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Abstract Lymphatic invasion and lymph node metastasis correlate with poor clinical outcome in

melanoma. However, the mechanisms of lymphatic dissemination in distant metastasis remain

incompletely understood. We show here that exposure of expansively growing human WM852

melanoma cells, but not singly invasive Bowes cells, to lymphatic endothelial cells (LEC) in 3D co-

culture facilitates melanoma distant organ metastasis in mice. To dissect the underlying molecular

mechanisms, we established LEC co-cultures with different melanoma cells originating from primary

tumors or metastases. Notably, the expansively growing metastatic melanoma cells adopted an

invasively sprouting phenotype in 3D matrix that was dependent on MMP14, Notch3 and b1-

integrin. Unexpectedly, MMP14 was necessary for LEC-induced Notch3 induction and coincident

b1-integrin activation. Moreover, MMP14 and Notch3 were required for LEC-mediated metastasis

of zebrafish xenografts. This study uncovers a unique mechanism whereby LEC contact promotes

melanoma metastasis by inducing a reversible switch from 3D growth to invasively sprouting cell

phenotype.

DOI: https://doi.org/10.7554/eLife.32490.001

Introduction
Distant organ metastasis requires that the tumor cells gain access into the hematogenous circulation

(Lambert et al., 2017). The metastatic dissemination of cancer cells is expedited by molecular

changes promoting the ability of cancer cells to invade across the surrounding extracellular matrices

(ECM) and into the lumen of lymphatic or blood vessels. In order to survive in circulation as well as

extravasate and colonize the distant organ sites the cancer cells need to survive a variety of stresses

such as hemodynamic shear forces, trapping to vascular beds and ROS, and gain the ability to inva-

sively grow at the new tissue microenvironment (Piskounova et al., 2015; Strilic and Offermanns,
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2017). Many of these activities have been found to be enhanced in tumor cell clusters relative to sin-

gly invading tumor cells.

The local microenvironment including the ECM and cell-non-autonomous interactions between

cancer cells and stromal cells play a vital role in metastasis. In addition to providing a direct route for

dissemination, the tumor lymphatics have been proposed to directly modulate the metastatic cas-

cade through mechanisms that have remained elusive (Alitalo and Detmar, 2012). Clinical observa-

tions of satellite melanoma tumors growing between the primary tumor and draining lymph nodes

have suggested that the surrounding lymphatic endothelium serves as a protective microenviron-

ment for the survival of incipient metastatic cells (Meier et al., 2002). In support of this hypothesis,

over the last few years it has become increasingly clear that lymphatic endothelial cells (LECs) in fact

actively interact with the surrounding cells in the tissue, thus regulating both physiological and path-

ological processes including tumor progression and metastasis. Both paracrine communication and

direct cell-cell interactions between tumor cells and the associated lymphatics have been shown to

drive tumor progression and dissemination. For example, chemokine receptor-ligand interactions

between melanoma and LECs drive chemotaxis of tumor cells towards the lymphatics

(Cabioglu et al., 2005; Das et al., 2013; Shields et al., 2007). Alternatively, tumor cells secrete fac-

tors like lipoxygenase, which can induce downregulation of the endothelial surface molecules and

loosening of the LEC junctions in vitro (Kerjaschki et al., 2011).

In this study, we set to investigate how the LECs in the tumor microenvironment affect the meta-

static melanoma cell phenotype. To this end, we implemented 2D- and 3D melanoma-LEC co-culture

models, which enable a systematic analysis of the molecular crosstalk between the tumor cells and

the lymphatic endothelium. We found that the interaction of melanoma cells with LECs induced

matrix-metalloproteinase-14 (MMP14, also known as MT1-MMP) -dependent Notch3 and b1-integrin

activation in the expansively growing metastatic melanoma cells, leading to invasive sprouting of

cells in 3D matrices. Importantly, the interaction of these melanoma cells with LECs led to signifi-

cantly increased metastasis of melanoma xenografts in vivo, which was dependent on MMP14 and

eLife digest The death rates for many types of cancer have dropped, but melanoma remains a

serious concern. This type of skin cancer is especially aggressive because it can spread to distant

organs. Melanoma often spreads via the lymphatic system, a network of vessels that extends

throughout the body to drain fluid from the body’s tissues. The lymphatic system also includes

structures – called lymph nodes – that filter bacteria from this fluid; this helps to defend against

infection.

When melanoma spreads to lymph nodes and distant organs, clinicians diagnose it as Stage IV

melanoma. For patients at this stage, the outcome is often poor. It is clear that melanoma exploits

lymph vessels to spread throughout the body. But researchers also suspect that vessel cells interact

with the cancer cells, helping the melanoma invade distant organs. Understanding exactly how

lymph vessels promote the spread of melanoma will lead to better options for treating this

aggressive cancer.

Pekkonen, Alve et al. investigated whether exposing human melanoma cells to cells from the

walls of human lymph vessels would make the cancer cells more aggressive. Indeed, after growing

the two cell types together in the laboratory, the melanoma cells became more invasive. When

transplanted into mice, these cancer cells spread to and invaded the rodents’ distant organs.

Pekkonen, Alve et al. conducted a series of experiments to identify specific proteins in the

melanoma cellsthat were responsible for making the cancer more invasive after it interacted with the

lymph vessel cells. These experiments identified proteins called MMP14, Notch3, and b1-integrin as

critical to the invasive spread of melanoma cells. When melanoma cells with less MMP14 or Notch3

were implanted into zebrafish, the cancer cells spread less efficiently. These findings may represent

new leads that clinicians can test to see if they are markers of cancers that are most likely to spread

and that the pharmaceutical industry can pursue to treat melanoma patients.

DOI: https://doi.org/10.7554/eLife.32490.002
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Notch3. Thus, the crosstalk with LECs promotes melanoma metastasis by inducing a reversible

switch to invasively sprouting melanoma cells.

Results

Three-dimensional co-culture model recapitulates the melanoma
interaction with lymphatic vasculature
To study the interaction of LECs with melanoma cells in vitro, we utilized a three-dimensional (3D)

co-culture method, where LEC spheroids were embedded together with single, GFP-expressing or

fluorescent tracer labeled, melanoma cells into a cross-linked 3D matrix (Figure 1a) (Korff and

Augustin, 1998; Tatti et al., 2015). We chose to use fibrin as 3D matrix since it is frequently depos-

ited within tumor tissues and perivascular spaces in vivo. After 72 hr incubation, the LEC control

spheroids (labeled with the endothelial marker PECAM) showed moderate outgrowth (LEC sprout-

ing) from the spheroid body (Figure 1b, leftmost panel). Co-culturing the LEC spheroids with cells

isolated from a melanoma skin metastasis (WM852) or from a superficially spreading melanoma

(Bowes), resulted in melanoma attraction and invasion into the LEC spheroid (Figure 1b, middle and

rightmost panels). Especially the WM852 cells (and Bowes to a lesser extent) appeared to disrupt

the spheroid structure at the melanoma cell-LEC contact sites, as shown by the loss of the endothe-

lial adhesion molecule PECAM (Figure 1b, enlarged inserts of the middle and rightmost panels).

Thus, our 3D co-culture model qualitatively recapitulates attraction, migration and invasion of mela-

noma cells into lymphatic endothelial structures.

Interaction with LECs increases the metastasis of melanoma cells in vivo
To investigate potential crosstalk between melanoma cells and LECs and effects of these interactions

on melanoma tumorigenesis in vivo, we isolated cells from 3D co-cultures. For this, the GFP and

luciferase expressing WM852 and Bowes cells were cultured in 3D as monotypic, single cell suspen-

sion or together with the preformed LEC spheroids for 72 hr after which protease inhibitors were

removed for 30–48 hr leading to 3D matrix digestion and release of the cells. To quantify LECs in

the recovered cell mixtures, the cells were subjected to a qRT-PCR analysis for the expression of the

LEC markers CD34, PROX1 and FLT4 (gene for VEGFR3). Parental primary LECs were used as a con-

trol. The cells derived from the 3D co-cultures were essentially negative for these LEC markers (Fig-

ure 1—figure supplement 1a), indicating that the cell isolation procedure favored the enrichment

and survival of the melanoma cells. We therefore named these initially co-cultured melanomas as

LEC primed WM852* or Bowes* (distinguished by asterisks from the parental cells derived from

monotypic cultures).

Next, LEC primed WM852* or Bowes*, or WM852 or Bowes from monotypic cultures as controls,

were subcutaneously implanted into SCID mice (Figure 1a). LEC priming did not significantly affect

the growth rate of the WM852 primary tumors (Figure 1c). Similarly, the growth rate of the 3D LEC

primed Bowes tumors was equal to the Bowes tumors derived from the monotypic cultures

(Figure 1d), although the tumor volume and weight were slightly higher in the 3D LEC primed

Bowes tumors over the monotypic Bowes tumors at the end point analysis (Figure 1—figure supple-

ment 1b).

Subsequent analyses of the WM852* or Bowes* derived tumors revealed melanoma cell invasion

into the lymphatic vessels in a manner similar to the in vitro 3D co-cultures (Figure 1—figure supple-

ment 1c). To assess whether the LEC priming of melanoma cells affected their metastatic capacity in

vivo, we imaged lymph nodes, lungs and livers isolated from the mice bearing WM852/WM852* or

Bowes/Bowes* derived tumors.

