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Abstract Animal behavior has been studied for centuries, but few efficient methods are

available to automatically identify and classify it. Quantitative behavioral studies have been

hindered by the subjective and imprecise nature of human observation, and the slow speed of

annotating behavioral data. Here, we developed an automatic behavior analysis pipeline for the

cnidarian Hydra vulgaris using machine learning. We imaged freely behaving Hydra, extracted

motion and shape features from the videos, and constructed a dictionary of visual features to

classify pre-defined behaviors. We also identified unannotated behaviors with unsupervised

methods. Using this analysis pipeline, we quantified 6 basic behaviors and found surprisingly similar

behavior statistics across animals within the same species, regardless of experimental conditions.

Our analysis indicates that the fundamental behavioral repertoire of Hydra is stable. This

robustness could reflect a homeostatic neural control of "housekeeping" behaviors which could

have been already present in the earliest nervous systems.

DOI: https://doi.org/10.7554/eLife.32605.001

Introduction
Animal behavior is generally characterized by an enormous variability in posture and the motion of

different body parts, even if many complex behaviors can be reduced to sequences of simple stereo-

typical movements (Berman et al., 2014; Branson et al., 2009; Gallagher et al., 2013;

Srivastava et al., 2009; Wiltschko et al., 2015; Yamamoto and Koganezawa, 2013). As a way to

systematic capture this variability and compositionality, quantitative behavior recognition and mea-

surement methods could provide an important tool for investigating behavioral differences under

various conditions using large datasets, allowing for the discovery of behavior features that are

beyond the capability of human inspection, and defining a uniform standard for describing behaviors

across conditions (Egnor and Branson, 2016). In addition, much remains unknown about how the

specific spatiotemporal pattern of activity of the nervous systems integrate external sensory inputs

and internal neural network states in order to selectively generate different behavior. Thus, auto-

matic methods to measure and classify behavior quantitatively could allow researchers to indetify

potential neural mechanisms by providing a standard measurement of the behavioral output of the

nervous system.

Indeed, advances in calcium imaging techniques have enabled the recording of the activity of

large neural populations (Chen et al., 2013; Jin et al., 2012; Kralj et al., 2011; St-Pierre et al.,

2014; Tian et al., 2009; Yuste and Katz, 1991), including whole brain activity from small organisms

such as C. elegans and larval zebrafish (Ahrens et al., 2013; Nguyen et al., 2016; Prevedel et al.,

2014). A recent study has demonstrated the cnidarian Hydra can be used as an alternative model to

image the complete neural activity during behavior (Dupre and Yuste, 2017). As a cnidarian, Hydra

is close to the earliest animals in evolution that had nervous systems. As the output of the nervous
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system, animal behavior allows individuals to adapt to the environment at a time scale that is much

faster than natural selection, and drives the rapid evolution of the nervous system, providing a rich

context to study nervous system functions and evolution (Anderson and Perona, 2014). As Hydra’s

nervous system evolved from that present in the last common ancestor of cnidarians and bilaterians,

the behaviors of Hydra could also represent some of the most primitive examples of coordination

between a nervous system and non-neuronal cells. This could make Hydra particularly relevant to

our understanding of the nervous systems of model organisms such as Caenorhabditis elegans, Dro-

sophila, zebrafish, and mice, as it provides an evolutionary perspective to discern whether neural

mechanisms found in those species represent a specialization or are generally conserved. In fact,

although Hydra behavior has been study for centuries, it is still unknown whether Hydra possesses

complex behaviors such as social interactions and learning, how its behavior changes under environ-

mental, physiological, nutritional or pharmacological manipulations, or what are the underlying neu-

ral mechanisms of these potential changes. Having an unbiased and automated behavior recognition

and quantification method would therefore enable such studies with large datasets. This could allow

high-throughput systematic pharmacological assays, lesion studies, environmental and physiological

condition changes in behavior, or alternations under activation of subsets of neurons, testing quanti-

tative models, and linking behavior outputs with the underlying neural activity patterns.

Hydra behavior was first described by Trembley (1744), and it consists of both spontaneous and

stimulus-evoked movements. Spontaneous behaviors include contraction (Passano and McCullough,

eLife digest How do animals control their behavior? Scientists have been trying to answer this

question for over 2,000 years, and many studies have analysed specific behaviors in different

animals. However, most of these studies have traditionally relied on human observers to recognise

and classify different behaviors such as movement, rest, grooming or feeding. This approach is

subject to human error and bias, and is also very time consuming. Because of this, reseachers

normally only study one particular behavior, in a piecemeal fashion. But to capture all the different

actions an animal generates, faster, more objective methods of systematically classifying and

quantifying behavior would be ideal.

One promising opportunity comes from studying a small freshwater organism called Hydra, one

of the most primitive animals with a nervous system. Thanks to Hydra’s transparent body, modern

imaging techniques can be used to observe the activity of their whole nervous system all at once,

while the animal is engaged in different actions. However, to realise this potential, scientists need a

quick way of automatically recognising different Hydra behaviors, such as contracting, bending,

tentacle swaying, feeding or somersaulting. This is particularly difficult because Hydra’s bodies can

change shape in different situations.

To address this, Han et al. borrowed cutting-edge techniques from the field of computer vision to

create a computer program that could automatically analyse hours of videos of freely-moving Hydra

and classify their behavior automatically. The computer algorithms can learn how to recognise

different behaviors in two ways: by learning from examples already classified by humans (known as

‘supervised learning’) or by letting it pick out different patterns by itself (known as ‘unsupervised

learning’). The program was able to identify all the behaviors previously classified by humans, as well

as new types that had been missed by human observation.

Using this new computer program, Han et al. discovered that Hydra’s collection of six basic

behaviors stays essentially the same under different environmental conditions, such as light or

darkness. One possible explanation for this is that its nervous system adapts to the environment to

maintain a basic set of actions it needs for survival, although another possibility is that Hydra just

does not care and goes along with its basic behaviors, regardless of the environment. Han et al.’s

new method is useful not only for classifying all behavioral responses in Hydra, but could potentially

be adapted to study all the behaviors in other animal species. This would allow scientists to

systematically perform experiments to understand how the nervous system controls all animal

behavior, a goal that it is the holy grail of neuroscience.

DOI: https://doi.org/10.7554/eLife.32605.002
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1964) and locomotion such as somersaulting and inchworming (Mackie, 1974), and can sometimes

be induced by mechanical stimuli or light. Food-associated stimuli induce a stereotypical feeding

response that consists of three distinct stages: tentacle writhing, tentacle ball formation and mouth

opening (Koizumi et al., 1983; Lenhoff, 1968). This elaborate reflex-like behavior is fundamental to

the survival of Hydra and sensitive to its needs: well-fed animals do not appear to show feeding

behavior when exposed to a food stimulus (Lenhoff and Loomis, 1961). In addition, feeding behav-

ior can be robustly induced by small molecules such as glutathione and S-methyl-glutathione (GSM)

(Lenhoff and Lenhoff, 1986). Besides these relatively complex behaviors, Hydra also exhibits sim-

pler behaviors with different amplitudes and in different body regions, such as bending, individual

tentacle movement, and radial and longitudinal contractions. These simpler behaviors can be oscil-

latory and occur in an overlapping fashion and are often hard to describe in a quantitative manner.

This, in turn, makes complex behaviors such as social or learning behaviors, which can be considered

as sequences of simple behaviors, hard to quantitatively define. Indeed, to manually annotate behav-

iors in videos that are hours or days long is not only extremely time-consuming, but also partly sub-

jective and imprecise (Anderson and Perona, 2014). However, analyzing large datasets of behaviors

is necessary to systematically study behaviors across individuals in a long-term fashion. Recently,

computational methods have been developed to define and recognize some behaviors of C. elegans

(Brown et al., 2013; Stephens et al., 2008) and Drosophila (Berman et al., 2014; Johnson et al.,

2016). These pioneer studies identify the movements of animals by generating a series of posture

templates and decomposing the animal posture at each time points with these standard templates.

