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Abstract We studied adaptive evolution of gene expression using long-term experimental

evolution of Saccharomyces cerevisiae in ammonium-limited chemostats. We found repeated

selection for non-synonymous variation in the DNA binding domain of the transcriptional activator,

GAT1, which functions with the repressor, DAL80 in an incoherent type-1 feedforward loop (I1-FFL)

to control expression of the high affinity ammonium transporter gene, MEP2. Missense mutations

in the DNA binding domain of GAT1 reduce its binding to the GATAA consensus sequence.

However, we show experimentally, and using mathematical modeling, that decreases in GAT1

binding result in increased expression of MEP2 as a consequence of properties of I1-FFLs. Our

results show that I1-FFLs, one of the most commonly occurring network motifs in transcriptional

networks, can facilitate adaptive tuning of gene expression through modulation of transcription

factor binding affinities. Our findings highlight the importance of gene regulatory architectures in

the evolution of gene expression.

DOI: https://doi.org/10.7554/eLife.32323.001

Introduction
Gene expression evolution is a pervasive source of phenotypic diversity between and within species

(Jacob and Monod, 1961; Jacob, 1977; Nocedal and Johnson, 2015). Genetic variation causing

evolutionary changes in gene expression impacts either the regulatory elements of a gene (cis-regu-

latory) or the factors that control its expression (trans-regulatory). The relative importance of these

two classes of variation across evolutionary timescales is the source of long-standing debate

(Wittkopp et al., 2004; Hoekstra and Coyne, 2007; Stern and Orgogozo, 2008; Soskine and

Tawfik, 2010). A variety of approaches have been developed for identifying the genetic basis of

intraspecific gene expression variation (Brem et al., 2002; Yvert et al., 2003) and defining the land-

scape of mutational changes that affect gene expression (Metzger et al., 2016). Comparative geno-

mics using extant organisms is typically used for inferring the evolutionary processes and outcomes

that underlie the evolution of gene expression (Wittkopp, 2010). However, these approaches face

the challenge of distinguishing neutral from adaptive variation and cannot provide insights into the

dynamics of gene expression evolution in evolving populations.

The regulation of gene expression typically comprises multiple regulatory factors with both activ-

ating and repressive functions that coordinately control the dynamics and output of gene transcrip-

tion. Regulatory networks controlling gene expression are composed of network motifs, recurrently

occurring patterns of interaction between regulatory factors (Alon, 2007). Studies of global regula-

tory networks in Escherichia coli (Shen-Orr et al., 2002) and Saccharomyces cerevisiae (Lee et al.,
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2002) identified three component feed-forward loops (FFL) as one of the most commonly occurring

network motifs. A FFL comprises a transcription factor that regulates a second transcription factor.

Both transcription factors bind the regulatory region of a third target gene and jointly control its

expression. As transcription factors can be either activators or repressors, there are eight possible

configurations of three component FFLs (Mangan and Alon, 2003). Of these variants, incoherent

type-1 feed-forward loops (I1-FFL) are one of the most common, occurring hundreds of times in bac-

teria and yeast gene regulatory networks (Lee et al., 2002; Mangan and Alon, 2003; Milo et al.,

2002). These network motifs are termed ‘incoherent’ as the upstream regulator directly activates the

target gene and indirectly represses it by activating a repressor of the target gene. I1-FFL function

to speed the response time of gene expression (Mangan and Alon, 2003) and for particular parame-

ter values, detect relative changes in input signals rather than absolute levels of inputs

(Goentoro et al., 2009). 1I-FFLs are found throughout gene regulatory networks in multiple organ-

isms. Although the dynamic properties and behavior of the I1-FFL have been extensively studied,

the significance of this network in evolution is not well understood. In particular, how I1-FFLs con-

strain or facilitate evolutionary pathways remains unknown.

Long-term experimental evolution (LTEE) provides a means of studying evolutionary dynamics,

processes and outcomes. Performing replicated LTEE in controlled conditions and assessing the fit-

ness and phenotypes of evolved lineages and populations enables tests of the role of gene expres-

sion evolution in response to selection and the extent to which selection results in recurrent

outcomes. LTEE in microorganisms provides evidence for the role of adaptive changes in gene

expression in response to selection as parallel changes in gene expression have been observed in

replicated populations of both E. coli (Cooper et al., 2003) and S. cerevisiae (Ferea et al., 1999;

Gresham et al., 2008). However, proving that changes in gene expression are adaptive and identify-

ing the underlying molecular bases of gene expression changes acquired during experimental evolu-

tion remains challenging.

Quantitative DNA sequencing enables the comprehensive identification of genomic variants, their

frequencies and dynamics during adaptive evolution (Gresham et al., 2008; Kao and Sherlock,

2008; Wenger et al., 2011; Hong and Gresham, 2014). In LTEE performed in conditions of con-

stant nutrient-limitation using chemostats, increased expression of nutrient transporter genes is a

primary mode of adaptive evolution (Gresham and Hong, 2015). Copy number variants (CNVs),

comprising gene amplifications that result in increased expression of transporter genes

(Gresham et al., 2008; Hong and Gresham, 2014), are a recurrent class of adaptive alleles in che-

mostat LTEE. However, adaptive mutations in trans factors, such as transcription factors (TFs) are

also frequently identified in LTEEs (Kao and Sherlock, 2008; Hong and Gresham, 2014). These vari-

ant alleles are primarily missense, frame-shift or nonsense mutations that are likely to confer strong

effects on gene expression in evolved lineages (Wray, 2007; Carroll, 2008). However, how protein

coding changes in transcriptional regulators identified during LTEE alter gene expression and how

these changes in expression confer increased fitness remains unknown.

The regulation of nitrogen utilization in budding yeast represents one of the best understood

gene regulatory networks in any system. Control of nitrogen catabolite repression (NCR) transcrip-

tion is achieved by four transcription factors, that bind to the same GATAA consensus sequence

(Cooper, 2002; Magasanik and Kaiser, 2002; Hofman-Bang, 1999). Two factors – GLN3 and GAT1

– have activating activity and two factors – DAL80 and GZF3 – have repressive activity. GLN3 is con-

stitutively expressed and regulated post-translationally by TORC1-dependent phosphorylation that

prevents its entry into the nucleus. In conditions in which TORC1 activity is low, dephosphorylation

of GLN3 enables it to enter the nucleus where it activates expression of GAT1, DAL80 and GZF3

(Figure 1—figure supplement 1). The promoters of GAT1, DAL80 and GZF3 contain GATAA bind-

ing sites and thus they coordinately regulate expression of their targets and themselves. The NCR

regulatory components comprise four interconnected I1-FFLs comprising either of the activators,

GLN3 and GAT1, and either of the repressors DAL80 or GZF3, that function to regulate the expres-

sion dynamics and output of ~41 target genes (Godard et al., 2007) that encode products required

for assimilating diverse nitrogen sources. NCR is an ideal system for studying the evolution of gene

expression owing to the well-characterized properties of its four regulators and the small number of

well-defined direct targets.

