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Abstract 12 

Animal behavior has been studied for centuries, but few efficient methods are available to 13 

automatically identify and classify behavior. Quantitative behavioral studies have been hindered by 14 

the subjective and imprecise nature of human observation, the limitation of human vision and the 15 

slow speed of annotating behavioral data. Here we developed an automatic behavior analysis pipeline 16 

for the cnidarian Hydra vulgaris using machine learning approaches. We imaged freely behaving 17 

Hydra, extracted motion and shape features from the videos, and constructed a dictionary of visual 18 

features to classify pre-defined behaviors. We also identified unannotated behaviors with 19 

unsupervised methods. Using this analysis pipeline, we found surprisingly similar behavior statistics 20 

across animals within the same species, regardless of experimental conditions. Our analysis indicates 21 

that the behavioral repertoire of Hydra is stable. This robustness could reflect a homeostatic neural 22 

control which could have been already present in the earliest nervous systems. 23 

 24 

 25 

  26 
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Introduction 27 

Animal behavior is generally characterized by an enormous variability in posture and the motion 28 

of different body parts, even if many complex behaviors can be reduced to sequences of simple 29 

stereotypical movements (Berman et al., 2014; Branson et al., 2009; Gallagher et al., 2013; Srivastava et 30 

al., 2009; Wiltschko et al., 2015; Yamamoto and Koganezawa, 2013). As a way to systematic capture this 31 

variability and compositionality, quantitative behavior recognition and measurement methods could 32 

provide an important tool for investigating behavioral differences under various conditions using large 33 

datasets, allowing for the discovery of behavior features that are beyond the capability of human 34 

inspection, and defining a uniform standard for describing behaviors across conditions (Egnor and 35 

Branson, 2016). In addition, much remains unknown about how the specific spatiotemporal pattern of 36 

activity of the nervous systems integrate external sensory inputs and internal neural network states in 37 

order to selectively generate different behavior. Thus, automatic methods to measure and classify 38 

behavior quantitatively could allow researchers to indetify potential neural mechanisms by providing a 39 

standard measurement of the behavioral output of the nervous system.  40 

Indeed, advances in calcium imaging techniques have enabled the recording of large neural 41 

populations (Chen et al., 2013; Jin et al., 2012; Kralj et al., 2012; St-Pierre et al., 2014; Tian et al., 2009; 42 

Yuste and Katz, 1991) and whole brain activity from small organisms such as C. elegans and larval 43 

zebrafish (Ahrens et al., 2013; Nguyen et al., 2016; Prevedel et al., 2014). A recent study has 44 

demonstrated the cnidarian Hydra can be used as an alternative model to image the complete neural 45 

activity during behavior (Dupre and Yuste, 2017). As a cnidarian, Hydra is closer to the earliest animals in 46 

evolution that had a nervous system. As the output of the nervous system, animal behavior allow 47 

individuals to adapt to the environment at a time scale that is much faster than natural selection, and 48 

drives rapid evolution of the nervous system, providing a rich context to study nervous system functions 49 
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and evolution (Anderson and Perona, 2014). As Hydra nervous system evolved from the nervous system 50 

present in the last common ancestor of cnidarians and bilaterians, the behaviors of Hydra could also 51 

represent some of the most primitive examples of coordination between a nervous system and non-52 

neuronal cells. This could make Hydra particularly relevant to our understanding of the nervous systems 53 

of model organisms such as C. elegans, Drosophila, zebrafish, and mice, as it provides an evolutionary 54 

perspective to discern whether neural mechanisms found in a particular species represent a 55 

specialization or are generally conserved. In fact, although Hydra behavior has been study for centuries, 56 

it is still unknown whether Hydra possesses complex behaviors such as social behavior and learning 57 

behavior, how its behavior changes under environmental, physiological, nutritional or pharmacological 58 

manipulations, and what are the underlying neural mechanisms of these potential changes. Having an 59 

unbiased and automated behavior recognition and quantification method would therefore enable such 60 

studies with large datasets. This will allow systematic pharmacological assays, lesion studies, 61 

environmental and physiological condition changes, under activation of subsets of neurons, testing 62 

quantitative models of Hydra behaviors, and linking behavior outputs with the underlying neural activity 63 

patterns. 64 

Hydra behavior was first described by Trembley (Trembley, 1744), and it consists of both 65 

spontaneous and stimulus-evoked elements. Spontaneous behaviors include contraction (Passano and 66 

McCullough, 1964) and locomotion such as somersaulting and inchworming (Mackie, 1974), and can 67 

sometimes be induced by mechanical stimuli or light. Food-associated stimuli induce a stereotypical 68 

feeding response that consists of three distinct stages: tentacle writhing, tentacle ball formation and 69 

mouth opening (Koizumi et al., 1983; Lenhoff, 1968). This elaborate reflex-like behavior is fundamental 70 

to the survival of Hydra and sensitive to its needs: well-fed animals do not appear to show feeding 71 

behavior when exposed to a food stimulus (Lenhoff and Loomis, 1961). In addition, feeding behavior can 72 

be robustly induced by small molecules such as glutathione and S-methyl-glutathione (GSM) (Lenhoff 73 
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and Lenhoff, 1986). Besides these relatively complex behaviors, Hydra also exhibits simpler behaviors 74 

with different amplitudes and in different body regions, such as bending, individual tentacle movement, 75 

and radial and longitudinal contractions. These simpler behaviors can be oscillatory and occur in an 76 

overlapping fashion and are often hard to describe in a quantitative manner. This, in turn, makes 77 

complex behaviors such as social or learning behaviors, which can be considered as sequences of simple 78 

behaviors, hard to quantitatively define. Indeed, to manually annotate behaviors in videos that are 79 

hours or days long is not only extremely time-consuming, but also partly subjective and imprecise 80 

(Anderson and Perona, 2014). However, analyzing large datasets of behaviors is necessary to 81 

systematically study behaviors across individuals in a long-term fashion. Recently, computational 82 

methods have been developed to define and recognize the behaviors of C. elegans (Brown et al., 2013; 83 

Stephens et al., 2008) and Drosophila (Berman et al., 2014; Johnson et al., 2016). These pioneer studies 84 

identify the movements of animals by generating a series of posture templates, and decomposing the 85 

animal posture at each time points with these standard templates. This general framework works well 86 

for animals with relatively fixed shapes. However, Hydra has a highly deformable body shape that 87 

contracts, bends and elongates in a continuous and non isometric manner, and the same behavior 88 

occurs at various body postures. Moreover, Hydra has various number of tentacles and buds across 89 

individuals, which presents further challenge for applying template-based methods. Therefore, a 90 

method that encodes behavior information in a statistical rather than an explicit manner is required for 91 

analyzing Hydra behaviors. 92 

As a potential solution to this challenge, the field of computer vision has recently developed 93 

algorithms for deformable human body recognition and action classification. Human actions have large 94 

variations based on the individual’s appearance, speed, the strength of the action, background, 95 

illumination, etc. (Wang et al., 2011). To recognize the same action across conditions, features from 96 

different videos need to be represented in a unified way. In particular, the Bag-of-Words model (BoW 97 
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model) (Matikainen et al., 2009; Sun et al., 2009; Venegas-Barrera and Manjarrez, 2011; Wang et al., 98 

2011) has become a standard method, as is a video representation approach that captures the general 99 

statistics of image features in videos ďy treatiŶg ǀideos as ͞ďags͟ of those features. This is the key to 100 

generalizing behavior features in a dataset that is rich with widely varied individual-specific 101 

characteristics. This model originated from document classification algorithms, where a text is 102 

represented by an empirical distribution of its words.  To analyze videos of moving scenes, the BoW 103 

model has two steps: feature representation and codebook representation. In the first step, features 104 

(i.e., ͞ǁords͟ suĐh as movements and shapes) are extracted and unified into descriptor representations. 105 

In the second step, these higher order descriptors from multiple samples are clustered (i.e., movement 106 

motifs), usually by k-means, and theŶ aǀeraged desĐriptors froŵ eaĐh Đluster are defiŶed as ͞Đodewords͟ 107 

that form a large codebook. This codebook in principle contains representative descriptors of all the 108 

different movements of the animal. Therefore, each clip of the video can be represented as a histogram 109 

over all codewords in the codebook. These histogram representations can be then used to train 110 

classifiers such as SVMs, or as inputs to various clustering algorithms, supervised or unsupervised, to 111 

identify and quantify behavior types. While BoW produces an abstract representation compared to 112 

manually specified features, it very effectively leverages the salient statistics of the data, enabling 113 

modeling of large populations. Doing so on a large scale with manually selected features is infeasible. 114 

