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Abstract Single-molecule experiments and molecular dynamics (MD) simulations are

indispensable tools for investigating protein conformational dynamics. The former provide time-

series data, such as donor-acceptor distances, whereas the latter give atomistic information,

although this information is often biased by model parameters. Here, we devise a machine-learning

method to combine the complementary information from the two approaches and construct a

consistent model of conformational dynamics. It is applied to the folding dynamics of the formin-

binding protein WW domain. MD simulations over 400 ms led to an initial Markov state model

(MSM), which was then "refined" using single-molecule Förster resonance energy transfer (FRET)

data through hidden Markov modeling. The refined or data-assimilated MSM reproduces the FRET

data and features hairpin one in the transition-state ensemble, consistent with mutation

experiments. The folding pathway in the data-assimilated MSM suggests interplay between

hydrophobic contacts and turn formation. Our method provides a general framework for

investigating conformational transitions in other proteins.

DOI: https://doi.org/10.7554/eLife.32668.001

Introduction
Protein folding is an important subject not only for basic research in molecular biology but also for

understanding folding diseases and designing new polymeric materials (Dill and MacCallum, 2012).

Transient, partially folded states are often encountered on folding pathways, and have been charac-

terized experimentally in solution by methods such as laser temperature jumps, fluorescence label-

ing, and solution X-ray scattering. Mutagenesis evaluated by F-value analysis (Fersht and Daggett,

2002), for instance, has also provided residue-level information on transition states. Recently, state-

of-the-art single-molecule (sm) measurements, single-molecule Förster resonance energy transfer

(smFRET) (Chung et al., 2012; Oikawa et al., 2013) and force spectroscopy (smFS) (Neupane et al.,

2016) have become powerful tools in protein-folding research, providing reliable information on

transition-path (barrier-crossing process) times (Chung et al., 2012) and heterogeneity in the

unfolded state (Oikawa et al., 2013). A major limitation of smFRET is that the observables are

restricted to ‘low-dimensional’ structural data, such as the donor–acceptor distance. Computational

modeling should help us to interpret single-molecule time-series measurements and

should contribute to solving some remaining puzzles, such as the reduced solvent viscosity depen-

dence of the transition-path times (Chung and Eaton, 2013), the internal viscosity (Chung and

Eaton, 2013) and the impact of non-Markovian property (Chung et al., 2015). Theories and
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computational methods have been developed to extract structural information and dynamics from

smFRET data (Haas et al., 2013; Hoefling et al., 2011; Matsunaga et al., 2015; Sun et al., 2016).

Molecular dynamics (MD) simulation is another powerful approach for investigating protein

dynamics and folding over relatively long time periods — hundreds of microseconds or longer (Lin-

dorff-Larsen et al., 2011). In theory, ‘low-dimensional’ smFRET measurements are interpreted in

terms of the atomic structural models obtained with MD simulations. However, it is still a challenge

to achieve quantitative agreement between simulation and experimental data during the entire fold-

ing process, owing not only to simulation time limitations but also to inherent force-field biases. In

particular, while local interactions are well described by the current force fields, it is still difficult to

reproduce energetic balances between unfolded and folded states. Indeed, Piana and coworkers

showed, in their protein folding simulation study, that the folding mechanism of the villin headpiece

depends substantially on the choice of force field (Piana et al., 2011). It is also known that most

force fields produce unfolded states that are more compact and structured than those suggested

experimentally (Piana et al., 2014). Methods based on maximum entropy (Beauchamp et al., 2014;

Boomsma et al., 2014; Cavalli et al., 2013; Olsson et al., 2013, 2014, 2017; Pitera and Chodera,

2012; Roux and Weare, 2013) or Bayesian statistics (Bonomi et al., 2016) were recently developed

for guiding simulations or models to generate ensembles that match experimental ensemble-aver-

aged observations.

Exploiting time-series data from single-molecule experiments is another way to link simulation

with experiment and has several advantages over the ensemble-average based approaches: (i) more

latent states can be uncovered by inferring states from their historical evolution than from their static

ensembles (Li et al., 2008; Matsunaga et al., 2015; Schuetz et al., 2010); (ii) the transition state

can be uniquely identified as a dynamic bottleneck by following the actual dynamics. However, the

time-scale gap between experiment and simulation previously hampered the direct use of time-

series analysis methods in other disciplines, such as data assimilations that are based on the sequen-

tial Monte Carlo method (Matsunaga et al., 2015).

Here, we develop a new approach for single-molecule time-series data based on the Markov state

model (MSM) (Pande et al., 2010), a statistical model that approximates dynamics by memory-less

probabilistic transitions between discrete conformational states. In MSM, the probability of transition

from the discrete state i to state j in a lag time of t is described by a transition-probability matrix

T tð Þ ¼ Tij tð Þ
� 	

. T tð Þ can be estimated from a set of short simulations instead of a single long simula-

tion. Therefore, MSM is often used to generate long-time dynamics (Silva et al., 2014) whose time-

scale is comparable to those of experimental measurements (Feng et al., 2016; Noé et al., 2011;

Snow et al., 2002). However, estimation of T tð Þ is largely dependent on the simulation force-fields,

which may have uncertainties or biases for certain conformations (Olsson et al., 2017). To overcome

this problem, we propose to "refine" T tð Þ using high-resolution measurement of single-molecules as

time-series data. Specifically, we use a machine-learning approach to estimate T tð Þ between hidden

Markov states from low-dimensional time-series data (Bishop, 2006). To distinguish the original

T tð Þ ¼ Tsimulation tð Þð Þ, we refer to the refined T tð Þ as Texperiment tð Þ in this paper.

We propose a two-step procedure in our machine-learning approach, which links simulations and

single-molecule experiments (Figure 1). (i) Supervised learning step. We first construct an initial

MSM from a raw set of simulation data. After defining discrete conformational states by clustering

the trajectory snapshots, T tð Þ ¼ Tsimulation tð Þ is estimated directly by counting transitions between

the discrete states in the simulation trajectories. This step is the same as conventional MSM

(Pande et al., 2010). (ii) Unsupervised learning step. Using Tsimulation tð Þ as an initial estimate, we per-

form hidden Markov modeling (Bronson et al., 2009; McKinney et al., 2006; Okamoto and Sako,

2012; Pirchi et al., 2016; Rabiner and Juang, 1986; Schröder and Grubmüller, 2003) to refine the

initial MSM using single-molecule measurement time-series data. T tð Þ is optimized so that the

"refined" or data-assimilated MSM with Texperiment tð Þ can reproduce the time-series data most

accurately.