This general framework works well for animals with relatively fixed shapes. However, Hydra has a

highly deformable body shape that contracts, bends and elongates in a continuous and non-isomet-

ric manner, and the same behavior can occur at various body postures. Moreover, Hydra has differ-

ent numbers of tentacles and buds across individuals, which presents further challenges for applying

template-based methods. Therefore, a method that encodes behavior information in a statistical

rather than an explicit manner is desirable.

As a potential solution to this challenge, the field of computer vision has recently developed algo-

rithms for deformable human body recognition and action classification. Human actions have large var-

iations based on the individual’s appearance, speed, the strength of the action, background,

illumination, etc. (Wang et al., 2011). To recognize the same action across conditions, features from

different videos need to be represented in a unified way. In particular, the Bag-of-Words model (BoW

model) (Matikainen et al., 2009; Sun et al., 2009; Venegas-Barrera and Manjarrez, 2011;

Wang et al., 2011) has become a standard method for computer vision, as it is a video representation

approach that captures the general statistics of image features in videos by treating videos as ‘bags’

of those features. This enables to generalize behavior features in a dataset that is rich with widely var-

ied individual-specific characteristics. The BoW model originated from document classification

and spam-detection algorithms, where a text is represented by an empirical distribution of its words.

To analyze videos of moving scenes, the BoW model has two steps: feature representation and code-

book representation. In the first step, features (i.e. ‘words’ such as movements and shapes) are

extracted and unified into descriptor representations. In the second step, these higher order descrip-

tors from multiple samples are clustered (i.e. movement motifs), usually by k-means algorithms, and

then averaged descriptors from each cluster are defined as ‘codewords’ that form a large codebook.

This codebook in principle contains representative descriptors of all the different movements of the

animal. Therefore, each clip of the video can be represented as a histogram over all codewords in the

codebook. These histogram representations can be then used to train classifiers such as SVMs, or as

inputs to various clustering algorithms, supervised or unsupervised, to identify and quantify behavior

types. BoW produces an abstract representation compared to manually specified features,

and effectively leverages the salient statistics of the data, enabling modeling of large populations.

Doing so on a large scale with manually selected features is not practical. The power of such a general-

ization makes the BoW framework particularly well suited for addressing the challenge of quantifying

Hydra behavior.

Inspired by previous work on C. elegans (Brown et al., 2013; Kato et al., 2015; Stephens et al.,

2008) and Drosophila (Berman et al., 2014; Johnson et al., 2016; Robie et al., 2017) as well as by

progress in computer vision (Wang et al., 2011), we explored the BoW approach, combining com-

puter vision and machine learning techniques, to identify both known and unannotated behavior

types in Hydra. To do so, we imaged behaviors from freely moving Hydra, extracted motion and
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shape features from the videos, and constructed a dictionary of these features. We then trained clas-

sifiers to recognize Hydra behavior types with manual annotations, and identified both annotated

and unannotated behavior types in the embedding space. We confirmed the performance of the

algorithms with manually annotated data and then used the method for a comprehensive survey of

Hydra behavior, finding a surprising stability in the expression of six basic behaviors, regardless of

the different experimental and environmental conditions. These findings are consistent with the

robust behavioral and neural circuit homeostasis found in other invertebrate nervous systems for

"housekeeping" functions (Haddad and Marder, 2017).

Results

Capturing the movement and shape statistics of freely moving Hydra
Our goal was to develop a method to characterize the complete behavioral repertoire of Hydra

under different laboratory conditions. We collected a Hydra behavior video dataset (Han, 2018a)

using a widefield dissecting microscope, allowing Hydra to move freely in a culture dish (Figure 1a).

We imaged 53 Hydra specimens at a rate of 5 Hz for 30 min, and we either allowed each of them to

behave freely, or induced feeding behavior with glutathione, since feeding could not be observed

without the presence of prey (which would have obscured the imaging). From viewing these data,

we visually identified eight different behaviors, and manually annotated every frame of the entire

dataset with the following labels for these eight behavioral states: silent (no apparent motion),

Figure 1. Acquiring an annotated Hydra behavior dataset. (a) Imaging Hydra behavior with a widefield dissecting microscope. A Hydra polyp was

allowed to move freely in a Petri dish, which was placed on a dark surface under the microscope objective. The light source was placed laterally,

creating an bright image of the Hydra polyp on a dark background. (b) Histogram of the eight annotated behavior types in all data sets. (c) Histogram

of the duration of annotated behaviors. (d) Histogram of total number of different behavior types in 1 s, 5 s and 10 s time windows. (e–l) Representative

images of silent (e), elongation (f), tentacle swaying (g), body swaying (h), bending (i), contraction (j), feeding (k), and somersaulting (l) behaviors.

DOI: https://doi.org/10.7554/eLife.32605.003

The following figure supplement is available for figure 1:

Figure supplement 1. Variability of human annotators.

DOI: https://doi.org/10.7554/eLife.32605.004
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elongation, tentacle swaying, body swaying,

bending, contraction, somersaulting, and feeding

(Figure 1b; Figure 1e-l; Videos 1–7). Overall, we

acquired an annotated Hydra behavior dataset

with 360,000 fames in total. We noticed that

most behaviors in our manual annotation lasted

less than 10 s (Figure 1c), and that, within a time

window of 5 s, most windows contained only one

type of behavior (Figure 1d). A post-hoc compar-

ison of different window sizes (1–20 s) with the

complete analysis framework also demonstrated

that 5 s windows result in the best performance

(Figure 2—figure supplement 1a). Therefore,

we chose 5 s as the analysis length of a behavior

element in Hydra.

Due to the large shape variability of the highly

deformable Hydra body during behavior, meth-

ods that construct postural eigenmodes from ani-

mal postures are not suitable. Therefore, we

designed a novel pipeline consisting of four

steps: pre-processing, feature extraction, code-

book generation, and feature encoding

(Han, 2018b) (Figure 2), in line with the BoW

framework. Pre-processing was done to exclude

the variability in size and rotation angle during imaging, which introduces large variance. To do so,

we first defined a behavior element as a 5 s time window, splitting each behavior video into windows

accordingly. Then we fitted the body column of Hydra into an ellipse, and centered, rotated, and

scaled the ellipse to a uniform template ellipse in each element window. We then encoded spatial

information into the BoW framework by segmenting the Hydra area through the videos with an auto-

mated program, dividing it into a tentacle region, an upper body region, and a lower body region

(Materials and methods; Video 8).

After this encoding, in a feature extraction step we applied a dense trajectory method in each 5 s

window element (Wang et al., 2011). This dense trajectory method represents video patches by sev-

eral shape and motion descriptors, including a Histogram of Oriented Gradient (HOG) (Dalal and

Triggs, 2005), which is based on edge properties in the image patch; and a Histogram of Optical

Flow (HOF) as well as a Motion Boundary Histogram (MBH) (Dalal et al., 2006), based on motion

properties. With the dense trajectory method, we first detected and tracked points with prominent

features throughout the videos. Then, for each feature point, we analyzed a small surrounding local

patch and computed the motion and shape information therein represented by HOF, HOG and

MBH descriptors (Video 9). Thus, each video window element was captured as motion and shape

descriptors associated with a set of local video patches with distinguished visual features.

To quantize the ‘bags’ of features from each element time window, we collected a uniform fea-

ture codebook using all the dense trajectory features. Intuitively, the elements in the codebook are

the representative features for each type of motion or shape in a local patch, therefore they can be

regarded as standard entries in a dictionary. Here, we generate the codebook in a ‘soft’ manner,

where the codebook contains information of the centroid of clusters and their shape. We fitted the

features with k Gaussian mixtures. Because each Gaussian is characterized not only by its mean, but

also by its variance, we preserved more information than with other ‘hard’ methods like k-means.

The next step was to encode the features with the codebook. For this, ‘hard’ methods where one

encodes the features by assigning each feature vector to its nearest Gaussian mixture, lose informa-

tion concerning the shapes of the Gaussians. To avoid this, we encoded the features using Fisher

vectors, which describe the distance between features and the Gaussian mixture codebook entries

in a probabilistic way, encoding both the number of occurrence and the distribution of the descrip-

tors (Perronnin et al., 2010) (Figure 2—figure supplement 1b). Since each element window was

split into tentacle, upper body and lower body region, we were able to integrate spatial information

by encoding the features in each of the three body regions separately (Figure 2—figure

Video 1. Example of elongation behavior. The animal

was allowed to move freely in a petri dish. The video

was taken at 5 Hz, and was accelerated 20 fold.