Here, we used LTEE in ammonium-limited chemostats to investigate the functional basis of adap-

tive increases in gene expression. Leveraging our understanding of selection in chemostats primarily

Hong et al. eLife 2018;7:e32323. DOI: https://doi.org/10.7554/eLife.32323 2 of 18

Research article Genetics and Genomics Evolutionary Biology

https://doi.org/10.7554/eLife.32323


operating on nutrient transport (Gresham and Hong, 2015) and the detailed understanding of nitro-

gen-regulated gene expression in yeast (Cooper, 2002; Magasanik and Kaiser, 2002) we studied

how adaptive variation in the trans regulatory factor, GAT1, mediates its effects on fitness by alter-

ing gene expression. We find that the beneficial effects of recurrently selected missense mutations

in GAT1 are a result of its effect on increasing expression of the high affinity ammonium transporter

gene, MEP2. Surprisingly, we find that these effects are the result of decreased affinity for the GAT1

consensus binding site that differentially impact binding at the promoters of the repressor DAL80

and their common transcriptional target, MEP2. Using functional assays and mathematical modeling

we find that adaptive evolution acts to increase the transcriptional output from the I1-FFL comprising

GAT1, DAL80 and MEP2 by decreasing transcription factor affinities. Thus, in addition to their

important dynamic behavior, I1-FFL possess properties that may be exploited by evolution to tune

their output thereby increasing organismal fitness.

Results

De novo missense mutations in GAT1 are positively selected in
ammonium-limited chemostats
Previously, we identified repeated selection of independent missense mutations in the DNA binding

domain of GAT1 within a single LTEE population maintained in ammonium-limited chemostats

(Hong and Gresham, 2014). In this study, we aimed to determine whether adaptive mutations in

GAT1 result in alteration of its regulatory activities and, if so, how these changes impact fitness. First,

we tested the repeatability of adaptive GAT1 mutations in initially clonal populations maintained in

ammonium-limited environments by performing LTEE in triplicate using asexually reproducing popu-

lations in ammonium-limited chemostats (Figure 1a). We found that evolution is highly parallel both

at the phenotypic and genotypic levels over 250 generations. We observed significant increases in

population level fitness with an overall deceleration in the rate of fitness improvement with time as

seen in previous LTEEs (Barrick et al., 2009) (Figure 1b). Using whole genome, whole population

sequencing of evolving populations, we identified recurrent selection for missense mutations in the

DNA binding domain of GAT1 during the early stages of adaptive evolution in each population.

Consistent with positive selection for increased ammonium transport capacity in this environment,

we also identified CNVs that include MEP2, which encodes a high-affinity ammonium transporter, at

high frequencies following 250 generations of selection (Figure 1c).

Recently, lineage tracking during LTEE in large populations has shown that many independently

derived beneficial alleles are present at low frequencies and unlikely to be detected using whole

genome, whole population sequencing (Levy et al., 2015). Therefore, we investigated whether addi-

tional low frequency mutations of GAT1 were present in evolving populations using targeted deep

sequencing (Figure 1d and Supplementary file 1A; see Materials and methods). Each of the evolv-

ing populations contained multiple different GAT1 mutations at frequencies of 10�2-10�3. These

GAT1 alleles reach their highest frequencies during the early stages of adaptive evolution before lin-

eages containing MEP2 CNVs ultimately rise to high frequency in each population. Importantly, all

identified GAT1 mutations are missense mutations in its DNA binding domain (Figure 1e), which we

find is under strong purifying selection in natural environments (Figure 1f).

GAT1 mutations increase fitness in ammonium-limited chemostats in a
MEP2 dependent manner
To study the functional basis of adaptive GAT1 mutations, we isolated clones with three individual

alleles from distinct evolved lineages – gat1-1 (W321L), gat1-2 (C331Y), and gat1-3 (R345G) –

(Figure 2a) using backcrossing and allele specific PCR genotyping (Hong and Gresham, 2014).

Using competition assays (see Materials and methods), we determined the fitness of the evolved lin-

eages that contain GAT1 mutations plus an additional 3–4 variants in other genes acquired during

LTEE. These variants include two MEP2 alleles that we previously identified as reversions of a lab

acquired mutation in the transmembrane domain of MEP2 (Hong and Gresham, 2014). We also

quantified the fitness of the GAT1 mutations alone, in different nitrogen-limiting conditions – ammo-

nium, glutamine, proline and urea – using chemostats and rich media (YPD) batch condition. All

strains containing GAT1 missense mutations are significantly increased in fitness in ammonium-
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Figure 1. Repeated LTEE in ammonium-limited chemostats selects for adaptive mutations in GAT1. (a) LTEE design. Three chemostat vessels w ere

founded with a clonal ancestral population and maintained under constant dilution with defined media containing 0.4 mM (NH 4) 2 SO 4 , (0.8mM

nitrogen). Chemostats were maintained in continuous mode for 250 generations (~ 3 months) and samples obtained every 10-20 generations for

archiving. (b) Dynamics of population fitness. The rate of fitness improvement decelerates over time for three independently replicated LTEE (R1, R2

Figure 1 continued on next page
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limited chemostats, but exhibit decreased fitness in all other nitrogen-limited conditions consistent

with antagonistic pleiotropy (Figure 2b). By contrast, a GAT1 knock out (KO) strain exhibits a fitness

defect in both ammonium and proline limited chemostats. GAT1 mutations are nearly neutral in YPD

batch media conditions in which GAT1, and the entire NCR regulon, is transcriptionally repressed.

Collectively, these results suggest that missense mutations in the DNA binding domain of GAT1

acquired during LTEE alter its function rather than rendering it non-functional.

Increased gene expression of nutrient transporters through gene amplification is a prevalent

means of increasing fitness in nutrient-limited chemostats (Hong and Gresham, 2014). We asked

whether the effects of beneficial GAT1 mutations are mediated by their impact on MEP2 regulation

and therefore represent an alternate class of adaptive mutations with the same functional effect of

increased transporter expression. To test the importance of MEP2 for the increased fitness associ-

ated with GAT1 variants we deleted either the ORF or the promoter region (1 kb upstream of the

ORF) of MEP2 in the background of the gat1-1 and gat1-3 alleles and tested their fitness in ammo-

nium-limited chemostats. All strains had severely reduced fitness (Figure 2—figure supplement 1a)

consistent with the beneficial effect of GAT1 variants being dependent, at least in part, on MEP2

expression. We also isolated evolved lineages with increased copy numbers of MEP2 from each of

the three LTEEs and quantified MEP2 copy number, expression level and relative fitness in ammo-

nium-limited conditions (Figure 2—figure supplement 1b). Increased copy number of MEP2 corre-

lates with increased mRNA expression and results in fitness increases (s > 1.3) greater than that

conferred by GAT1 variants (Figure 2b). The detection of lineages with increased fitness and

increased expression of MEP2 resulting from CNVs is consistent with fitness increases in GAT1 vari-

ant lineages being attributable to their effect on MEP2 expression.