We applied this procedure to the folding dynamics of the formin-binding protein (FBP) WW

domain, a 37-residue three-stranded b-sheet protein. In the construction of the initial MSM, exten-

sive MD simulations of a dye-labeled WW domain were performed for an aggregated time of ~400

ms. Although there are a number of folding simulation studies for the FBP WW domain and its homo-

logs (Ensign and Pande, 2009; Freddolino et al., 2008; Karanicolas and Brooks, 2003; Zanetti-
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Polzi et al., 2017; Zhou et al., 2014), this may be the first folding simulation to use FRET dyes. High

time-resolution smFRET measurements of WW domain folding and unfolding dynamics were used

for the unsupervised learning (Chung et al., 2012). The data were previously measured to resolve

the durations of the folding and unfolding transitions with microsecond resolution by Chung and

coworkers (Chung et al., 2012). The initial and data-assimilated MSM showed different folding path-

ways and transition-state ensembles of WW domains. An independent mutation experiment with F-

value analysis (Fersht and Daggett, 2002) validated the data-assimilated MSM. We discuss our

time-series analysis method in the context of machine-learning theory and its applicability to confor-

mational transitions in other biomolecules.

Results

Single-molecule FRET measurements
SmFRET experiments were carried out by Chung and coworkers, and details for the experiments are

given in Chung et al., 2012. Here we summarize the essential experimental setups necessary for our

machine-learning procedure. Photon trajectories were measured for the FBP WW domain with donor

(Alexa 488) and acceptor (Alexa 594) fluorophores attached to the terminal residues in the protein.

In order to improve the time resolution of the smFRET data, Chung and coworkers illuminated the

protein with a very high intensity laser (10 kW/cm2), increasing the number of photons observed per

time (~650 photons/ms) (Chung et al., 2012). Photon color, either donor green or acceptor red, and

the absolute time of arrivals were recorded within ~0.5 ns. Each photon trajectory was split into

folded and unfolded segments by finding the photon interval with the maximum transition probabil-

ity (Gopich and Szabo, 2009). The final set of smFRET photon sequences comprises 527 trajectories,

each of which contains a single folding or unfolding event.

Figure 1. Schematic of proposed semi-supervised learning approach. (A) Our proposed approach comprises two steps. As the first step, an initial

Markov State Model is constructed only from simulation data by simply counting transitions between conformational states. (B) In the second step,

transition probabilities (depicted by arrows) are updated through unsupervised learning from experimental time-series data.

DOI: https://doi.org/10.7554/eLife.32668.002

The following figure supplement is available for figure 1:

Figure supplement 1. Dye-labeled WW domain and simulation box.

DOI: https://doi.org/10.7554/eLife.32668.003
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Molecular dynamics simulations
A dye-labeled WW domain was built in silico for MD simulations (Figure 1—figure supplement 1).

Starting from the NMR structure of the WW domain (PDB code: 1E0L [Macias et al., 2000]), we

made the same substitution mutation W30A as in the experiments (Chung et al., 2012), and the ter-

minal residues were labeled with donor (Alexa Fluor 488) or acceptor (Alexa Fluor 594) dyes by using

the AMBER-DYES package (Graen et al., 2014).

We conducted eleven simulations of length 25.6 ms in the NVT ensemble (370 K) from the

unfolded structures. By monitoring the fraction of native contacts, Q, we observed folding events in

four trajectories out of the eleven (Figure 2—figure supplement 1A). Also, six simulations of length

10 ms and four simulations of 14 ms were performed from the folded structure. In these ten trajecto-

ries, we observed seven unfolding events. Our simulations, thus, sampled intermediate regions

between the unfolded and folded states sufficiently for construction of an initial MSM. The simula-

tion length is ~400 ms in total.

Clustering of sampled structures in MD simulations
For the MSM construction, we chose a two-dimensional (2-D) space spanned by the native contact

Q and the expected FRET efficiency e. The value of e is calculated from the distance r between

donor and acceptor dyes using the Förster theory, " ¼ 1= 1þ r=R0ð Þ6
h i

, where R0 is the Förster radius

(see ’Methods’ for details). Here, Q is chosen because it is historically known to be the best reaction

coordinate to describe a folding process. Also, e is employed for comparison with smFRET data as

well as for differentiating compact and elongated structures. Figure 2A shows a scatter plot of the

sampled conformations in the MD simulations. Expected FRET efficiency e successfully resolves the

elongated unfolded states and compact states, whereas e fails to discriminate the folded state (cor-

responding to Q ~ 0.7–1.0 and e ~ 0.7–1.0) from the compact unfolded state (Q ~ 0.0–0.3 and

e ~ 0.7–1.0) without the help of Q. This suggests that approaches that are based on ensemble aver-

age may have a difficulty when the histogram of e is used to add biases to the protein in MD

simulations.

Sampled conformations were clustered into discrete states in the 2-D space (cluster centers are

shown in Figure 2B). Regular spatial clustering was applied to partition the space in an equidistant

manner regardless of the population size (Senne et al., 2012). This spatial clustering is essential in

this study because relatively minor populations can have high probabilities after the refinement of

the initial MSM with the help of experimental time-series data.

In order to obtain structural insights, we calculated both the mean and the variance of the donor-

acceptor distance r for each state. Figure 2—figure supplement 2 shows samples plotted in the 2D

space spanned by Q and r. There are distance gaps between states, which are supportive of the

Markovian assumption. Large standard deviations are observed in the case of small donor-acceptor

distances. This results from the lower spatial resolution in FRET efficiency e when e is not close to 0.5

(e.g., states with e ~ 1 cover r = 0-30 Å) as discussed in the information-binning study by

Watkins and Yang (2004).