The power of such a generalization makes the BoW framework particularly well suited for addressing 115 

the challenge of quantifying Hydra behavior. 116 

Inspired by previous work on C. elegans (Brown et al., 2013; Kato et al., 2015; Stephens et al., 117 

2008) and Drosophila (Berman et al., 2014; Johnson et al., 2016; Robie et al., 2017) as well as by 118 

progress in computer vision (Wang et al., 2011), we explored the BoW approach, combining computer 119 

vision and machine learning techniques, to identify both known and unannotated behavior types in 120 

Hydra. To do so, we imaged behaviors from freely moving Hydra, extracted motion and shape features 121 
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from the videos, and constructed a dictionary of these features. We then trained classifiers to recognize 122 

Hydra behavior types with manual annotations, and identified both annotated and unannotated 123 

behavior types in the embedding space. We confirmed the performance of the algorithms with manually 124 

annotated data and then used the method for a comprehensive survey of Hydra behavior, finding a 125 

surprising stability in the expression of six basic behaviors, regardless of the different experimental and 126 

environmental conditions. These findings are consistent with the robust behavioral and neural circuit 127 

homeostasis found in other invertebrate nervous systems (Haddad and Marder, 2017). 128 

 129 

Results 130 

Capturing the movement and shape statistics of freely-moving Hydra  131 

 Our goal was to develop a method to characterize the complete behavioral repertoire of Hydra 132 

under different laboratory conditions. We collected a Hydra behavior video dataset (Han, 2018a) using a 133 

widefield dissecting microscope, allowing Hydra to move freely in a culture dish (Figure 1a). We imaged 134 

53 Hydra specimens at a rate of 5 Hz for 30 minutes, and either allowed each of them to behave freely, 135 

or we induced feeding behavior with glutathione, since feeding could not be observed without the 136 

presence of prey (which would have obscured the imaging).  From viewing these data, we visually 137 

identified 8 different behaviors, and manually annotated every frame of the entire dataset with the 138 

following labels for these 8 behavioral states: silent, elongation, tentacle swaying, body swaying, 139 

bending, contraction, somersaulting, and feeding (Figure 1b; Supplemental videos 1-7). Overall, we 140 

acquired an annotated Hydra behavior dataset with 360,000 fames in total. We noticed that most 141 

behaviors in our manual annotation lasted less than 10 seconds (Figure 1c), and that, within a time 142 

window of 5 seconds, most windows contained only one type of behavior (Figure 1d). A post hoc 143 

comparison of different window sizes (1-20 secs) with the complete analysis framework also 144 
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demonstrated that 5-second windows result in the best performance (Figure 2-figure supplement 1a). 145 

Therefore, we chose 5-second as the length of a behavior element in Hydra. 146 

 Due to the large shape variability of the highly deformable Hydra body during behavior, 147 

approaches of constructing behavior eigenmodes from animal postures are not suitable. Therefore, we 148 

designed a novel approach consisting of four steps: pre-processing, feature extraction, codebook 149 

generation, and feature encoding (Han, 2018b) (Figure 2), in line with the BoW framework. Pre-150 

processing was done to exclude the variability in size and the rotation angle during imaging, which 151 

introduces large variance within the same action class. To do so, we first defined a behavior element as 152 

a 5-second time window, splitting each behavior video into the element windows accordingly. Then we 153 

fitted the body column of Hydra into an ellipse, and centered, rotated, and scaled the ellipse to a 154 

uniform template ellipse in each element window. We then encoded spatial information into the BoW 155 

framework by segmenting the Hydra area in videos, and dividing it into a tentacle region, an upper body 156 

region, and a lower body region with an automated program (Materials and Methods; Supplementary 157 

video 8).  158 

After this encoding, in a feature extraction step we applied a dense trajectory method in each 5-159 

second window element (Wang et al., 2011). This dense trajectory method represents video patches by 160 

several shape and motion descriptors, including a Histogram of Oriented Gradient (HOG) (Dalal and 161 

Triggs, 2005), which is based on edge properties in the image patch; and a Histogram of Optical Flow 162 

(HOF) as well as a Motion Boundary Histogram (MBH) (Dalal et al., 2006), based on motion properties. 163 

With the dense trajectory method, we first detected and tracked points with prominent features 164 

throughout the videos. Then, for each feature point, we took a small surrounding local patch and 165 

computed the motion and shape information therein represented by HOF, HOG and MBH descriptors 166 

(Supplementary video 9). Thus, each video window element was captured as motion and shape 167 

descriptors associated with a set of local video patches with distinguished visual features.  168 
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To quantize the ͞bags͟ of features from each element time window, we collected a uniform 169 

feature codebook using all the dense trajectory features. Intuitively, the elements in the codebook are 170 

the representative features for each type of motion or shape in a local patch, therefore they can be 171 

regarded as standard entries in a dictionary. Here we generate the codebook in a ͞soft͟ manner, where 172 

the codebook contains information of the centroid of clusters and their shape. We fitted the features 173 

with k Gaussian mixtures. Because each Gaussian is characterized not only by its mean, but also by its 174 

variance, we preserved more information than with other ͞hard͟ methods like k-means. The next step 175 

was to encode the features with the codebook. For this, ͞hard͟ ŵethods ǁhere one encodes the 176 

features by assigning each feature vector to its nearest Gaussian mixture, lose information concerning 177 

the shapes of the Gaussians. To avoid this issue, we encoded the features using Fisher vectors, which 178 

describe the distance between features and the Gaussian mixture codebook entries in a probabilistic 179 

way, encoding both the number of occurrence and the distribution of the descriptors (Perronnin et al., 180 

2010) (Figure 2-figure supplement 1b). Since each element window was split into tentacle, upper body 181 

and lower body region, we were able to integrate spatial information by encoding the features in each 182 

of the three body regions separately (Figure 2-figure supplement 1b). Finally, we represented the 183 

behavior in each element window by the concatenated Fisher vector from the three regions. 184 

 185 

Hydra behavior classified from video statistics 186 

Like all animals, Hydra exhibits behaviors at various time scales. Basic behaviors such as 187 

elongation and bending are usually long and temporally uniform, while tentacle swaying, body swaying 188 

and contraction are usually short and executed in a burst-like manner. Feeding and somersaulting are 189 

more complex behaviors that can be broken down into short behavior motifs (Supplementary videos 6-7) 190 

(Lenhoff and Loomis, 1961). Feeding is apparently a stepwise, fixed action pattern-like uniform behavior, 191 
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with smooth transitions between tentacle writhing, ball formation, and mouth opening (Supplementary 192 

video 6). Somersaulting represents another fixed action pattern-like behavior and typically consists of a 193 

sequence of basic behaviors with elongation accompanied by tentacle movements, contraction, bending, 194 

contraction, elongation, and contraction; completing the entire sequence takes a few minutes in total 195 

(Supplementary video 7). The time spent during each step and the exact way each step is executed 196 

varies between animals. Thus, to study Hydra behavior, it is essential to accurately recognize the basic 197 

behavior types that comprise these complex activities. 198 

 We aimed to capture basic behaviors including silent, elongation, tentacle swaying, body 199 

swaying, bending, contraction, and feeding, using the Fisher vector features that encode the video 200 

statistics. These features were extracted from 5-second element windows and exhibited stronger 201 

similarity within the same behavior type, but were distinguished from features of different behavior 202 

types (Figure 3a). We then trained support vector machine (SVM) classifiers with manual labels on data 203 

from 50 Hydra, and tested them on a random 10% withheld validation dataset. We evaluated 204 

classification performance via the standard receiver operating characteristic (ROC) curve and the area 205 

under curve (AUC). In addition, we calculated three standard measurements from the number of true 206 

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN): accuracy, defined as 207 

(TP+TN)/(TP+TN+FP+FN); precision, defined as TP/(TP+FP); and recall, defined as TP/(TP+FN). We 208 

achieved perfect training performance (AUC = 1, accuracy 100%), while on the validation data the 209 

overall accuracy was 86.8%, and mean AUC was 0.97 (Figure 3b, 3c; Table 1). This classification 210 

framework was easily generalized to new data. With data from three Hydra that were not involved in 211 

either codebook generation or classifier training, we extracted and encoded features using the 212 

generated codebook, and achieved classification accuracy of 90.3% for silent (AUC = 0.95), 87.9% for 213 

elongation (AUC = 0.91), 71.9% for tentacle swaying (AUC = 0.76), 83.4% for body swaying (AUC = 0.75), 214 

93.9% for bending (AUC = 0.81) and 92.8% for contraction (AUC = 0.92). All the classifiers achieved 215 
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significantly better performance than random guess (chance level, Figure 3b, 3c, 3d; Table 1; 216 