Mice implanted with monotypic WM852 cells, originating from a melanoma metastasis, showed

clearly stronger luciferase signal in the lymph nodes than the Bowes groups (Figure 1—figure sup-

plement 1d–e) but only low levels of signal in liver and lungs (Figure 1e–f). In contrast, the LEC

primed WM852* tumors metastasized significantly to both liver and lungs (Figure 1e–f). Supporting

the increased distant organ metastasis, quantitative PCR from the mouse lung genomic DNA

revealed higher amounts of the human-specific Alu sequences in mice bearing the WM852* tumors

when compared to the lungs derived from the monotypic WM852 implanted mice (Figure 1—figure

supplement 1f).
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Figure 1. Co-culture of melanoma cells and LECs reveals melanoma invasion into the LEC 3D structures and increases the metastatic potential of

WM852 cells in vivo. (a) Schematic of the experimental pipeline. (b) Confocal images of LEC spheroids (PECAM-1, red) in 3D fibrin matrix (left panel),

LEC spheroids co-cultured with WM852 (green, middle panel) or Bowes (green, left panel). The area enclosed in the white square is shown enlarged

below each panel. Melanoma cells were stained with GFP (green), and nuclei were counterstained with Hoechst 33342. Maximum intensity Z-projections

Figure 1 continued on next page
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In concordance with the non-metastatic origin of the Bowes cells, mice with monotypic Bowes or

Bowes* had luciferase positive tumor cells in few of the isolated lymph nodes (Figure 1—figure sup-

plement 1e) and no significant metastasis to liver or lungs (Figure 1—figure supplement 1g).

These results indicate that the in vitro interaction of WM852 metastatic melanoma cells with LECs

prior to tumor implantation promotes distant organ metastasis in vivo.

Interaction with LECs induces transcriptional changes in melanoma
gene expression
To enable functional and molecular analysis of the changes occurring in melanoma cells and LECs

upon the co-culture, we utilized a 2D co-culture model and optimized a separation method for the

two cell types. The GFP-melanoma cells were loaded with dextran-coated magnetic nanoparticles

prior to the 2D co-culture with LECs. After co-culture for 24–48 hr, LECs and the primed melanoma

cells were isolated using magnetic columns and the separation was validated with antibodies and

qRT-PCR (workflow depicted in Figure 2—figure supplement 1a; validations Figure 2—figure sup-

plement 1b–c), confirming efficient separation of the two cell populations: isolated WM852* showed

only 0.1–1% of LEC marker expression (Figure 2—figure supplement 1c, left panel). The separation

of Bowes* was slightly less efficient (Figure 2—figure supplement 1c, right panel). No differences

were observed in the proliferation of LEC-primed, separated WM852* and Bowes cells* when com-

pared to cells from the corresponding monotypic cultures (Figure 2—figure supplement 1d).

We next subjected the ±LEC primed, separated WM852 and Bowes cells to RNA sequencing (Fig-

ure 2—figure supplement 1a). When compared to the parental cells derived from monotypic cul-

tures, expression of 663 genes was upregulated (>2 fold change, p<0.05) and expression of 347 was

downregulated (<2 fold change, p<0.05) in the LEC primed WM852* cells (Supplementary file 1,

related to Figure 2). The LEC primed Bowes* cells showed 532 upregulated genes and 14 downre-

gulated genes (2-fold change, p<0.05) when compared to Bowes from monotypic cultures

(Supplementary file 1, related to Figure 2). Thus, LEC interaction resulted in differential expression

of a large number of genes in the LEC primed melanoma cells.

To further dissect the biological processes affected by LEC interaction, we next utilized Generally

Applicable Gene-set Enrichment (GAGE) for pathway analysis. Interestingly, LEC priming led to

enrichment of several pathways known to be involved in cancer metastasis as well as cell contacts

and communication (Figure 2a–b). Several of these pathways were enriched in both the metastatic

cell line WM852 as well as non-metastatic Bowes cells after the LEC contact. The commonly upregu-

lated pathways after LEC priming included adherens junctions, regulation of actin cytoskeleton,

Notch signaling and gap junctions (Figure 2a–b; red text), whereas ECM-receptor signaling was

downregulated in WM852* cells and upregulated in Bowes* cells (Figure 2a–b, blue text). In addi-

tion, other pathways involved in cell-cell and cell-matrix interactions, like focal adhesion, TGF-b sig-

nalling and tight junction pathways, were enriched as differentially regulated only in Bowes cells

after the LEC contact (Figure 2a–b, black text).

To identify genes enriched in the pathways involved in the cell-cell or cell-matrix contacts (focal

adhesion, regulation of actin cytoskeleton, adherens junction, gap junction, tight junction, ECM-

receptor interaction and TGF-b signaling), we selected significant, differentially expressed genes in

WM852* and Bowes* cells and sorted them to the pathways (Supplementary file 2, related to Fig-

ure 2). We found LEC-induced changes in melanoma cells in the expression of ECM matrix compo-

nents such as collagens, laminins, fibronectin and reelin; cell surface receptors such as integrins,

Figure 1 continued

of confocal stacks are shown. (c,d) Growth rates of the 3D LEC primed WM852* (c) and Bowes* (d) derived tumors (n = 8 for both cell types) compared

to control WM852 (n = 7) and Bowes (n = 8) tumors, respectively. (e, f) Distant organ metastasis, detected by bioluminescence imaging of luciferase

signal, in liver (e) and lung (f) of SCID mice subcutaneously injected with WM852 alone or co-cultured with LECs (WM852*). Upper panels:

representative images of the indicated organs, each box represents an organ from one mouse. Bottom panel: quantification of luciferase signal, each

dot represents the luciferase value in one sample. Horizontal line indicates the average, vertical bars represent SEM. *: p<0.05. n.s., non-significant.

DOI: https://doi.org/10.7554/eLife.32490.003

The following figure supplement is available for figure 1:

Figure supplement 1. Analysis of mouse xenografts and distant organ metastasis.

DOI: https://doi.org/10.7554/eLife.32490.004
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Figure 2. Transcriptomic analysis reveals Notch3 upregulation in the LEC primed WM852 cells. (a–b) Generally Applicable Gene-set Enrichment (GAGE)

for RNA-seq pathway analysis of LEC primed (a) WM852* and (b) Bowes* cells. Samples were compared to their respective cells derived from

monotypic cultures. Three biological replicates per sample group and four run replicates were used. In the heatmap, red represents upregulated and

green downregulated pathways in WM852* and Bowes*. Pathways enriched in both cell lines are marked with red text if they were similarly upregulated

Figure 2 continued on next page
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TGF-beta receptors and platelet derived growth factor receptors; as well as actin cytoskeleton

(Figure 2c, Supplementary file 2 related to Figure 2). Notably, the ECM-receptor interaction path-

way was the most differentially regulated pathway in the two cell lines (Figure 2—figure supple-

ment 2a–b). Majority of the genes in this pathway were upregulated in Bowes* cells when compared

to parental Bowes cells, whereas in WM852* cells these were mainly downregulated (Figure 2c, see

examples of differentially expressed genes, Supplementary file 2 related to Figure 2). Taken

together, LEC priming induces major changes in the genes of the cell-cell and cell-ECM contact

mediator pathways that partly differ between the metastatic WM852* and the non-metastatic

Bowes* cells.

LEC interaction induces Notch3 in WM852 cells
Our pathway enrichment analysis revealed Notch signaling pathway to be upregulated in the mela-

noma cells after LEC priming (Figure 2a–b). Previous studies using co-culture of HUVECs and mela-

noma cells have identified Notch3 as a player in melanoma–EC communication (Stine et al., 2011)

and a potential mediator of melanoma metastasis also in human tumors (Howard et al., 2013). We

therefore next investigated if Notch3 and its downstream targets were induced in the LEC primed

melanomas. In the RNA-sequencing analysis, the upregulated genes in the LEC primed WM852*

cells included several Notch pathway members including NOTCH3 and the Notch downstream tar-

get HEY1 (Figure 2—figure supplement 2c), and qRT-PCR analyses confirmed elevated NOTCH3

levels accompanied by increases in the known Notch downstream targets (HES1, HEY1, and HEY2)

in WM852* when compared to the monotypic WM852 (Figure 2d). In Bowes* cells a two-fold upre-

gulation of HES1, was detected (Figure 2—figure supplement 2d).

Importantly, upregulation of Notch3 was also evident in WM852* tumors by immunohistochemis-

try when compared to tumors derived from the monotypic WM852 (Figure 2e, Figure 2—figure

supplement 2e). The upregulation of Notch3 upon LEC priming provides strong support that our

LEC-melanoma interaction model can reveal clinically relevant molecules for cancer dissemination

and thus has high potential also for identifying previously unrecognized pathways and molecules

contributing to the lymphatic metastasis of melanoma.

To address if the LEC induced NOTCH3 increase was specific for WM852 melanoma cells, we co-

cultured two additional melanoma cell lines derived from vertical growth phase primary tumor

(WM793) and metastasis (WM165) (Tatti et al., 2011) with LECs and analysed the co-cultures for

Notch3 expression by indirect immunofluorescence analysis (IFA). LEC priming induced an increase

in Notch3 expression specifically in the metastatic cell lines, namely WM852 and WM165, but not in

the primary tumor derived WM793 or Bowes (Figure 2f; Figure 2—figure supplement 2f). Addi-

tional qRT-PCR analysis revealed the most pronounced upregulation of NOTCH3 in the primed met-

astatic cell lines (Figure 2—figure supplement 2g).

