC and FLD behavioral predictions.

To understand how these unit d' measures combined to determine behavioral predictions, we
performed an analysis to determine the minimal number of `best' d' IT units required to predict
behavior. The general idea behind this analysis is that if it were the case that strong signals were car-
ried by a small subpopulation of units, error should plateau quickly when only best units are
included. We thus compared FLD behavioral prediction error trajectories for the pooled data (to
maximize the numbers of directly measured units) when subsets of units were randomly sampled
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Figure 8. The single-unit correlates of the weighted linear decoding scheme. ( a±b) Distributions of unit d',
computed for each monkey. Arrows indicate means. (c) Left, Comparison of behavioral prediction error trajectories
for an FLD decoder applied to randomly selected units (replotted from Figures 6g and 7a) versus when the top-
ranked units for each population size were selected before cross-validated testing. Dots correspond to population
sizes with lowest error. Right, Conversion of behavioral error predictions (MSE) into prediction quality (PQ). Dots
indicate PQ for the best sized population and for all units. ( d) Left, Comparison of behavioral prediction error
trajectories for an SCC decoder applied to randomly selected units (replotted from Figure 7a ) versus when the
top-ranked units for each population size were selected before cross-validated testing. Dots correspond to
population sizes with lowest error. Right, Conversion of MSE into PQ. Black dot indicates PQ for the best sized

Figure 8 continued on next page
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(our typical procedure) versus when the top-ranked d' units were selected via a cross-validated pro-
cedure (i.e. based on the training data; Figure 8c , left). We also converted these MSE measures into
prediction quality estimates ( Figure 8d , right). We found that 400 top-ranked IT units were required
to achieve the same prediction quality as 800 randomly sampled units, suggesting that FLD behav-
ioral predictions rely on visual memory signals that are distributed across approximately half of the
IT population. The absence of a contribution from the lower-ranked 50% of the IT population could
not be attributed to non-responsiveness, as nearly all the units (759/799, 95%) produced statistically
significant stimulus-evoked responses that differed from the pre-stimulus baseline period (bootstrap
statistical test; criterion p<0.01; comparison of spike count windows ( � 150±0) ms versus (75 ± 225)
ms relative to stimulus onset).

Why did the FLD produce better behavioral predictions than the SCC ( Figure 7a )? To address
this question, we repeated the top-ranked analysis for the SCC. Specifically, we performed a cross-
validated procedure in which units were ranked by their signed d' as described above for the ranked
FLD, but within the top-ranked units, spikes were summed to produce behavioral predictions
(Figure 8d ). One can envision this as a binary classifier where the top-ranked units each receive a
weight of 1 whereas the remaining units each receive a weight of 0. Surprisingly, the ranked-SCC
decoder also peaked at 400 units and performed nearly as well as the ranked-FLD (ranked SCC PQ
for 400 units = 91%, Figure 8d ; ranked FLD PQ for 400 units = 94%, Figure 8d ). This suggests that
within the subset of 50% top-ranked IT units, spikes could largely be summed to make behavioral
predictions.

What happens when the 50% bottom-ranked units are added to each type of decoder? Addition
of bottom-ranked units had no impact on the ranked-FLD ( Figure 8c right, `All units'). This suggests
that the FLD largely disregards the lower 50% ranked units when making behavioral predictions. In
contrast, the introduction of the lower 50% ranked units detrimentally impacted ranked-SCC behav-
ioral predictions (ranked SCC PQ for best 50% of units = 91%; for all units = 76%; Figure 8d , right).
This is presumably because the SCC does not have a weighting scheme and was thus forced to
incorporate them. When parsed by the sign of d' for the lower-ranked units, addition of lower-
ranked, positive d' units reduced ranked-SCC behavioral predictions from 91% to 81%, and further
addition of negative d' units reduced behavioral predictions to 76% ( Figure 8d , right). Returning to
the two scenarios presented at the beginning of this section, these results suggest that better FLD
as compared to SCC behavioral predictions could largely be attributed to the FLD preferentially
weighting the neurons with the strongest (by way of longest lasting) visual memory signals, as
opposed to the inability of the SCC to appropriately weight reliable, mixed sign modulation (i.e.
mixtures of repetition suppression and enhancement).

Together, these results suggest that largely accurate behavioral predictions could be attributed
to ~50% of IT units whose memory signals were reflected as repetition suppression, and within this
top-ranked subpopulation, spike counts could largely be summed. These results also show that while
the lower ranked units had a detrimental impact on the ability of the spike count decoder to pro-
duce accurate behavioral predictions, a weighted linear decoder largely disregarded these otherwise
confounding responses.