Supplementary video 10). Interestingly, the variability in classifier performance with new data matched 217 

human annotator variability (Figure 1-figure supplement 1). This demonstrates that the codebook 218 

generated from training data efficiently captured Hydra behaviors, and that trained classifiers can 219 

robustly identify the basic behaviors of Hydra and predict their occurrence automatically from the data.  220 

 Hydra can exhibit overlapping behaviors at the same time. For example, a Hydra specimen could 221 

be moving its tentacles while bending, or swaying its body while elongating. In such cases, it would be 222 

imprecise to allow only a single behavior label per time window. To capture this situation, we allowed a 223 

͞soft͟ classification strategy, taking up to three highest classification types that have a classifier 224 

probability within a twofold difference between them. With joint classifiers, we achieved 86.8% overall 225 

accuracy on the validation data (81.6% with hard classification), and 59.0% with new test data (50.1% 226 

with hard classification). Soft classification improved classification performance by allowing a realistic 227 

situation when Hydra transitions between two behaviors, or executing multiple behaviors 228 

simultaneously. 229 

 In addition to optimally classifying the 7 basic behaviors described above, classifying 230 

somersaulting video clips with basic behavior classifiers showed a conserved structure during the 231 

progression of this behavior (Figure 3e; Supplementary video 11). Somersaulting is a complex behavioral 232 

sequence that was not included in the 7 visually identified behavior types. This long behavior can 233 

typically be decomposed into a sequence of simple behaviors of tentacle swaying, elongation, body 234 

swaying, contraction, and elongation. Indeed, in our classification of somersaulting with the 7 basic 235 

behavior types, we noticed a strong corresponding structure: the classified sequences start with tentacle 236 

swaying, elongation, and body swaying, then a sequence of contraction and elongation before a core 237 

bending event (Figure 3e); finally, elongation and contraction complete the entire somersaulting 238 

behavior. This segmented classification based on breaking down a complex behavior into a sequence of 239 
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multiple elementary behaviors agrees with human observations of the behavior, indicating that our 240 

method is able to describe combined behaviors using the language of basic behavior types. 241 

 242 

Unsupervised discovery of behavior states in embedding space  243 

 Manual annotation identifies behavior types on the basis of distinct visual features. However, it 244 

is subjective by nature, especially when the Hydra exhibits multiple behaviors simultaneously, and can 245 

be affected by the individual biases of the annotator. Therefore, to complement the supervised method 246 

described above, where classifiers were trained with annotated categories, we sought to perform 247 

unsupervised learning to discover the structural features of Hydra behaviors. Since the Fisher vector 248 

representation of video statistics is high-dimensional, we applied a nonlinear embedding technique, t-249 

Distributed Stochastic Neighbor Embedding (t-SNE), to reduce the feature vector dimensionality 250 

(Berman et al., 2014; Van Der Maaten, 2009). This also allowed us to directly visualize the data structure 251 

in a low-dimensional space. As t-SNE reduces high-dimensional data to two dimensions while preserving 252 

the local structures in the data, it serves as a method for revealing potential structures of the behavior 253 

dataset.  254 

Embedding the feature vectors of training data resulted in a t-SNE map that corresponded well 255 

to our manual annotation (Figure 4a). Generating a density map over the embedded data points 256 

revealed cluster-like structures in the embedding space (Figure 4b). We segmented the density map into 257 

regions with a watershed method, which defined each region as a behavior motif region (Figure 4c, 4e). 258 

We evaluated the embedding results by quantifying the manual labels of data points in each behavior 259 

motif region. We then assigned a label to each region based on the majority of the manually labeled 260 

behavior types in it. Using this approach, we identified 10 distinct behavior regions in the map (Figure 261 

4d). These regions represented not only the 7 types we defined for supervised learning, but also a 262 
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somersaulting region, and three separate regions representing the three stages of feeding behavior 263 

(Figure 4d). Embedding with continuous 5-second time windows, which exclude the effect of the hard 264 

boundaries of separating the behavior elements, finds the same types of behaviors (Figure 4-figure 265 

supplement 1). 266 

 The generated embedding space could be used to embed new data points (Berman et al., 2014). 267 

We embedded feature vectors from a withheld validation dataset, as well as from three Hydra that were 268 

involved neither in generating the feature codebook, nor in the embedding space generation (Figure 4f). 269 

Quantitative evaluation of embedding performance with manual labels showed that all behavior types 270 

were accurately identified by embedding in the validation data. In test samples, embedding 271 

identification of elongation, tentacle sway, body sway, contraction, and the ball formation stage of 272 

feeding, all agreed with manual labels (Figure 4g). Therefore, embedding of feature vectors can identify 273 

the same behavior types that are identified by human annotation.  274 

 275 

Embedding reveals unannotated behaviors in long datasets 276 

 We next wondered if Hydra has any spontaneous behaviors under natural day/night cycles that 277 

were not included in our manually labeled sets. We mimicked natural conditions by imaging from a 278 

Hydra polyp for 3 days and nights with a 12 hour dark/light cycle (Figure 5a), keeping the Hydra in a 100 279 

µm thick coverslip covered chamber to constrain it within the field of view of the microscope (Figure 5b) 280 

(Dupre and Yuste, 2017). This imaging approach, although constraining the movement of Hydra, 281 

efficiently reduced the complexity of the resulting motion from a three-dimensional to a two-282 

dimensional projection, while still allowing the Hydra to exhibit a repertoire of normal behaviors.  283 

 Using this new dataset, we generated a t-SNE embedding density map from the feature vectors 284 

as previously described, and segmented it into behavior motif regions (Figure 5c). Among the resulting 285 
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260 motif regions, we not only discovered the previously defined behavior types including silent, 286 

elongation, bending, tentacle swaying, and contraction, but also found subtypes within certain classes 287 

(Supplementary videos 12-19). In elongation, for example, we found three different subtypes based on 288 

the state of the animal: slow elongation during the resting state of the animal, fast elongation after a 289 

contraction burst, and inter-contraction elongation during a contraction burst (Supplementary videos 290 

13-15). In contraction, we found two different subtypes: the initial contraction of a contraction burst, 291 

and the subsequent individual contraction events when the animal is in a contracted state 292 

(Supplementary videos 18-19). Interestingly, we also discovered one region in the embedding map that 293 

showed a previously unannotated egestion behavior (Figure 5c; Supplementary video 20). Egestion 294 

behavior (also known as radial contraction) has been observed before (Dupre and Yuste, 2017), and is 295 

typically a fast, radial contraction of the body column that happens within 1 second and empties the 296 

body cavity of fluid. Although this behavior happens with animals in their natural free movement, its fast 297 

time scale and the unconstrained movement make it hard to identify visually during human annotation. 298 

In addition, another t-SNE region showed a novel hypostome movement associated with the egestion 299 

behavior, characterized by a regional pumping-like movement in hypostome and lower-tentacle regions 300 

(Supplementary video 21).  301 

 We evaluated the reliability of the identification of this newly discovered egestion behavior from 302 

the embedding method by detecting egestion with an additional ad-hoc method. We measured the 303 

width of the Hydra body column by fitting it to an ellipse, and low-pass filtered the width trace. Peaks in 304 

the trace then represent estimated time points of egestion behavior, which is essentially a rapid 305 

decrease in the body column width (Figure 5d). Detected egestion time points were densely distributed 306 

in the newly discovered egestion region in the embedding map (Figure 5e), confirming that our method 307 

is as an efficient way to find novel behavior types.  308 

 309 
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Behavior of Hydra under different experimental conditions 310 

 Although basic Hydra behaviors. such as contraction, feeding and somersaulting have been 311 

described for over two centuries, the quantitative understanding of Hydra behaviors has been limited by 312 

the subjective nature of human annotation and by the amount of data that can be processed by manual 313 

examination. To build quantitative descriptions that link behaviors to neural processes and to explore 314 

behavior characteristics of Hydra, we used our newly developed method to compare the statistics of 315 

behavior under various physiological and environmental conditions. 316 

 In its natural habitat, Hydra experiences day/night cycles, food fluctuations, temperature 317 

variations, and changes in water chemistry. Therefore, we wondered whether Hydra exhibit different 318 

behavioral frequencies or behavioral variability under dark and light conditions, as well as in starved and 319 

well-fed conditions. Since we did not expect Hydra to exhibit spontaneous feeding behavior in the 320 

absence of prey, we only analyzed six basic behavior types using the trained classifiers: silent, elongation, 321 

tentacle swaying, body swaying, bending, and contraction. Lighting conditions (light vs. dark) did not 322 

result in any significant changes in either the average time spent in each of the six behavior types (Figure 323 