GAT1 variants result in increased expression of MEP2 but decreased
expression of DAL80
We investigated the effect of adaptive missense mutations in GAT1 on gene expression. We per-

formed RNA-seq using three strains that contain one of each of the three adaptive GAT1 mutations

alone cultured in ammonium-limited chemostats. We compared expression profiles of GAT1 adap-

tive mutations with those in the corresponding evolved lineages from which the mutations were iso-

lated (Hong and Gresham, 2014). We found significant divergence of NCR gene expression in all

tested strains (Figure 3a and Supplementary file 1B). GAT1 mutations result in increased expres-

sion of genes encoding ammonium transporters (MEP1, MEP2, and MEP3) as well as transporters

that import other nitrogen sources such as urea, allantoin and GABA. The evolved lineages, which

Figure 1 continued

and R3). Error bar are 95% CI of linear regression analysis of competition assays, which comprised six time points each. (c) Allele dynamics in parallel

LTEE. Whole population while genome sequencing was performed on samples from the three LTEEs at 50, 100 and 250 generations to identify high

frequency mutations (> ~10%) using an Illumina HiSeq2500 in 2 x 50 bp paired end mode with an average read depth of ~50X. The frequency of the

MEP2 amplification was defined as the proportion of clones bearing more than 2 copies of MEP2 among 96 randomly selected clones. GAT1 (red lines)

variants are a primary target in the earliest generations of selection but, in some LTEE, are ultimately replaced by other alleles including CNVs that

encompass MEP2 (blue lines) and mutations in genes that control cell cycle and growth. x- and y-axes represent time in generation and AF (allele

frequency) in %, respectively. (d) Dynamics of minor frequency mutations. 12 genes that have previously been identified as adaptive targets of selection

in different nitrogen-limited environments (see method) were subjected to targeted deep sequencing. Multiple missense mutations in GAT1 are

present simultaneously in each population and compete with each other during the earliest generations. Discrepancies in the estimated AFs of the

same mutations identified in Figure 1c are likely due to noise in the sequencing assay. x- and y-axes represent time in generation and AF (allele

frequency) in %, respectively (e) Mutational landscape of adaptive GAT1 mutations. All mutations in GAT1 with population AF greater than 1% are

shown. The DNA binding domain of GAT1 is a mutational hotspot in all ammonium-limited LTEE. Multiple missense (protein coding alteration)

mutations were observed but no nonsense or frame-shift mutations were detected. (f), The DNA binding domain of GAT1 is under purifying selection in

the wild. dN and dS values (see method for their definition) for GAT1 at each amino acid position were calculated using SNAP v2.1.1 (http://www.hiv.

lanl.gov/content/sequence/SNAP/SNAP.html) Korber, 2000 using sequences from 42 different wild yeast strains. Unlike LTEE in ammonium-limited

chemostats, the GAT1 DNA binding domain is under purifying selection implying that non-synonymous mutations are likely to be detrimental in

dynamic environments.

DOI: https://doi.org/10.7554/eLife.32323.002

The following figure supplement is available for figure 1:

Figure supplement 1. Model of NCR regulon.

DOI: https://doi.org/10.7554/eLife.32323.003
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contain GAT1 mutations as well as additional mutations, show more ‘fine-tuned’ gene expression in

which only ammonium permease-encoding genes are increased in expression while other NCR tar-

gets, which are likely to be irrelevant when ammonium is the only nitrogen source, are repressed.

By contrast, GAT1 mutations result in a strong reduction in DAL80 expression. The expression of

GLN3 and GZF3 is unchanged in the presence of GAT1 variants (Supplementary file 1B) suggesting

that the altered expression of MEP2 and DAL80 is attributable to changes in GAT1 binding

affinity. Interestingly, GAT1 variants also result in increased expression of GAT1 itself.

To further quantify changes in transcriptional activity attributable to GAT1 variants, we fused the

promoter sequences of four targets of GAT1 (GAP1, MEP2, GZF3 and DAL80) to the coding

sequence of GFP in the backgrounds of the ancestral (WT), KO (gat1D0), and the three GAT1 var-

iants (gat1-1, gat1-2 and gat1-3) (Figure 3—figure supplement 1a). GFP expression levels mea-

sured using this assay were highly comparable to RNA-seq data (Figure 3—figure supplement 1b)

and therefore a good proxy of transcriptional activation of each promoter in the background of the

different GAT1 variants (Figure 3—figure supplement 1c).

We found significant differences in transcriptional activities between GAT1 variants at MEP2 and

DAL80 promoters in nitrogen-limited (both ammonium and proline) conditions (Figure 3b and

Supplementary file 1C). All adaptive GAT1 mutations result in strongly reduced DAL80 expression

and increased MEP2 expression compared to the wild type, while a GAT1 KO strain showed slightly

reduced DAL80 expression and decreased MEP2 expression. This result is consistent with our RNA-

seq analysis and provides additional evidence that the beneficial missense mutations in the DNA

binding domain of GAT1 do not render it non-functional. We also tested whether these mutations

Figure 2. Adaptive GAT1 mutations underlie increased fitness and confer antagonistic pleiotropy. (a) 3D structure model of GAT1 DNA binding

domain. The 3D structure is based on available GATA factor DNA binding domain structures in the modbase database (https://modbase.compbio.ucsf.

edu/). Adaptive amino acid changes selected for the subsequent analyses lie within, or in close proximity, to the DNA binding domain of GAT1. (b)

Fitness effects of GAT1 mutations. GAT1 variants are beneficial in ammonium-limited chemostats and confer increased fitness in the lineages in which

they occur. GAT1 variants confer a fitness cost in non-ammonium limited environments consistent with antagonistic pleiotropy. Error bars represent

95% CI of linear regression analysis of competitive fitness assays. ‘*’ denotes the absence of a 95% CI estimate due to a small number of time points

sampled in the fitness assay (<5). (YPD: YPD batch culture, AS: Ammonium sulfate-limited chemostat, Gln: Glutamine-limited chemostat, Pro: Proline-

limited chemostat, Urea: Urea-limited chemostat; all nitrogen-limited media were normalized to 0.8mM nitrogen).