Figure 2 continued

or downregulated, and blue text if they were differentially upregulated or downregulated. Pathways enriched only in one cell line are marked with black

text. Pathways with underlined text were used for further analysis. (c) Heatmap depicting average expression fold change of the differentially expressed

ECM-receptor interaction pathway genes in the RNA-seq of LEC primed WM852* and Bowes* cells. The WM852 and Bowes cells from monotypic

cultures were used as controls, and set to one. Red represents upregulated and blue downregulated genes in WM852* and Bowes*. Adjusted p-values

are less than 0.05 for all genes shown. (d) Relative mRNA fold change of the indicated targets in WM852 and WM852*. *:p<0.05; **p<0.001; n.s., non-

significant. (e) Representative images of Notch3 immunohistochemistry in the WM852 and WM852* derived xenografts. Scale bar = 50 mm. (f)

Representative confocal images of Notch3 staining (red) in different GFP expressing melanoma cell lines (GFP positive cells shown in the inset) cultured

in the presence (*, upper panels) or absence (bottom panels) of LECs. Nuclei are counterstained with Hoechst 33342. The dashed line indicates the

LEC-melanoma (below the line) border. Scale bar = 50 mm. Full size confocal images are available as a source data 1.

DOI: https://doi.org/10.7554/eLife.32490.005

The following figure supplements are available for figure 2:

Figure supplement 1. Optimization of magnetic separation of melanoma and LEC cells following co-culture of LEC and melanoma cells.

DOI: https://doi.org/10.7554/eLife.32490.006

Figure supplement 2. LEC priming induced differential changes in the ECM-receptor interaction pathway and Notch signaling pathway.

DOI: https://doi.org/10.7554/eLife.32490.007
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Interaction with LECs switches on invasive melanoma growth in 3D
matrix
To gain more insight into the metastasis-promoting mechanisms of LECs on melanoma cells, we

investigated their ability to grow in 3D fibrin matrix. Matrix embedded WM852* and WM165* cells

displayed a different morphology forming string-like, sprouting cell colonies (Figure 3a), and resem-

bling cells undergoing collective invasion. In contrast, the non-primed control cells from monotypic

cultures formed round sphere-like colonies in fibrin (Figure 3a). The morphology of the non-meta-

static cell lines instead remained unaffected by priming. Bowes cells grew as sparse, elongated cells

and WM793 as collective sphere-like cell clusters in fibrin (Figure 3a,b), suggesting that both expan-

sive growth and invasive sprouting are important for aggressive dissemination.

To assess the duration of the LEC-induced change in the 3D growth phenotype of melanoma

cells, the WM852* cells were cultured in 2D monotypic cultures for 0, 1, 3 and 7 days before embed-

ding in 3D fibrin for 96 hr. WM852 cells derived from a monotypic culture at day 0 were used as a

control. The sprouting phenotype of WM852* cells was retained up to 3 days after separation and

declined back to control levels after 7 days (Figure 3c). The ability of LECs to prime melanomas and

induce their sprouting required direct contact between the two cell types and was not mediated by

paracrine factors secreted by the LECs since conditioned medium (CM) from LEC monoculture or

WM852-LEC co-culture failed to induce sprouting of matrix embedded WM852 cells (Figure 3d).

These results indicate that the LEC-induced changes in WM852 are transient and require a prior

direct cell-cell contact with the LECs.

LEC-induced metastatic melanoma 3D growth phenotype is Notch3
dependent
Next we assessed the requirement of Notch3 for the change in the 3D growth phenotype of the LEC

primed WM852. To this end, we inhibited Notch activation by treating the WM852 monotypic cul-

ture or the LEC-WM852 co-culture with DAPT, an inhibitor of gamma secretase that mediates the

cleavage of Notch receptors to produce the active intracellular domain form (NICD). After magnetic

separation, the cells were subjected to the 3D fibrin assay in the presence of DAPT or vehicle (etha-

nol; EtOH). The DAPT treatment led to a dramatic reduction in the relative sprouting index of the

LEC primed WM852 cells but had little effect on the control WM852 derived from monotypic cul-

tures (Figure 3—figure supplement 1a). To demonstrate that the DAPT effect was specific for

Notch3 inhibition, we repeated the assay by treating the cells with siRNA targeting NOTCH3 (Fig-

ure 3—figure supplement 1b). Notch3 depletion almost completely abolished the increase in the

sprouting growth of the LEC primed WM852 (Figure 3e), further supporting the role of Notch3 for

the switch to the sprouting 3D growth of melanoma cells induced by LEC interaction.

MMP14 is required for the invasively sprouting 3D growth of LEC
primed melanoma cells
Membrane type matrix metalloproteinase MMP14 is frequently induced in invasive melanoma and

its high expression correlates with melanoma progression and metastasis (Hofmann et al., 2000;

Tatti et al., 2015). Therefore, we investigated whether LEC priming would induce changes in

MMP14 expression in melanoma cells. Interestingly, higher MMP14 signal intensity and re-localiza-

tion to the cell-cell contacts/plasma membrane were observed in WM852* (Figure 4a, arrowheads).

The increase in the cell surface MMP14 protein levels upon LEC co-culture was also confirmed by

flow cytometry analysis for WM852 (Figure 4—figure supplement 1a). A moderate increase in the

MMP14 intensity was observed in WM165* (Figure 4—figure supplement 1b), but no LEC-induced

changes in the level or localization of MMP14 were observed in Bowes (Figure 4a) or WM793 cells

(Figure 4—figure supplement 1b). Bowes cells in particular showed a strong perinuclear MMP14

signal, which co-localized with a signal from anti-TGN46 that defines the location of trans-Golgi net-

work (Figure 4—figure supplement 1c).

The potential role of MMP14 for the invasively sprouting 3D growth phenotype of WM852* was

analysed by subjecting 3D fibrin-embedded cells to a pan-MMP inhibitor GM6001 (Figure 4—figure

supplement 1d) or MMP14 silencing with two different targeting siRNAs or a non-targeting control

siRNA (siCtrl) (Figure 4—figure supplement 1e). Quantification of the relative sprouting index dem-

onstrated that both GM6001 (Figure 4—figure supplement 1d) and siMMP14 treatments
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Figure 3. LEC interaction modifies the 3D growth phenotype of the melanoma cells. (a) Representative confocal images of 3D fibrin assays after

magnetic separation of the indicated melanoma cell lines co-cultured with LEC (*, upper panels) or from monotypic culture (bottom panels). GFP

expressing (green) melanoma cells were stained with Phalloidin A594 (red), nuclei are counterstained with Hoechst 33342 (blue). Maximum intensity

Z-projections of the confocal stacks are shown. Scale bar = 50 mm. (b) Quantification of the sprouting index for the samples in (a). Graphs show the

Figure 3 continued on next page
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(Figure 4b) almost completely abolished the sprouting of LEC primed WM852 in 3D, indicating that

the LEC-induced change in the growth phenotype was dependent on MMP14.

Given that the 3D sprouting of WM852* cells was also inhibited by NOTCH3 silencing, we first

assessed MMP14 and Notch3 co-localization in WM852* by IFA. In WM852* (Figure 4c, arrowheads,

left panel, and Figure 4—figure supplement 2a upper panels for a close up including the channels

for MMP14 and Notch3 stainings), the two proteins were expressed on the plasma membrane with

occasional overlap in the cell-cell contacts, while in WM852 no co-distribution was observed

(Figure 4c, right panel and Figure 4—figure supplement 2a, bottom panels). Since we and others

have previously shown that MMP14 transcription and protein expression are induced by Notch sig-

naling in other cell types (Cheng et al., 2011; Funahashi et al., 2011), we next assessed if MMP14

and Notch3 were co-regulated in WM852*. Depletion of MMP14 mRNA by 98% significantly

reduced the mRNA level of HEY1 and resulted in a non-significant decrease of NOTCH3, but, how-

ever, had no effect on HES1 mRNA (Figure 4d), and reduced Notch3 signal in the WM852* cells

(Figure 4e–f), indicative of co-regulation. However, efficient depletion of NOTCH3 (by 94%) or

HEY1 (by 80%) had no effect on MMP14 mRNA (Figure 4—figure supplement 2b) or MMP14 pro-

tein levels (Figure 4—figure supplement 2c). To study the co-regulation further, we treated the co-

cultures of LEC and WM852 with a MMP14 specific inhibitor (NSC 405020), after which the WM852

cells were separated for further analysis. NSC 405020 treatment reduced expression of the full

length and active cleaved Notch3 (NICD3) by 42% in the WM852* cells (Figure 4—figure supple-

ment 2d–e). These data further support that MMP14 positively regulates Notch3 expression and

activation, thereby contributing to the change in the 3D growth phenotype of the LEC primed

WM852.