The impact of visual selectivity on population size
As a complementary consideration, we also examined the impact of visual selectivity on the size of
the population required to account for behavior. Hypothetically, if only a small fraction of IT units
were activated in response to any one image, a large population would be required to support
robust visual memory behavioral performance. Because our data only include the response to each
image twice (once as novel and repeated as familiar), and measures of visual selectivity (e.g. `sparse-
ness') produce strongly biased estimates with limited samples ( Rust and DiCarlo, 2012 ), we applied

Figure 8 continued

population for randomly selected units. Red dots indicate PQ for the 400 top-ranked, positive sign (d'>0) units, all
positive sign units, and all units.

DOI: https://doi.org/10.7554/eLife.32259.013
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a simulation-based approach to determine how visual selectivity impacted the population size
required to make accurate behavioral predictions.

The general idea behind this analysis is to compare the best population size for our intact data
with a simulated version of our data in which visual memory signals have been kept intact but visual
selectivity has been removed. To perform this analysis, we began by creating a simulated `replica-
tion' population designed to match the image selectivity, memory signal strength, and grand mean
spike count response for each unit we recorded, followed by the introduction of Poisson trial vari-
ability (see Materials and methods). This simulated population produced FLD behavioral prediction
error trajectories that were highly similar to the intact population, both when computed with the
regular FLD (Figure 9a , gray versus black), as well as with the ranked-FLD (Figure 9b , gray versus
black), suggesting that the simulation was effective at capturing relevant aspects of the raw data.
Next, we created a simulated `visual-modulation-removed' version of each unit in which the memory
signal strength (as a function of n-back) and the grand mean spike count response (across all condi-
tions) were preserved, but visual selectivity was removed (see Materials and methods). Conceptually,
one can think about this simulation as creating a version of each unit with pure selectivity for visual
memory in the absence of visual modulation. The FLD behavioral prediction error trajectory of the
visual-modulation-removed population fell faster than the replication population and took on
approximately the same MSE as the intact population with only 479 (as compared to 800) units for
the regular FLD (Figure 9a , red) and only 159 (as compared to 400) units for the ranked-FLD
(Figure 9b , red). These results suggest that visual selectivity resulted in a substantial increase in the
number of units required to account for behavioral performance within the FLD decoding scheme.

In sum, at least two factors combined to determine that a large number of FLD decoded IT units
(~800) were required to accurately predict single-exposure behavioral performance. First, the visual
memory signals that combined to produce largely accurate behavioral predictions were limited
to ~50% of the IT population. Second, as a consequence of visual selectivity, the presentation of an
image only activated a subset of units, thus increasing the population size required for robust neural
performance that was capable of generalizing to new images.

Individual behavioral patterns were reflected in the IT neural data
As a final, complementary set of analyses, we focused on the neural correlates of the differences in
behavioral patterns reflected between the two animals. From the results presented above, we can
infer that this is not a straightforward relationship: while the animal that was better at the task

Figure 9. The impact of visual selectivity. (a) FLD behavioral prediction error trajectories for the actual data (gray,
replotted from Figure 6g ), a simulated replication of the data in which both the visual selectivity and the visual
memory signals for each unit were replicated (black), and a simulated version of the data in which the visual
memory signals were preserved for each unit but visual selectivity was removed (see Materials and methods). (b)
The same three FLD behavioral prediction error trajectories, computed with a ranked-FLD.

DOI: https://doi.org/10.7554/eLife.32259.014
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(monkey 2, Figure 3a,c ) had stronger average repetition suppression ( Figure 5c±d ), fewer units
were also required to account that animal's behavior (500 versus 800, Figure 7c±d ). This suggests
that differences in behavioral performance between the two monkeys does not simply reflect two
populations that are matched in size but contain neurons whose visual memory signals differ in aver-
age strength. For deeper insights into the differences between animals, we performed an analysis in
which we attempted to predict each monkey's behavioral forgetting functions from the other mon-
key's neural data using the FLD decoder (Figure 10a±b ). For both monkeys, the minimal error (as a
function of population size) was lower when behavioral and neural data came from the same monkey
as compared to when they were mixed between monkeys ( Figure 10a±b , red versus black dots) and
this translated to better PQ when behavioral and neural data came from the same animal versus
when they came from different animals ( Figure 10c ).