DOI: https://doi.org/10.7554/eLife.32605.005
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supplement 1b). Finally, we represented the

behavior in each element window by the

concatenated Fisher vector from the three

regions.

Hydra behavior classified from
video statistics
Like all animals, Hydra exhibits behaviors at vari-

ous time scales. Basic behaviors such as elonga-

tion and bending are usually long and temporally

uniform, while tentacle swaying, body swaying

and contraction are usually short and executed in

a burst-like manner. Feeding and somersaulting

are more complex behaviors that can be broken

down into short behavior motifs (Videos 6–

7) (Lenhoff and Loomis, 1961). Feeding is

apparently a stepwise, fixed action pattern-like

uniform behavior, with smooth transitions

between tentacle writhing, ball formation, and

mouth opening (Video 6). Somersaulting repre-

sents another fixed action pattern-like behavior

and typically consists of a sequence of basic

behaviors with elongation accompanied by tenta-

cle movements, contraction, bending, contrac-

tion, elongation, and contraction; completing the entire sequence takes a few minutes (Video 7).

The time spent during each step and the exact way each step is executed vary between animals.

Thus, to study Hydra behavior, it is essential to accurately recognize the basic behavior types that

comprise these complex activities.

We aimed to capture basic behaviors including silent, elongation, tentacle swaying, body sway-

ing, bending, contraction, and feeding, using the Fisher vector features that encode the video statis-

tics. These features were extracted from 5 s element windows and exhibited stronger similarity

within the same behavior type, but were

Video 2. Example of tentacle swaying behavior. The

animal was allowed to move freely in a petri dish. The

video was taken at 5 Hz, and was accelerated 20 fold.

DOI: https://doi.org/10.7554/eLife.32605.006

Video 3. Example of body swaying behavior. The

animal was allowed to move freely in a petri dish. The

video was taken at 5 Hz, and was accelerated 20 fold.

DOI: https://doi.org/10.7554/eLife.32605.007

Video 4. Example of bending behavior. The animal

was allowed to move freely in a petri dish. The video

was taken at 5 Hz, and was accelerated 20 fold.

DOI: https://doi.org/10.7554/eLife.32605.008
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distinguished from features of different behavior

types (Figure 3a). We then trained support vec-

tor machine (SVM) classifiers with manual labels on data from 50 Hydra, and tested them on a ran-

dom 10% withheld validation dataset. We evaluated classification performance via the standard

receiver operating characteristic (ROC) curve and area under curve (AUC). In addition, we calculated

three standard measurements from the number of true positives (TP), true negatives (TN), false posi-

tives (FP), and false negatives (FN): accuracy, defined as (TP + TN)/(TP + TN + FP + FN); precision,

defined as TP/(TP + FP); and recall, defined as TP/(TP + FN). We achieved perfect training perfor-

mance (AUC = 1, accuracy 100%), while on the validation data the overall accuracy was 86.8%, and

mean AUC was 0.97 (Figure 3b and c; Table 1).

This classification framework was easily general-

ized to new data. With data from three Hydra

that were not involved in either codebook gener-

ation or classifier training, we extracted and

encoded features using the generated codebook,

and achieved classification accuracy of 90.3% for

silent (AUC = 0.95), 87.9% for elongation

(AUC = 0.91), 71.9% for tentacle swaying

(AUC = 0.76), 83.4% for body swaying

(AUC = 0.75), 93.9% for bending (AUC = 0.81)

and 92.8% for contraction (AUC = 0.92). All the

classifiers achieved significantly better perfor-

mance than chance levels (Figure 3b, c and d;

Table 1; Video 10). Interestingly, the variability in

classifier performance with new data matched

human annotator variability (Figure 1—figure

supplement 1). This demonstrates that the code-

book generated from training data efficiently

captured Hydra behaviors and that trained classi-

fiers can robustly identify the basic behaviors of

Hydra and predict their occurrence automatically

from the data.

Video 5. Example of a contraction burst. The animal

was allowed to move freely in a petri dish. The video

was taken at 5 Hz, and was accelerated 20 fold.

DOI: https://doi.org/10.7554/eLife.32605.009

Video 6. Example of induced feeding behavior. The

animal was treated with reduced L-glutathione at 45 s.

The video was taken at 5 Hz, and was accelerated 20

fold.

DOI: https://doi.org/10.7554/eLife.32605.010

Video 7. Example of somersaulting behavior. The

video was taken at 5 Hz, and was accelerated by 20

fold.

DOI: https://doi.org/10.7554/eLife.32605.011
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Hydra can exhibit overlapping behaviors at the same time. For example, a Hydra specimen could

be moving its tentacles while bending, or swaying its body while elongating. In such cases, it would

be imprecise to allow only a single behavior label per time window. To capture this situation, we

allowed a ‘soft’ classification strategy, taking up to three highest classification types that have a clas-

sifier probability within a twofold difference between them. With joint classifiers, we achieved 86.8%

overall accuracy on the validation data (81.6% with hard classification), and 59.0% with new test data

(50.1% with hard classification). Soft classification improved classification performance by allowing a

realistic situation when Hydra transitions between two behaviors, or executes multiple behaviors

simultaneously.

In addition to optimally classifying the seven basic behaviors described above, classifying somer-

saulting video clips with basic behavior classifiers showed a conserved structure during the progres-

sion of this behavior (Figure 3e; Video 11). Somersaulting is a complex behavioral sequence that

was not included in the seven visually identified behavior types. This long behavior can typically be

decomposed into a sequence of simple behaviors of tentacle swaying, elongation, body swaying,

contraction, and elongation. Indeed, in our classification of somersaulting with the seven basic

behavior types, we noticed a strong corresponding structure: the classified sequences start with ten-

tacle swaying, elongation, and body swaying, then a sequence of contraction and elongation before

a core bending event (Figure 3e); finally, elongation and contraction complete the entire somer-

saulting behavior. This segmented classification based on breaking down a complex behavior into a

sequence of multiple elementary behaviors agrees with human observations, indicating that our

method is able to describe combined behaviors using the language of basic behavior types.

3. Feature extraction

4. Codebook generation

*
*

* *
*

*
** * *

*
* *
*

*

5. Feature encoding

2. Pre-processing

6. Classi!cation

7. Nonlinear embedding

1. Data collection

Figure 2. Analysis pipeline. Videos of freely moving Hydra polyps were collected (1), then, Hydra images were segmented from background, and the

body column was fit to an ellipse. Each time window was then centered and registered, and the Hydra region was separated into three separate body

parts: tentacles, upper body column, and lower body column (2). Interest points were then detected and tracked through each time window, and HOF,

HOG and MBH features were extracted from local video patches of interest points. Gaussian mixture codebooks were then generated for each features

subtype (4), and Fisher vectors were calculated using the codebooks (5). Supervised learning using SVM (6), or unsupervised learning using t-SNE

embedding (7) was performed using Fisher vector representations.

DOI: https://doi.org/10.7554/eLife.32605.012

The following figure supplement is available for figure 2:

Figure supplement 1. Model and parameter selection.

DOI: https://doi.org/10.7554/eLife.32605.013

Han et al. eLife 2018;7:e32605. DOI: https://doi.org/10.7554/eLife.32605 8 of 26

Research article Neuroscience

https://doi.org/10.7554/eLife.32605.012
https://doi.org/10.7554/eLife.32605.013
https://doi.org/10.7554/eLife.32605


Unsupervised discovery of
behavior states in embedding
space
Manual annotation identifies behavior types on

the basis of distinct visual features. However, it is

subjective by nature, especially when the Hydra

exhibits multiple behaviors simultaneously and

can be affected by the individual biases of the annotator. Therefore, to complement the supervised

method described above, where classifiers were trained with annotated categories, we sought to

perform unsupervised learning to discover the structural features of Hydra behaviors. Since the

Fisher vector representation of video statistics is high-dimensional, we applied a nonlinear embed-

ding technique, t-Distributed Stochastic Neighbor Embedding (t-SNE), to reduce the feature vector

dimensionality (Berman et al., 2014; Van Der Maaten, 2009). This also allowed us to directly visual-

ize the data structure in two dimensions while preserving the local structures in the data, serving as

a method for revealing potential structures of the behavior dataset.