Construction of an initial MSM as the supervised learning step
MSM has two tunable parameters: the number of discrete states and the lag time t for T tð Þ. Theo-

retically, increasing the number of discrete states and/or the lag time will produce a MSM with the

least discretization error (Prinz et al., 2011), while a large number of discrete states or a longer lag

time will decrease the number of samples for estimation, resulting in large statistical errors (the so-

called bias-variance tradeoff) (McGibbon et al., 2014). Thus, it is common to make the number of

discrete states and the lag time as small as possible, even though it compromises the accuracy of

the model. Here, we examined various numbers of discrete states for MSM by calculating implied

time scales (Schwantes and Pande, 2013). The ith implied time scale ti of a MSM with T tð Þ is given

by

ti ¼�
t

lnli
; (1)

where li is the ith eigenvalue of T tð Þ. As the implied time scales are always underestimated rela-

tive to their true values, the slower time scales are indicative of smaller discretization errors. The
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implied time scales were calculated for various numbers of clustered states as a function of the lag

time t (Figure 2—figure supplement 3A). We found that the converged values of the slowest

implied time scale (related to folding dynamics) successfully reproduce the time scale of folding (~5

ms) in the MD data when the number of states is larger than 80 (Figure 2—figure supplement 3B).

Figure 2. Sampled conformations from simulations and Markov state models constructed in Q and expected FRET efficiency space. (A) Scatter plot of

sampled conformations from the aggregated trajectories. Representative structures from folded, compact unfolded, and elongated states are shown.

Donor and acceptor dyes are colored green and red, respectively. (B) Cluster centers used for constructing the Markov state model are plotted with

circles. (C) Initial Markov state model constructed from simulation data only. Node areas are proportional to the equilibrium populations, and edge line

widths are proportional to the transition probabilities. (D) Data-assimilated Markov state model after unsupervised learning from smFRET photon-count

sequences. Edges with transition probabilities of less than 0.01 are not shown for visual clarity.

DOI: https://doi.org/10.7554/eLife.32668.004

The following figure supplements are available for figure 2:

Figure supplement 1. Q of molecular dynamics simulation trajectories.

DOI: https://doi.org/10.7554/eLife.32668.005

Figure supplement 2. Donor-acceptor distances of the Markov states.

DOI: https://doi.org/10.7554/eLife.32668.006

Figure supplement 3. Implied timescales for various numbers of states.

DOI: https://doi.org/10.7554/eLife.32668.007

Figure supplement 4. Comparison of the transition probabilities of the initial and the data-assimilated Markov state models.

DOI: https://doi.org/10.7554/eLife.32668.008

Figure supplement 5. Data-assimilated Markov state models using halves of the training data.

DOI: https://doi.org/10.7554/eLife.32668.009

Figure supplement 6. Dependency of data-assimilated Markov state models on the choice of Förster radius R0.

DOI: https://doi.org/10.7554/eLife.32668.010

Figure supplement 7. Data-assimilated Markov state obtained by considering the FRET efficiency outside the weak-excitation limit.

DOI: https://doi.org/10.7554/eLife.32668.011

Figure supplement 8. Optimization process for the initial Markov state model.

DOI: https://doi.org/10.7554/eLife.32668.012

Figure supplement 9. Optimization of a random matrix as the initial condition.

DOI: https://doi.org/10.7554/eLife.32668.013
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From these observations, we chose 87 states by adjusting the cluster radius (0.08) in the regular spa-

tial clustering.

A lag time of t = 200 ns was chosen as a minimum time scale to achieve converged implied time

scales. Note that the number of states chosen here is an order of magnitude fewer than those in

other MSM studies. It is well known that the RMSD metric requires a larger number of discrete states

in MSM, whereas well-defined metrics that are based on slow motions or smooth coordinates (such

as contact-maps [Kellogg et al., 2012], or coordinates extracted by time-structure-based indepen-

dent component analysis [Schwantes and Pande, 2013]) require a smaller number of states. A long

lag time of t = 200 ns also helps the MSM to satisfy the Markov assumption as well as improving

FRET photon-count statistics in the next unsupervised learning step.

Figure 2C shows a graphical representation of the initial MSM constructed only from MD simula-

tion data. The node areas are proportional to the equilibrium populations, and the edge line widths

are proportional to the transition probabilities, Tij tð Þ. The MSM seems to overemphasize compact

unfolded states (Q ~ 0.0–0.3 and e ~ 0.7–1.0), which results from biases of the force-field parameters

not only for proteins (Best et al., 2014; Piana et al., 2014) but also for FRET dyes (Best et al.,

2015).

Refinement of transition probabilities as the unsupervised learning step
In the unsupervised learning, the total log likelihood function of all smFRET photon-counting sequen-

ces ln L T tð Þð Þ ¼
k

P

ln Lk T tð Þð Þ is maximized by optimizing T tð Þ. First, we treated smFRET data as N

independent photon-counting sequences in discretized time windows. Each sequence Ok =

o
ðkÞ
1

. . . o
ðkÞ
I

n o

consists of a set of donor and acceptor photon counts oi ¼ N
ðiÞ
D ;N

ðiÞ
A

n o

detected in ith

time window. I is the number of time windows and 200 ns was chosen for the photon-counting time-

window width as well as for the lag time t of MSM. The likelihood function Lk T tð Þð Þ is then defined

as a probability to observe the kth smFRET photon-counting sequence Ok with a

given T tð Þ (Gopich and Szabo, 2012):

Lk T tð Þð Þ ¼ p Okj T tð Þð Þð Þ ¼
X

M

s1¼1

� � �
X

M

sI¼1

p s1ð Þh o1js1ð Þ
Y

I

i¼2

p sijsi�1ð Þh oijsið Þ: (2)

M is the number of discrete states in MSM, and si denotes MSM’s state at the ith time window.

p sijsi�1ð Þ ¼ Tsi�1si tð Þ is the transition probability from state si-1 to state si. p s1ð Þ is the equilibrium prob-

ability of being in state s1. h oijsið Þ is the probability of observing donor and acceptor photon-

counts oi ¼ N
ðiÞ
D ;N

ðiÞ
A

n o

given state si.

By maximizing the above likelihood function, we obtained the data-assimilated MSM with the

optimized T tð Þ ¼ Texperiment tð Þ, which matches with the smFRET time-series data. Figure 2D shows

that the data-assimilated MSM differs from the initial MSM. In the data-assimilated MSM, the com-

pact unfolded state (Q ~ 0.0–0.3 and e ~ 0.7–1.0) disappears due to a minor population with high e

in the smFRET data (see Figure 3B), while an elongated unfolded region (Q ~ 0.0–0.2 and e ~ 0.5–

0.6) is stabilized. As noted, this may reflect the biases of the force-field. Also, the different solvent

conditions between the simulation (TIP3P water molecules) and the smFRET experiment (denaturant

concentration) may affect the unfolded state distribution (Zheng et al., 2016). Interestingly, as

another stable region, the folded state (Q ~ 0.8 and e ~ 0.6–0.8) appears instead of other states with

the same e.