Figure 10c illustrates the alignment of the behavioral forgetting functions and their neural predic-
tions, after subtracting the false alarm rate for novel images (similar to 7e), shown for the cases in
which behavioral and neural data came from the same animal and when they were crossed. In the
case of monkey 1, the neural prediction from the same animal largely captured the pattern of for-
getting with n-back, whereas the neural data from monkey two predict a shape that was too flat. In
other words, FLD applied to the neural data from monkey two predicted a similar amount of for-
getting across a wide range of n-back and this pattern was inconsistent with the steeper fall-off in
that same range reflected in the behavior of monkey 1 ( Figure 10c , monkey 1 `Cross'). Similarly, the
neural data collected from monkey one reflected a considerable amount of forgetting at higher
n-back, whereas the behavioral data from monkey two were more flat in this range. This led to a dis-
crepancy between the behavioral data and neural predictions when aligned around the novel image
prediction ( Figure 10c , monkey 2 `Cross').

While our study was limited to only two subjects and thus lacked the power to establish individual
differences, the better alignment of behavioral and neural data within subjects versus across subjects

Figure 10. Alignment of individual behavioral and neural data. ( a±b) Plot of mean squared error as a function of population size, computed as
described for Figure 6g but compared when behavioral and neural data come from the same monkey (black) versus when behavioral and neural data
are crossed between monkeys (red). (c) Comparison of predicted and forgetting functions, plotted after subtracting the false alarm rate for novel
images as in Figure 7e , for population sizes indicated by the dots in panels a-b. PQ = prediction quality.

DOI: https://doi.org/10.7554/eLife.32259.015
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is an effective demonstration that signal strength and population size cannot simply be traded off to
fit any possible behavioral function. Additionally, these results provide added support of the hypoth-
esis that single-exposure visual memory behaviors are in fact reflected in the neural responses of IT
cortex.

Discussion
This study was designed to test the hypothesis that the signals supporting single-exposure visual rec-
ognition memories, or equivalently answers to the question, `Have I seen that image before?º, are
reflected as decrements in the responses of neurons in IT with stimulus repetition ( Fahy et al., 1993 ;
Li et al., 1993 ; Miller and Desimone, 1994 ; Riches et al., 1991 ; Xiang and Brown, 1998 ). Prior to
this study, this hypothesis had received mixed support from human fMRI studies ( Gonsalves et al.,
2005 ; Turk-Browne et al., 2006 ; Ward et al., 2013 ; Xue et al., 2011 ) and was largely untested at
the resolution of individual neurons. We found that a strict interpretation of the repetition suppres-
sion hypothesis in the form of counting the total numbers of spikes across the IT population pro-
vided an incomplete account of single-exposure visual memory behavior ( Figure 7 ), whereas a
weighted linear read-out of IT provided reasonably accurate predictions of the rates of forgetting as
a function of time ( Figure 6c , Figure 7e ), as well as mean reaction time patterns (Figure 6f ; Fig-
ure 7Ðfigure supplement 1 ). Additionally, behavioral predictions could be attributed to IT visual
memory signals that were reflected as repetition suppression ( Figure 8 ) and were intermingled with
visual selectivity (Figure 9 ), but only when combined across the most sensitive 50% of IT units
(Figure 8c±d ).

Our study was focused on changes in IT that follow a single image exposure, and the net repeti-
tion suppression that we observed is qualitatively consistent with earlier reports ( Fahy et al., 1993 ;
Li et al., 1993 ; Miller and Desimone, 1994 ; Riches et al., 1991 ; Xiang and Brown, 1998 ). Net rep-
etition suppression has also been reported following exposure of IT neurons to the same images
hundreds or thousands of times (Anderson et al., 2008 ; Baker et al., 2002 ; Freedman et al., 2006 ;
Lim et al., 2015 ; Meyer et al., 2014 ; Woloszyn and Sheinberg, 2012 ). However, the suppression
that we observed was transient (~5 min), whereas the suppression that follows many repeated image
exposures is much longer lasting. Some studies have reported repetition enhancement in IT for
images that are highly familiar, particularly when an image falls at the peak of a neuron's tuning func-
tion and the neuron in question is excitatory ( Lim et al., 2015 ; Woloszyn and Sheinberg, 2012 ). In
our study, we found no evidence that net repetition enhancement contributed to behavioral predic-
tions. At the next stage of processing in the medial temporal lobe, perirhinal cortex, there are indi-
cations that following many repeated exposures, the sign of familiarity modulation may flip from net
suppression to net enhancement (Landi and Freiwald, 2017 ; Tamura et al., 2017 ). In contrast, fol-
lowing a limited number of exposures, neurons in a region now attributed to perirhinal cortex have
been reported to exhibit repetition suppression ( Li et al., 1993 ; Miller et al., 1991 ). Future work
will be required to determine the effects of image familiarity in IT and perirhinal cortex as images
transition from novel to highly familiar.