Embedding the feature vectors of training data resulted in a t-SNE map that corresponded well

to our manual annotation (Figure 4a). Generating a density map over the embedded data points

revealed cluster-like structures in the embedding space (Figure 4b). We segmented the density map

into regions with a watershed method, which defined each region as a behavior motif region

(Figure 4c and e). We evaluated the embedding results by quantifying the manual labels of data

points in each behavior motif region. We then assigned a label to each region based on the majority

of the manually labeled behavior types in it. Using this approach, we identified 10 distinct behavior

regions in the map (Figure 4d). These regions represented not only the seven types we defined for

supervised learning, but also a somersaulting region, and three separate regions representing the

three stages of feeding behavior (Figure 4d). Embedding with continuous 5 s time windows, which

exclude the effect of the hard boundaries of separating the behavior elements, revealed the same

types of behaviors (Figure 4—figure supplement 1).

The generated embedding space could be used to embed new data points (Berman et al.,

2014). We embedded feature vectors from a withheld validation dataset, as well as from three

Hydra that were involved neither in generating the feature codebook, nor in the embedding space

generation (Figure 4f). Quantitative evaluation of embedding performance with manual labels

showed that all behavior types were accurately identified by embedding in the validation data. In

test samples, embedding identification of elongation, tentacle sway, body sway, contraction, and

the ball formation stage of feeding, all agreed with manual labels (Figure 4g). Therefore, embed-

ding of feature vectors can identify the same behavior types that are identified by human

annotation.

Video 8. Example of the output of body part

segmentation. White represents tentacle region, yellow

represents upper body column region, and red

represents lower body column region.

DOI: https://doi.org/10.7554/eLife.32605.014

Video 9. Examples of detected interest points (red)

and dense trajectories (green) in tentacle swaying (left),

elongation (middle left), body swaying (middle right),

and contraction (right) behaviors in 2 s video clips.

Upper panels show the original videos; lower panels

show the detected features.

DOI: https://doi.org/10.7554/eLife.32605.015
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Figure 3. SVM classifiers recognize pre-defined Hydra behavior types. (a) Pairwise Euclidean similarity matrix of extracted Fisher vectors. Similarity

values are indicated by color code. (b) Confusion matrices of trained classifiers predicting training, validation, and test data. Each column of the matrix

represents the number in a predicted class; each row represents the number in a true class. Numbers are color coded as color bar indicates. (Training:

n = 50, randomly selected 90% samples; validation: n = 50, randomly selected 10% samples; test: n = 3) (c) ROC curves of trained classifiers predicting

training, validation and test data. TPR, true positive rate; FPR, false positive rate. Dashed lines represent chance level. (d) An example of predicted

ethogram using the trained classifiers. (e) Three examples of SVM classification of somersaulting behaviors. Dashed boxes indicate the core bending

and flipping events.

DOI: https://doi.org/10.7554/eLife.32605.016

Table 1. SVM statistics. AUC: area under curve; Acc: accuracy; Prc: precision; Rec: recall.

Behavior

Train Withheld Test

AUC
AUC
chance Acc

Acc
chance Prc Rec AUC

AUC
chance Acc

Acc
chance Prc Rec AUC

AUC
chance Acc

Acc
chance Prc Rec

Silent 1 0.5 100% 9.6% 100% 100% 0.98 0.5 95.6% 9.6% 75.6% 97.4% 0.95 0.5 90.3% 1.9% 18.4% 90.3%

Elongation 1 0.5 100% 14.2% 100% 100% 0.96 0.5 93.4% 13.6% 76.4% 95.9% 0.91 0.5 87.9% 22.2% 71.4% 92.6%

Tentacle
sway

1 0.5 100% 25.1% 100% 100% 0.95 0.5 89.6% 25.0% 77.5% 92.4% 0.76 0.5 71.9% 30.2% 47.9% 76.7%

Body sway 1 0.5 100% 10.0% 100% 100% 0.92 0.5 92.9% 9.3% 65.7% 97.0% 0.75 0.5 83.4% 17.7% 52.8% 95.4%

Bending 1 0.5 100% 5.2% 100% 100% 0.98 0.5 97.3% 6.1% 74.4% 98.4% 0.81 0.5 93.9% 6.1% 38.9% 96.5%

Contraction 1 0.5 100% 6.6% 100% 100% 0.97 0.5 95.7% 6.9% 70.4% 97.7% 0.92 0.5 92.8% 11.7% 63.2% 95.5%

Feeding 1 0.5 100% 29.2% 100% 100% 1 0.5 98.8% 29.6% 98.5% 99.4% 0.83 0.5 81.0% 10.2% 39.6% 94.1%

DOI: https://doi.org/10.7554/eLife.32605.017
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Embedding reveals unannotated behaviors in long datasets
We wondered if Hydra has any spontaneous behaviors under natural day/night cycles that were not

included in our manually labeled sets. We mimicked natural conditions by imaging a Hydra polyp for

3 days and nights with a 12 hr dark/light cycle (Figure 5a), keeping the Hydra in a 100 mm thick cov-

erslip covered chamber to constrain it within the field of view of the microscope (Figure 5b)

(Dupre and Yuste, 2017). This imaging approach, although constraining the movement of Hydra,

efficiently reduced the complexity of the resulting motion from a three-dimensional to a two-dimen-

sional projection, while still allowing the Hydra to exhibit a basic repertoire of normal behaviors.

Using this new dataset, we generated a t-SNE embedding density map from the feature vectors

as previously described, and segmented it into behavior motif regions (Figure 5c). Among the

resulting 260 motif regions, we not only discovered previously defined behavior types including

silent, elongation, bending, tentacle swaying, and contraction, but also found subtypes within certain

classes (Videos 12–19). In elongation, for example, we found three different subtypes based on the

state of the animal: slow elongation during the resting state of the animal, fast elongation after a

contraction burst, and inter-contraction elongation during a contraction burst (Videos 13–15). In

contraction, we found two different subtypes: the initial contraction of a contraction burst, and the

subsequent individual contraction events when the animal is in a contracted state (Videos 18–

19). Interestingly, we also discovered one region in the embedding map that showed a previously

unannotated egestion behavior (Figure 5c; Video 20). Egestion behavior (also known as radial con-

traction) has been observed before (Dupre and Yuste, 2017), and is typically a fast, radial contrac-

tion of the body column that happens within 1 s and empties the body cavity of fluid. Although this

behavior happens with animals in their natural free movement, its fast time scale and the uncon-

strained movement make it hard to identify visually during human annotation. In addition, another

t-SNE region showed a novel hypostome movement associated with egestion, characterized by a

regional pumping-like movement in hypostome and lower tentacle regions (Video 21).

We evaluated the reliability of the identification of this newly discovered egestion behavior from

the embedding method by detecting egestion with an additional ad-hoc method. We measured the

width of the Hydra body column by fitting it to an ellipse, and low-pass filtered the width trace.

Peaks in the trace then represent estimated time points of egestion behavior, which is essentially a

rapid decrease in the body column width (Figure 5d). Detected egestion time points were densely

distributed in the newly discovered egestion region in the embedding map (Figure 5e), confirming

that our method is as an efficient way to find novel behavior types.

Video 10. Example of the trained SVM classifiers

predicting new data.

DOI: https://doi.org/10.7554/eLife.32605.018

Video 11. Example of the trained SVM classifiers

predicting somersaulting behavior from a new video.

Soft prediction was allowed here.