We compared the transition probabilities Tij tð Þ of the two MSMs (Figure 2—figure supplement

4). Figure 2—figure supplement 4A shows the implied time scales of the MSMs. We can see that

the slowest time scale increases from 2.6 ms to 100 ms after the hidden Markov modeling. These

time scales are related to folding/unfolding transitions of WW domain in both cases. Simulation time

scale is faster than that in experiments because of the lower viscosity of the TIP3P water model

(Mahoney and Jorgensen, 2001) compared to those of pure water and the viscogen added in the

smFRET experiment (Chung et al., 2012). This gap was improved by the information from the

smFRET data. In Figure 2—figure supplement 4B, Tij tð Þ are directly compared in a scatter plot

where each Tij tð Þ is colored using the FRET efficiency e of state i before transition. Tij tð Þ from states

with high FRET efficiencies are correlated with each other. This means that Tij tð Þ related to compact

Matsunaga and Sugita. eLife 2018;7:e32668. DOI: https://doi.org/10.7554/eLife.32668 6 of 19

Research article Computational and Systems Biology Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.32668


states derived from MD simulations are consistent with the smFRET data. By contrast, Tij tð Þ from

states with middle or low FRET efficiencies are less correlated. This means that the hidden Markov

modeling mainly updated Tij tð Þ of elongated states.

Reproducibility of experimental data
Figure 3 shows histograms of the ‘measured’ FRET efficiency E of the original smFRET data and

those generated by the initial and data-assimilated MSMs (see ’Methods’ for emulation or stochastic

simulation of smFRET data). The measured FRET efficiency E is calculated from the numbers of pho-

tons emitted from donor and acceptor dyes in a certain time window, ND and NA, respectively. It is

defined by the ratio of donor photon counts to total photon counts, E = NA/(NA + ND). E is calcu-

lated from measured photons in a time window whereas e is calculated from the donor-acceptor dis-

tance of each instantaneous structure. In Figures 3A, 200 ns time-windows were used for photon

counts. The data-assimilated MSM produced a histogram close to that found with original smFRET

data (the mean squared error between the normalized histograms is 3:7� 10
�5), confirming the reli-

ability of the optimized parameters obtained by machine learning.

We also calculated the observed FRET efficiency E with 50 ms time windows (Figure 3B), which

corresponds to the folding time-scale observed in the smFRET data (Chung et al., 2012). The histo-

gram of the original smFRET data has double peaks, corresponding to unfolded and folded states,

respectively. The initial MSM, however, only shows a single sharp peak at high FRET efficiency

because of overemphasis of compact conformations (Best et al., 2014). The data-assimilated MSM

successfully reproduces the double peaks of the histogram of the original data. The histogram of the

data-assimilated MSM seems smoothed compared to that obtained experimentally, presumably

because of the accumulation of photon-counting noise using 200 ns time-windows.

Folding mechanisms of the FBP WW domain
To quantify the difference between the initial and data-assimilated MSMs, we calculated pfold by

applying transition-path theory (Metzner et al., 2009; Noé et al., 2009) (Figure 4A and B). pfold is

the probability of undergoing a folding transition defined for each state. States with pfold >0.5 are

kinetically closer to the folded state, whereas those with pfold <0.5 approximate the unfolded state.

Those with pfold = 0.5 define the transition-state ensemble. The calculated pfold tends to depend

Figure 3. Measured FRET efficiency histograms. (A) Measured FRET efficiency histograms calculated from donor and acceptor photons in the single-

molecule FRET data with a time-window of 200 ns width, and those generated from initial and data-assimilated Markov state models. The measured

FRET efficiency is defined as the ratio of the acceptor photon counts to the total number of photons (E = NA/(NA +ND)). Error bars indicate standard

deviations in ten realizations of photon sequences for both models. (B) Measured FRET efficiency histograms calculated with a time-window of 50 ms.

DOI: https://doi.org/10.7554/eLife.32668.014

The following figure supplement is available for figure 3:

Figure supplement 1. k-fold cross validation test.

DOI: https://doi.org/10.7554/eLife.32668.015
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only on Q for the initial MSM (Figure 4A), as corroborated by a previous analysis of folding simula-

tion data for various proteins (Best et al., 2013). On the other hand, pfold of the data-assimilated

MSM depends on e as well as Q, suggesting that not only Q but also compactness needs to be fac-

tored into the folding mechanism (Figure 4B). pfold was mapped onto the RMSDs of hairpins 1 and 2

of the native structure (Figure 4C and d). In the initial MSM, the transition-state region (pfold = 0.4–

0.6) is located in a rather compact region where the formation of both hairpins 1 and 2 can be just

discerned (Figure 4E). In the data-assimilated MSM, the transition-state ensemble presents only

Figure 4. Probability of folding, pfold, and transition state ensemble. (A) Probabilities of folding, pfold, mapped onto the states of initial Markov state

model. (B) pfold for data-assimilated Markov state model. The unfolded and folded states used for the calculation (source and sink in the context of the

transition path theory, respectively) are indicated by circles. (C) Trajectory snapshots in the the RMSDs of hairpins 1 and 2 from their native structures

are colored by pfold for the initial Markov state model. (D) Trajectory snapshots of the data-assimilated Markov state model. (E) Structures of the

transition state ensemble in the initial Markov state model which correspond to pfold = 0.4–0.6. (F) The transition state ensemble in the data-assimilated

Markov state model. Two hydrophobic cores that project below and above the plane of the sheet, core 1 (Trp8, Tyr20, Asn22, Thr29, Pro33, shown in

red) and core 2 (Thr9, Tyr11, Tyr 19, Tyr21, shown in blue) are represented by sticks.

DOI: https://doi.org/10.7554/eLife.32668.016

The following figure supplement is available for figure 4:

Figure supplement 1. Dynamics of initial and data-assimilated Markov state models.

DOI: https://doi.org/10.7554/eLife.32668.017
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hairpin 1 (Figure 4F). This is consistent with a mutagenesis experiment, where mutations in hairpin 1

produce large F-values (Petrovich et al., 2006), implying that formation of hairpin 1 contributes

energetically to the transition-state ensemble.