Notably, when monkeys are engaged in a task that involves both stimulus repetition as well as a
same/different judgment about repeated stimuli, heterogeneous combinations of repetition
enhancement and suppression are observed in IT and perirhinal cortex ( Miller and Desimone, 1994 ;
Pagan et al., 2013 ; Vogels and Orban, 1994 ). These results may reflect the fact that the responses
of neurons in these brain areas reflect mixtures of the signals supporting visual memory, attention,
and decision processes. In fact, considerable evidence supports the notion that the task a subject is
engaged in at the time of viewing will have an impact on what will be remembered (reviewed by
Chun and Turk-Browne, 2007 ). In our study, the targets were present at stimulus onset for the first
monkey but delayed until the go cue (400 ms) in the second animal, and poorer performance of
monkey one in this task may reflect divided attention between the visual image and the targets.

The neural correlates of explicit visual memory reports have been investigated in the human brain
using PET (Vandenberghe et al., 1995 ) and fMRI (Gonsalves et al., 2005 ; Turk-Browne et al.,
2006 ; Ward et al., 2013 ; Xue et al., 2010 ). A number of factors might contribute to the discrep-
ancy between our study and human fMRI studies that fail to find a relationship between repetition
suppression magnitudes in high-level visual brain areas and explicit visual memory reports
(Ward et al., 2013 ; Xue et al., 2011 ). For example, one implication of our results is that near-single
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unit resolution is required to determine how to appropriately weight IT units to account for single-
exposure visual memory behaviors. In contrast, measures that average the responses across large
numbers of neurons result in an information loss that cannot fully be recovered (e.g. via a multi-voxel
pattern analysis). Another factor that may contribute to differences between our results and those
studies is a distinct difference in experimental design: our study correlates repetition suppression
and behavioral reports on the same trial, whereas these studies correlate repetition suppression to a
second viewing of an image with the behavioral report about remembering during a third viewing.
The rationale behind the fMRI design is a desire to dissociate memory processes from the processes
involved in decision making and response execution. In our study, we were focused on evaluating
the plausibility that the signal supporting visual memory behavioral reports is reflected in IT cortex,
as opposed to the plausibility that memory signals are reflected in IT in the absence of a subject
being engaged in a memory task. The consistent (positive) sign of the linear weights recovered
across IT units suggests that our results cannot be accounted for by motor responses, as the task
required the monkeys to saccade to two different targets to report novel versus familiar predictions
and a motor account would require that all the IT neurons were tuned for the same target (e.g.
`upward' for monkey one and `downward' for monkey 2). Finally, differences between our study and
those reports could also arise from differences between species, analogous to the differences
reported between monkey IT and human LOC for changes in the representations of highly familiar
images as measured with fMRI (Op de Beeck et al., 2006 ; Op de Beeck et al., 2008 ).

Our results suggest that visual memory signals are reflected as repetition suppression in the
majority of IT units and that reports of whether an image has been seen before can be predicted by
counting the numbers of spikes across the top half of the repetition suppressed IT subpopulation
(Figure 8e ). One question not addressed in our experiments is how this type of decoding scheme
could tease apart changes in total numbers of spikes due to stimulus repetition from changes in
spike numbers due to other variables, such as contrast, luminance, object size, and potentially object
identity ( Chang and Tsao, 2017 ). In principle, the brain could address this by relying on neurons
that are sensitive to visual memory but insensitive to these other types of variables. Future work will
be required to investigate these issues.

Analysis of our reaction time patterns parsed by trial outcome (correct/error) revealed a charac-
teristic x-shaped pattern ( Figure 3 ) at odds with the predictions of standard models of decision mak-
ing such as standard instantiations of the drift diffusion model. Extensions of the drift diffusion
framework have been proposed in which reaction time asymmetries on correct versus error trials can
be accounted for by adding per-trial noise in the decision variable drift rate or the decision variable
start position ( Ratcliff and McKoon, 2008 ). Our task was not designed to differentiate between
these and other similar models, but rather to test the hypothesis that signals reflecting single-expo-
sure visual memories are found in IT cortex. As such, we opted for the much simpler, lower-parame-
ter description suggested by strength theory ( Murdock, 1985 ; Norman and Wickelgren, 1969 ).
The inverted relationship between proportion correct and reaction time captured by strength theory
can loosely be thought of as a signature of confidence (e.g. when performance is higher, reaction
times are faster), however, the drawback of strength theory is that it lends little biophysical insight
into how this process might happen in the brain. Our study provides important constraints on mod-
els of the decision making process for single-exposure memory tasks, and should constrain future
work in which this process is investigated more completely.