6a) or the individual behavior variability defined by the variation of the percentage of time spent in each 324 

behavior in 30 minutes time windows (Figure 6b). Also, compared with starved Hydra, well-fed Hydra 325 

did not show significant changes in the percentage of time spent in elongation behavior (Figure 6c), but 326 

showed less variability in it (Figure 6d; starved: 8.95% ± 0.69%, fed: 5.46% ± 0.53%, p = 0.0047).  327 

As Hydra polyps vary significantly in size depending on the developmental stage (e.g. freshly 328 

detached buds vs. fully grown animals,) and nutrition status (e.g. Hydra that has been starved for a week 329 

vs. well-fed Hydra), we also explored whether Hydra of different sizes exhibit different behavioral 330 

characteristics. For this, we imaged behaviors of Hydra with size difference of up to 3-fold. Large Hydra 331 

polyps had similar silent, body swaying, and contraction patterns, but spent slightly less time in 332 
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elongations, and more in tentacle swaying (Figure 6e; elongation small: 22.42% ± 1.35%, large: 17.00% ± 333 

0.74%, p = 0.0068; tentacle swaying small: 34.24% ± 1.24%, large: 41.06% ± 2.70%, p = 0.03). The 334 

individual behavior variability remained unchanged (Figure 6f).  335 

Finally, we further inquired if different Hydra species have different behavioral repertoires. To 336 

answer this, we compared the behaviors of Hydra vulgaris, and Hydra viridissima, (i.e. green Hydra, 337 

which contains symbiotic algae in its endodermal epithelial cells(Martínez et al., 2010). The last common 338 

ancestor of these two species was at the base of Hydra radiation. Indeed, we found that Hydra 339 

viridissima exhibited statistically less silent and bending behaviors, but more elongations (Figure 6g; 340 

elongation vulgaris: 15.74% ± 0.50%, viridissima: 18.63% ± 0.87%, p = 0.0303; bending vulgaris: 2.31% ± 341 

0.27%, viridissima: 1.35% ± 0.17%, p = 0.0177), while individual viridissima specimens also exhibit 342 

slightly different variability in bending (Figure 6h; vulgaris: 2.17 % ± 0.26%, viridissima: 1.33% ± 0.20%, p 343 

= 0.0480). We concluded that different Hydra species can have different basic behavioral repertoire.  344 

 345 

Discussion 346 

A machine learning method for quantifying behavior of deformable animals 347 

 Interdisciplinary efforts in the emerging field of computational ethology are seeking novel ways 348 

to automatically measure and model natural behaviors of animals (Anderson and Perona, 2014) 349 

(Berman et al., 2014; Branson et al., 2009; Brown et al., 2013; Creton, 2009; Dankert et al., 2009; 350 

Johnson et al., 2016; Kabra et al., 2013; Pérez-Escudero et al., 2014; Robie et al., 2017; Stephens et al., 351 

2008; Swierczek et al., 2011; Wiltschko et al., 2015). Most of these approaches rely on recognizing 352 

variation of the shapes of animals based on fitting video data to a standard template of the body of the 353 

animal. However, unlike model organisms like worms, flies, fishes and mice, Hydra differs dramatically 354 

from these bilaterian organisms in having an extremely deformable and elastic body. Indeed, during 355 
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contraction, Hydra appears as a ball with all tentacles shortened, while during elongation, Hydra 356 

appears as a long and thin column with tentacles relaxed. Moreover, these deformations are non-357 

isometric, i.e., different axes, and different parts of the body, change differently. The number of 358 

tentacles each Hydra has also varies. These present difficult challenges for recognizing Hydra behaviors 359 

using preset templates. 360 

 To tackle the problem of measuring behavior in a deformable animal, we developed a novel 361 

analysis pipeline using approaches from computer vision that have achieved success in human action 362 

classification tasks (Ke et al., 2007; Laptev et al., 2008; Poppe, 2010; Wang et al., 2009, 2011). Such tasks 363 

usually involve various actions and observation angles, as well as occlusion and cluttered background. 364 

Therefore, they require more robust approaches to capture stationary and motion statistics, compared 365 

to using pre-defined template-based features. In particular, the bag-of-words (BoW) framework is an 366 

effective approach for extracting visual information from videos of humans or animals with arbitrary 367 

motion and deformation. The BoW framework originated from document classification tasks with 368 

ŵaĐhiŶe learŶiŶg. IŶ this fraŵeǁork, doĐuŵeŶts are ĐoŶsidered ͞ďags͟ of ǁords, aŶd are theŶ 369 

represented by a histogram of word counts using a common dictionary. These histogram 370 

representations are widely used for classifying document types because of their efficiency. In computer 371 

ǀisioŶ, the BoW fraŵeǁork ĐoŶsiders piĐtures or ǀideos as ͞ďags͟ of ǀisual ǁords, such as small patches 372 

in the images, or shape and motion features extracted from such patches. Compared with another 373 

popular technique in machine vision, template matching, BoW is robust against challenges such as 374 

occlusion, position, orientation, and viewing angle changes. It also proves to be successful in capturing 375 

object features in various scenes, and thus has become one of the most important developments and 376 

cutting edge methods in this field. For these reasons, BoW is ideally suited for the problem behavior 377 

recognition tasks of deformable animals, such as Hydra.   378 
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We modified the BoW framework by integrating other computational methods, including body 379 

part segmentation (which introduces spatial information), dense trajectory features (which encode 380 

shape and motion statistics in video patches) and Fisher vectors (which represent visual words in a 381 

statistical manner). Our choice of framework and parameters proved to be quite adequate, considering 382 

both its training and validation accuracy, as well as its generalizability on test datasets (Figure 2-figure 383 

supplement 1). Indeed, the robust correspondence between supervised, unsupervised and manual 384 

classification that we report provides internal cross-validation to the validity and applicability of our 385 

BoW machine learning approach. Our developed framework, which uses both supervised and 386 

unsupervised techniques, is in principle applicable to all organisms, since it does not rely on specific 387 

information of Hydra. Compared with previously developed methods, our method would be particularly 388 

suitable for behaviors in natural conditions that involve deformable body shapes, as a first step to 389 

developing more sophisticated behavioral methods in complex environment for other species.  390 

 Our goal was to describe all possible Hydra behavior quantitatively. Because of this, we used the 391 

BoW framework to capture the overall statistics with a given time frame. We defined the length of basic 392 

behavior elements to be 5 seconds, which maximizes the number of behaviors that were kept intact 393 

while uncontaminated by other behavior types (Figure 1c-d). However, it should be noted that our 394 

approach could not capture fine-level behavior differences, e.g. single tentacle behavior. This would 395 

require modeling the animal with an explicit template, or with anatomical landmarks, as demonstrated 396 

by deformable human body modeling with wearable sensors. Our approach also does not recover 397 

transition probabilities between behavior types, or behavioral interactions between individual 398 

specimens. In fact, since our method treats each time window as an independent ͞bag͟ of visual words, 399 

there was no constraint on the temporal smoothness of classified behaviors. Classifications were 400 

allowed to be temporally noisy, therefore they could not be applied for temporal structure analysis. A 401 

few studies have integrated state-space models for modeling both animal and human behavior 402 
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(Gallagher et al., 2013; Ogale et al., 2007; Wiltschko et al., 2015), while others have used discriminative 403 

models such as Conditional Random Field models for activity recognition (Sminchisescu et al., 2006; 404 

Wang and Suter, 2007). These methods may provide promising candidates for modeling behavior with 405 

temporal structure in combination with our approach (Poppe, 2010). 406 

 In our analysis pipeline, we applied both supervised and unsupervised approaches to 407 

characterize Hydra behavior. In supervised classifications (with SVM), we manually defined seven types 408 

of behaviors, and trained classifiers to infer the label of unknown samples. In unsupervised analysis (t-409 

SNE), we did not pre-define behavior types, but rather let the algorithm discover the structures that 410 

were embedded in the behavior data. In addition, we found that unsupervised learning could discover 411 

previously unannotated behavior types such as egestion. However, the types of behaviors discovered by 412 

unsupervised analysis are limited by the nature of the encoded feature vectors. Since the bag-of-words 413 

model provides only a statistical description of videos, those features do not encode fine differences in 414 

behaviors. Due to this difference, we did not apply unsupervised learning to analyze behavior statistics 415 

under different environmental and physiological conditions, as supervised learning appeared more 416 

suitable for applications where one needs to assign a particular label to a new behavior video. 417 