The flux of folding trajectories can be decomposed into individual pathways for both models

(Figure 5A and B). The decomposition extracts a set of pathways along with their fluxes. The domi-

nant pathways with large fluxes provide the statistically probable order of events during folding. The

figures show that folding pathways with largest fluxes contribute 50% of the total flux. In the data-

assimilated MSM (Figure 5B), the formation of hydrophobic side-chain cores (core 1 consists of

Trp8, Tyr20, Asn22, Thr29 and Pro33, and core 2 consists of Thr9, Tyr11, Tyr 19 and Tyr21) stabilizes

the b-sheet structure in hairpin 1. The increased stability of hairpin 1 seems to guide the formation

of the second hairpin (hairpin 2) by the inter-strand hydrophobic interactions. Again, this scenario is

consistent with site-directed mutagenesis experiments for FBP (Petrovich et al., 2006) and the

homologous Pin WW domains (Jäger et al., 2001). These experiments implied that interactions

Figure 5. Folding pathways for initial and data-assimilated Markov state models. (A) Folding flux of the initial Markov state model was decomposed

into individual folding pathways. Folding pathways with largest fluxes contributing 50% of the total flux are superimposed in different colors. In this

case, all of the pathways are located at expected FRET efficiency e ~ 1 with different step size in the Q axis. Line widths are proportional to fluxes.

Structures of representative states are shown. Two hydrophobic cores that project below and above the plane of the sheet, core 1 (Trp8, Tyr20, Asn22,

Thr29 and Pro33, shown in red) and core 2 (Thr9, Tyr11, Tyr 19 and Tyr21, shown in blue) are represented by sticks. (B) Folding pathways with largest

fluxes contributing 50% of the total flux are shown for the data-assimilated Markov state model.

DOI: https://doi.org/10.7554/eLife.32668.018
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between conserved hydrophobic residues contribute to the stability of only the native state and not

to the transition state ensemble. Previous simulation studies have suggested the existence of regis-

ter-shifted structures as trapped (NoeNoé et al., 2009) or intermediate (Mu et al., 2006) states,

whereas in the data-assimilated MSM, such states were rarely observed. Hairpin 1 formation as a

rate-limiting step together with the paucity of register-shifted states in the data-assimilated MSM

are consistent with the scenario of the Wako-Saitô-Muñoz-Eaton (WSME) model (Muñoz et al.,

1997; Wako and Saitô, 1978), which postulates that the formation of a local turn is a bottleneck

for b-sheet formation. Interestingly, hairpin 2 formation is driven by a hydrophobic collapse

(Dinner et al., 1999) in the data-assimilated MSM. This implies that the interplay between turns and

hydrophobic clusters has an important role in the formation of multiple hairpins in b-sheet proteins.

In terms of the theory of the coil-globule transition (collapse transition) (Ziv et al., 2009), the for-

mation of hairpin 1 would be the collapse step. This collapse transition is specific in the sense that

the collapsed structure does not contain a large number of non-native contacts, whereas the col-

lapse of homopolymers are often treated as a non-specific transition. As predicted by the theory

(Ziv et al., 2009), this indicates that the folding and collapse transition temperatures are close for

this WW domain.

Discussion
We have proposed a two-step procedure for the construction of a data-assimilated MSM with

T tð Þ ¼ Texperiment tð Þ matching single-molecule time-series data. Using smFRET data for the FBP WW

domain, we show that the data-assimilated MSM successfully reproduces the original smFRET data,

and yields a transition-state ensemble consistent with an independent mutational experiment

(Petrovich et al., 2006). The folding mechanism based on the data-assimilated MSM suggests an

interplay between hairpin and hydrophobic formations.

In the context of machine-learning theory, the proposed two-step procedure can be regarded as

a semi-supervised learning algorithm, which tries to learn from both labeled and unlabeled data

(Rudzinski et al., 2016; Zhu and Goldberg, 2009). In the context of MSM, simulation data corre-

spond to labeled data while experimental data are unlabeled data. In a typical case of semi-super-

vised learning (e.g., image recognition), the labeled data are correct and usually expensive (e.g.,

images that are manually labeled by investigator). Therefore, unlabeled data are often ‘de-empha-

sized’ by scaling their contribution in the likelihood function (Zhu and Goldberg, 2009). By contrast,

in our case, labeled data (simulation) may have incorrect transition counts caused by force-field

biases whereas unlabeled data (experimental) possess more reliable information on dynamics. Thus,

in our two-step procedure, the estimates Tsimulation tð Þ from labeled data (simulation) are replaced

with Texperiment tð Þ "refined" with unlabeled data (experiment). This is regarded as the limit of ‘de-

emphasis’ on labeled data (simulation).

When fitting a rather complex model to any experimental data, the model can overreact to noise

in the data (the overfitting problem). In particular, our MSM for the FBP WW domain has a rather

large number of parameters (87� 87 transition probabilities), which could be easily overfitted to the

smFRET data. To assess the overfitting in the unsupervised learning, we divided the smFRET data in

half, and unsupervised learning was independently applied to the two subsets. Qualitatively similar

network structures appeared in both, and were similar to that obtained with the full data set (Fig-

ure 2—figure supplement 4). This is because the effective number of parameters is considerably

reduced from 87� 87 down to only those involving populated states (e ~ 0.5–0.8). In order to coun-

teract overfitting, a maximum caliber approach for minimally perturbing the initial MSM could be a

promising direction for a future study (Dixit and Dill, 2014, 2015, 2018; Wan et al., 2016;

Zhou et al., 2017). Furthermore, to see the dependence on the choice of the Förster radius R0, we

carried out the unsupervised learning using a set of different R0 values (R0 = 54, 55, 57, and 58 Å).

The overall structure of the MSM network was robust against the choice of R0 except for R0 = 58 Å

(Figure 2—figure supplement 5).

The initial condition in the unsupervised learning is another issue. Since MSM has a larger number

of parameters than in typical hidden Markov modeling, unsupervised learning requires a good initial

condition for optimization to avoid being trapped in a local minimum. By using Tsimulation tð Þ as the

initial condition, we achieved a likelihood convergence with lnL T tð Þð Þ = �584,947 with 10,000-step

optimization (taking one week using the parallel implementation of the Baum-Welch algorithm
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[Rabiner and Juang, 1986]). For comparison, we also performed the optimization using a random

matrix as the initial condition (Figure 2—figure supplement 8C). In the figure, the optimization of

the likelihood looks stacked after 10,000 iterations and its value is lower than that of Tsimulation tð Þ as

the initial condition. This result suggests that the model from a random matrix could be ruled out

because of trapping in a local minimum, or at least that global optimization of a random matrix is

practically very inefficient. This also emphasizes the importance of transferring knowledge

Tsimulation tð Þ learned from simulations for improving the unsupervised learning Texperiment tð Þ from

experimental data (Torrey and Jude, 2009). Although just Tsimulation tð Þ was used as the initial condi-

tion here, advanced algorithms in transfer learning (Torrey and Jude, 2009) can be incorporated in

a future study.