DOI: https://doi.org/10.7554/eLife.32605.019
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Basic behavior of Hydra under different experimental conditions
Although basic Hydra behaviors such as contraction, feeding and somersaulting have been

described for over two centuries, the quantitative understanding of Hydra behaviors has been lim-

ited by the subjective nature of human annotation and by the amount of data that can be processed
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Figure 4. t-SNE embedding map of behavior types. (a) Scatter plot with embedded Fisher vectors. Each dot represents projection from a high-

dimensional Fisher vector to its equivalent in the embedding space. Color represents the manual label of each dot. (b) Segmented density map

generated from the embedding scatter plot. (c) Behavior motif regions defined using the segmented density map. (d) Labeled behavior regions. Color

represents the corresponding behavior type of each region. (e) Percentage of the number of samples in each segmented region. (f) Two examples of

embedded behavior density maps from test Hydra polyps that were not involved in generating the codebooks or generating the embedding space. (g)

Quantification of manual label distribution in training, validation and test datasets. Dashed boxes highlight the behavior types that were robustly

recognized in all the three datasets. Feeding 1, the tentacle writhing or the first stage of feeding behavior; feeding 2, the ball formation or the second

stage of feeding behavior; feeding 3, the mouth opening or the last stage of feeding behavior.

DOI: https://doi.org/10.7554/eLife.32605.020

The following figure supplement is available for figure 4:

Figure supplement 1. t-SNE embedding of continuous time windows.

DOI: https://doi.org/10.7554/eLife.32605.021
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by manual examination. To build quantitative descriptions that link behaviors to neural processes

and to explore behavior characteristics of Hydra, we used our newly developed method to compare

the statistics of behavior under various physiological and environmental conditions.

In its natural habitat, Hydra experiences day/night cycles, food fluctuations, temperature varia-

tions, and changes in water chemistry. Therefore, we wondered whether Hydra exhibit different

behavioral frequencies or behavioral variability under dark and light conditions, as well as in starved

and well-fed conditions. Since we did not expect Hydra to exhibit spontaneous feeding behavior in

the absence of prey, we only analyzed six basic behavior types using the trained classifiers: silent,

elongation, tentacle swaying, body swaying, bending, and contraction. Lighting conditions (light vs.

dark) did not result in any significant changes in either the average time spent in each of the six

behavior types (Figure 6a) or the individual behavior variability defined by the variation of the per-

centage of time spent in each behavior in 30 min time windows (Figure 6b). Also, compared with

starved Hydra, well-fed Hydra did not show significant changes in the percentage of time spent in

Figure 5. t-SNE embedding reveals unannotated egestion behavior. (a) Experimental design. A Hydra polyp was

imaged for 3 days and nights, with a 12 hr light/12 hr dark cycle. (b) A Hydra polyp was imaged between two glass

coverslips separated by a 100 mm spacer. (c) Left: density map of embedded behavior during the 3-day imaging.

Right: segmented behavior regions with the density map. Magenta arrow indicates the behavior region with

discovered egestion behavior. (d) Identification of egestion behavior using width profile. Width of the Hydra polyp

(gray trace) was detected by fitting the body column of the animal to an ellipse, and measuring the minor axis

length of the ellipse. The width trace was then filtered by subtracting a 15-minute mean width after each time

point from a 15-minute mean width before each time point (black trace). Peaks (red stars) were then detected as

estimated time points of egestion events (Materials and methods). (e) Density of detected egestion behaviors in

the embedding space. Magenta arrow indicates the high density region that correspond to the egestion region

discovered in c.

DOI: https://doi.org/10.7554/eLife.32605.022
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elongation behavior (Figure 6c), but showed less

variability in it (Figure 6d; starved: 8.95 ± 0.69%,

fed: 5.46 ± 0.53%, p=0.0047).

As Hydra polyps vary significantly in size

depending on the developmental stage (e.g.

freshly detached buds vs. fully grown animals,)

and nutrition status (e.g. Hydra that has been

starved for a week vs. well-fed Hydra), we also

explored whether Hydra of different sizes exhibit

different behavioral characteristics. For this, we

imaged behaviors of Hydra with up to a threefold

difference in sizes. Large Hydra polyps had simi-

lar silent, body swaying, and contraction patterns,

but spent slightly less time in elongation, and

more in tentacle swaying (Figure 6e; elongation

small: 22.42 ± 1.35%, large: 17.00 ± 0.74%,

p=0.0068; tentacle swaying small: 34.24 ± 1.24%,

large: 41.06 ± 2.70%, p=0.03). The individual

behavior variability remained unchanged (Figure 6f).

Finally, we further inquired if different Hydra species have different behavioral repertoires. To

answer this, we compared the behaviors of Hydra vulgaris, and Hydra viridissima, (i.e. green Hydra),

which contains symbiotic algae in its endodermal epithelial cells(Martı́nez et al., 2010). The last

common ancestor of these two species was at the base of Hydra radiation. Indeed, we found that

Hydra viridissima exhibited statistically less silent and bending behaviors, but more elongations

(Figure 6g; elongation vulgaris: 15.74 ± 0.50%, viridissima: 18.63 ± 0.87%, p=0.0303; bending vulga-

ris: 2.31 ± 0.27%, viridissima: 1.35 ± 0.17%, p=0.0177), while individual viridissima specimens also

exhibit slightly different variability in bending (Figure 6h; vulgaris: 2.17% ± 0.26%, viridissima: 1.33 ±

0.20%, p=0.0480). We concluded that different Hydra species can have different basic behavioral

repertoires.

Discussion

A machine learning method for quantifying behavior of deformable
animals
Interdisciplinary efforts in the emerging field of computational ethology are seeking novel ways to

automatically measure and model natural behaviors of animals (Anderson and Perona, 2014)

(Berman et al., 2014; Branson et al., 2009; Brown et al., 2013; Creton, 2009; Dankert et al.,

2009; Johnson et al., 2016; Kabra et al., 2013; Pérez-Escudero et al., 2014; Robie et al., 2017;

Video 12. Examples from the identified silent region in

the embedding space.

DOI: https://doi.org/10.7554/eLife.32605.023

Video 13. Examples from the identified slow

elongation region in the embedding space.

DOI: https://doi.org/10.7554/eLife.32605.024

Video 14. Examples from the identified fast elongation

region in the embedding space.

DOI: https://doi.org/10.7554/eLife.32605.025
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Stephens et al., 2008; Swierczek et al., 2011;

Wiltschko et al., 2015). Most of these

approaches rely on recognizing variation of the

shapes of animals based on fitting video data to

a standard template of the body of the animal.

However, unlike model organisms like worms,

flies, fishes and mice, Hydra differs dramatically

from these bilaterian organisms in having an

extremely deformable and elastic body. Indeed,

during contraction, Hydra appears as a ball with

all tentacles shortened, while during elongation,

Hydra appears as a long and thin column with

tentacles relaxed. Moreover, these deformations

are non-isometric, that is, different axes, and dif-

ferent parts of the body, change differently. The

number of tentacles each Hydra has also varies.

These present difficult challenges for recognizing

Hydra behaviors using preset templates.

To tackle the problem of measuring behavior in a deformable animal, we developed a novel anal-

ysis pipeline using approaches from computer vision that have achieved success in human action

classification tasks (Ke et al., 2007; Laptev et al., 2008; Poppe, 2010; Wang et al., 2009;

Wang et al., 2011). Such tasks usually involve various actions and observation angles, as well as

occlusion and cluttered background. Therefore, they require more robust approaches to capture sta-

tionary and motion statistics, compared to using pre-defined template-based features. In particular,

the bag-of-words (BoW) framework is an effective approach for extracting visual information from

videos of humans or animals with arbitrary motion and deformation. The BoW framework originated

from document classification tasks with machine learning. In this framework, documents are consid-

ered ‘bags’ of words, and are then represented by a histogram of word counts using a common dic-

tionary. These histogram representations are widely used for classifying document types because of

their efficiency. In computer vision, the BoW framework considers pictures or videos as ‘bags’ of

visual words, such as small patches in the images, or shape and motion features extracted from such

patches. Compared with another popular technique in machine vision, template matching, BoW is

more robust against challenges such as occlusion, position, orientation, and viewing angle changes.

It also proves to be successful in capturing object features in various scenes, and thus has become

one of the most important developments and cutting edge methods in this field. For these reasons,

BoW appears ideally suited for the problem behavior recognition tasks of deformable animals, such

as Hydra.