DOI: https://doi.org/10.7554/eLife.32323.004

The following figure supplement is available for figure 2:

Figure supplement 1. GAT1 variant fitness effects are due to its effect on MEP2.

DOI: https://doi.org/10.7554/eLife.32323.005
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are dominant or recessive using diploid strains heterozygous for adaptive GAT1 mutations (e.g.

gat1-1/GAT1) (Figure 3c). DAL80 and MEP2 promoter activities in these heterozygotes were identi-

cal to the haploid ancestral strain (FY4) containing a wildtype GAT1 allele indicating that the mis-

sense mutations of GAT1 are recessive and therefore unlikely to have gain-of-function or dominant

negative effects. The maintenance, but reduced, expression of DAL80 and MEP2 in the GAT1 KO

background (Figure 3b) is due to the activity of GLN3 as a gat1 gln3 double KO results in no expres-

sion from the DAL80 and MEP2 promoters (Figure 3—figure supplement 2). GLN3 is required for

expression of MEP2 in the presence of GAT1 variants (Figure 3—figure supplement 2), likely due

to its role in activating the entire NCR regulon, but in these strains the expression of GLN3 is not

increased and therefore does not contribute to the increased steady-state expression of MEP2.

Figure 3. Adaptive GAT1 variants exhibit differential effects on target gene expression. (a) Gene expression profile of NCR genes in different GAT1

variant lineages. ‘Blue’ gene names indicate permease-encoding genes for different nitrogen sources. Clustered gene expression values relative to the

ancestral strain (log2 transformed fold change compared to the ancestor without statistical filtering) are shown for 41 experimentally confirmed NCR

target genes. Expression data for the final evolved population and two lineages containing multiple mutations in addition to GAT1 variants from our

previous report (Hong and Gresham, 2014) are also presented for reference. (b) Transcriptional reporter assay for MEP2 and DAL80. We quantified

GFP expression from the MEP2 and DAL80 promoters in the ancestral and GAT1 variant backgrounds in different nitrogen-limited conditions. In

nitrogen-limited chemostats containing different individual sources of nitrogen (ammonium, glutamine, proline and urea), all mutant strains (gat1-1,

gat1-2 and gat1-3) show the same gene expression pattern for DAL80 (decreased expression) and MEP2 (increased expression) compared to the

ancestral genotype. A GAT1 KO mutant results in decreased expression of both DAL80 and MEP2. (c) GFP reporter assay for MEP2 and DAL80

promoters in heterozygous diploids. The gat1-1/GAT1 genotype results in expression of DAL80 or MEP2 comparable to the ancestral strain. The

distribution and median expression (dashed line) for each genotype is shown.

DOI: https://doi.org/10.7554/eLife.32323.006

The following figure supplements are available for figure 3:

Figure supplement 1. Construction and validation of transcriptional reporters.

DOI: https://doi.org/10.7554/eLife.32323.007

Figure supplement 2. GFP reporter assay for MEP2 and DAL80 in the background of GLN3 KO.

DOI: https://doi.org/10.7554/eLife.32323.008
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GAT1 mutations decrease affinity for its consensus binding site in both
MEP2 and DAL80 promoters
To test whether adaptive GAT1 mutations have acquired new binding specificities we used protein

binding microarrays (PBMs) to assay the DNA binding domains of adaptive GAT1 alleles (gat1-1 and

gat1-3) as well as the ancestral GAT1 allele. Whereas the ancestral GAT1 DNA binding domain

shows clear evidence of specificity for the GATAA consensus sequence, adaptive GAT1 alleles failed

to show evidence for any significant binding specificity using PBMs (Supplementary file 2A) indicat-

ing that their functional and fitness effects are not exerted by the acquisition of new DNA binding

specificities.

We quantified alterations in the affinity of the adaptive GAT1 alleles for their target DNA sequen-

ces using electrophoretic mobility shift assays (EMSAs) (Figure 4a, Supplementary file 2B and S6).

We studied the binding of adaptive GAT1 TF to the promoter sequences of MEP2 and DAL80, which

showed discrepant effects on gene expression in the presence of adaptive GAT1 alleles: increased

expression in the case of MEP2 and decreased expression in the case of DAL80 (Figure 3a and

Figure 3b). MEP2 contains two distinct GATAA sequence motifs in its promoter region whereas

DAL80 possesses only one. Adaptive GAT1 variants showed significantly decreased binding affinity

to all target motifs (Figure 4b). Binding kinetics calculated based on a two parameter Michaelis-

Menten model (Stormo and Zhao, 2010) show that adaptive GAT1 mutations have a more detri-

mental effect on binding to the DAL80 promoter GATAA site compared with the two MEP2 pro-

moter binding sites likely reflecting differences in motif strength (Figure 4c and Supplementary file

1D). This suggests that the adaptive GAT1 alleles encode functional TFs that maintain sequence

specificity for GATAA binding sites, but exhibit a quantitative decrease in affinity for their target

sites compared to the ancestral allele. Whereas reduced affinity of GAT1 variants for the compara-

tively weak promoter of DAL80 results in its reduced expression, expression from the comparatively

strong MEP2 promoter is increased in the presence of GAT1 variants despite a reduction in affinity

for GATAA sites in the MEP2 promoter. Consistent with a differential effect of reduced GAT1 bind-

ing affinity on different promoters, we identified a significant positive correlation between gene

expression levels of NCR genes and the estimated affinity of each promoter for GAT1 (Figure 4d).

Interestingly, GAT1-1 (W321L) shows a much stronger reduction in DNA binding affinity com-

pared to GAT1-3 (R345G) for both tested promoter sequences (Figure 4b and c). Two pieces of evi-

dence suggest this difference may have important functional effects. First, we find that the residue

(R345) altered in the GAT1-3 allele is the most frequently mutated site in multiple LTEEs whereas

only a single variant was identified at the site mutated in the GAT1-1 allele (W321) (Figure 1e). Sec-

ond, the GAT1-3 variant results in higher relative fitness compared to the GAT1-1 variant

(Figure 2b). These observations suggest that intermediate reductions in GAT1 binding affinity may

be more beneficial than strongly reduced binding. Consistent with this claim, complete loss of GAT1

results in decreased MEP2 expression (Figure 3b) and is deleterious (Figure 2b).

Decreased TF affinities can result in increased expression from an I1-
FFL
Using functional assays, we found that the impact of GAT1 variants on promoter binding affinities

differs between the DAL80 and MEP2 promoters. As DAL80 is a negative regulator of MEP2, a quan-

titative decrease in DAL80 expression is expected to result in increased expression from the MEP2

promoter. However, GAT1 variants also reduce affinity for the MEP2 promoter sequence potentially

decreasing its direct activation. Thus, while the overall topology of the GAT1-DAL80-MEP2 I1-FFL is

maintained in evolved lineages, the increase in MEP2 expression, and likely other targets with strong

promoters (including GAT1 itself), must be mediated by maintenance of direct binding at the MEP2

promoter and an indirect effect through reduced activation of the repressor, DAL80 (Figure 4e).