We here used the conventional constant-time binning for photon counting because the standard

MSM is based on constant-time binning. A promising possibility for future studies is to apply contin-

uous-time Markov modeling (McGibbon and Pande, 2015), which may allow us to use information-

based binning (Watkins and Yang, 2004) or photon-by-photon analysis (Gopich and Szabo, 2009;

Okamoto and Sako, 2012; Pirchi et al., 2016), avoiding photon counting noise.

In conclusion, exploiting the temporal information embedded in experimental time-series data to

improve the simulation-based model has provided a rich, dynamic and experimentally consistent pic-

ture of the folding mechanism for the FBP WW domain. The data-assimilated MSM pathway could

be used to improve the force-field parameters of proteins, nucleic acids, and other biomolecules.

The semi-supervised learning combined with MSM method developed here is a quite general frame-

work that can be used to understand conformational transitions in proteins and other biomolecules.

It can be extended to interpret other experimental data possibly using more advanced techniques.

Methods

Molecular dynamics simulation
Monte Carlo searches were performed for labeling the dyes without any steric crashes with the pro-

tein. The constructed dye-labeled WW domain was solvated by TIP3P water molecules in a cubic

box of 64.3 Å side length. Sodium ions were added to make the net charge of the system neutral.

In order to obtain unfolded structures as the initial structures for production runs, we first per-

formed eleven 80 ns simulations at high temperature (600 K) in the NVT ensemble. Then, each sys-

tem was equilibrated by 40 ns simulation in the NPT ensemble (1 atm and 370 K, slightly lower than

the estimated melting temperature in the previous simulation with a different force field [Mu et al.,

2006]). After determining the average volume size in these eleven trajectories, the volume size of

each simulation was reset to the average value. Then, we conducted production simulation of eleven

systems for 25.6 ms in the NVT ensemble (370 K). Furthermore, we performed six additional produc-

tion runs of lengths 10 ms and another four simulations of 14 ms. All of these additional ten simula-

tions started from the native structure.

All production simulations were conducted with the Amber 14 GPU version of the PMEMD mod-

ule (Salomon-Ferrer et al., 2013) (using the SPFP precision model [Le Grand et al., 2013]) on GPU

computers. Amber ff99SB (Hornak et al., 2006) was used for the force field. For the FRET dyes

(Alexa 488, Alexa 594, and linkers), we used the AMBER-DYE force field (Graen et al., 2014), which

is optimized for use with the Amber ff99SB and TIP3P water model. A cutoff of 8 Å was applied for

the Lennard-Jones and short-range electrostatic interactions. For the long-range electrostatic inter-

actions, we used the Particle Mesh Ewald method (Darden et al., 1993). All bonds involving hydro-

gen atoms were constrained with the SHAKE/SETTLE algorithm (Miyamoto and Kollman, 1992;

Ryckaert et al., 1977). Using hydrogen mass repartitioning (Hopkins et al., 2015), a time step of 4

fs was used. Temperature and pressure were controlled by a Berendsen thermostat

(Berendsen et al., 1984) with a coupling constant of 1 ps and the Monte Carlo barostat, respec-

tively. Trajectories were saved every 200 ps. Q was calculated following the definition of Best et al.

(2013).

It is known that conventional force fields including Amber99SB used in this study overstabilize

compact states in the unfolded or disordered states (Piana et al., 2014, 2015). Recently, Best and

coworkers modified short-range proteinrwater pair interactions to correct this bias for a derivative of

the Amber ff03 force field with the TIP4P/2005 water model (Best et al., 2014). Specifically, they
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scaled the Lennard-Jones eOi between the oxygen of water molecules and all protein atoms by using

a factor of 1.1. In order to sample non-compact conformations, we scaled eOi of Amber ff99SB and

TIP3P in the same manner, and conducted folding simulations. Starting from the unfolded structures,

which were generated in the NVT ensemble (600 K), we performed ten 7 ms simulations in the NPT

ensemble (1 atm, and 360 K, slightly lower than the previous case for more conservative simulations).

We confirmed that the unfolded states in these trajectories prefer more elongated conformations

compared with the original Amber ff99SB. However, we did not observe any folding events, sug-

gesting that the scaling may destabilize the native state at least in the case of Amber ff99SB and

TIP3P (Figure 2—figure supplement 1B). Thus, we decided to use only the simulation data of the

original Amber ff99SB in this work. For these additional simulations, we used GENESIS (Jung et al.,

2015; Kobayashi et al., 2017) and K computer as well as the Amber 14 PMEMD module and GPU

computers. All structural figures were prepared with VMD (Humphrey et al., 1996).

Markov state model and semi-supervised learning
The regular spatial clustering was applied with RegularSpatial function in MSMBuilder

(Harrigan et al., 2017) in the 2-D space spanned by Q and e.

h oijsið Þ in the likelihood function (Equation 2) is the probability of observing donor and acceptor

photon-counts oi ¼ ND;NAf g given MSM’s state si. Denoting the donor and acceptor photon count

rates in the state si by nD(si) and nA(si), this probability is given by the product of Poisson distribu-

tions (Gopich and Szabo, 2012),

h oijsið Þ ¼
nD sið Þtð ÞND

ND!
e�nD sið Þt nA sið Þtð ÞNA

NA!
e�nA sið Þt: (3)

Following the previous analysis by Chung and coworkers (Chung et al., 2012), we applied the

condition that the sum of the donor and acceptor count rates is independent of the conformational

states, that is, n¼ nD sið Þþ nA sið Þ � const. This condition is met when the gamma factor, which is the

ratio of the quantum yields and detection efficiencies of the acceptor and donor photons, is equal to

one in all conformational states. Under this condition, Equation 3 is rewritten as

h oijsið Þ ¼
ntð ÞNDþNA

NDþNAð Þ!
e�nt

" #

NDþNAð Þ!