Change in the 3D growth of LEC primed melanoma cells is integrin
dependent
Our trancriptomic analysis revealed changes in pathways involved in cancer invasion and metastasis

including several cell adhesion pathways (Figure 2a–b and Supplemental file 2). We therefore

decided to address the role of integrins, one of the major cell-matrix adhesion molecule families, in

the LEC induced changes in metastatic melanoma cells. Since several reports support association of

b1-integrin expression with melanoma progression and metastasis (Danen et al., 1994; Kato et al.,

2012; Natali et al., 1993), we investigated the expression and activation state of b1-integrin in

the ±LEC co-cultured WM852, WM165, WM793, and Bowes cell lines using antibodies for the total

and active b1-integrin (12G10). Interestingly, WM852* showed a higher signal for the active b1-

integrin (Figure 5a and Figure 5—figure supplement 1a), which was further confirmed by staining

with another antibody against active b1-integrin, 9EG7 (Figure 5—figure supplement 1b). We also

attempted to confirm the integrin activation in WM852* by FACS analysis using antibodies against

active b1-integrin (12G10 and 9EG7). However, we did not detect the increase in active b1-integrin

levels in the FACS of WM852* (data not shown) perhaps because the activation may either require

the constant contact of melanoma cells to LECs or to 3D fibrin, and be sensitive to the cell detach-

ment process. Also WM165* cells displayed an increase in the active b1-integrin signal intensity,

which however did not reach statistical significance (Figure 5a and Figure 5—figure supplement

Figure 3 continued

average of at least three images per condition per two independent experiments, error bars indicate the SEM p<0.05; **; p<0.01; n.s., non-significant.

(c) Representative images of the 3D fibrin assay of WM852 and WM852* after magnetic separation at the indicated day after separation. The graph

represents the average of three images per condition analysed in each of the two independent experiments. Error bars represent SEM. *: p<0.05; n.s.,

non-significant. (d) Representative images of the 3D fibrin assay of monotypic WM852 treated with conditioned media (CM) from the indicated sources.

The graph represents the average of three images per condition. Error bars represent SEM. n.s., non-significant. (e) Representative images of the 3D

fibrin assay of WM852 and WM852* treated with the indicated siRNAs for 72 hr prior to magnetic separation and fibrin embedding. The graph

represents the average of three images per condition per three independent experiments. Error bars represent SEM. *: p<0.05; **; p<0.01; n.s., non-

significant.

DOI: https://doi.org/10.7554/eLife.32490.008

The following figure supplement is available for figure 3:

Figure supplement 1. 3D growth phenotype of metastatic melanoma cells is Notch3 dependent.

DOI: https://doi.org/10.7554/eLife.32490.009
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Figure 4. MMP14 is required for the increased sprouting growth of LEC primed melanoma cells in 3D. (a) Right panels: representative confocal images

of MMP14 (red) expression in WM852 and Bowes co-cultured with LECs (*, upper panels) and from monotypic culture (bottom panels). Nuclei were

counterstained with Hoechst 33342. GFP-expressing melanoma cells are shown white in the inset. Arrowheads indicate MMP14 localization to the cell-

cell contacts. The dashed line indicates the LEC-melanoma (below the line) border. Scale bar = 50 mm. Left panel: quantification of MMP14 intensity

Figure 4 continued on next page

Pekkonen et al. eLife 2018;7:e32490. DOI: https://doi.org/10.7554/eLife.32490 11 of 28

Research article Cancer Biology Cell Biology

https://doi.org/10.7554/eLife.32490


1a). In contrast, no changes in the active b1-integrin levels were observed with the WM793 and

Bowes cell lines ± LECs (Figure 5a and Figure 5—figure supplement 1a). When we analysed total

b1-integrin by IFA, no detectable differences in distribution or signal intensity in any of the cell

lines ± LEC by IFA were found (Figure 5—figure supplement 1c–d). Intriguingly, total b1-integrin,

detected by immunoblotting, was decreased markedly in the LEC co-cultured WM852* cells (by

43%), and about 25% (although non-significant) for WM165* and Bowes (Figure 5—figure supple-

ment 1e). In addition, the LEC co-culture altered the proportion of mature b1-integrin in WM852*

and WM165* cells since the upper b1-integrin specific band (mature form of the integrin) decreased

and a faster migrating, probably representing newly synthesized, immature b1-integrin appeared.

Notably, the electrophoretic pattern of b1-integrin was similar in WM852 and WM793 cells before

and after the interaction with LEC especially when compared to the pattern in Bowes cells, possibly

reflecting differences in the processing and trafficking of b1-integrin. The discrepancy between the

IFA and immunoblotting data may be due to different accessability of antibody-epitopes, and the

potential shift in integrin processing suggested by the immunblot warrants further investigation in

future studies.

To test if the LEC-induced integrin activation was contributing to the invasively sprouting 3D

growth of WM852* cells, separated cells were subjected to the 96 hr fibrin assay in the presence of

a b1-integrin blocking antibody AIIB2. The treatment almost completely abolished the LEC induced

change in the growth phenotype of WM852 cells as compared to untreated cells (Figure 5b). This

result indicates that also b1-integrin contributes the sprouting growth of WM852* cells.

MMP14 is the upstream regulator of Notch3 and b1-integrin
MMP14 localization to b1-integrin containing adhesion complexes has been demonstrated during

cancer cell invasion process (Woskowicz et al., 2013), (Vuoriluoto et al., 2011). We therefore first

addressed the b1-integrin and MMP14 localization in WM852* cells. Both MMP14 and the active b1-

integrin localized onto plasma membrane (Figure 5c). Given that MMP14 directly associates with b1-

integrin and controls its expression levels in the branching morphogenesis of mammary epithelium

(Mori et al., 2013), we decided to assess the role of MMP14 in the integrin activation. MMP14

silencing in WM852 cells, prior to their co-culture with LECs, significantly reduced b1-integrin activity

in WM852* cells (Figure 5d–e). The total b1-integrin was decreased about 20% in WM852* cells but

this was not statistically significant (Figure 5f–g). On the other hand, neither NOTCH3 depletion to

81% reduction in mRNA level altered the b1-integrin activation levels in WM852* (Figure 5—figure

supplement 2a–b), nor, vice versa, inhibition of b1-integrin activation by the AIIB2 antibody treat-

ment significantly altered MMP14, NOTCH3 or its downstream targets HEY1 and HES1 at mRNA

Figure 4 continued

analysed in four images per condition from two independent experiments. More than 100 cells were always analysed per condition. Average is shown,

error bars represent SD; *: p<0.05. n.s., non-significant. (b) Quantification of the 3D sprouting index of WM852 and WM852* treated with the indicated

siRNAs for 72 hr followed by magnetic separation and the 96 hr fibrin assay. The graph represents the average of three images per condition in each of

the two independent experiments, error bars indicate SEM; *: p<0.05. n.s., non-significant. (c) Representative confocal images of MMP14 (green) and

Notch3 (red) in WM852 and WM852*. Arrowheads indicate the cell-cell junction where MMP14 and Notch3 co-localize. Nuclei were counterstained with

Hoechst 33342. The dashed line indicates the LEC–melanoma (below the line; GFP positive cells (white) in the inset) border. Scale bar = 50 mm. (d)

mRNA fold change of the indicated targets in WM852 and WM852* upon treatment with the indicated siRNA for 72 hr and following magnetic

separation. Graphs show the average of three independent experiments, error bars indicate SEM, *: p<0.05; **: p<0.01. n.s., non-significant (e)

Representative confocal images of Notch3 staining (red) in WM852* treated with the indicated siRNAs for 72 hr. Nuclei were counterstained with

Hoechst 33342. The dashed lines indicate the LEC-WM852 (GFP positive cells (white) in the inset) border. Scale bar = 50 mm. (f) Quantification of

Notch3 signal intensity of WM852* treated as in (e) and described in (a). Error bars indicate SD; *: p<0.05. Full size confocal images are available as

source data 2.

DOI: https://doi.org/10.7554/eLife.32490.010

The following figure supplements are available for figure 4:

Figure supplement 1. MMP14 levels increase and MMP14 activity is needed for 3D sprouting growth in LEC-primed metastatic melanoma.

DOI: https://doi.org/10.7554/eLife.32490.011

Figure supplement 2. Notch3 does not regulate MMP14 expression, but MMP14 positively regulates Notch3.

DOI: https://doi.org/10.7554/eLife.32490.012
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Figure 5. Change in the 3D growth phenotype of the LEC primed melanoma cells is b1-integrin dependent. (a) Representative confocal images of

active b1-integrin (12G10) staining (red) in the indicated melanoma cell lines (GFP positive cells (white) in the inset) in the presence (*, upper panels) or

absence (bottom panels) of LECs. Nuclei were counterstained with Hoechst 33342. The dashed line indicates the LEC-melanoma border. Scale bar = 50

mm. (b) Quantification of 3D sprouting index in WM852 and WM852* mock treated or treated with b1-integrin blocking antibody (AIIB2) during the 96

Figure 5 continued on next page
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level (Figure 5—figure supplement 2c) or MMP14 and Notch3 protein levels as assessed by IFA

(Figure 5—figure supplement 2d–e).

This suggests that the LEC-induced transient, invasively sprouting phenotype of melanoma cells is

mediated by activated Notch3 and b1-integrin both dependent on the key upstream regulator

MMP14.