 418 

Stability of the basic behavioral repertoire of Hydra 419 

Once we established the reliability or our method, we quantified the differences between six 420 

basic behaviors in Hydra under different experimental conditions with two different species of Hydra 421 

and found that Hydra vulgaris exhibits essentially the same behavior statistics under dark/light, 422 

large/small and starved/fed conditions. Although some small differences were observed among 423 

experimental variables, the overall dwell time and variance of the behavioral repertoire of Hydra were 424 

unexpectedly very similar in all these different conditions. Although we could not exclude the possibility 425 
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that there were differences in the transition probabilities between behaviors, our results still show that 426 

Hydra possess a surprisingly robust behavioral frequencies and similarities across environmental and 427 

physiological conditions, while interspecies differences introduce stronger behavior differences.  428 

Passano and McCullough (Passano and McCullough, 1964) reported that Hydra littoralis, a close 429 

relative with our Hydra vulgaris AEP strain (Martínez et al., 2010), showed fewer contraction bursts in 430 

the evenings and nights than in the day, and feeding every third or fourth day resulted in fewer 431 

contraction bursts than was seen with daily feeding. However, they detected contraction bursts by 432 

electrical recording of epithelial cell activity, and defined coordinated activity as a contraction event. In 433 

our method, we did not measure the number of such events, but instead measured the number of time 434 

windows that contain such contractile behavior. This is essentially a measurement of the time spent in 435 

contractions instead of frequency of individual events. Using natural light instead of lamp light could 436 

also lead to a difference in the observation results. Interestingly, we observed that Hydra vulgaris 437 

exhibits different behavior statistics compared with Hydra viridissima. The split leading to Hydra vulgaris 438 

and Hydra viridissima is the earliest one in the Hydra phylogenetic tree (Martínez et al., 2010), thus 439 

these two species are quite divergent. Hydra viridissima also possesses symbiotic algae, and requires 440 

light for normal growth (Lenhoff and Brown, 1970). These differences in genetics and growth conditions 441 

could partially explain the observed behavioral differences. 442 

Given the similarity in statistics of different behaviors across different animals within the same 443 

species, we naturally wondered if our approach might not be effective or sensitive enough to detect 444 

significant behavioral differences. However, the high accuracy of the classification of annotated 445 

behavior subtypes (Figure 3) and also the method reproducibility, with small variances when measuring 446 

different datasets, led us to rule out the possibility that this machine learning method is insensitive, in 447 

which case the results of our behavioral analysis would have been noisy and irreproducible. This 448 
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conclusion was corroborated by the statistical differences in behavior found across two different Hydra 449 

species. 450 

We had originally expected to observe larger variability of behaviors under different 451 

experimental conditions and we report essentially the opposite result. We interpret the lack of 452 

behavioral differences across individuals as evidence for robust neural control of a basic behavioral 453 

pattern, which is unperturbed by different experimental conditions. While this rigidity may not seem 454 

ideal if one assumes that behavior should flexibly adapt to the environment, it is possible that the six 455 

ďehaǀiors ǁe studied represeŶt a ďasiĐ ͞house keepiŶg͟ repertoire that Ŷeeds to ďe ĐoŶserǀed for the 456 

normal physiology and survival of the animal.  Our results are reminiscent of the line of work on the 457 

stomatogastric ganglion of crustaceans that has revealed many different homeostatic mechanisms that 458 

enable central pattern generators to function robustly in many different environmental conditions, such 459 

as changes in temperature (Haddad and Marder, 2017). In fact, in this system, neuropeptides and 460 

neuromodulators appear to be flexibly used to enable circuit and behavioral homeostasis (Marder, 461 

2012).  Although we do not yet have information on the neural mechanisms responsible for the 462 

behavioral stability in Hydra, it is interesting to note that the Hydra genome has likely more than one 463 

hundred neuropeptides that could play neuromodulator roles (Chapman et al., 2010; Fujisawa and 464 

Hayakawa, 2012) . This vast chemical toolbox could be used to supplement a relatively sparse wiring 465 

pattern with mechanisms to ensure that the basic behavior necessary for the survival of the animal 466 

remains constant under many different environmental conditions. One can imagine that different 467 

neuromodulators could alter the biophysical properties of connections in the Hydra nerve net and thus 468 

keep a stable operating regime of its neurons in the physiological states.  469 

In addition, a possible reason for the behavioral similarity among different specimens of Hydra 470 

could be their genetic similarities. We used animals derived from the same colony (Hydra AEP strain), 471 

which was propagated by clonal budding. Thus, it is likely that many of the animals were isogenic, or 472 
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genetically very similar. The lack of genetic variability, although it does not explain the behavioral 473 

robustness, could partly be a reason behind our differences across species, and it would explain a 474 

relatively small quantitative variability across animals of our H. vulgaris colony, as opposed to a larger 475 

variability in specimens from the wild. 476 

Finally, it is also possible that the behavioral repertoire of cnidarians, which represents some of 477 

the simplest nervous systems in evolution in structure and probably also in function, could be 478 

particularly simple and hardwired as compared with other metazoans or with bilaterians. From this 479 

point of view, the robustness we observed could reflect a ͞passiǀe staďility͟ ǁhere the Ŷeural 480 

mechanisms are simply unresponsive to the environment, as opposed to a homeostatic ͞aĐtiǀe staďility͟, 481 

generated perhaps by neuromodulators. This distinction mirrors the difference between closed-loop and 482 

open-loop control systems in engineering (Schiff, 2012). Thus, it would be fascinating to reverse 483 

engineer the Hydra nerve net and discern to what extent its control mechanisms are regulated 484 

externally. Regardless of the reason for this behavioral stability, our analysis provides a strong baseline 485 

for future behavioral analysis of Hydra and for the quantitative analysis of the relation between 486 

behavior, neural and non-neuronal cell activity. 487 

Hydra as a model system for investigating neural circuits underlying behavior 488 

Revisiting Hydra as a model system with modern imaging and computational tools to 489 

systematically analyze its behavior provides a unique opportunity to image the entire neural network in 490 

an organism and decode the relation between neural activity and behaviors (Bosch et al., 2017). With 491 

recently established GCaMP6s transgenic Hydra lines (Dupre and Yuste, 2017) and the automated 492 

behavior recognition method introduced in this study, it should now be possible to identify the neural 493 

networks responsible for each behavior in Hydra under laboratory conditions.  494 
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With this method, we demonstrate that we are able to recognize and quantify Hydra behaviors 495 

automatically, and identify novel behavior types. This allows us to investigate the behavioral repertoire 496 

stability under different environmental, physiological and genetic conditions, providing insight into how 497 

a primitive nervous system adapt to its environment. Although our framework does not currently model 498 

temporal information directly, it serves as a stepping-stone towards building more comprehensive 499 

models of Hydra behaviors. Future work that incorporates temporal models would allow us to quantify 500 

behavior sequences, and to potentially investigate more complicated behaviors in Hydra such as social 501 

and learning behaviors. 502 

As a member of the phylum Cnidaria, Hydra is a sister to bilaterians, and its nervous system and 503 

bilaterians nervous systems share a common ancestry. As demonstrated by the analysis of its genome 504 

(Chapman et al., 2010), Hydra is closer in gene content to the last common ancestor of the bilaterian 505 

lineage than some other models systems used in neuroscience research, such as Drosophila and C. 506 

elegans. In addition, comparative studies are essential to discern whether the phenomena and 507 

mechanisms found when studying one particular species are specialized or general and can thus help 508 

illuminate essential principles that apply widely. Moreover, as was found in developmental biology, 509 

where it was discovered that the body plan of animals is built using the same logic and molecular 510 

toolbox (Nüsslein-Volhard and Wieschaus, 1980), it is possible that the function and structure of neural 511 

circuits could also be evolutionarily conserved among animals. Therefore, early-diverging metazoans 512 

could provide an exciting opportunity to understand the fundamental mechanisms by which nervous 513 

systems generate and regulate behaviors. 514 

 515 

  516 
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Materials and Methods  517 

Hydra behavior dataset 518 

The Hydra behavior dataset consisted of 53 videos from 53 Hydra with an average length of 30 minutes. 519 

The AEP strain of Hydra was used for all experiments. Hydra polyps were maintained at 18 °C in 520 

darkness, and were fed with Artemia nauplii once one or more times a week by standard methods 521 

(Lenhoff and Brown, 1970). During imaging, Hydra polyps were placed in a 3.5 cm plastic petri dish 522 

under a dissecting microscope (Leica M165) equipped with a sCMOS camera (Hamamatsu ORCA-Flash 523 