ND!NA!
"NA 1� "ð ÞND

� �

; (4)

Here, the expected FRET efficiency "¼ nA sið Þ= nD sið Þþ nA sið Þð Þ is related to the distance between

donor and acceptor r(si) through the Förster theory,

"¼
1

1þ r sið Þ=R0 k2ð Þ½ �6
; (5)

where R0 and k2 are the Förster radius and the orientation factor between the transition dipoles

of dyes, respectively. By analyzing the structures in MD simulations, we evaluated the contribution of

the orientation factor k2 to R0. We calculated the directions of the dipoles by assuming that the tran-

sition dipole moments are aligned with the long axis of each chromophore (Best et al., 2015).

Rather than evaluating the orientation factor of each MSM state, we evaluated the averages and

standard deviations of the orientation factor in four local regions defined along the Q and e axes

respectively because fluctuations in the instantaneous orientation factor required a large number of

samples. The average (standard deviation) of each region along the Q axis was k2 = 0.63 (0.64) for

Q = 0.00–0.25, 0.63 (0.64), for Q = 0.25–0.50, 0.64 (0.63), for Q = 0.50–0.75, and 0.60 (0.62) for

Q = 0.75–1.00. Also, the average (standard deviation) of each region along the e axis was k2 = 0.66

(0.69) for e = 0.00–0.25, 0.64 (0.68) for e = 0.25–0.50, 0.61 (0.66) for e = 0.50–0.75, and 0.63 (0.64)

for e = 0.75–1.00. The results suggest that k2 hardly depends on states within standard deviations.

Thus, we here employed the isotropic average approximation k2 = 2/3, and R0 = 56 Å (Jäger et al.,

2006) was used. In the same way, the donor-acceptor distance r was calculated from the geometric

centers of the donor and acceptor chromophores. The averaged value of r within each state si was

used for r(si).

The total log likelihood function In L T tð Þð Þ ¼
k

P

In Lk T tð Þð Þ of observing smFRET time-series data

was optimized using the Baum-Welch algorithm (Rabiner and Juang, 1986), imposing the detailed-
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balance condition as a constraint (McGibbon et al., 2014a; Noé et al., 2013). A numerical benefit

of imposing the condition is that the maximum eigenvalue of the transition probability matrix always

becomes one and its corresponding eigenvector represents the equilibrium probabilities of states.

For this intensive calculation, in-house MATLAB codes (https://github.com/ymatsunaga/mdtoolbox)

were developed and parallelized over photon-sequences. The codes are publicly available at https://

github.com/ymatsunaga/mdtoolbox under the BSD 3-Clause License (Matsunaga, 2018); copy

archived at https://github.com/elifesciences-publications/mdtoolbox). In the Baum-Welch algorithm,

the parameters whose initial values are zero are always kept as zero. In order to relax this topological

constraint, very weak random noise was added to Tsimulation tð Þ before the optimization. In the early

phase of the optimization (100 steps), unfolded states are stabilized irrespective of their compact-

ness (with the likelihood value of In L T tð Þð Þ = �588,314, Figure 2—figure supplement 7B). Then,

during the convergence of the likelihood in an optimization of 10,000 steps, the compact unfolded

state disappeared while the folded state becomes stabilized (with a larger likelihood value of

In L T tð Þð Þ = �584,947, Figure 2—figure supplement 7C).

In order to examine the overfitting of the model to the smFRET data, we divided smFRET data

into halves, and the likelihood optimization was independently applied to the two subsets. Both

results generated qualitatively similar network structures as with the full data set (Figure 2—figure

supplement 4).

To see the dependence on the choice of the Förster radius R0, we carried out the unsupervised

learning using a set of different R0 values (R0 = 54 Å, 55 Å, 57 Å, and 58 Å) with the same 87 states.

The overall structure of the MSM network was robust against the choice of R0 except for R0 = 58 Å

(Figure 2—figure supplement 5).

It is known that Equation (5) only approximately holds at the weak excitation-limit of the donor

dye. Here, its validity of the assumption is questionable because a very high intensity laser (10 kW/

cm2) was used in the current smFRET measurement to increase the number of photons

(Chung et al., 2012). Thus, we examined the FRET efficiency outside the weak-excitation limit by

using the following relation given by Camley et al. (2009):

"0 ¼
1

Lþ r sið Þ=R0 k2ð Þ½ �6
: (6)

Here, L depends on all rates of dye photophysics other than the energy transfer. L = 1 corre-

sponds to the weak-field limit (Equation 5). L >1 reflects the inability of doubly excited dye pairs to

undergo FRET within commonly accepted physical models. Here, using the same 87 states, we opti-

mized the likelihood function by using e’ with L = 1.065, a value used in Camley et al., 2009. The

optimized model is plotted in Figure 2—figure supplement 6. In the figure, although the intermedi-

ate states look more stabilized, the locations of stabilized states are qualitatively the same as the

weak-field limit (L = 1, Equation 5). This suggests that the folding mechanism is robust against the

definition of e.

In order to evaluate the dependence on the initial condition, we also performed the optimization

using a random matrix as the initial condition. The convergence of the likelihood function is shown in

Figure 2—figure supplement 8.

Analysis of Markov state models
We analyzed the dynamic properties of the constructed MSMs by generating long MSM simulation

trajectories with stochastic simulations. We first generated trajectories of states by using T tð Þ

(t = 200 ns). Specifically, a random number between 0 and 1 was drawn at every step to determine

which state the system will jump to in the next step according to T tð Þ. For the reproducibility test

against the original smFRET data, we generated a total of 10 independent trajectories of states each

having the same time-length as the smFRET data, and then virtually emitted photons according to

the likelihood function (Equation 2) from the states. We compared the histogram of observed FRET

efficiencies E = NA/(NA + ND) using 200 ns and 50 ms time-windows.

In order to examine the overfitting again, we performed a k-fold cross validation test (with k=4)

and calculated errors by using histograms of measured FRET efficiencies E. We partitioned the

smFRET data set into k subsets (k-1 subsets as the training data, a single subset as the test data).

We evaluated the mean squared error between the normalized FRET efficiency histograms
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calculated from the model and the subsets of the smFRET data (shown in Figure 3—figure supple-

ment 1). The prediction error (the so-called cross validation error) for the test data was found to be

11:8� 10
�5, which is quite small. This suggests that overfitting is not a critical issue in our modeling.