NICD3 ectopic expression is sufficient to induce 3D sprouting in non-
metastatic WM793 cells
To further corroborate the role of MMP14 relocalization and activation of Notch3 and b1-integrin in

the invasively sprouting phenotype induced by the LEC contact in the metastatic cell lines, we

assessed if their expression or activation was able to induce this phenotype in the non-metastatic

cell lines. First, we ectopically expressed NICD3, the constitutively active form of Notch3, and

MMP14 in WM793 and Bowes cells. 24 hr after transfection the cells were subjected to the fibrin

assay using vector-transfected cells as a negative control. Ectopic expression of NICD3 in WM793

induced the sprouting growth phenotype in fibrin resembling the growth phenotype of WM852*

and WM165*, while the control WM793 cells continued to grow as sphere-like colonies (Figure 6a).

However, ectopic expression of NICD3 in Bowes cells did not change their elongated, single cell

invasive growth phenotype (data not shown). This confirms that in WM793, but not in Bowes cells,

active Notch3 is sufficient to induce the invasively sprouting growth phenotype typical for the meta-

static cell lines after the co-culture with LECs. When WM793 and Bowes cells were transfected with

MMP14-expressing plasmid, no change was again seen in the 3D growth phenotype of Bowes cells,

but surprisingly, ectopic expression of MMP14 induced cell death in WM793 as soon as 20 hr post-

transfection (data not shown).

To address if b1-integrin activation was sufficient to induce the 3D sprouting phenotype in

WM793, we cultured the cells on plates coated with the 12G10 b1-integrin activating antibody for

24 hr, and integrin activation was confirmed by 9EG7 antibody staining (Figure 6b–c). Despite b1-

integrin activation no change in the 3D growth phenotype of WM793 in fibrin was observed, thus

suggesting that activation of b1-integrin alone is not sufficient to induce the sprouting phenotype.

To further assess if the NICD3-induced sprouting phenotype in WM793 was dependent on

MMP14 or b1-integrin activation, we treated the NICD3-transfected cells during the fibrin assay with

the MMP14 inhibitor NSC405020 and b1-integrin blocking antibody AIIB2. While the NSC405020

treatment only mildly reduced the NICD3-mediated sprouting phenotype, AIIB2 treatment efficiently

abolished it (Figure 6d).

Taken together, these experiments show that constitutive activation of Notch3 by NICD3, but not

b1-integrin activation alone, can switch the phenotype of WM793 from a sphere-like to a invasively

sprouting growth. Moreover, once Notch3 is constitutively activated, MMP14 inhibition has no addi-

tional effect on the sprouting, thus confirming the previous observation that MMP14 acts upstream

Figure 5 continued

hr fibrin growth assay. Graph shows the average of at least three images per condition per two independent experiments, error bars indicate the SEM;

*: p<0.05. n.s., non-significant. (c) Representative confocal image of active b1-integrin (12G10, red) and MMP14 (green) staining of WM852* (white cells

in the inset). Nuclei were counterstained with Hoechst 33342. The dashed lines indicate the border between LEC and WM852 (white, GFP positive

WM852 cells in the inset). The right and bottom panels show an enlargement of the area enclosed within the white square as a merge, Notch3 (red)

and MMP14 (green) in separated channels. Scale bar = 50 mm. (d,f) Representative confocal images of WM852* treated with the indicated siRNAs for 72

hr and stained for active b1-integrin with 12G10 (d, red), or total b1-integrin with P5D2 (f, red) antibodies. Nuclei were counterstained with Hoechst

33342. The dashed lines indicate the LEC-WM852 borders (white, GFP positive WM852 cells in the inset) border. Scale bar = 50 mm. Quantification of

the average 12G10 (e) and total b1-integrin (g) signal intensity in WM852* (white) cells. Four images/condition were quantified from two independent

experiments. More than 100 cells were always analysed per condition; error bars indicate SD. *: p<0.05. n.s., non-significant. Full size confocal images

are available as a source data 3.

DOI: https://doi.org/10.7554/eLife.32490.013

The following figure supplements are available for figure 5:

Figure supplement 1. Quantification of active and total b1-integrin in monotypic and LEC-primed melanoma cells.

DOI: https://doi.org/10.7554/eLife.32490.014

Figure supplement 2. b1-integrin activity does not affect MMP14 and Notch3 expression.

DOI: https://doi.org/10.7554/eLife.32490.015
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of Notch3. Although the Notch3 induced phenotype was dependent on active b1-integrin

(Figure 6d), Notch3 is not required for integrin activation (Figure 5—figure supplement 2a–b).

In vivo invasion and dissemination of LEC-primed WM852 cells are
dependent on MMP14 and Notch3
Human melanoma cells retain their invasive behaviour when transplanted to zebrafish embryos

(Chapman et al., 2014). To further analyse the invasion capabilities of the LEC-primed WM852 cells

in vivo, and the involvement of MMP14 and Notch3 in this process, we transplanted siRNA-treated

WM852 and WM852* cells into pericardial cavity of zebrafish embryos and analysed the tumors four

days later using intravital fluorescence microscopy (Figure 7a and b). In these experiments, LEC

priming of WM852 prior to transplantation did not affect the size of primary tumors (Figure 7c), sim-

ilarly to what was observed in the mouse xenograft studies (Figure 1c). However, co-culture of

Figure 6. NICD3 overexpression provokes a b1 integrin-dependent 3D sprouting in WM793 cells. (a) Representative images (left) and quantification

(right) of the 3D fibrin assay of WM793 upon transfection of either a NICD3 expressing vector or a control vector. Scale bar = 50 mm. Four images/

condition were quantified from two independent experiments. Graph shows the average of at least three images per condition per two independent

experiments, error bars indicate the SEM. *p<0.05. (b) Representative images (left) and quantification (right) as in of mock and 12G10 antibody treated

WM793 cells. Active b1-integrin was detected with 9EG7 antibody (red). Nuclei were counterstained with Hoechst 33342. Four images/condition were

quantified from two independent experiments. More than 100 cells were always analysed per condition; error bars indicate SD. Scale bar 50 mm.

*p<0.05. (c) Representative images (left) and quantification (right) of 3D fibrin assay as in (a) of WM793 treated with 12G10 antibody for four days or

mock treated. Scale bar = 50 mm. n.s., non-significant. (d) Representative images (left) and quantification (right) of 3D fibrin assay as in (a) of WM793

upon transfection of either a NICD3 expressing vector or a control vector (mock) and treated with either DMSO or the indicated inhibitors. Scale

bar = 50 mm, *p<0.05; **p<0.01.

DOI: https://doi.org/10.7554/eLife.32490.016
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Figure 7. In vivo invasion and dissemination of LEC-primed melanoma cells are dependent on MMP14 and Notch3. (a) Time line of zebrafish xenograft

experiments. (b) Intravital fluorescence microscopy images of six dpf zebrafish embryos taken four days post injection (4 dpi). Fluorescence in GFP

channel is shown. Scale bar, 500 mm. Inset shows magnification of the primary tumor. Tumor cells invading outside pericardial space are marked with an

arrow, invading cells in pericardial cavity with a triangle and unspecific fluorescence in eye and yolk sac with an asterisk (*). The outline of pericardial

Figure 7 continued on next page
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WM852 cells with LECs did result in reduced circularity of the primary tumor (Figure 7d) indicating

increased invasiveness in vivo. It also increased the number of cells that invaded outside the pericar-

dial cavity and disseminated to distant parts in the embryo (Figure 7e). Importantly, depletion of

either MMP14 or NOTCH3 in WM852* cells by siRNA reduced their invasiveness and dissemination

in this model (Figure 7d and e), indicating that the LEC-induced increase in the metastatic behavior

of WM852* cells is dependent on MMP14 and Notch3 in vivo.

Discussion
Melanoma cells have been shown to be in close contact with the lymphatic vessels in human speci-

mens and often metastasize via the lymphatic system, (Niakosari et al., 2008), implying that the

melanoma cell-LEC interactions are common events in human melanomas. In addition, clinical data

correlating metastatic spread with lymphatic infiltration suggest that melanoma-LEC interactions

could contribute to the tumor progression and metastasis. Here we investigated the consequences

of such interactions by coupling unique 2D and 3D LEC-melanoma co-culture models to in vivo

mouse tumor model, transcriptome profiling, in vitro functional studies and a zebrafish xenograft/

metastasis assay.

In the xenograft mouse model, dissemination of the metastatic WM852 cell line to distant organs

was increased by LEC priming. Furthermore, in vitro molecular and functional studies revealed that

the direct contact of LECs with metastatic melanoma cell lines triggered changes particularly in the

localization of MMP14, an important protease for cancer-cell invasion (Tatti et al., 2015;

Turunen et al., 2017), which in turn induced expression and activation of Notch3 and activation of

b1-integrin leading to a significant change in the 3D growth phenotype of the melanoma cells. The

interaction with LECs did not, however, induce metastasis or change the 3D growth phenotype of

non-metastatic Bowes cells. Although Bowes have active MMP14 and an invasive, single cell 3D

sprouting phenotype in vitro (Tatti et al., 2011), these intrinsic properties were not sufficient to sup-

port distant organ metastatic colonization in vivo. Moreover, ectopic expression of MMP14 or

NICD3 did not induce any change in their 3D growth phenotype. Similar to Bowes, LEC priming did

not markedly alter the 3D phenotype of another non-metastatic melanoma cell line WM793, that,

despite of MMP14 expression (Tatti et al., 2011), continued to grow expansively in 3D as indicated

by the sphere-like growth in 3D fibrin. However, these cells switched to the invasively sprouting

growth upon introduction of NICD3, and the sprouting was dependent on b1-integrin. Another pos-

sible contributor to this change could be theb1-integrin processing and trafficking, which appears

quite different in Bowes as compared to WM793 and WM852. Based on our results, it is plausible

that the capacity for expansive growth is a property required for the NICD3 dependent change in

the 3D growth. Fittingly, WM852 cells with strong intrinsic capacity to grow expansively, switched to

the invasively sprouting growth phenotype after the LEC-mediated transient activation of the

MMP14-Notch3-b1-integrin axis, which resulted in increased MMP14 and Notch3 dependent metas-

tasis in vivo. The LEC contact likewise switched the metastatic, expansively growing WM165 cells to

invasive sprouting via activation of MMP14-Notch3-b1-integrin axis. Supporting the importance of

this signaling axis, neither Bowes nor WM793 responded to the LEC contact by activating these key

effectors needed for the metastatic phenotype.