In this study, we adjusted the task parameters such that images were forgotten over minutes
within sessions that lasted approximately one hour. This included reducing the viewing time from
the longer durations used in previous human behavioral experiments (2±3 s) to ~400 ms. Our results
suggest that forgetting rates are well-aligned between behavioral reports and IT neural signals
within this regime. Will longer timescale memories be reflected by signals in IT as well? That remains
to be seen. It could be the case that IT reflects single-exposure visual memories across all behavior-
ally-relevant timescales, alternatively, it could be the case that the signals reflecting single-exposure
memories across longer timescales (e.g. hours and days) are only reflected in higher brain areas such
as perirhinal cortex and/or the hippocampus.

A related issue is the question of where and how single-exposure visual memories are stored in
the brain. Crucially, it is important to recognize that it does not necessary follow from the fact that a
particular brain area reflects a memory signal, that it must be the locus at which storage occurs. It is
likely the case that the visual memory signals that we observe are at least partially the consequence
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of the cumulative adaptation-like processes that happen within IT and within brain areas preceding
IT. What is less clear is whether these signals also reflect contributions from higher brain areas as
well. Similarly, a computational description of the learning rule(s) that accurately capture the changes
in the brain that follow a single image exposure remain to be determined. While important first steps
toward those computational descriptions have been proposed ( Androulidakis et al., 2008 ;
Lulham et al., 2011 ) they have yet to be tested in deep neural network architectures that approxi-
mate the patterns of neural activity reflected in the visual system (e.g. Yamins et al., 2014 ).

Materials and methods
Experiments were performed on two adult male rhesus macaque monkeys ( Macaca mulatta) with
implanted head posts and recording chambers. All procedures were performed in accordance with
the guidelines of the University of Pennsylvania Institutional Animal Care and Use Committee under
protocol 804222.

The single-exposure visual memory task
All behavioral training and testing was performed using standard operant conditioning (juice
reward), head stabilization, and high-accuracy, infrared video eye tracking. Stimuli were presented
on an LCD monitor with an 85 Hz refresh rate using customized software ( http://mworks-project.
org).

As an overview of the monkeys' task, each trial involved viewing one image for at least 400 ms
and indicating whether it was novel, (never seen before) or familiar (seen exactly once prior) with an
eye movement to one of two response targets. Images were never presented more than twice (once
as novel and then as familiar) during the entire training and testing period of the experiment. Trials
were initiated by the monkey fixating on a red square (0.25 Ê) on the center of a gray screen, within a
square window of ±1.5Ê, followed by a 200 ms delay before a 4 Êstimulus appeared. The monkeys
had to maintain fixation of the stimulus for 400 ms, at which time the red square turned green (go
cue) and the monkey made a saccade to the target indicating that the stimulus was novel or familiar.
In monkey 1, response targets appeared at stimulus onset; in monkey 2, response targets appeared
at the time of the go cue. In both cases, targets were positioned 8 Êabove or below the stimulus.
The association between the target (up vs. down) and the report (novel vs. familiar) was swapped
between the two animals. The image remained on the screen until a fixation break was detected.

The images used in these experiments were collected via an automated procedure that explored
and downloaded images from the internet, and then scrubbed their metadata. Images smaller than
96*96 pixels were not considered. Eligible images were cropped to be square and resized to
256*256 pixels. An algorithm removed duplicate images. The resulting database included 89,787
images. Within the training and testing history for each monkey, images were not repeated. A repre-
sentative sample of a subset of 49 images are presented in Figure 2Ðfigure supplement 1 .

The specific random sequence of images presented during each session was generated offline
before the start of the session. The primary goal in generating the sequence was to select trial loca-
tions for novel images and their repeats with a uniform distribution of n-back (where n-back = 1, 2,
4, 8, 16, 32 and 64). This was achieved by constructing a sequence slightly longer than what was
anticipated to be needed for the day, and by iteratively populating the sequence with novel images
and their repeats at positions selected from all the possibilities that remained unfilled. Because the
longest n-back locations (64) were the most difficult to fill, a fixed number of those were inserted
first, followed by systematically working through the insertion of the same fixed number at each con-
secutively shorter n-back (32, 16 . . .). In the relatively rare cases that the algorithm could not produce
that fixed number at each n-back, it was restarted. The result was a partially populated sequence in
which 83% of the trials were occupied. Next, the remaining 17% of trials were examined to deter-
mine whether they could be filled with novel/familiar pairs from the list of n-back options (64, 32, 16-
back . . .). For the very small number of trials that remained after all possibilities had been extin-
guished (e.g. a 3-back scenario), these were filled with `off n-back' novel/familiar image pairs and
these trials were disregarded from later analyses.