Trajectories of conformations were generated from the trajectories of states by choosing a ran-

dom conformation from a state at each step. These conformational trajectories were used to charac-

terize the time-course behavior of Q and the gyration radius (Figure 4—figure supplement 1), as

well as the transition state ensemble (Figure 4E and F).

The folding behavior was further characterized by calculating pfold, the probability of a given state

to fold before it unfolds. The pfold was solved by applying the transition-path theory (Metzner et al.,

2009; Noé et al., 2009) (with committors function in MSMBuilder [Harrigan et al., 2017]). The pfold

was mapped onto geometric space (Ca-RMSDs of the hairpins 1 and 2) using the trajectories gener-

ated as described above.

We conducted pathway analysis from the unfolded to the folded state by decomposing the flux

of folding trajectories into individual pathways (Metzner et al., 2009; Noé et al., 2009). In the algo-

rithm, after calculating the net flux matrix between states, the largest flux pathway from the

unfolded to the folded state was searched by using Dijkstra’s algorithm. Then, the largest flux was

subtracted from the net flux matrix. Subsequently, the second largest flux pathway was determined

by using Dijkstra’s algorithm. Representative pathways were obtained by repeating this procedure

using the paths function of MSMbuilder (Harrigan et al., 2017).
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Muñoz V, Thompson PA, Hofrichter J, Eaton WA. 1997. Folding dynamics and mechanism of beta-hairpin
formation. Nature 390:196–199. DOI: https://doi.org/10.1038/36626, PMID: 9367160

Neupane K, Manuel AP, Woodside MT. 2016. Protein folding trajectories can be described quantitatively by
one-dimensional diffusion over measured energy landscapes. Nature Physics 12:700–703. DOI: https://doi.org/
10.1038/nphys3677
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Senne M, Trendelkamp-Schroer B, Mey AS, Schütte C, Noé F. 2012. EMMA: A Software Package for Markov
Model Building and Analysis. Journal of Chemical Theory and Computation 8:2223–2238. DOI: https://doi.org/
10.1021/ct300274u, PMID: 26588955

Silva DA, Weiss DR, Pardo Avila F, Da LT, Levitt M, Wang D, Huang X. 2014. Millisecond dynamics of RNA
polymerase II translocation at atomic resolution. PNAS 111:7665–7670. DOI: https://doi.org/10.1073/pnas.
1315751111, PMID: 24753580

Snow CD, Nguyen H, Pande VS, Gruebele M. 2002. Absolute comparison of simulated and experimental protein-
folding dynamics. Nature 420:102–106. DOI: https://doi.org/10.1038/nature01160, PMID: 12422224

Sun X, Morrell TE, Yang H. 2016. Extraction of protein conformational modes from distance distributions using
structurally imputed bayesian data augmentation. The Journal of Physical Chemistry B 120:10469–10482.
DOI: https://doi.org/10.1021/acs.jpcb.6b07767, PMID: 27642672

Torrey L, Jude S. 2009. Transfer Learning. In: Soria E, Martin J, Magdalena R, Martinez M, Serrano A (Eds).
Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques 1.
IGI Global. p. 242–264.

Matsunaga and Sugita. eLife 2018;7:e32668. DOI: https://doi.org/10.7554/eLife.32668 18 of 19

Research article Computational and Systems Biology Structural Biology and Molecular Biophysics

https://doi.org/10.1371/journal.pone.0079439
https://doi.org/10.1371/journal.pone.0079439
http://www.ncbi.nlm.nih.gov/pubmed/24244505
https://doi.org/10.1021/ct5001236
http://www.ncbi.nlm.nih.gov/pubmed/26588313
https://doi.org/10.1073/pnas.1704803114
https://doi.org/10.1073/pnas.1704803114
http://www.ncbi.nlm.nih.gov/pubmed/28716931
https://doi.org/10.1016/j.ymeth.2010.06.002
http://www.ncbi.nlm.nih.gov/pubmed/20570730
https://doi.org/10.1016/j.jmb.2006.05.050
https://doi.org/10.1016/j.jmb.2006.05.050
http://www.ncbi.nlm.nih.gov/pubmed/16784750
https://doi.org/10.1021/jp508971m
http://www.ncbi.nlm.nih.gov/pubmed/25764013
https://doi.org/10.1016/j.sbi.2013.12.006
http://www.ncbi.nlm.nih.gov/pubmed/24463371
https://doi.org/10.1016/j.bpj.2011.03.051
http://www.ncbi.nlm.nih.gov/pubmed/21539772
https://doi.org/10.1021/acs.jpcb.6b10726
http://www.ncbi.nlm.nih.gov/pubmed/27977207
https://doi.org/10.1021/ct300112v
https://doi.org/10.1063/1.3565032
https://doi.org/10.1063/1.3565032
http://www.ncbi.nlm.nih.gov/pubmed/21548671
https://doi.org/10.1109/MASSP.1986.1165342
https://doi.org/10.1109/MASSP.1986.1165342
https://doi.org/10.1063/1.4792208
http://www.ncbi.nlm.nih.gov/pubmed/23464140
https://doi.org/10.1063/1.4941455
http://www.ncbi.nlm.nih.gov/pubmed/26851901
https://doi.org/10.1016/0021-9991(77)90098-5
https://doi.org/10.1021/ct400314y
http://www.ncbi.nlm.nih.gov/pubmed/26592383
https://doi.org/10.1063/1.1616511
https://doi.org/10.1063/1.1616511
https://doi.org/10.1021/jp1053698
http://www.ncbi.nlm.nih.gov/pubmed/20964427
https://doi.org/10.1021/ct300878a
https://doi.org/10.1021/ct300878a
http://www.ncbi.nlm.nih.gov/pubmed/23750122
https://doi.org/10.1021/ct300274u
https://doi.org/10.1021/ct300274u
http://www.ncbi.nlm.nih.gov/pubmed/26588955
https://doi.org/10.1073/pnas.1315751111
https://doi.org/10.1073/pnas.1315751111
http://www.ncbi.nlm.nih.gov/pubmed/24753580
https://doi.org/10.1038/nature01160
http://www.ncbi.nlm.nih.gov/pubmed/12422224
https://doi.org/10.1021/acs.jpcb.6b07767
http://www.ncbi.nlm.nih.gov/pubmed/27642672
https://doi.org/10.7554/eLife.32668
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