Melanoma cell invasion into the deeper layers of the skin and distant sites is associated with

molecular changes such as increased activation of the tissue degrading proteases including the

MMPs (Moro et al., 2014; Villanueva and Herlyn, 2008). Our results demonstrate that the LEC con-

tact increased MMP14 on the melanoma cell plasma membrane and cell-cell contacts in the meta-

static melanoma cell lines. This was accompanied with an MMP14-dependent increase in Notch3

Figure 7 continued

cavity is depicted with dashed line. (c) Quantification of area of primary tumors at 4 dpi. siCtrl, n = 52; siCtrl*, n = 74; siMMP14*, n = 61; siNotch3*,

n = 46. (d) Quantification of circularity of primary tumors at 4 dpi. siCTRL, n = 52; siCtrl*, n = 74; siMMP14*, n = 61; siNotch3*, n = 46. (e) Quantification

of melanoma cells invaded outside pericardial cavity. siCtrl, n = 43; siCtrl*, n = 55; siMMP14*, n = 44; siNotch3*, n = 37. (c–e) Non-parametric Kruskal-

Wallis test with Dunn´s multiple comparison test was used, and in addition to individual data points, the median and interquartile range has been

plotted. n.s., non significant (p>0.05); **p<0.01; ***p<0.001.

DOI: https://doi.org/10.7554/eLife.32490.017
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expression by a yet unidentified mechanism. MMP14 was recently shown to interact with and acti-

vate Notch1 at the cell membrane of melanoma cells, which supported melanoma cell growth

(Ma et al., 2014). Although Notch receptors 1 and 3 are highly activated in melanoma with clear

pro-tumorigenic functions, no Notch-activating mutations have been identified in melanoma. There-

fore, the herein identified MMP14 dependent Notch3 upregulation may prove important in meta-

static melanoma progression.

Our results also revealed that LEC contact induced b1-integrin activation in the metastatic

WM852 and WM165 cells, which was required for the 3D sprouting of WM852* cells. b1-integrin

activation was dependent on MMP14 as its depletion by siRNA abolished the b1-integrin activation

and slightly, but non-significantly, reduced total b1-integrin protein levels These findings concur with

previous studies demonstrating MMP14 incorporation into b1-integrin rich adhesion complexes

(Woskowicz et al., 2013) and MMP14 binding to b1-integrin upon mammary branching morphogen-

esis (Mori et al., 2013) as well as its role in controlling the 3D cell-shape of stem cells through activa-

tion of b1-integrin signaling (Tang et al., 2013). Moreover, melanoma metastases express more

activated b1-integrin than the primary tumors (Kato et al., 2012). Our current results add to this

concept by demonstrating that endothelial cell contact activates integrins in melanoma cells, thus

providing a putative mechanism for the contribution of the stromal lymphatic microenvironment to

melanoma metastasis.

Negative regulator of b1-integrin, ICAP-1, has been shown to act as a potent inducer of Notch1-

signaling by transcriptionally upregulating Notch ligands DLL1 and DLL4 and the downstream tran-

scription factors HEY1, HEY2, and HES5 in blood endothelial cells and thereby restrict the sprouting

angiogenesis of the ECs (Brütsch et al., 2010). However, as our transcriptomic data of the LEC-

primed melanoma cells did not reveal changes in ICAP-1 expression upon LEC-priming it probably

does not play a significant role in the Notch3-dependent invasive sprouting of metastatic melanoma

cells. Furthermore, our results indicate that b1-integrin functions downstream of Notch3 in the LEC-

primed melanomas.

Although melanoma cells at the primary tumor site predominantly disseminate through the lym-

phatic vascular route, the distant organ metastasis requires cells entering blood circulation and colo-

nization in the distant organ tissue. MMP14, Notch3 and b1-integrin are all proteins linked to

epithelial-to-mesenchymal transition in carcinoma cell metastasis (Cao et al., 2008; Kato et al.,

2012; Liu et al., 2014), supporting the idea that the metastatic WM852* and WM165* melanoma

cells have also undergone a transient transition into a more mesenchymally invasive state that can

promote hematogenous dissemination. However, since the Bowes cells with high MMP14 levels did

not metastasize, MMP14 activity by itself is apparently not enough for efficient distant organ metas-

tasis. In the absence of strong cancer cell-cell interactions, constitutively high MMP14 activity can

facilitate single cell invasion, thereby compromising the adhesive and expansive growth potential

essential for efficient tissue colonization of the tumor cells. We therefore propose that the capacity

for transiently induced 3D invasive sprouting coupled to expansive growth behavior are required for

the most aggressive melanoma cells to enter and survive in the blood circulation, as well as to effi-

ciently colonize the distant organs.

Melanoma progression is suggested to be driven by reversible and functional reprogramming of

different signaling routes, known as reversible phenotypic plasticity of cell (Vandamme and Berx,

2014). Changes and interactions in the tumor microenvironment are believed to direct this pheno-

type-switching, but the detailed mechanisms are largely unknown. Our current results support the

role of reversible phenotype-switching in melanoma progression and identifies the stromal lymphatic

endothelium as one of the key triggers for the process to support both hematogenous dissemination

and tissue colonization at the distant organs.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Sourcor reference Identifiers Additional Information

Continued on next page
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Continued

Reagent type (species)
or resource Designation Sourcor reference Identifiers Additional Information

Danio Rerio casper
strain (roy-/-; mitfa-/-)

PMID: 18371439

Mus Musculus C.B-
17/IcrHanTMHSD

Harlan, Indianapolis, IN, USA

Human primary juvenile
foreskin lymphatic
endothelial cells

Promocell, Heidelberg, Germany

Adult Dermal lymphatic
endothelial cells

Lonza,Basel, Switzerland

WM852 Wistar Institute Philadelphia RRID:CVCL_6804

WM165 Wistar Institute Philadelphia RRID:CVCL_L033

Bowes D.B. Rifkin, Rockfeller
University

RRID:CVCL_3317

WM793 Wistar Institute
Philadelphia

RRID:CVCL_8787

HEK293FT Biomedicum Functional
Genomic Unit, University
of Helsinki

siRNA Notch3 siRNA

Notch3 siRNA

Dharmacon,
Lafayette, CO
Ambion,Waltham, MA

L-011093-00-0005

4392420

siRNA MMP14 siRNA Qiagen,Hilden, Germany SI03648841;
SI00071176

Transfected construct NICD3pCLE AddGene,Cambridge, MA;PMID: 16508304 Plasmid #26894

Transfected construct MMP14 Sport6 GenomeBiology UnitUniversity
of Helsinki

NA

Transfected construct PcDNA3 Invitrogen,Carlsbad, CA NA

Antibody Pecam DAKO,Santa Clara, CA M0823 IFA 3D 1:500

Antibody VE-cadherin BD Pharmingen, San Jose, CA 553927 IFA 1:1000

Antibody GFP Prof. Jason Mercer,
UCL, London

NA IFA 3D 1:1000

Antibody Notch3 Santa Cruz
Biotechnology,Dallas, TX

sc-5593 IFA 1:50
WB 1:250

Antibody MMP14 EP1264Y Abcam,Cambridge, UK 51074 IFA 1:100

Antibody MMP14 (LEM clone) Chemicom,Waltham, MA MAB3328 IFA 1:300 FACS 1:100

Antibody active b1-integrin 12G10 Abcam 30394 IFA 1:300 FACS 1:100

Antibody active b1-integrin 9EG7 BD Pharmingen 553715 IFA 1:100 FACS 1:100

Antibody Total b1-integrin Abcam 52971 WB 1:1000

Antibody TGN46 Sigma,St. Louis, MO T7576 IFA 1:500

Antibody LYVE1 Reliatech,Wolfenbüttel, Germany 103-PA50AG IHC 1:200

Antibody Alexa594-phalloidin Thermo Fisher,Waltham, MA 21833 IFA 3D 1:200

Sequence-based
reagents

CD31 RTqPCR
primers (for, rev)

AACAGTGTTGACATGAAGAGCC,
TGTAAAACAGCACGTCATCCTT

CD34 RTqPCR
primers (for, rev)

TGGGCATCACTGGCTATTTC,
CCACGTGTTGTCTTGCTGAA

FLT4 RTqPCR
primers (for, rev)

GACAGCTACAAATACGAGCATCTG,
CTGTCTTGCAGTCGAGCAGAA

Continued on next page
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Continued