Using a mathematical model of I1-FFLs we confirmed that a net increase in MEP2 expression results

when decreased activation at the DAL80 promoter is the only functional effect of GAT1 variation

(Figure 4f). However, using this model we also find that a GAT1 variant that results in a decrease in

direct activation of the MEP2 promoter will result in increased expression of MEP2 when activation

of the DAL80 promoter is also decreased. Increased MEP2 expression, despite decreased activation

of the MEP2 promoter, is enhanced by a greater relative decrease in DAL80 activation. Thus, our

model of a I1-FFL is consistent with the finding that decreased binding affinity of GAT1, leading to
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Figure 4. Adaptive GAT1 variants alter DNA binding affinities in a promoter-specific manner. (a) Design of protein-DNA binding assays. We purified a

151-amino acid long protein fragments of GAT1 containing the DNA binding domain (DBD) (positions 310–349) for the ancestral GAT1 and two

adaptive mutations – gat1-1 (W321L) and gat1-3 (R345G). DNA sequences containing the consensus sequence in MEP2 and DAL80 promoters were

determined from the MotifDb collection in Bioconductor. MEP2 motif 1 contains three copies of GATAA, MEP2 motif 2 contains two copies of GATAA

and DAL80 motif 1 contains one copy of GATAA. (b) Electrophoretic mobility shift assay (EMSA) analysis of GAT1 variants. Increasing quantities of the

GAT1 DBD protein fragment from 0 to 20 mg were added to 32P-labeled dsDNA. Arrows and stars indicate protein-bound DNA and unbound DNA

respectively. Negative motif sequences (neg) were prepared by randomizing bases only at their GATAA binding motif sequences (see

Supplementary file 2B). (c) Proportion of bound DNA for different amounts of protein. The two GAT1 variants showed significantly decreased binding

affinity to all three GATAA motifs. Dotted lines are fits to a two-parameter Michaelis-Menten model. Only ancestral GAT1 and gat1-3 (R345G) showed

significant estimates of two parameters (Frmax and Kx) (p-value<0.02). Insignificant estimates for gat1-1 (W321L) may be due to the small number of data

points (Supplementary file 2C). (d) Correlation between GAT1 promoter affinity and expression changes for NCR target genes. The promoter affinity

for GAT1 (Lee and Bussemaker, 2010) is positively correlated (Spearman correlation = 0.31; p-value=0.02) with the alteration in expression of NCR

targets in strains containing adaptive GAT1 mutations (log2 transformed fold change of gene expression of NCR genes in GAT1 variant strains

compared to the ancestor strain). (e) Model for altered output from the NCR regulatory network by adaptive GAT1 mutations. GAT1 mutations reduce

affinity for the promoter of MEP2, but have an even greater reduction in affinity for the promoter of the repressor, DAL80. (f) Mathematical modeling of

GAT1 affinity for MEP2 and DAL80 promoters on steady-state MEP2 expression. The steady state expression level of MEP2 depends on both the

absolute activation of the MEP2 promoter (indicated with increasing levels of blue) and DAL80 promoter and the ratio of their levels of activation (x-

axis). MEP2 expression relative to an ancestral state (green point) is increased by adaptive GAT1 variants that result in a quantitative decrease in direct

activation of MEP2 and a proportionally greater decrease in direct activation of DAL80 (parameter space resulting in increased MEP2 expression

outlined by red triangle). As shown in the inset, an ancestral state in which MEP2 promoter activation (red) is greater than DAL80 promoter activation

(pink) can evolve to a state in which both promoters are decreased in activation, but the decrease is more pronounced at the DAL80 promoter.

DOI: https://doi.org/10.7554/eLife.32323.009

The following figure supplements are available for figure 4:

Figure supplement 1. Increasing GAT1 expression results in increased MEP2 expression.

DOI: https://doi.org/10.7554/eLife.32323.010

Figure supplement 2. Purification of GST-tagged DNA binding domains of GAT1 variants.

DOI: https://doi.org/10.7554/eLife.32323.011
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decreased activation of both the DAL80 and MEP2 promoters (Figure 4b and Figure 4c) can simul-

taneously result in decreased expression of the repressor, DAL80 and increased expression of the

target gene, MEP2 (Figure 3a and Figure 3b). Using RNA-seq, we also find that the expression of

GAT1 is increased as a result of GAT1 variants (Figure 3a). As GAT1 activates its own expression

and is also repressed by DAL80, increased expression of GAT1 is likely due to the same phenome-

non that results in increased MEP2 expression. The increase in GAT1 expression likely also contrib-

utes to increased MEP2 expression, as modeling an increase in GAT1 expression results in increased

MEP2 expression (Figure 4—figure supplement 1).

Discussion
Here, we describe the evolution of a gene regulatory network in real time and dissection of the func-

tional basis of adaptive changes in transcription factor binding affinity. We find that missense muta-

tions in GAT1 are under strong positive selection in populations evolving in a constant ammonium-

limited environment. The functional effects of adaptive GAT1 mutations are the result of increasing

the output from an I1-FFL, one of the most frequently occurring network motifs in transcriptional

networks, by reducing the binding affinity of the activator, GAT1. The functional effect of adaptive

GAT1 variation is mediated by increased expression of a high affinity ammonium transporter that

results in increased fitness in the ammonium-limited environment.

Increased sequencing resolution identifies multiple adaptive alleles in
evolving populations
To date, genetic diversity and the dynamics of evolving lineages during LTEE has been largely

explored using whole population whole genome sequencing (Hong and Gresham, 2014;

Lang et al., 2013; Kvitek et al., 2013). However, the development of high-resolution lineage track-

ing using random molecular barcodes revealed that a multitude of lineages with increased fitness

compete during the early stages of adaptive evolution, but are subsequently outcompeted by a

small number of lineages carrying high-fitness mutations that occur early in the populations’ histories

(Levy et al., 2015). Consistent with this observation, we find that targeted deep sequencing of

evolving populations identified many GAT1 mutations in evolving populations that are under positive

selection, but never increase to population frequencies greater than 1%. These beneficial mutations

are not detected by population-level sequencing. Thus, defining the complete spectrum of adaptive

mutations in evolving populations requires methods for detecting low frequency mutations that are

beneficial but do not persist in the population. This is currently most feasible using the approach we

adapted in this study: LTEE in defined environments and ultra-deep sequencing of loci that are

known, or suspected, to harbor adaptive variation.