We modified the BoW framework by integrating other computational methods, including body

part segmentation (which introduces spatial information), dense trajectory features (which encode

shape and motion statistics in video patches) and

Fisher vectors (which represent visual words in a

statistical manner). Our choice of framework and

parameters proved to be quite adequate, consid-

ering both its training and validation accuracy, as

well as its generalizability on test datasets (Fig-

ure 2—figure supplement 1). Indeed, the robust

correspondence between supervised, unsuper-

vised and manual classification that we report

provides internal cross-validation to the validity

and applicability of our BoW machine learning

approach. Our developed framework, which uses

both supervised and unsupervised techniques, is

in principle applicable to all organisms, since it

does not rely on specific information of Hydra.

Compared with previously developed methods,

our method would be particularly suitable for

Video 15. Examples from the identified inter-

contraction elongation region in the embedding space.

DOI: https://doi.org/10.7554/eLife.32605.026

Video 16. Examples from the identified bending

region in the embedding space.

DOI: https://doi.org/10.7554/eLife.32605.027
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behaviors in natural conditions that involve deformable body shapes, as a first step to developing

more sophisticated behavioral methods in complex environment for other species.

Our goal was to describe all possible Hydra behavior quantitatively. Because of this, we used the

BoW framework to capture the overall statistics with a given time frame. We defined the length of

basic behavior elements to be 5 s, which maximizes the number of behaviors that were kept intact

while uncontaminated by other behavior types (Figure 1c–d). However, it should be noted that our

approach could not capture fine-level behavior differences, for example, single tentacle behavior.

This would require modeling the animal with an explicit template, or with anatomical landmarks, as

demonstrated by deformable human body modeling with wearable sensors. Our approach also does

not recover transition probabilities between behavior types, or behavioral interactions between indi-

vidual specimens. In fact, since our method treats each time window as an independent ‘bag’ of

visual words, there was no constraint on the temporal smoothness of classified behaviors. Classifica-

tions were allowed to be temporally noisy, therefore they could not be applied for temporal struc-

ture analysis. A few studies have integrated state-space models for modeling both animal and

human behavior (Gallagher et al., 2013; Ogale et al., 2007; Wiltschko et al., 2015), while others

have used discriminative models such as Conditional Random Field models for activity recognition

(Sminchisescu et al., 2006; Wang and Suter, 2007). These methods may provide promising candi-

dates for modeling behavior with temporal structure in combination with our approach

(Poppe, 2010).

In our analysis pipeline, we applied both supervised and unsupervised approaches to characterize

Hydra behavior. In supervised classifications (with SVM), we manually defined seven types of behav-

iors, and trained classifiers to infer the label of unknown samples. In unsupervised analysis (t-SNE),

we did not pre-define behavior types, but rather

let the algorithm discover the structures that

were embedded in the behavior data. In addi-

tion, we found that unsupervised learning could

discover previously unannotated behavior types

such as egestion. However, the types of behav-

iors discovered by unsupervised analysis are lim-

ited by the nature of the encoded feature

vectors. Since the BoW model provides only a

statistical description of videos, those features do

not encode fine differences in behaviors. Due to

this difference, we did not apply unsupervised

learning to analyze behavior statistics under dif-

ferent environmental and physiological condi-

tions, as supervised learning appeared more

suitable for applications where one needs to

assign a particular label to a new behavior video.

Video 17. Examples from the identified tentacle

swaying region in the embedding space.

DOI: https://doi.org/10.7554/eLife.32605.028

Video 18. Examples from the identified initial

contraction region in the embedding space.

DOI: https://doi.org/10.7554/eLife.32605.029

Video 19. Examples from the identified contracted

contraction region in the embedding space.

DOI: https://doi.org/10.7554/eLife.32605.030
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Stability of the basic behavioral repertoire of Hydra
Once we established the reliability or our method, we quantified the differences between six basic

behaviors in Hydra under different experimental conditions with two different species of Hydra and

found that Hydra vulgaris exhibits essentially the same behavior statistics under dark/light, large/

small and starved/fed conditions. Although some small differences were observed among experi-

mental variables, the overall dwell time and variance of the behavioral repertoire of Hydra were

unexpectedly very similar in all these different conditions. Although we could not exclude the possi-

bility that there were differences in the transition probabilities between behaviors, our results still

Video 20. Examples from the identified egestion

region in the embedding space.

DOI: https://doi.org/10.7554/eLife.32605.031

Video 21. Examples from the identified hypostome

movement region in the embedding space.

DOI: https://doi.org/10.7554/eLife.32605.032

Figure 6. Similar behavior statistics under different conditions but differences across species. (a) Percentage of time Hydra spent in each behavior, in

dark (red to infra-red) and light conditions. Each circle represents data from one individual. The horizontal line represents the average of all samples.

Red represents dark condition, blue represents light condition. (ndark = 6, nlight = 7) (b) Standard deviations of behaviors within each individual animal,

calculated with separate 30 min time windows in the recording. Each circle represents the behavior variability of one individual. (c) Percentage of time

Hydra spent in each behavior, in starved and well-fed condition. (nstarved = 6, nfed = 7) (d) Standard deviations of individual behaviors under starved and

well-fed conditions. (e) Percentage of time small and large Hydra spent in each behavior. (nsmall = 10, nlarge = 7). (f) Standard deviations of

behaviors of small and large individuals. (g) Percentage of time Hydra vulgaris and Hydra viridissima spent in each behavior type. (nvulgaris = 7,

nviridissima = 5). (h) Standard deviations of individual brown and green Hydra. *p<0.05, **p<0.01, Wilcoxon rank-sum test.

DOI: https://doi.org/10.7554/eLife.32605.033
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show that , from the six basic behaviors analyzed, Hydra possess a surprisingly robust behavioral fre-

quencies and similarities across environmental and physiological conditions, while interspecies differ-

ences introduce stronger behavior differences.

Passano and McCullough (1964) reported that Hydra littoralis, a close relative with our Hydra

vulgaris AEP strain (Martı́nez et al., 2010), showed fewer contraction bursts in the evenings and

nights than in the day, and feeding every third or fourth day resulted in fewer contraction bursts

than was seen with daily feeding. However, they detected contraction bursts by electrical recording

of epithelial cell activity, and defined coordinated activity as a contraction event. In our method, we

did not measure the number of such events, but instead measured the number of time windows that

contain such contractile behavior. This is essentially a measurement of the time spent in contractions

instead of frequency of individual events. Using natural light instead of lamp light could also lead to

a difference in the observation results. Interestingly, we observed that Hydra vulgaris exhibits differ-

ent behavior statistics compared with Hydra viridissima. The split leading to Hydra vulgaris and

Hydra viridissima is the earliest one in the Hydra phylogenetic tree (Martı́nez et al., 2010), thus

these two species are quite divergent. Hydra viridissima also possesses symbiotic algae, and requires

light for normal growth (Lenhoff and Brown, 1970). These differences in genetics and growth con-

ditions could help explaining the observed behavioral differences.

Given the similarity in statistics of basic behaviors in different conditions across different animals

within the same species, we naturally wondered if our approach might not be effective or sensitive

enough to detect significant behavioral differences among animals. However, the high accuracy of

the classification of annotated behavior subtypes (Figure 3) and also the method reproducibility,

with small variances when measuring different datasets, rules out the possibility that this machine

learning method is insensitive, in which case the results of our behavioral analysis would have been

noisy and irreproducible. This conclusion was corroborated by the statistical differences in behavior

found across two different Hydra species.

We had originally expected to observe larger variability of behaviors under different experimental

conditions and we report essentially the opposite result. We interpret the lack of behavioral differen-

ces across individuals as evidence for robust neural control of a basic behavioral pattern, which

appears unperturbed by different experimental conditions. While this rigidity may not seem ideal if

one assumes that behavior should flexibly adapt to the environment, it is possible that the six behav-

iors we studied represent a basic ‘house keeping’ repertoire that needs to be conserved for the nor-

mal physiology and survival of the animal. Our results are reminiscent of work on the stomatogastric

ganglion of crustaceans that has revealed homeostatic mechanisms that enable central pattern gen-

erators to function robustly in different environmental conditions, such as changes in temperature

(Haddad and Marder, 2017). In fact, in this system, neuropeptides and neuromodulators appear to

be flexibly used to enable circuit and behavioral homeostasis (Marder, 2012). Although we do not

yet understand the neural mechanisms responsible for the behavioral stability in Hydra, it is interest-

ing to note that the Hydra genome has more than one hundred neuropeptides that could play neu-

romodulator roles (Chapman et al., 2010; Fujisawa and Hayakawa, 2012). This vast chemical

toolbox could be used to supplement a relatively sparse wiring pattern with mechanisms to ensure

that the basic behavior necessary for the survival of the animal remains constant under many differ-

ent environmental conditions. One can imagine that different neuromodulators could alter the bio-

physical properties of connections in the Hydra nerve net and thus keep a stable operating regime

of its neurons in the physiological states.