`Forgetting functions' ( Figure 3a,c and Figure 6c ) were computed as the mean proportion of tri-
als each monkey selected the familiar target, across all trials and all sessions. Because behavioral out-
come is a binary variable, error was estimated by computing the mean performance trace for each
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session, and then computing the 97.5% confidence interval as 2.2*standard error of those traces.
Mean reaction times (Figure 3b,d and Figure 6f ) were computed as means across all trials and ses-
sions, and 97.5% confidence intervals were computed as 2.2*standard error of those same values.

Neural recording
The activity of neurons in IT was recorded via a single recording chamber in each monkey. Chamber
placement was guided by anatomical magnetic resonance images in both monkeys. The region of IT
recorded was located on the ventral surface of the brain, over an area that spanned 5 mm lateral to
the anterior middle temporal sulcus and 14±17 mm anterior to the ear canals. Recording sessions
began after the monkeys were fully trained on the task and after the depth and extent of IT was
mapped within the recording chamber. Combined recording and behavioral training sessions hap-
pened 4±5 times per week across a span of 5 weeks (monkey 1) and 4 weeks (monkey 2). Neural
activity was recorded with 24-channel U-probes (Plexon, Inc, Dallas, TX) with linearly arranged
recording sites spaced with 100 mm intervals. Continuous, wideband neural signals were amplified,
digitized at 40 kHz and stored using the Grapevine Data Acquisition System (Ripple, Inc., Salt Lake
City, UT). Spike sorting was done manually offline (Plexon Offline Sorter). At least one candidate unit
was identified on each recording channel, and 2±3 units were occasionally identified on the same
channel. Spike sorting was performed blind to any experimental conditions to avoid bias. A multi-
channel recording session was included in the analysis if: (1) the recording session was stable, quanti-
fied as the grand mean firing rate across channels changing less than 2-fold across the session; (2)
over 50% of neurons were visually responsive (a loose criterion based on our previous experience in
IT), assessed by a visual inspection of rasters; and (3) the number of successfully completed novel/
familiar pairs of trials exceeded 100. In monkey 1, 21 sessions were recorded and 6 were removed (2
from each of the 3 criterion). In monkey 2, 16 sessions were recorded and 4 were removed (1, 2 and
1 due to criterion 1, 2 and 3, respectively). The sample size (number of successful sessions recorded)
was chosen to approximately match our previous work ( Pagan et al., 2013 ).

Neural predictions of behavioral performance
Because the data recorded in any individual session (on 24 channels) corresponded to a population
too small to provide a full account of behavioral performance, we combined data across sessions
into a larger pseudopopulation (see Results). We compared the ability of four different linear
decoders to predict the monkeys' behavioral responses from the IT pseudopopulation data. Spikes
were counted in a window 150±400 ms following stimulus onset with the exception of Figure 6i ,
where spikes were counted in a 150 ms bin at sliding positions relative to stimulus onset.

For all decoders, the population response x was quantified as the vector of simultaneously
recorded spike counts on a given trial. To ensure that the decoder did not erroneously rely on visual
selectivity, the decoder was trained on pairs of novel/familiar trials in which monkeys viewed the
same image (regardless of behavioral outcome and for all n-back simultaneously). Here we begin by
describing each decoder, followed by a description of the cross-validated training and testing proce-
dure that was applied in the same manner to each one.

All four decoders took the general form of a linear decoding axis:

f x… † ˆwTx ‡ b (1)

where w is an N-dimensional vector (and N is the number of units) containing the linear weights
applied to each unit, and b is a scalar value. What differed between the decoders was how these
parameters were fit.

Fisher Linear Discriminant variants (FLD, ranked FLD)
In the case of the FLD, the vector of linear weights was calculated as:

w ˆ S� 1 � 1 � � 2… † (2)

and b was calculated as:

b ˆ w �
1
2

� 1 ‡ � 2… † ˆ
1
2

� T
1S� 1� 1 �

1
2

� T
2S� 1� 2 (3)
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Here � 1and� 2 are the means of the two classes (novel and familiar, respectively) and the mean
covariance matrix is calculated as:

Sˆ
S1 ‡ S2

2
(4)

where S1 and S2 are the covariance matrices of the two classes with the off-diagonal entries set to
zero. We set these terms to zero (as opposed to regularization) because we found that the off-diag-
onal terms were very poorly estimated for our data set. Calculating FLD weights in this manner is
thus equivalent to weighting each unit by its d' alone (while ignoring any optimization that considers
correlated activity between units).