Reagent type (species)
or resource Designation Sourcor reference Identifiers Additional Information

NOTCH1 RTq
PCR primers (for, rev)

GAGGCGTGGCAGACTATCATGC,
CTTGTACTCCGTCAGCGTGA

NOTCH2 RTq
PCR primers (for, rev)

CCTGGGCTATACTGGGAGCTACTG
,ACACCCTGATAGCCTGGGACAC

NOTCH4 RTq
PCR primers (for, rev)

AATCCCACTGCCTCCAGACT,
TTGTGGCAAAGGGAAGAGAC

HES1 RTq
PCR primers (for, rev)

TCAACACGACACCGGATAAA,
TCAGCTGGCTCAGACTTTCA

HEY1 RTq
PCR primers (for, rev)

GTTCGGCTCTAGGTTCCATGT,
CGTCGGCGCTTCTCAATTATTC

HEY2 RTq
PCR primers (for, rev)

TTGAGAAGACTTGTGCCAACTG,
GTGCGTCAAAGTAGCCTTTACC

MMP14 RTq
PCR primers (for, rev)

GCAGAAGTTTTACGGCTTGCAA,
CCTTCGAACATTGGCCTTGAT

ACT RTq
PCR primers (for, rev)

TCACCCACACTGTGCCATCTACGA,
CAGCGGAACCGCTCATTGCCAATGG

GAPDH
RTqPCR primers (for, rev)

TCACCACCATGGAGAAGGCT,
GCCATCCACAGTCTTCTGGG

Commercial assay
or kit

NucleoSpin RNA II kit Macherey Nagel,Düren, Germany 740955

Commercial assay
or kit

SYBR Green PCR mix Fermentas, Waltham, MA 4415440

Commercial assay
or kit

QuantiTect Primer Assay
NOTCH3

Qiagen QT00003374

Commercial assay
or kit

dextran coated magnetic
nanoparticles extran coated
magnetic nanoparticles

fluidMAG-DX, Chemicell, Berlin, Germany 4104–5

Commercial assay
or kit

MidiMACS separator Miltenyi Biotec,Bergisch Gladbach, Germany 130-042-302

Commercial assay
or kit

LS column Miltenyi Biotec 130-042-401

Chemical compound,
drug

Lipofectamine RNAiMax Invitrogen 13778150

Chemical compound,
drug

DAPT Sigma D5942 Used at 10 mM

Chemical compound,
drug

GM6001 Tocris Biosciences, Bristol, UK 2983/10 Used at 10 mM

Chemical compound,
drug

NSC 405020 Selleckchem,Munich, Germany S8072 Used at 50 mM

Chemical compound,
drug

AIIB2 DSHB hybridoma, from Johanna Ivaska RRID:AB_528306 Used 1:10

Software, algorithm Bioimage XD
(http://www.bioimagexd.net/)

PMID: 22743773 NA

Software, algorithm CellProfiler PMID: 17076895 RRID:SCR_007358

Software, algorithm Adobe Photoshop RRID:SCR_014199

Software, algorithm ImageJ RRID:SCR_003070

Software, algorithm Pathview
https://pathview.uncc.edu

RRID: SCR_002732

Software, algorithm Morpheus https://software.
broadinstitute.org/morpheus/

RRID: SCR_014975
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Cell lines
Human primary juvenile foreskin lymphatic endothelial cells (LEC) were obtained from Promocell,

and adult dermal LECs from Lonza. They were cultured in endothelial cell culture media (EBM-2,

Lonza) supplemented with the growth factors provided (except VEGF) and 5% fetal calf serum (full

media referred as EGM-2). The human melanoma cell lines WM852, WM165 and WM793 (Wistar

Institute, Philadephia, PA) and Bowes (a kind gift from Dr. D. B. Rifkin, Rockefeller University, New

York, USA), as well as HEK293-FT cells (obtained from Biomedicum Functional Genomics Unit,

FuGU) used for lentivirus production were cultured in Dulbecco’s Modified Eagle Medium as previ-

ously described (Tatti et al., 2011). In most experiments, the melanoma cells were either traced

with Vybrant CFDA SE cell tracer (Invitrogen), or transduced with retroviruses expressing a dual

eGFP-luc-reporter as described in (Tatti et al., 2011). The cell lines have been regularly tested nega-

tive for mycoplasma. The source of the cell lines is also reported above in the key resources table in

Materials and methods

3D fibrin assays
To study the interaction of melanoma cells with the LECs in 3D, they were embedded into a cross-

linked fibrin (Calbiochem, San Diego, CA) matrix together with preformed LEC spheroids and cul-

tured in the endothelial medium for 72 hr. The assay was adapted from a previously reported angio-

genesis assay (Korff and Augustin, 1998) essentially as described in Tatti et al. (2015). To study

the invasive potential of the separated melanoma cells after the LEC co-culture, the melanoma cells

were embedded into the fibrin matrix as single cells and allowed to grow for four days as described

in (Tatti et al., 2011). The melanoma invasion into the EC spheroids as well as to the fibrin matrix

was analysed by immunofluorescent stainings, and confocal microscopy.

2D co-culture and cell separation
For the 2D co-culture, the LECs were seeded together with the melanoma cells on gelatin or fibro-

nectin (Sigma) pre-coated cell culture plates in a 2:1-4:3 ratio in EGM-2 media. The melanoma cells

cultured in EGM-2 showed no signs of compromised cell survival. The co-cultures were grown for

24–72 hr prior further use for immunofluorescent stainings or separations. For the separations, the

melanoma cells were loaded with dextran coated magnetic nanoparticles (1 mg/ml, fluidMAG-DX,

Chemicell) for 24–48 hr. The nanoparticle-containing melanoma cells were separated from the LECs

using the MidiMACS separator and LS column (both from Miltenyi Biotec), after which the cell sus-

pensions were used for functional assays, or lysed for RNA extraction. To study the paracrine effects,

the supernatants from melanoma/LEC/co-cultures were collected after 48 hr of culture, filtered, and

applied onto the melanoma cells for 48 hr, after which the melanoma cells were analysed by immu-

nofluorescent stainings or qRT-PCR.

RNA sequencing (RNA-seq)
RNA extraction for the RNA sequencing analysis was done from three independent experiments

with a TRI reagent (Sigma) protocol supplemented with phenol-chloroform precipitation step. The

RNA concentrations were measured with NanoDrop, and Bioanalyzer (Agilent Technologies, Santa

Clara, CA) analysis was performed to check the RNA quality. RNA sequencing was performed with

NextSeq500 sequencer (Illumina, San Diego, CA ) as quadruplicates. The data was aligned to HS

GRCh38.76 reference genome, and the differentially expressed genes were obtained by using

DESeq2 Bioconductor package (Love et al., 2014). Non-expressed genes (average under five

counts/sample) and ribosomal RNAs were filtered out. Genes with adjusted p-values less than 0.05

were considered significant. Generally applicable gene set enrichment (GAGE) Bioconductor pack-

age was used for pathway analysis, and KEGG pathway maps were rendered with Pathview (https://

pathview.uncc.edu). Morpheus (https://software.broadinstitute.org/morpheus/) was used to gener-

ate the gene heatmap. Individual gene/transcript expressions are shown as FKPM (fragments per

kilobase of exon per million fragments mapped) values. The RNA-Seq data is deposited in NCBI

GEO, with accession number GSE100269 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE100269).
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Real time quantitative PCR (qRT-PCR)
RNA was isolated using the NucleoSpin RNA II kit (Macherey Nagel) and the transcripts were mea-

sured by qRT-PCR as previously described (Cheng et al., 2011). Briefly, the Lightcycler 480 (Roche,

Basel, Switzerland) qRT-PCR system was used, and the reactions were done using the SYBR Green

PCR mix (Fermentas) and QuantiTect Primer Assay against NOTCH3 (QT00003374,

Qiagen). GAPDH or ACT were used as endogenous controls.

RNA interference
Cell monolayers cultured in 96-, 24- or 6-well plates were treated with siRNA according to manufac-

turers’ instructions. All siRNAs were used at a final concentration of 10–25 nM and cells transfected

using lipofectamine RNAiMax (Invitrogen) for 24–72 hr. The following siRNAs were used: unspecific

control (Ambion,Waltham, MA4390843; Dharmacon, D-001810-10-05; Qiagen 1027281), Notch3

(Ambion, 4392420; Dharmacon, L-011093-00-0005), MMP14 (Qiagen, SI03648841; SI00071176).

Inhibitor treatments
Gamma-secretase inhibitor DAPT (Sigma) and pan MMP inhibitor GM6001 (Tocris Biosciences) at 10

mM concentrations, MMP14 hemopexin domain inhibitor NSC 405020 (Selleckchem) at 50 mM and

the b1-integrin blocking antibody AIIB2 were applied to the growth medium during the 48 hr LEC-

WM852 2D co-cultures and also to the 96 hr 3D fibrin assays when indicated.

Plasmids and transient transfection
Bowes and WM793 were plated in a 24 well plate one day prior transfection to reach 80–90% conflu-

ency next day. Cells were then transfected with 3 mg of one of the following plasmids Sport6-

MMP14 (Genome Biology Unit, University of Helsinki), NICD3-pCLE (addGene) or pcDNA3 as con-

trol vector using Lipofectamine 2000 (Thermo Fisher Scientific, Waltham, MA) accoding to manufac-

turer´s instruction. One day post transfection cells were used for the appropriate experiment.