Transcription factor binding affinities and promoter strength determine
the output of network motifs
The transcriptional output from a promoter is a function of the strength of the promoter, which

depends on the identity and number of cis regulatory elements, and the affinity of a transcription

factor for those elements. Promoters are bound by both activating and repressing transcription fac-

tors and the relative activities of these trans factors coordinately controls the amount of expression

from a given promoter. Here, we have shown that decreasing the binding affinity of GAT1 for its tar-

get sequence increases expression output from the MEP2 promoter as well as other GAT1 targets

with strong promoters. We attribute the increase in MEP2 expression to decreased affinity of GAT1

for its consensus sequence, which reduces transcriptional output from the DAL80 promoter, a com-

paratively weak promoter. A reduction in the effective concentration of the repressor results in

increased transcriptional output from the MEP2 promoter. Surprisingly, we also observe reduced

affinity of GAT1 variants for the MEP2 promoter, which one would expect might reduce its transcrip-

tional output. However, as illustrated by our model (Figure 4f), a proportionally greater decrease in

DAL80 expression can outweigh the effect of reduced activation of the MEP2 promoter. GAT1 is

auto-regulatory and we observe that GAT1 variants also result in increased GAT1 expression, which

further increases expression output from the MEP2 promoter (Figure 4—figure supplement 2).

Thus, quantitatively different effects of transcription factor variants on promoters of differing
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strengths, in the context of gene regulatory architectures, can lead to counterintuitive impacts on

gene expression.

The long-term fate of GAT1 mutations in evolving populations
In our repeated LTEE we detected multiple GAT1 mutations during the first ~100 generations of

selection in ammonium limitation. The preponderance of these mutations within and between popu-

lations suggests that remodeling the GAT1-DAL80-MEP2 I1-FFL is a frequently occurring repeatable

mode of adaptive evolution during the earliest stages of adaptive evolution in ammonium-limited

environments. However, adaptive GAT1 alleles likely do not represent a fitness optimum in the

ammonium-limited environment as, in contrast to our previous study (Hong and Gresham, 2014),

we found that ultimately these alleles were outcompeted by lineages containing MEP2 amplifica-

tions. MEP2 amplifications have the same functional effect as adaptive GAT1 mutations: they

increase expression of MEP2 enabling improved ammonium transport capabilities. However, the

increased expression of other high affinity transporters in GAT1 lineages that are unable to transport

ammonium may confer a fitness cost that is not associated with MEP2 amplification alleles. It should

be noted that our method for detecting MEP2 amplifications has limited detection power until CNVs

rise to high frequencies in the population. Thus, it is likely that MEP2 amplification alleles co-exist

with adaptive GAT1 mutations during the early phases of evolution but are undetectable using our

sampling and assay scheme.

Our results provide insight into NCR regulation and suggest additional levels of regulatory com-

plexity. First, it is notable that we do not detect DAL80 loss of function alleles in our LTEE. Given the

current model of NCR regulation, loss of the repressor DAL80 would be expected to result in

increased expression of MEP2 and other NCR regulated genes resulting in increased fitness. Simi-

larly, we do not see selection for variation in the other NCR repressor, GZF3. Finally, GLN3, the

upstream activator of NCR genes, which is itself not a target of NCR regulation does not appear to

harbor any adaptive variation. Combining LTEE with targeted studies of functional and fitness effects

of regulatory components of NCR may provide further insights into how these four GATA factors

coordinately regulate the NCR regulon.

Parallels with oncogenic transcription factors mutations in human
tumors
Experimental evolution in eukaryotic microbes has many parallels with the molecular processes, and

evolutionary dynamics, underlying tumorigenesis. The evolutionary hotspot in the DNA binding

domain of GAT1 identified in this study is reminiscent of hotspots in transcriptional regulators impor-

tant in tumorigenesis including recurrent missense mutations in the DNA binding domain of TP53, a

driver in the majority of human cancers (Freed-Pastor and Prives, 2012), and CTCF, a poly-zinc fin-

ger transcription factor regulating oncogenes and tumor suppressor genes (Ong and Corces, 2014).

As with adaptive evolution, missense mutations in the DNA binding domain of these transcription

factors result in altered binding affinities at the promoters of target genes resulting in aberrant tran-

scriptional activation in various cancers (Park et al., 1994; Inga et al., 2001; Filippova et al., 2002).

Understanding the gene regulatory architecture of transcription factors that play important roles in

human cancers will undoubtedly contribute to understanding the functional effect of oncogenic

variation.

Conclusion
The study of evolutionary processes using LTEE enables testing the dynamics, outcome and func-

tional basis of adaptive evolution. Selection in chemostats provides the benefit of defined selective

conditions and testable hypotheses regarding the functional basis of increased fitness (Gresham and

Hong, 2015; Gresham and Dunham, 2014). Our study highlights the importance of network motifs

and incorporation of biophysical parameters in gene regulatory models in order to predict their func-

tional output in the context of evolution. As I1-FFL are one of the most frequent motifs in transcrip-

tional networks they may serve a general evolutionary role as facilitators of transcriptional tuning

through modulation of transcriptional factor binding affinities. Further work is required to determine

whether the properties of I1-FFL afford this motif unique evolutionary potential.
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Materials and methods

Strains and media
The ancestral strain used for all LTEE is a prototrophic haploid derivative (FY4; MATa) of the S288c

reference strain. To isolate individual GAT1 mutations, we crossed each evolved lineage to an iso-

genic haploid strain of the opposite mating type (FY5; MATa) and, following sporulation, recovered

meiotic products bearing different combinations of derived adaptive alleles. To genotype individual

segregants, we used allele-specific PCR for which two allele specific forward primers and one com-

mon reverse primer were prepared. We also knocked out the entire GAT1 locus by replacing it with

nourseothricin resistance (NatR) marker using a standard high efficiency transformation protocol. We

engineered GFP fused promoter constructs for four GAT1 targets (GAP1, MEP2, DAL80 and GZF3)

and integrated them at the HO locus using homology based transformation (Figure 3—figure sup-

plement 1). For each construct, we fused GFP with 1 kb of sequence 5’ and 1 kb of sequence 3’ of

the open reading frame (ORF) for each target gene, which encompasses regulatory elements includ-

ing promoter and UTRs. We attempted to construct a GFP-based transcriptional reporter using the

GAT1 promoter but found that including as much as 2 kb of sequence 5’ to the GAT1 ORF failed to

activate GFP expression in either ancestral or adaptive GAT1 backgrounds (data not shown). We

also knocked out the MEP2 ORF and 1 kb of sequence upstream of the MEP2 ORF in the back-

ground of the ancestral strain as well as two strains bearing single GAT1 missense mutations (gat1-1

and gat1-3) using the same transformation protocol. We constructed diploid strains that are hetero-

zygous at the GAT1 locus by mating the GFP reporter constructs in the ancestral background and

three GAT1 mutant backgrounds to an isogenic strain of the opposite mating type (FY5). All con-

structed strains were verified using Sanger sequencing. All medium conditions and recipes were

identical with those used in our previous study (Hong and Gresham, 2014): all nitrogen-limited

media contained 0.8 mM of nitrogen regardless of the molecular form.