In the case of the regular FLD (e.g. Figure 6 ), units were randomly selected for populations
smaller than the full population size recorded. In the case of the ranked-FLD ( Figures 8c and
9b), weights were computed for each unit as described by Equation 2 and then ranked by sign
(such that positive weights were ranked higher than negative weights), and the top N units with the
largest magnitude weights were selected for different population size N.

Spike count classifier variants (SCC, ranked SCC)
For the SCC, the weight applied to each neuron was 1/N where N corresponded to the population
size under consideration. The criterion was then computed as described above for the FLD. In the
case of the regular SCC, units were randomly selected for populations smaller than the full popula-
tion size recorded. In the case of the ranked-SCC (Figure 9d ), weights were computed for each unit
and ranked as described for the ranked FLD, and the top N units with the largest magnitude weights
were selected for different population size N.

Cross-validated training and testing
We applied the same, iterative cross-validated linear decoding procedure for each decoder. On
each iteration of the resampling procedure, the responses for each unit were randomly shuffled
within the set of matched n-back to ensure that artificial correlations (e.g. between the neurons
recorded in different sessions) were removed. Each iteration also involved setting aside the
responses to two randomly selected images at each n-back (presented as both novel and familiar,
for four trials in total) for testing classifier performance. The remaining trials were used to train one
of the four linear decoders to distinguish novel versus familiar images, where the novel and familiar
classes included the data corresponding to all n-backs and all trial outcomes. Memory strength was
measured as the dot product of the test data vectors x and the weights w, adjusted by b (Equa-
tion 1 ). Histograms of these distributions for the FLD decoder are shown in Figure 6b across 1000
resampling iterations. A neural prediction of the proportion of trials on which `familiar' would be
reported was computed as the proportion of each distribution that took on a value less than the cri-
terion (Figure 6c ). This process was repeated for a broad range of population sizes and for each
size, the mean squared error between the actual and predicted forgetting functions were computed
to determine the best sized population (e.g. Figure 6g ).

To compute predictions of reaction times on correct and error trials, we began by considering
the proportion of the distributions shown in Figure 6b predicted to be reported `correct' versus
`wrong', as a function of n-back, for both novel and familiar presentations ( Figure 6d ). Examination
of these proportions plotted against the monkeys' reaction times that they map onto revealed a lin-
ear relationship (Figure 6e ), which we fit with a line by minimizing mean squared error. The final neu-
ral predictions for reaction times were produced by passing the predicted proportions for correct
and error trials through the resulting linear equation ( Figure 6f ).

Estimating performance for larger-sized populations
To estimate performance for larger sized populations than those we recorded, we computed quanti-
fied how the mean and standard deviation of the distributions depicted in Figure 6b , as well as the
value of the criterion, grew as a function of population size ( Figure 6Ðfigure supplement 1 ). For
both the SCC and FLD, the trajectories of the means and the criterion were highly linear as a func-
tion of population size ( Figure 6Ðfigure supplement 1a±b , left), whereas the standard deviations
plateaued (Figure 6Ðfigure supplement 1a±b , right). We modeled the population response
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distributions at each n-back ( Figure 6b ) as Gaussian, and we estimated the means and standard
deviations of each distribution at different population sizes by extending the trajectories computed
from our data to estimates at larger population sizes ( Figure 6Ðfigure supplement 1 dotted lines).
This process was similar in spirit but differed in detail for each decoder.

In the case of the SCC, the mean population response was computed as the grand mean spike
count across the population, and consequently did not grow with population size ( Figure 6Ðfigure
supplement 1a , left). We extended these trajectories with a simple linear fit to the values computed
from the data. In contrast, the trajectory corresponding to standard deviation decreased as a func-
tion of population size ( Figure 6Ðfigure supplement 1a , right) and to extend these trajectories, we
fit a two-parameter function:

SCCsd x… † ˆ
Xx

1

ab

 ! 1=b

(5)

where x corresponds to population size and the parameters a and b were fit to the data.
In the case of the FLD, the population mean was computed as a weighted sum and grew linearly

with population size ( Figure 6Ðfigure supplement 1b , left). We extended these trajectories with a
linear fit to the values computed from the data. In contrast, the trajectories corresponding to the
population standard deviations for each n-back grew in a nonlinear manner ( Figure 6Ðfigure sup-
plement 1b , right), and we extend them by fitting the 2-parameter function:

FLD sd x… † ˆ ax… †b (6)

where x corresponds to population size and the parameters a and b were fit to the data.
For both the SCC and FLD decoders and their threshold variants, we computed behavioral pre-

dictions for larger sized populations by replacing the histograms in Figure 6b with Gaussians
matched for the means and standard deviations determined by the extended trajectories, relative to
the extended estimate for the criterion.