In addition, a possible reason for the behavioral similarity among different specimens of Hydra

could be their genetic similarities. We used animals derived from the same colony (Hydra AEP

strain), which was propagated by clonal budding. Thus, it is likely that many of the animals were iso-

genic, or genetically very similar. The lack of genetic variability, although it does not explain the

behavioral robustness, could partly be a reason behind our differences across species, and it would

explain a relatively small quantitative variability across animals of our H. vulgaris colony, as opposed

to a larger variability in specimens from the wild.

Finally, it is also possible that the behavioral repertoire of cnidarians, which represents some of

the simplest nervous systems in evolution in structure and probably also in function, could be partic-

ularly simple and hardwired as compared with other metazoans or with bilaterians. From this point

of view, the robustness we observed could reflect a ‘passive stability’ where the neural mechanisms

are simply unresponsive to the environment, as opposed to a homeostatic ‘active stability’,
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generated perhaps by neuromodulators. This distinction mirrors the difference between open-loop

and closed-loop control systems in engineering (Schiff, 2012). Thus, it would be fascinating to

reverse engineer the Hydra nerve net and discern to what extent its control mechanisms are regu-

lated externally. Regardless of the reason for this behavioral stability, our analysis provides a strong

baseline for future behavioral analysis of Hydra and for the quantitative analysis of the relation

between behavior, neural and non-neuronal cell activity.

Hydra as a model system for investigating neural circuits underlying
behavior
Revisiting Hydra as a model system with modern imaging and computational tools to systematically

analyze its behavior provides a unique opportunity to image the entire neural network in an organ-

ism and decode the relation between neural activity and behaviors (Bosch et al., 2017). With

recently established GCaMP6s transgenic Hydra lines (Dupre and Yuste, 2017) and the automated

behavior recognition method introduced in this study, it should now be possible to identify the neu-

ral networks responsible for each behavior in Hydra under laboratory conditions.

With this method, we demonstrate that we are able to recognize and quantify Hydra behaviors

automatically, and to identify novel behavior types. This allows us to investigate the behavioral rep-

ertoire stability under different environmental, physiological and genetic conditions, providing

insight into how a primitive nervous system adapt to its environment. Although our framework does

not currently model temporal information directly, it serves as a stepping-stone toward building

more comprehensive models of Hydra behaviors. Future work that incorporates temporal models

would allow us to quantify behavior sequences, and to potentially investigate more complicated

behaviors in Hydra such as social and learning behaviors.

As a member of the phylum Cnidaria, Hydra is a sister to bilaterians, and its nervous system and

bilaterians nervous systems share a common ancestry. As demonstrated by the analysis of its

genome (Chapman et al., 2010), Hydra is closer in gene content to the last common ancestor of the

bilaterian lineage than some other models systems used in neuroscience research, such as Drosoph-

ila and C. elegans. In addition, comparative studies are essential to discern whether the phenomena

and mechanisms found when studying one particular species are specialized or general and can thus

help illuminate essential principles that apply widely. Moreover, as was found in developmental biol-

ogy, where the body plan of animals is built using the same logic and molecular toolbox (Nüsslein-

Volhard and Wieschaus, 1980), it is possible that the function and structure of neural circuits could

also be evolutionarily conserved among animals. Therefore, early diverging metazoans could provide

an exciting opportunity to understand the fundamental mechanisms by which nervous systems gen-

erate and regulate behaviors.

Materials and methods

Hydra behavior dataset
The Hydra behavior dataset consisted of 53 videos from 53 Hydra with an average length of 30 min.

The AEP strain of Hydra was used for all experiments. Hydra polyps were maintained at 18˚C in dark-

ness and were fed with Artemia nauplii once or more times a week by standard methods

(Lenhoff and Brown, 1970). During imaging, Hydra polyps were placed in a 3.5 cm plastic petri dish

under a dissecting microscope (Leica M165) equipped with a sCMOS camera (Hamamatsu ORCA-

Flash 4.0). Videos were recorded at 5 Hz. Hydra polyps were allowed to behave either undisturbed,

or in the presence with reduced L-glutathione (Sigma-Aldrich, G4251-5G) to induce feeding behav-

ior, since Hydra does not exhibit feeding behavior in the absence of prey.

Manual annotation
Each video in the Hydra behavior dataset was examined manually at a high playback speed, and

each frame in the video was assigned a label in the following eleven classes based on the behavior

that Hydra was performing: silent, elongation, tentacle swaying, body swaying, bending, contraction,

somersaulting, tentacle writhing of feeding, ball formation of feeding, mouth opening of feeding,

and a none class. These behaviors were labeled as 1 through 11, where larger numbers correspond

to more prominent behaviors, and the none class is labeled as 0. To generate manual labels for a
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given time window, the top two most frequent labels, L1 and L2, within this time window were identi-

fied. The window was assigned as L2 if its count exceed L1 by three-fold and if L1 is more prominent

than L2; otherwise, the window was assigned as L1. This annotation method labels time windows as

more prominent behaviors if behaviors with large motion, e.g. contraction, happens in only a few

frames, while the majority of frames are slow behaviors.

Video pre-processing
Prior work has shown that the bag of words methods for video action classification perform better

when encoding spatial structure (Taralova et al., 2011; Wang et al., 2009). Encoding spatial infor-

mation is especially important in our case because allowing the animal to move freely produces large

variations in orientation, which is not related to behavior classification. Therefore, we performed a

basic image registration procedure that keeps the motion information invariant, but aligns the Hydra

region to a canonical scale and orientation. This involves three steps: background segmentation,

registration, and body part segmentation. In brief, the image background was calculated by a mor-

phological opening operation, and the background was removed from the raw image. Then, image

contrast was adjusted to enhance tentacle identification. Images were then segmented by clustering

the pixel intensity profiles to three clusters corresponding to Hydra body, weak-intensity tentacle

regions and background by k-means, and the largest cluster from the result was treated as back-

ground, and the other two clusters as foreground, that is Hydra region. Connected components that

occupied less than 0.25% of total image area in this binary image were removed as noise, and the

resulting Hydra mask was then dilated by three pixels. To detect the body column, the background-

removed image was convolved with a small 3-by-3 Gaussian filter with sigma equals one pixel, and

the filtered image was thresholded with Otsu’s segmentation algorithm. The binarization was

repeated with a new threshold defined with Otsu’s method within the previous above-threshold

region, and the resulting binary mask was considered as the body column. The body column region

was then fitted with an ellipse; the major axis, centroid, and orientation of the ellipse were noted. To

determine the orientation, two small square masks were placed on both ends of the ellipse along

the major axis, and the area of the Hydra region excluding the body column under the patch was cal-

culated; the end with the larger area was defined as the tentacle/mouth region, and the end with

the smaller area was defined as the foot region. To separate the Hydra region into three body parts,

the part under the upper body square mask excluding the body column was defined as the tentacle

region, and the rest of the mask was split at the minor axis of the ellipse; the part close to the tenta-

cle region was defined as the upper body region, and the other as the lower body region. This step

has shown to improve representation efficiency (Figure 2—figure supplement 1b).

Each 5-s video clip was then centered by calculating the average ellipse centroid position and

centering it. The average major axis length and the average orientation were also calculated. Each

image in the video clip was rotated according to the average orientation to make the Hydra vertical,

and was scaled to make the length of the Hydra body 100 pixels, with an output size of 300 by 300

pixels, while only keeping the region under the Hydra binary mask.