Indirect immunofluorescence and imaging
The 2D cultured and 3D fibrin cultured cells as well as adhesion assays were stained as previously

described (Cheng et al., 2011) with antibodies against: PECAM (Dako, M0823), VE-cadherin (BD

Pharmingen, 553927), GFP (a kind from Prof. Jason Mercer, UCL, London), Notch3 (Santa Cruz, sc-

5593), MMP14 (Abcam, 51074), active b1-integrin (12G10, Abcam, 30394; 9EG7, BD Pharmingen,

553715) and total b1-integrin (P5D2, DSHB hybridoma; from Johanna Ivaska). The secondary anti-

bodies conjugated with Alexa488, Alexa594 and Alexa647 fluorochromes were used to visualize the

stainings, and Alexa594 conjugated phalloidin (Invitrogen) was used to stain the actin filaments. The

nuclei were counterstained with Hoechst 33342. The fluorescent images were acquired using a Zeiss

epifluorescent microscopes, Cellinsight automated epifluorescent microscope (Thermo Scientific),

and a Zeiss LSM780 or Leica SP5 confocal imaging systems.

Western blot
Melanoma cells were lysed in RIPA buffer containing protease and phosphatase inhibitor cocktails

(Thermo Scientific) and protein concentration was obtained using Bio-Rad protein assay dye reagent

concentrate (Bio-Rad, Hercules, CA). Equal amounts of proteins were loaded on 4–15% SDS-PAGE

gel (Bio-RAD). SDS PAGE was run at 55mA for 50 min and proteins were transferred on nitrocellu-

lose membrane (Bio-RAD). The blots were blocked for 45 min in 5% non-fat dry milk and probed

using rabbit anti-Notch3 (Santa Cruz) or rabbit anti-ITGB1 (Abcam, 553715). Mouse anti-b-actin

(Sigma) antibody was used as loading control. Primary antibodies were incubated 1 hr at room tem-

perature followed by incubation in HRP-conjugated secondary antibody for 1 hr at room tempera-

ture (goat-anti mouse IgG and goat anti-rabbit IgG, Millipore, Burlington, MA). Bands were

detected by chemiluminescence using ECL solution (WesternBright Sirius, Advansta, Menlo Park,

CA) and visualized by Chemi-Doc (Bio-Rad).

Flow cytometry
Cells were detached using hyclone HyQtase (Thermo Fisher), washed once with full medium and

once with PBS. Cells were then fixed in 2%PFA for 15 min RT and washed in tyrodes buffer (10 mM
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Hepes-NaOH pH7.5, 137 mM NaCl, 2,68 mM NaH2PO4, 1,7 mM MgCl2, 11.9 mM NaHCO3, 5 mM

glucose, 0.1%BSA). Subsequently 1.5 � 105 cells / condition were stained with anti-MMP14 (Chemi-

con, MAB3328) antibody for 1 hr at 4˚C under rotation, washed once in tyrodes buffer and incubated

with Alexa647-conjugated secondary antibody for 1 hr at 4˚C under rotation. Cells were then

washed once in tyrodes buffer and GFP positive (melanoma) cells were analysed for Alexa647

intensity.

In vivo tumorigenicity and metastasis assay
To study the tumorigenicity and metastatic capacity of the melanoma cells from monotypic cultures

or after LEC priming, the GFP-luc reporter containing melanoma cells were first cultured with or

without the LECs in the 3D fibrin matrix as described above. After 72 hr of co-culture, the proteinase

inhibitor approtinin was removed from the culture media and melanoma cells were allowed to digest

the matrix. After 48–72 hr, the cells were collected, and 1 � 106 cells were injected subcutaneously

into C.B-17/IcrHanTMHSD-Prkdc Scid mice (Harlan). The mice and tumor size were followed weekly

for up to 70 days, after which the tumor volumes and weights were also measured. After the follow-

up period, mice were sacrificed, the tumors were collected for further analyses by immunohisto-

chemical stainings, and the metastasis was analysed by measuring the luciferase activity in the iso-

lated organs using the Caliper IVIS Kinetic imaging system. In addition, the metastatic human cells

were detected from mouse lung genomic DNA by quantitative PCR (q-PCR) against human Alu

sequences, and using mouse genomic DNA as normalization as previously described (Liu et al.,

2011).

Zebrafish xenograft and metastasis assay
Adult zebrafish (Danio Rerio) of casper strain (roy-/-; mitfa-/-) (White et al., 2008) were maintained

according to standard procedures (Nuesslein-Volhard and Dahm, 2011; Westerfield and Zon,

2009) and embryos were collected after natural spawning. Experimentation with zebrafish was per-

formed under licence ESAVI/9339/04.10.07/2016. The zebrafish embryos were cultured in E3-

medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO4) supplemented with 0.2 mM

phenylthiourea (PTU, Sigma-Aldrich) at 33˚C. Two days post-fertilization, the embryos were anesthe-

sized with MS-222 (200 mg/l, Sigma-Aldrich) and mounted into low-melting point agarose for tumor

transplantation. Prior to transplantation, the co-cultured and siRNA-treated WM852-GFP melanoma

cells were prepared and separated from LECs as described above. Approximately 5–10 nl of mela-

noma cell suspension was microinjected into pericardial cavity of the embryo using CellTramVario

(Eppendorf), Injectman Ni2 (Eppendorf) micromanipulator and borosilicate glass needles pulled from

glass capillaries (TW100-4, World Precision Instruments Ltd., Sarasota, FL) using micropipette puller

(PB-7, Narishige, Tokyo, Japan). After transplantation, the embryos were released from the agarose

and cultured in E3-PTU at 33˚C. On the following day, the successfully xenografed healthy embryos

were selected to the experiment and placed into 12-well plates (1 embryo per well). At 6 dpf (4 days

post-injection) the embryos were anaesthesized with MS-222 and imaged in lateral orientation with

Zeiss StereoLumar V12 fluorescence microscope.

The circularity and area of the primary tumor was measured manually using FIJI software (ImageJ

version 1.49 k) (Schindelin et al., 2012). In cases where embryo carried more than one primary

tumor, the largest nodule was considered as primary tumor and measured, or in cases where equally

sized nodules existed, all of them were measured. The number of invaded cells were counted manu-

ally based on GFP-fluorescence. Only invading cells outside the pericardial cavity were counted.

Invading cells above the yolk sac or in the lens were not also counted as these sites tend to have

prominent autofluorescence. Samples having significant malformations and images where embryo

was not laterally oriented were excluded from the analysis. Samples were not blinded for imaging

and subsequent analyses.

Immunohistochemistry
The mouse tumors were stained with antibodies against MMP14 (Chemicon), Lyve-1 (Reliatec) and

Notch3 (Santa Cruz) as previously described (Cheng et al., 2011). The antibody stainings were visu-

alized using Alexa594 and Alexa647 fluorochrome conjugated secondary antibodies for MMP14 and

LYVE-1 and anti-rabbit HRP and DAB as a substrate for detection of Notch3. The images were
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acquired with 3DHistech Panoramic 250 FLASH II digital slide scanner or Zeiss LSM780 confocal

imaging system.

Notch3 staining was scored as low, medium, or high according to intensity. Scoring was per-

formed by three independent investigators (SA, SG, PMO) without knowledge of the sample origin.

Differing scores were discussed and consensus scores were determined.

Statistical analysis
For quantification of the assay in 3D-fibrin gels, confocal stacks where analysed with the open source

software Bioimage XD (http://www.bioimagexd.net/) (Kankaanpää et al., 2012) using the ’skeleton’

tool in the 3D modules of the software. Cell clusters were identified by thresholding the intensity of

melanoma GFP fluorescence. The skeleton function of Bioimage XD shrunk the 3D object from all

directions until a central segment (the skeleton of the object) was obtained. The sum of the length

of all the segments within a 3D object were considered as a measure of sprouting of the melanoma

cells in 3D. This value was calculated for all objects in each image (typically around 50 objects per

image). The mean and SD of all these values from at least three images per condition was given as

the final value of sprouting in each experiment.

For quantification of the intensity of fluorescent stainings, mean intensity and respective SD in

melanoma (GFP expressing) cells was measured using CellProfiler pipeline. At least four images

were quantified in each different condition. Experiments were repeated at least two times, p-values

was calculated with a one-tailed unpaired Student’s t-test. *p<0.05, **p<0.01.

For quantification of western blotting, band intensities were measured in two independent

experiments using Image Lab quantification program. For each sample, the intensities were first nor-

malized to the corresponding loading control, then the average intensity was calculated. The mean

intensity and SD were calculated from two experiments.

For statistical analysis of the qRT-PCR data, logarithmic values were converted to ddCt values (lin-

ear log2 scale values) and p-values were calculated with a one-tailed unpaired Student’s t test.

*p<0.05, **p<0.01, ***p<0.001.

Non-parametric Kruskal-Wallis test with Dunn´s multiple comparison test (GraphPad Prism 6.05,

GraphPad Software, La Jolla California USA,) was used in the analyses of zebrafish data. Each condi-

tion was compared siCTRL-LEC co-culture. In each graph, median and interquartile range has been

plotted. *p<0.05, **p<0.01, ***p<0.001.
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