4.0). Videos were recorded at 5 Hz. Hydra polyps were allowed to behave either undisturbed, or in the 524 

presence with reduced L-glutathione (Sigma-Aldrich, G4251-5G) to induce feeding behavior, since Hydra 525 

does not exhibit feeding behavior in the absence of prey. 526 

Manual annotation 527 

Each video in the Hydra behavior dataset was examined manually at a high playback speed, and each 528 

frame in the video was assigned a label in the following eleven classes based on the behavior that Hydra 529 

was performing: silent, elongation, tentacle swaying, body swaying, bending, contraction, somersaulting, 530 

tentacle writhing of feeding, ball formation of feeding, mouth opening of feeding, and a none class. 531 

These behaviors were labeled as 1 through 11, where larger numbers correspond to more prominent 532 

behaviors, and the none class is labeled as 0. To generate manual labels for a given time window, the 533 

top two most frequent labels, L1 and L2, within this time window were identified. The window was 534 

assigned as L2 if its count exceed L1 by three fold and if L1 is more prominent than L2; otherwise, the 535 

window was assigned as L1. This annotation method labels time windows as more prominent behaviors 536 

if behaviors with large motion, e.g. contraction, happens in only a few frames, while the majority of 537 

frames are slow behaviors. 538 

Video pre-processing 539 
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Prior work has shown that the bag of words methods for video action classification perform better when 540 

encoding spatial structure (Taralova et al., 2011; Wang et al., 2009). Encoding spatial information is 541 

especially important in our case because allowing the animal to move freely produces large variations in 542 

orientation, which is not related to behavior classification. Therefore, we performed a basic image 543 

registration procedure that keeps the motion information invariant, but aligns the Hydra region to a 544 

canonical scale and orientation. This involves 3 steps: background segmentation, registration, and body 545 

part segmentation. In brief, the image background was calculated by a morphological opening operation, 546 

and the background was removed from the raw image. Then, image contrast was adjusted to enhance 547 

tentacle identification. Images were then segmented by clustering the pixel intensity profiles to 3 548 

clusters corresponding to Hydra body, weak-intensity tentacle regions and background by k-means, and 549 

the largest cluster from the result was treated as background, and the other two clusters as foreground, 550 

i.e. Hydra region. Connected components that occupied less than 0.25% of total image area in this 551 

binary image were removed as noise, and the resulting Hydra mask was then dilated by 3 pixels. To 552 

detect the body column, the background-removed image was convolved with a small 3-by-3 Gaussian 553 

filter with sigma equals 1 pixel, and the filtered image was thresholded ǁith Otsu’s segŵeŶtatioŶ 554 

algorithm. The ďiŶarizatioŶ ǁas repeated ǁith a Ŷeǁ threshold defiŶed ǁith Otsu’s ŵethod ǁithiŶ the 555 

previous above-threshold region, and the resulting binary mask was considered as the body column. The 556 

body column region was then fitted with an ellipse; the major axis, centroid, and angle of the ellipse 557 

were noted. To determine the orientation, two small square masks were placed on both ends of the 558 

ellipse along the major axis, and the area of the Hydra region excluding the body column under the 559 

patch was calculated; the end with the larger area was defined as the tentacle/mouth region, and the 560 

end with the smaller area was defined as the foot region. To separate the Hydra region into three body 561 

parts, the part under the upper body square mask excluding the body column was defined as the 562 

tentacle region, and the rest of the mask was split at the minor axis of the ellipse; the part close to the 563 
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tentacle region was defined as the upper body region, and the other as the lower body region. This step 564 

has shown to improve representation efficiency (Figure 2-figure supplement 1b). 565 

Each five second video clip was then centered by calculating the average ellipse centroid position and 566 

centering it. The average major axis length and the average orientation were also calculated. Each image 567 

in the video clip was rotated according to the average orientation to make the Hydra vertical, and was 568 

scaled to make the length of the Hydra body 100 pixels, with an output size of 300 by 300 pixels, while 569 

only keeping the region under the Hydra binary mask. 570 

Feature extraction 571 

Video features including HOF, HOG and MBH were extracted using a codebase that was previously 572 

released (Wang et al., 2011). Briefly, interest points were densely sampled with 5 pixels spacing at each 573 

time point in each 5 second video clip, and were then tracked throughout the video clip with optical flow 574 

for 15 frames. The tracking quality threshold was set to 0.01; the minimum variation of trajectory 575 

displacement was set to 0.1, the maximum variation was set to 50, and the maximum displacement was 576 

set to 50. The neighboring 32 pixels of each interest point were then extracted, and HOF (8 dimensions 577 

for 8 orientations plus one extra zero bin), HOG (8 dimensions) and MBH (8 dimensions) features were 578 

calculated with standard procedures. Note that MBH was calculated for horizontal and vertical optical 579 

flow separately, therefore two sets of MBH features, MBHx and MBHy were generated. All features 580 

were placed into three groups based on the part of body they fall in, i.e. tentacles, upper body column, 581 

and lower body column. All parameters above were cross-validated with the training and test datasets. 582 

Gaussian mixture codebook and Fisher vector 583 

A Gaussian mixture codebook and Fisher vectors were generated using the code developed by Jegou et 584 

al. for each feature type (Jegou et al., 2012), using 50 Hydra in the behavior dataset that includes all 585 

behavior types. Features from each body part were centered at zero, then PCA was performed on 586 
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centered features from all three body parts, keeping half of the original dimension (5 for HOF, 4 for HOG, 587 

MBHx and MBHy). Whitening was performed on the PCA data as following, which de-correlates the data 588 

and removes redundant information: 589 

�,w୦୧teݔ =  �ߣ√�ݔ
where ݔ denotes principal components, and ߣ denotes eigenvalues. ܭ = ʹͷ͸ Gaussian mixtures were 590 

then fitted with the whitened data using a subset of 256,000 data points. We then calculated the Fisher 591 

vectors as following: 592 

�� =  ሻߣ|LሺX �ߘ �ܮ

where � = ௧ݔ} , ݐ  = ͳ …  �} is a set of � data points that were assumed to be generated with Gaussian 593 

distributions ݑ�ሺݔሻ = ∑ ሻ��=ଵݔሺ�ݑ�ݓ , with ߣ = �ݓ} , �ߤ , �� , � = ͳ, … ,  denotes the Gaussian parameters, 594 {ܭ

and ܮ� is the decomposed Fisher Information Matrix: 595 

ଵ−� ܨ ≡ �׏]�௨~�ܧ log ሻݔሺ�ݑ �׏ log [ሻTݔሺ�ݑ =  �ܮT�ܮ

Fisher vectors then represent the normalized gradient vector obtained from Fisher kernel ܭሺ�, �′ሻ: 596 

,�ሺܭ �′ሻ = ሻ ߣ | ′Lሺ X �ߘ ଵ−�ܨ ሻT ߣ | Lሺ X �ߘ  = ����� 

Comparing with hard-assigning each feature to a code word, the Gaussian mixtures can be regarded as 597 

probabilistic vocabulary, and Fisher vectors encode information of both the position and the shape of 598 

each word with respect to the Gaussian mixtures. Power normalization was then performed on the 599 

Fisher vectors to improve the quality of representation: 600 

݂ሺ�ሻ  =  signሺ�ሻ|�|� 
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with ߙ = Ͳ.ͷ, followed by  �ଶ normalization, which removes scale dependence (Perronnin et al., 2010). 601 

The final representation of each video clip is a concatenation of Fisher vectors of HOF, HOG, MBHx and 602 

MBHy. In this paper, the GMM size was set to 128 with cross-validation (Figure 2-figure supplement 1c). 603 