LTEEs
All conditions for replaying LTEEs in chemostats were identical to those described in our previous

study (Hong and Gresham, 2014). The dilution rate (0.12 hr�1) of the chemostat was checked every

one or two days over the 250 generation (~3 months) duration of the LTEEs, and intermediate sam-

ples of each population were archived every 20 generations. We confirmed that the steady-state cell

density of ~3 � 107 cells/mL was consistently maintained in the 200 mL cultures over the entire

LTEE.

Whole genome, whole population sequencing
We performed whole genome sequencing of entire populations at 50, 100 and 250 generations for

all LTEE cultures. Sequencing library preparation was performed using the Illumina TruSeq library

preparation protocol as previously described (Hong and Gresham, 2014). We used 2 � 50 bp

paired end mode on a HiSeq 2500 and all fastq files were processed using bwa (Li and Durbin,

2009), samtools (Li et al., 2009), and SNVer (Wei et al., 2011) to generate a list of mutations with

significant allele frequencies in each population. The average sequence read coverage was around

50x, resulting in a detection limit for SNPs around 10% (i.e. we required that each variant was pres-

ent in at least five reads). We identified CNVs by normalizing read depth at each nucleotide position

to the median read depth of the entire genome by processing BAM files using samtools and R. We

identified CNVs that include MEP2 in all three populations at 250 generations using read depth anal-

ysis. At each time point during the LTEE, we estimated the allele frequency of CNVs in the popula-

tion by randomly selecting 96 clones and conducting qPCR to measure the copy number of MEP2

for all clones. We found that most clones possess one or two copies of MEP2 but some possesses

up to eight or nine copies (data not shown). All clones containing two of more copies of MEP2 were

aggregated within each population for allele frequency estimates of CNVs.

Targeted amplicon sequencing
We performed targeted deep sequencing for 12 loci: GAT1, MEP2, LST4, VAC14, RIM15, YBR271W,

RPL26B, YKL050C, WHI5, DAL81, TPK3 and YKL162C. These loci are either genes that (1) contain

high frequency SNPs identified in population sequencing or (2) have been repeatedly identified as
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containing acquired variants in prior LTEEs in nutrient-limited chemostats. For each locus, we ampli-

fied the entire coding sequence plus 1 kb upstream and downstream of the ORF using PCR. We

then randomly fragmented PCR products using sonication to a size of ~250 bp and prepared DNA

sequencing libraries using the identical protocol used for population sequencing. Amplicon libraries

were sequenced using an Illumina MiSeq in a 2 � 250 bp mode such that the two paired reads over-

lapped and each insert was sequenced twice. Only overlapping regions were used for allele fre-

quency estimation and thereby we were able to dramatically reduce the false positive SNP call rate.

For SNP frequency estimation, the average read coverage from amplicon sequencing was ~50,000.

Using SNVer, we determined minor allele frequency mutations for all variants present at a frequency

of �1%.

dN/dS test
We obtained 42 different GAT1 sequences from multiple yeast isolates that were reported in a previ-

ous study (Liti et al., 2009). These include 32 natural isolates collected from multiple geographical

locations including Europe, Africa, America, Asia and Oceania, and 10 domesticated isolates from

sake or wine fermentations. dN and dS represent the proportion of observed nonsynonymous substi-

tutions among all potential nonsynonymous substitutions and the proportion of observed synony-

mous substitutions among all potential synonymous substitutions, respectively. Actual values for

each amino acid position were calculated from SNAP v2.1.1 (http://www.hiv.lanl.gov/content/

sequence/SNAP/ SNAP.html)(Korber, 2000).

3D structural analysis of the GAT1 DNA binding domain
The ModBase model of yeast GAT1 (UniProt P43574) from an NMR structure (PDB 4GAT) com-

plexed with Zn and DNA, with a nearly identical fold to a high-resolution crystal structure (PDB

2VUS), is the best model available. The 3D image was visualized by Polyview-3D (http://polyview.

cchmc.org/polyview3d.html).

Competitive fitness assays
Competition assays were performed as in (Hong and Gresham, 2014). We used a mCitrine-labeled

ancestral (FY4) strain (DGY500, see Supplementary file 1E) for all competition assays. For popula-

tion-level fitness assay, we established cultures containing the ancestral mCitirine-labeled strain

(DGY500) alongside chemostats vessels in which LTEE were performed and let them reach the

steady state conditions at the same dilution rate. We then mixed a sample from the LTEE with the

fluorescence labeled ancestor strain in ratio of 1:9. To determine population fitness, each competing

culture was sampled at multiple (5 -10) time points over a total period of less than 20 generations.

At least 10,000 cells were assayed using an Accuri flow cytometer to determine the relative abun-

dance of each genotype, and relative fitness determined using linear regression of the natural loga-

rithm of the ratio of the two genotypes against the number of elapsed generations. We tested the

fitness of three evolved mutants, three segregants from backcrossing experiments that contained

only GAT1 mutations and one engineered GAT1 KO strain in four different nitrogen-limited chemo-

stat conditions – using either ammonium, glutamine, proline or urea – and in YPD rich medium using

batch culturing and serial dilution. We also performed fitness assays for MEP2 ORF and promoter

deletion strains in the ancestral background, and in the presence of gat1-1 and gat1-3 alleles, and

three evolved lineages harboring additional MEP2 gene copy selected from the finally evolved popu-

lations, using the same procedures in ammonium-limited chemostats. For the competition assay in

YPD rich condition, we sampled twice per day and back-diluted the culture (1/200) into a fresh

medium every night for 3 or 4 days. All subsequent analysis steps for clonal fitness determination

were the same as population fitness assays.