Feature extraction
Video features including HOF, HOG and MBH were extracted using a codebase that was previously

released (Wang et al., 2011). Briefly, interest points were densely sampled with five pixels spacing

at each time point in each 5 s video clip and were then tracked throughout the video clip with opti-

cal flow for 15 frames. The tracking quality threshold was set to 0.01; the minimum variation of tra-

jectory displacement was set to 0.1, the maximum variation was set to 50, and the maximum

displacement was set to 50. The neighboring 32 pixels of each interest point were then extracted,

and HOF (8 dimensions for eight orientations plus one extra zero bin), HOG (eight dimensions) and

MBH (eight dimensions) features were calculated with standard procedures. Note that MBH was cal-

culated for horizontal and vertical optical flow separately, therefore two sets of MBH features, MBHx

and MBHy were generated. All features were placed into three groups based on the part of body

they fall in, that is tentacles, upper body column, and lower body column. All parameters above

were cross-validated with the training and test datasets.
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Gaussian mixture codebook and Fisher vector
A Gaussian mixture codebook and Fisher vectors were generated using the code developed by

Jegou et al. for each feature type (Jégou et al., 2012), using 50 Hydra in the behavior dataset that

includes all behavior types. Features from each body part were centered at zero, then PCA was per-

formed on centered features from all three body parts, keeping half of the original dimension (five

for HOF, four for HOG, MBHx and MBHy). Whitening was performed on the PCA data as following,

which de-correlates the data and removes redundant information:

xwhite; i ¼
xi
ffiffiffi

l
p

i

where x denotes principal components, and l denotes eigenvalues. K ¼ 256 Gaussian mixtures

were then fitted with the whitened data using a subset of 256,000 data points. We then calculated

the Fisher vectors as following:

zX ¼ Ll rl L Xð jlÞ

where X ¼ xt; t¼ 1 . . . Tf g is a set of T data points that were assumed to be generated with

Gaussian distributions ul xð Þ ¼
PK

i¼1
wiui xð Þ, with l¼ wi;�i;si; i¼ 1; . . . ;Kf g denotes the Gaussian

parameters, and Ll is the decomposed Fisher Information Matrix:

F�1

l
� Ex~ul rl logul xð Þrl logul xð ÞT

h i

¼ LT
l
Ll

Fisher vectors then represent the normalized gradient vector obtained from Fisher

kernel K X;X0ð Þ:

K X;X0ð Þ ¼ rl L Xð j l ÞT F�1

l
rl L X0ð j l Þ ¼ zTXzX

Comparing with hard-assigning each feature to a code word, the Gaussian mixtures can be

regarded as probabilistic vocabulary, and Fisher vectors encode information of both the position

and the shape of each word with respect to the Gaussian mixtures. Power normalization was then

performed on the Fisher vectors to improve the quality of representation:

f zð Þ ¼ sign zð Þ zj ja

with a¼ 0:5, followed by l2 normalization, which removes scale dependence (Perronnin et al.,

2010). The final representation of each video clip is a concatenation of Fisher vectors of HOF, HOG,

MBHx and MBHy. In this paper, the GMM size was set to 128 with cross-validation (Figure 2—figure

supplement 1c).

SVM classification
PCA was first performed on the concatenated Fisher vectors to reduce the dimensions while keeping

90% of the original variance. A random 90% of samples from the 50 training Hydra were selected as

training data, and the remaining 10% were withheld as validation data. Another three Hydra that

exhibit all behavior types were kept as test data. Because each behavior type has different numbers

of data points, we trained SVM classifiers using the libSVM implementation (Chang and Lin, 2011)

by assigning each type a weight of wi ¼
P

i Ni

� �

=Ni, where i ¼ 1; . . . ; 7 denotes the behavior type,

and Ni denotes the number of data points that belong to type i. We trained SVM classifiers with a

radial basis kernel, allowing probability estimate, and a fivefold cross-validation testing the cost

parameter c with a range of log2 c 2 �5:2:15f g, and the g in the kernel function with a range

of log2 g 2 �5:2:15f g, where �5:2:15f g denotes integers ranging from �5 to 15 with a step of 2. The

best parameter combination from cross-validation was chosen to train the SVM classifiers.

To classify test data, features were extracted as above and were encoded with Fisher vectors with

the codebook generated from the training data. PCA was performed using the projection matrix

from training data. A probability estimate for each behavior type was given by the classifiers, and

the final assigned label is the classifier with the highest probability. For soft classifications, we

allowed up to three labels for each sample if the second highest label probability is >50% of the

highest label, and the third is >50% of the second highest label. To evaluate classification
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performance, true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN)

were calculated. Accuracy was defined as Acc ¼ TPþ TNð Þ= TPþ TNþ FPþ FNð Þ; precision was

defined as Prc ¼ TP= TPþ FPð Þ; recall was defined as Acc ¼ TN= TNþ FPð Þ. Two other measure-

ments were calculated: true positive rate TPR ¼ TP= TPþ FNð Þ, and false-positive

rate FPR ¼ FP= FPþ TNð Þ. Plotting TPR against FPR gives the standard ROC curve, and the area

under curve (AUC) reflects the performance of classification. In this plot, a straight line TPR = FPR

with AUC = 0.5 represents random guess; the upper left quadrant with AUC >0.5 represents better

performance than random.

t-SNE embedding
Embedding was performed with the dimension-reduced data. A random 80% of the dataset from

the 50 training Hydra were chosen to generate the embedding map, and the remaining 20% were

withheld as validation dataset. Three other Hydra were used as test dataset. We followed the proce-

dures of Berman et al. (2014), with a slight modification that uses Euclidean distance as the distance

measurement. Embedding perplexity was chosen as 16. To generate a density map, a probability

density function was calculated in the embedding space by convolving the embedded points with a

Gaussian kernel; s of the Gaussian was chosen to be 1/40 of the maximum value in the embedding

space by cross-validation with human examination to minimize over-segmentation. In the 3-day

dataset, s was chosen to be 1/60 of the maximum value in order to reveal finer structures. To seg-

ment the density map, peaks were found in the density map, a binary map containing peak positions

was generated, and peak points were dilated by three pixels. A distance map of the binary image

was generated and inverted, and the peak positions were set to be minimum. Watershed was per-

formed on the inverted distance map, and the boundaries were defined with the resulting watershed

segmentation.

Egestion detection
Estimated egestion time points were calculated by first extracting the width profile of Hydra from

the pre-processing step, then filtering the width profile by taking the mean width during 15 min after

each time point t, and the mean width during 15 min before time t, and subtracting the former from

the latter. Peaks were detected on the resulting trace and were regarded as egestion behaviors,

since they represent a sharp decrease in the thickness of the animals.

Behavior experiments
All Hydra used for experiments were fed three times a week and were cultured at 18˚C. On non-

feeding days, the culture medium was changed. Hydra viridissima was cultured at room temperature

under sunlight coming through the laboratory windows. For imaging, animals were placed in a petri

dish under the microscope without disturbance to habituate for at least 30 min. Imaging typically

started between 7 pm and 9 pm, and ended between 9 am and 11 am except for the large/small

experiments. All imagings were done excluding environmental light by putting a black curtain

around the microscope. For dark condition, a longpass filter with a cutoff frequency of 650 nm (Thor-

labs, FEL0650) was placed at the source light path to create ‘Hydra darkness’ (Passano and McCul-

lough, 1962). For starved condition, Hydra were fed once a week. For the large/small experiment,

Hydra buds that were detached from their parents within 3 days were chosen as small Hydra, and

mature post-budding mature Hydra polyps were chosen as large Hydra. There was a two- to three-

fold size difference between small and large Hydra when they were relaxed. However, since the

Hydra body was constantly contracting and elongating, it was difficult to measure the exact size.

Imaging for this experiment was done during the day time for 1 hr per Hydra.

Statistical analysis
All statistical analyses were done using Wilcoxon rank-sum test unless otherwise indicated. Data is

represented by mean ± S.E.M unless otherwise indicated.

Resource availability
The code for the method developed in this paper is available at https://github.com/hanshuting/

Hydra_behavior. A copy is archived at https://github.com/elifesciences-publications/hydra_behavior
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(Han, 2018b). The annotated behavior dataset is available on Academic Commons (dx.doi.org/10.

7916/D8WH41ZR).
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