SVM classification 604 

PCA was first performed on the concatenated Fisher vectors to reduce the dimensions while keeping 90% 605 

of the original variance. A random 90% of samples from the 50 training Hydra were selected as training 606 

data, and the remaining 10% were withheld as validation data. Another three Hydra that exhibit all 607 

behavior types were kept as test data. Because each behavior type has different numbers of data points, 608 

we trained SVM classifiers using the libSVM implementation (Chang and Lin, 2011) by assigning each 609 

type a weight of ݓ� = ሺ∑ ��� ሻ/��, where � = ͳ, … ,͹ denotes the behavior type, and �� denotes the 610 

number of data points that belong to type �. We trained SVM classifiers with a radial basis kernel, 611 

allowing probability estimate, and a 5-fold cross-validation testing the cost parameter � with a range of 612 logଶ � א {−ͷ: ʹ: ͳͷ}, and the ݃ in the kernel function with a range of logଶ ݃ א {−ͷ: ʹ: ͳͷ}, where 613 {−ͷ: ʹ: ͳͷ} denotes integers ranging from -5 to 15 with a step of 2. The best parameter combination 614 

from cross-validation was chosen to train the SVM classifiers.  615 

To classify test data, features were extracted as above, and were encoded with Fisher vectors with the 616 

codebook generated from the training data. PCA was performed using the projection matrix from 617 

training data. A probability estimate for each behavior type was given by the classifiers, and the final 618 

assigned label is the classifier with the highest probability. For soft classifications, we allowed up to 619 

three labels for each sample if the second highest label probability is >50% of the highest label, and the 620 

third is >50% of the second highest label. To evaluate classification performance, true positives (TP), 621 

false positives (FP), true negatives (TN) and false negatives (FN) were calculated. Accuracy was defined 622 

as Acc = ሺTP + TNሻ/ሺTP + TN + FP + FNሻ; precision was defined as Prc = TP/ሺTP + FPሻ; recall was 623 
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defined as Acc = TN/ሺTN + FPሻ . Two other measurements were calculated: true positive rate 624 TPR = TP/ሺTP + FNሻ, and false positive rate FPR = FP/ሺFP + TNሻ. Plotting TPR against FPR gives the 625 

standard ROC curve, and the area under curve (AUC) reflects the performance of classification. In this 626 

plot, a straight line TPR=FPR with AUC=0.5 represents random guess; the upper left quadrant with 627 

AUC>0.5 represents better performance than random. 628 

t-SNE embedding 629 

Embedding was performed with the dimension-reduced data. A random 80% of the dataset from the 50 630 

training Hydra were chosen to generate the embedding map, and the remaining 20% were withheld as 631 

validation dataset. Three other Hydra were used as test dataset. We followed the procedures of Berman 632 

et al. (Berman et al., 2014), with a slight modification that uses Euclidean distance as the distance 633 

measurement. Embedding perplexity was chosen as 16. To generate a density map, a probability density 634 

function was calculated in the embedding space by convolving the embedded points with a Gaussian 635 

kernel; � of the Gaussian was chosen to be 1/40 of the maximum value in the embedding space by 636 

cross-validation with human examination to minimize over-segmentation. In the three-day dataset, �  637 

was chosen to be 1/60 of the maximum value in order to reveal finer structures. To segment the density 638 

map, peaks were found in the density map, a binary map containing peak positions was generated, and 639 

peak points were dilated by three pixels. A distance map of the binary image was generated and 640 

inverted, and the peak positions were set to be minimum. Watershed was performed on the inverted 641 

distance map, and the boundaries were defined with the resulting watershed segmentation. 642 

Egestion detection 643 

Estimated egestion time points were calculated by first extracting the width profile of Hydra from the 644 

pre-processing step, then filtering the width profile by taking the mean width during 15 minutes after 645 

each time point ݐ, and the mean width during 15 minutes before time ݐ, and subtracting the former 646 
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from the latter. Peaks were detected on the resulting trace, and were regarded as egestion behaviors, 647 

since they represent a sharp decrease in the thickness of the animals. 648 

Behavior experiments 649 

All Hydra used for experiments were fed three times a week, and were cultured at 18 °C. On non-650 

feeding days, the culture medium was changed. Hydra viridissima was cultured at room temperature 651 

under sunlight coming through the laboratory windows. For imaging, animals were placed in a petri dish 652 

under the microscope without disturbance to habituate for at least 30 minutes. Imaging typically started 653 

between 7 pm and 9 pm, and ended between 9 am and 11 am except for the large/small experiments. 654 

All imaging was done excluding environmental light by putting a black curtain around the microscope. 655 

For dark condition, a longpass filter with a cutoff frequency of 650 nm (Thorlabs, FEL0650) was placed at 656 

the source light path to Đreate ͞Hydra darkŶess͟ (PASSANO and MCCULLOUGH, 1962). For starved 657 

condition, Hydra were fed once a week. For the large/small experiment, Hydra buds that were detached 658 

from their parents within three days were chosen as small Hydra, and mature post-budding mature 659 

Hydra polyps were chosen as large Hydra. There was a 2 to 3 fold size difference between small and 660 

large Hydra when they were relaxed. However, since the Hydra body was constantly contracting and 661 

elongating, it was difficult to measure the exact size. Imaging for this experiment was done during the 662 

day time for 1 hour per Hydra.  663 

Statistical analysis 664 

All statistical analyses were done using Wilcoxon rank-sum test unless otherwise indicated. Data is 665 

represented by mean ± S.E.M unless otherwise indicated.  666 

Resource availability 667 
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The code for the method developed in this paper is available at 668 

https://github.com/hanshuting/Hydra_behavior. The annotated behavior dataset is available at 669 

https://drive.google.com/open?id=1Z2lm2eDv7whvF2hGcAir5X6rSI76M5Ge. 670 
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Table 1. SVM statistics 830 

Behavior 

Train Withheld Test 

AUC 
AUC 

chance 
Acc 

Acc 

chance 
Prc Rec AUC 

AUC 

chance 
Acc 

Acc 

chance 
Prc Rec AUC 

AUC 

chance 
Acc 

Acc 

chance 
Prc Rec 

Silent 
1 0.5 100% 9.6% 100% 100% 0.98 0.5 95.6% 9.6% 75.6% 97.4% 0.95 0.5 90.3% 1.9% 18.4% 90.3% 

Elongation 
1 0.5 100% 14.2% 100% 100% 0.96 0.5 93.4% 13.6% 76.4% 95.9% 0.91 0.5 87.9% 22.2% 71.4% 92.6% 

Tentacle 

sway 1 0.5 100% 25.1% 100% 100% 0.95 0.5 89.6% 25.0% 77.5% 92.4% 0.76 0.5 71.9% 30.2% 47.9% 76.7% 

Body sway 
1 0.5 100% 10.0% 100% 100% 0.92 0.5 92.9% 9.3% 65.7% 97.0% 0.75 0.5 83.4% 17.7% 52.8% 95.4% 

Bending 
1 0.5 100% 5.2% 100% 100% 0.98 0.5 97.3% 6.1% 74.4% 98.4% 0.81 0.5 93.9% 6.1% 38.9% 96.5% 

Contraction 
1 0.5 100% 6.6% 100% 100% 0.97 0.5 95.7% 6.9% 70.4% 97.7% 0.92 0.5 92.8% 11.7% 63.2% 95.5% 

Feeding 
1 0.5 100% 29.2% 100% 100% 1 0.5 98.8% 29.6% 98.5% 99.4% 0.83 0.5 81.0% 10.2% 39.6% 94.1% 
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 833 

Figure Legends 834 

Figure 1. Acquiring an annotated Hydra behavior dataset. a, Imaging Hydra behavior with a widefield 835 

dissecting microscope. A Hydra polyp was allowed to move freely in a Petri dish, which was placed on a 836 

dark surface under the microscope objective. The light source was placed laterally, creating an image of 837 

bright image of the Hydra polyp on a dark background. b, Histogram of the eight annotated behavior 838 

types in all data points. c, Histogram of the duration of annotated behaviors. d, Histogram of total 839 

number of different behavior types in 1-second, 5-second and 10-second time windows. e-l,  840 

Representative images of silent (e), elongation (f), tentacle swaying (g), body swaying (h), bending (i), 841 

contraction (j), feeding (k), and somersaulting (l) behaviors. 842 

 843 

Figure 2. Analysis pipeline. a, Videos of freely-moving Hydra polyps were collected, then Hydra images 844 

were segmented from background, and the body column was fit to an ellipse. Each time window was 845 

then centered and registered, and the Hydra region was separated into three separate body parts: 846 

tentacles, upper body column, and lower body column. Interest points were then detected and tracked 847 

through each time window, and HOF, HOG and MBH features were extracted from local video patches 848 

of interest points. Gaussian mixture codebooks were then generated for each features subtype, and 849 

Fisher vectors were calculated using the codebooks. Supervised learning using SVM, or unsupervised 850 

learning using t-SNE embedding was performed using Fisher vector representations. 851 