RNA-seq
We performed RNA-seq analysis in strains containing one of four different GAT1 alleles (ancestral

gat1, gat1-1, gat1-2, gat1-3) and one of three strains different GFP-based transcriptional reporter

for either the GAP1, MEP2 or DAL80 promoter (Supplementary file 1E). Each set of experiments

using strains that contained the same GAT1 allele, but different transcriptional reporters was treated

as biological triplicates as these strains are identical except for the transcriptional reporter. In total,
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we cultured 12 different chemostat vessels (3 GFP reporters x 4 different GAT1 alleles) and har-

vested a sample of 10 mL from each culture at steady state using vacuum filtration and snap freezing

in liquid nitrogen with subsequent storage at �80˚C until further processing. RNA extractions were

performed using an acid phenol-chloroform method. For mRNA enrichment, we used poly-A selec-

tion and the final yield of selected RNA molecules was around 10–50 ng in total. For cDNA synthesis,

we used Superscript III kit (Invitrogen) and dNTPs mixtures for the first strand synthesis and E. coli

DNA ligase and polymerase I (Invitrogen) for second strand synthesis with a mixture of dATP, dCTP,

dGTP and dUTP. Then, we performed end-repair, A-tailing and adapter ligation based on the stan-

dard Illumina TruSeq library preparation protocol. All reaction cleanups between each step were

performed using AMPure XP beads (Beckman Coulter, Inc). For directional sequencing of first strand

cDNA only, we treated with UNG (Thermo) and amplified the ligated molecules using Phusion high

fidelity DNA polymerase (NEB) using 12 or 15 of PCR cycles. Adapter dimers were removed by con-

ducting two rounds of size selection using AMPure XP beads. We confirmed the expected size distri-

bution of ligated molecules using a BioAnalyzer and then quantified library concentrations using

qPCR and KAPA Library Quantification kits (KAPA Biosystems). All RNA-seq was performed using an

Illumina HiSeq 2500 in a 2 � 50 bp paired end rapid-run mode. We used Tophat (Trapnell et al.,

2009) to align sequencing reads to the Saccharomyces cerevisiae S288C reference genome,

obtained from SGD on Feb 03, 2011. From the resulting RNA-seq count data, we used edgeR

(Robinson et al., 2010) to determine significant differential expression (DE) for all genes compared

to the ancestral strain grown in the same conditions (see the final log2 transformed fold change val-

ues in Supplementary file 1B). The pearson correlation between promoter affinity for GAT1 and

gene expression fold change was calculated for NCR genes only and a p-value was determined using

permutation testing by randomly selecting 10,000 gene sets of the same size from all ~6000 yeast

genes.

GFP reporter assays
All reporter strains were grown in the same chemostat conditions at a dilution rate of 0.12 h�1. Sam-

ples were taken at steady state, sonicated, resuspended in PBS buffer, and analyzed using an Accuri

flow cytometer. In addition, we tested GFP expression in minimal media batch cultures containing

either ammonium, glutamine, or proline as well as YPD batch culture. All GFP intensity values were

normalized by forward scatter (FSC-A) and log10 transformed.

Protein binding microarrays
PBM methods were identical to those described in (Lam et al., 2011; Weirauch et al., 2013). The

DNA binding domains of GAT1 (WT) and two mutants (gat1-1 and gat1-3) flanked by 50 amino acids

on each side (see protein sequences in Supplementary file 2B) were subcloned into a GST-tag con-

jugated vector pTH6838 (Supplementary file 1F). Each plasmid was analyzed in duplicate on two

different arrays (HK and ME) with differing probe sequences. We used 150 ng of plasmid DNA in a

15 ml in vitro transcription/translation reaction using a PURExpress In Vitro Protein Synthesis Kit

(New England BioLabs) supplemented with RNase inhibitor and 50 mM zinc acetate. Calculation of 8-

mer Z- and E-scores was performed as previously described (Berger et al., 2006). Microarray data

were processed by removing spots flagged as ‘bad’ or ‘suspect’, and employing spatial de-trending

(using a 7 � 7 window centered on each spot) as in (Weirauch et al., 2013). Experiments were

deemed successful if at least one 8-mer had an E-score >0.45 on both arrays, the complementary

arrays produced highly correlated E- and Z-scores, and the complementary arrays yielded similar

PWMs based on the PWM_align algorithm, which aligns the top ten 8-mers (based on E-scores), and

tallies the frequency at each position to generate a PWM (Weirauch et al., 2013).

Electrophoretic mobility shift assays (EMSA)
We cloned the DNA binding domains of GAT1 (WT) and two mutants (gat1-1 and gat1-3) flanked by

50 amino acids on each side (see protein sequences in Supplementary file 2B) into a plasmid back-

bone (pGEX 4 T-2; see Supplementary file 1F) containing a GST-tag, and introduced them into

competent E. coli strains. GST-tagged proteins (~43 kDa) were induced and purified using glutathi-

one. Purified products were analyzed using SDS-PAGE and Coomassie blue staining (Figure 4—fig-

ure supplement 1). EMSAs were performed by incubating increasing amounts of purified protein (0,
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1, 5, 10, 15, and 20 mg) with a constant amount of a radiolabeled dsDNA corresponding to the

GATAA motif present in the MEP2 and DAL80 promoters (see oligonucleotide sequences in

Supplementary file 2C). Following electrophoresis, the gel was exposed to a phosphoimager screen

for 30 min and scanned using a Typhoon. The intensity of the bands was acquired using ImageJ and

the fraction of the intensity of the bound oligo over the total intensity of all bands was calculated.

These data were fit to a two parameter (Frmax and Kx) Michaelis-Menten model using the drm (Dose-

Response Model) function from the drc (Dose-Response Curve) package in R as followings (see

Supplementary file 1D):

Fr¼ Frmax �
x

xþKx

where Fr = fraction of bound DNA over the total DNA,

x=input protein dose (mg),

Frmax=upper limit of Fr,

Kx=
Frmax

2
, the protein quantity at which binding is half-maximal (mg)

Mathematical modeling
We modeled the behavior of the incoherent feedforward loop comprising GAT1, DAL80 and MEP2

to study the effect on steady-state expression of MEP2. We modeled expression using the coupled

ordinary different equations:

dGAT1/dt = 0

dDAL80/dt = A�X�GAT1 – c�DAL80

dMEP2/dt = A�GAT1 – R�DAL80 – c�MEP2

where

A = strength of promoter activation by GAT1

R = strength of MEP2 promoter repression by DAL80

X = ratio of MEP2 and DAL80 promoter activation by GAT1

c = degradation rate constant

We solved the system of equations numerically to determine the steady-state levels using the

deSolve() package in R (Soetaert et al., 2010). We systematically varied the values of A and X to

determine the effect of these parameters on the steady-state expression of MEP2. We set the

parameter values of R = 2 and c = 1 and solved the system of equations using initial values of

GAT1 = 1, DAL80 = 0, MEP2 = 0. Variation in the parameter values of R and c alters the specific

steady-state values, but the overall trend is robust to variation in these parameters.

Sequence data
All raw fastq files are available from the NCBI Sequence Read Archive with accession number

SRP101365 for whole genome population sequencing of replayed LTEE cultures, SRP101367 for tar-

geted deep sequencing of the same LTEE populations and SRP101370 for RNA-seq data.
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