Prediction quality:
To measure the prediction quality of the neural predictions for both the forgetting function and reac-
tion time patterns, we developed a measure that benchmarked the MSE between the behavioral
patterns and neural predictions by the worst-possible fit given that our procedure involves a global
alignment of behavioral and neural data ( Figure 6g ). The worst-possible fit was computed as a step
function, under the assumptions that performance as a function of n-back should be continuous,
have non-positive slope, and be centered around chance. For example, the average proportion cor-
rect for the monkey's pooled behavioral forgetting function ( Figure 6g ) was 84%, and the bench-
mark was thus assigned as 84% proportion chose familiar for every n-back, and 16% for the novel
images. Prediction quality was computed as:

PQˆ 100�
MSEneural � MSEbenchmark

MSEneural
(7)

where MSEneural and MSEbenchmark correspond to the MSE between the actual behavioral forgetting
function and the neural prediction or the benchmark, respectively.

To produce prediction quality estimates for reaction times ( Figure 6f ), the benchmark forgetting
function was passed through the same procedure as the neural prediction to produce benchmarked
reaction time predictions ( Figure 6f , dotted). PQ was then computed as described in Equation 7 .

Simulation to estimate the impact of visual selectivity on population
size
To estimate the impact of visual selectivity on population size ( Figure 9c ), we compared FLD and
ranked-FLD behavioral prediction error trajectories (as a function of population size) for two simu-
lated versions of our data: one that `replicated' each unit and another that corresponded to `visual
modulation removed' ( Figure 9 ). For these simulations, the strength of the visual memory signal for
each unit was measured at each n-back as the mean proportional change in the spike count
response for the same images presented as novel versus as familiar across all image pairs, and visual
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memory modulation was modeled as multiplicative. In the case of the `replicated' simulation, the
novel and familiar responses to each image were determined by considering the average response
to that image when it was novel versus familiar, and adjusting that quantity based on the propor-
tional decrement computed for each n-back. For example, if the proportional decrement at 1-back
for a unit was 10% and the unit responded to one image with an average (across the novel/familiar
presentations) of 6 spikes, the replicated prediction for the novel and familiar presentation would be
6.32 spikes and 5.69 spikes, respectively (for a total difference of 0.63 spikes). If the same unit
responded to a different image at 1-back with an average of 3 spikes, the replicated prediction
would be 3.16 spikes and 2.84 spikes for novel and familiar images, respectively (for a total differ-
ence of 0.32 spikes). The process was repeated for each image by applying the proportional decre-
ment determined for the n-back at which it was presented. These predictions were then converted
into spike counts by applying Poisson trial variability. As a verification that this simulation captured
the relevant aspects of the data, we compared its FLD behavioral prediction error trajectory to the
error trajectory of the intact data ( Figure 9c , gray versus black).

In the case of the `visual modulation removed' simulation, the process was similar but instead of
considering the actual response of the unit to a particular image, visual memory modulation was
applied to the grand mean spike count across all images for that unit. A response prediction for
each image was determined by applying the proportional decrement determined for the n-back at
which it was presented around the grand mean spike count. These predictions were then converted
into spike counts by applying Poisson trial variability.

Unit d'
Unit d' was calculated, for each unit, as the difference in the mean responses to the set of images
presented as novel versus the set presented as familiar, divided by the average standard deviation
across the two sets (Figure 8a±b ).

Bootstrap statistical testing
To determine the fraction of units that produced responses that differed between novel versus famil-
iar images or between the pre-stimulus and stimulus-evoked period, we computed p-values to evalu-
ate the statistical significance of the observed differences in the mean values via a bootstrap
procedure. On each iteration of the bootstrap, we randomly sampled the true values from each pop-
ulation, with replacement, and we computed the difference between the means of the two newly
created populations. We computed the p value as the fraction of 1000 iterations on which the differ-
ence was flipped in sign relative to the actual difference between the means of the full data set
(Efron and Tibshirani, 1998 ).
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