 852 

Figure 3. SVM classifiers recognize pre-defined Hydra behavior types. a, Pairwise Euclidean similarity 853 

matrix of extracted Fisher vectors. Similarity values are indicated by color code. b, Confusion matrix of 854 

trained classifiers predicting training, validation, and test data. Each column of the matrix represents the 855 
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number in a predicted class; each row represents the number in a true class. Numbers are color coded 856 

as color bar indicates. (Training: n = 50, 90%; validation: n = 50, 10%; test: n = 3)  c, ROC curves of 857 

trained classifiers predicting training, validation and test data. TPR, true positive rate; FPR, false positive 858 

rate. Dashed lines represent chance level. d, Example of predicted ethogram using the trained classifiers. 859 

e, Three examples of SVM classification of somersaulting behaviors. Dashed boxes indicate the core 860 

bending and flipping events. 861 

 862 

Figure 4. t-SNE embedding generates map of pre-defined behavior types. a, Scatter plot with 863 

embedded Fisher vectors. Each dot represents projection from a high-dimensional Fisher vector to its 864 

equivalent in the embedding space. Color represents the manual label of each dot. b, Segmented 865 

density map generated from the embedding scatter plot. c, Behavior motif regions defined using the 866 

segmented density map. d, Labeled behavior regions with manual labels. Color represents the 867 

corresponding behavior type of each region. e, Percentage of the number of samples in each segmented 868 

region. f, Two examples of embedded behavior density maps from test Hydra polyps that were not 869 

involved in generating the codebooks or generating the embedding space. g, Quantification of manual 870 

label distribution in training, validation and test datasets. Dashed boxes highlight the behavior types 871 

that were robustly recognized in all the three datasets. Feeding 1, the tentacle writhing or the first stage 872 

of feeding behavior; feeding 2, the ball formation or the second stage of feeding behavior; feeding 3, the 873 

mouth opening or the last stage of feeding behavior. 874 

 875 

Figure 5. t-SNE embedding reveals unannotated egestion behavior. a, Schematic of the experiment 876 

design. A Hydra polyp was imaged for three days and nights, with a 12 hour light/12 hour dark cycle. b, 877 

A Hydra polyp was imaged between two glass coverslips separated by a 100 µm spacer. c, Left: density 878 
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map of embedded behavior during the three day imaging. Right: segmented behavior regions with the 879 

density map. Magenta arrow indicates the behavior region with discovered egestion behavior. d, 880 

Identification of egestion behavior using width profile. Width of the Hydra polyp (gray trace) was 881 

detected by fitting the body column of the animal to an ellipse, and taking the minor axis length of the 882 

ellipse. The width trace was then filtered by subtracting the mean width during 15 minutes after each 883 

time point from the mean width during 15 minutes before each time point (black trace). Peaks (red stars) 884 

were then detected as the estimated time points of egestion events. e, Density of detected egestion 885 

behaviors in the embedding space. Magenta arrow indicates the high density region that correspond to 886 

the egestion region discovered in c. 887 

 888 

Figure 6. Similar behavior statistics under different conditions but differences across species. a, 889 

Percentage of time Hydra spent in each behavior type, under dark (red to infra-red) and light conditions. 890 

Each circle represents data from one individual. The horizontal line represents the average of all samples. 891 

Red represents dark condition, blue represents light condition. (ndark = 6, nlight = 7) b, Standard deviations 892 

behavior percentage within each individual animal, calculated with separate 30-minute time windows in 893 

the recording. Each circle represents the behavior time standard deviation of one individual. c, 894 

Percentage of time Hydra spent in each behavior type, in starved condition and well-fed condition. 895 

(nstarved = 6, nfed = 7) d, Standard deviation of individual behaviors under starved and well-fed conditions. 896 

e, Percentage of time small and large Hydra spent in each behavior type. (nsmall = 10, nlarge = 7) f, Standard 897 

deviation of small and large individual behaviors. g, Percentage of time Hydra vulgaris and Hydra 898 

viridissima spent in each behavior type. (nvulgaris = 7, nviridissima = 5) h, Standard deviation of individual 899 

brown and green Hydra. *p<0.05, **p<0.01, Wilcoxon rank-sum test.  900 
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Figure 1-figure supplement 1. Variability of human annotators 901 

a, Two example segments of annotations from two different human annotators. b, Confusion matrix of 902 

the two annotations from four representative behavior videos. The overall match is 52%. 903 

Figure 2-figure supplement 1. Model and parameter selection 904 

a, Classification performance using time windows of 1, 3, 5, 8, 10 and 20 seconds, on training, validation 905 

and two test data sets. b, Classification performance with normalized histogram representation, Fisher 906 

Vector (FV) representation, Fisher Vector with 3 spatial body part segmentation (3SP), Fisher Vector 907 

with 6 spatial body part segmentation (6SP), on training, validation and two test data sets. c, 908 

Classification performance with K=64, 128 and 256 Gaussian Mixtures for FV encoding, on training, 909 

validation and two test data sets.  910 

Figure 4-figure supplement 1. t-SNE embedding of continuous time windows 911 

a, Scatter plot with embedded Fisher vectors. Each dot represents projection from a high-dimensional 912 

Fisher vector to its equivalent in the embedding space. The Fisher vectors were encoded from 913 

continuous 5-second windows with an overlap of 24 frames. Color represents the manual label of each 914 

dot. b, Segmented density map generated from the embedding scatter plot. c, Behavior motif regions 915 

defined using the segmented density map. d, Labeled behavior regions with manual labels. Color 916 

represents the corresponding behavior type of each region. 917 

 918 

Supplementary Video 1. Example of elongation behavior 919 

An example of the elongation behavior of Hydra. The animal was allowed to move freely in a petri dish. 920 

The video was taken at 5 Hz, and was accelerated 20 fold. 921 

Supplementary Video 2. Example of tentacle swaying behavior 922 

An example of the tentacle swaying behavior of Hydra. The animal was allowed to move freely in a petri 923 

dish. The video was taken at 5 Hz, and was accelerated 20 fold. 924 

Supplementary Video 3. Example of body swaying behavior 925 

An example of the body swaying behavior of Hydra. The animal was allowed to move freely in a petri 926 

dish. The video was taken at 5 Hz, and was accelerated 20 fold. 927 

Supplementary Video 4. Example of bending behavior 928 

An example of the bending behavior of Hydra. The animal was allowed to move freely in a petri dish. 929 

The video was taken at 5 Hz, and was accelerated 20 fold. 930 

Supplementary Video 5. Example of contraction behavior 931 

An example of a contraction burst. The animal was allowed to move freely in a petri dish. The video was 932 

taken at 5 Hz, and was accelerated 20 fold. 933 

Supplementary Video 6. Example of feeding behavior induced by reduced L-glutathione 934 
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An example of induced feeding behavior. The animal was treated with reduced L-glutathione at 45 935 

seconds. The video was taken at 5 Hz, and was accelerated 20 fold. 936 

Supplementary Video 7. Example of somersaulting behavior 937 

An example of somersaulting behavior. The video was taken at 5 Hz, and was accelerated by 20 fold. 938 

Supplementary Video 8. Example of body part segmentation output 939 

An example of the output of body part segmentation. White represents tentacle region, yellow 940 

represents upper body column region, and red represents lower body column region. The video was 941 

accelerated 20 fold. 942 

Supplementary Video 9. Examples of dense trajectory features 943 

Examples of detected interest points (red) and dense trajectories (green) in tentacle swaying (left), 944 

elongation (middle left), body swaying (middle right), and contraction (right) behaviors in 2 second video 945 

clips. Upper panels show the original video; lower panels show the detected features.  946 

Supplementary Video 10. Example of SVM prediction on test data 947 

An example of the trained SVM classifiers predicting the new test data. 948 

Supplementary Video 10. Example of SVM predicting somersaulting behavior 949 

An example of the trained SVM classifiers predicting somersaulting behavior from a new Hydra. Soft 950 

prediction was allowed here. 951 

Supplementary Video 12. Embedding recognizes silent behavior 952 

An example of identified silent region from the embedding space. 953 

Supplementary Video 13. Embedding recognizes slow elongation 954 

An example of identified slow elongation region from the embedding space. 955 

Supplementary Video 14. Embedding recognizes fast elongation 956 

An example of identified fast elongation region from the embedding space. 957 

Supplementary Video 15. Embedding recognizes inter-contraction elongation 958 

An example of identified inter-contraction elongation region from the embedding space. 959 

Supplementary Video 16. Embedding recognizes bending 960 

An example of identified bending region from the embedding space. 961 

Supplementary Video 17. Embedding recognizes tentacle swaying 962 

An example of identified tentacle swaying region from the embedding space. 963 

Supplementary Video 18. Embedding recognizes initial contraction 964 

An example of identified initial contraction region from the embedding space. 965 
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Supplementary Video 19. Embedding recognizes contraction in contracted state 966 

An example of identified contracted contraction region from the embedding space. 967 

Supplementary Video 20. Embedding recognizes egestion 968 

An example of identified egestion region from the embedding space. 969 

Supplementary Video 21. Embedding recognizes hypostome movement 970 

An example of identified hypostome movement region from the embedding space. 971 

 972 

 973 

 974 
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