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Abstract  28 

Brain connectivity is often considered in terms of the communication between functionally 29 

distinct brain regions. Many studies have investigated the extent to which patterns of coupling 30 

strength between multiple neural populations relates to behaviour. For example, studies have 31 

used "functional connectivity fingerprints" to characterise individuals' brain activity. Here, we 32 

investigate the extent to which the exact spatial arrangement of cortical regions interacts with 33 

measures of brain connectivity. We find that the shape and exact location of brain regions 34 

interact strongly with the modelling of brain connectivity, and present evidence that the spatial 35 

arrangement of functional regions is strongly predictive of non-imaging measures of behaviour 36 

and lifestyle. We believe that, in many cases, cross-subject variations in the spatial 37 

configuration of functional brain regions are being interpreted as changes in functional 38 

connectivity. Therefore, a better understanding of these effects is important when interpreting 39 

the relationship between functional imaging data and cognitive traits. 40 

 41 
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Introduction 53 

The organisation of the human brain into large-scale functional networks has been investigated 54 

extensively over the past two decades using resting state functional magnetic resonance 55 

imaging (rfMRI). Spontaneous fluctuations in distinct brain regions (as measured with rfMRI) 56 

show temporal correlations with each other, revealing complex patterns of functional 57 

connectivity (FC) (Biswal, Yetkin, Haughton, & Hyde, 1995; Friston, 1994, 2011). Extensive 58 

connectivity between cortical areas and with subcortical brain regions has long been considered 59 

a core feature of brain anatomy and function (Crick & Jones, 1993), and dysfunctional coupling 60 

is associated with a variety of neurological and psychiatric disorders including schizophrenia, 61 

depression, and Alzheimer’s disease (Castellanos, Di Martino, Craddock, Mehta, & Milham, 62 

2013). Given the great potential neuroscientific and clinical value of rfMRI, it is important to 63 

determine which aspects of rfMRI data most sensitively and interpretably reflect trait variability 64 

across subjects. At a neural level, potential sources of meaningful cross-subject variability 65 

include: i) the strength of the functional coupling (i.e., interactions) between two different neural 66 

populations (‘coupling’), and ii) the spatial configuration and organisation of functional regions 67 

(‘topography’). In this study, we aim to identify how these key aspects of rfMRI data influence 68 

derived measures of functional connectivity and how they relate to interesting trait variability in 69 

behaviour and lifestyle across individuals. Our findings reveal variability in the spatial 70 

topography of functional regions across subjects, and suggest that this variability is the primary 71 

driver of cross-subject trait variability in correlation-based FC measures obtained via group-level 72 

rfMRI parcellation approaches. These results have important implications for future rfMRI 73 

research, and for the interpretation of FC findings. 74 

 75 

A commonly applied approach used to derive FC measures from rfMRI data is to parcellate the 76 

brain into a set of functional regions (‘nodes’), and estimate the temporal correlations between 77 

pairs of node timeseries (‘edges’) to build a network matrix (Smith, Vidaurre, et al., 2013). This 78 

approach has previously been likened to a fingerprint, enabling the unique identification of 79 

individuals, and the prediction of behavioural traits such as intelligence (Finn et al., 2015; 80 

Passingham, Stephan, & Kötter, 2002). Of particular interest is the ability of network matrices to 81 

explain cross-subject variability in behaviour and performance on psychometric tests. To this 82 

end, Cross Correlation Analysis (CCA) was previously adopted to link a ‘positive-negative’ axis 83 

of behaviour to network matrices in data from the Human Connectome Project (Smith et al., 84 

2015). CCA allows the comparison of a set of variables obtained from rfMRI (such as network 85 

https://paperpile.com/c/OyK8sR/Pmhuj
https://paperpile.com/c/OyK8sR/fKKxL+VyyVu+ZLxUF
https://paperpile.com/c/OyK8sR/ttplu+sJwpl
https://paperpile.com/c/OyK8sR/8NZDD
https://paperpile.com/c/OyK8sR/BxEzn
https://paperpile.com/c/OyK8sR/8NZDD
https://paperpile.com/c/OyK8sR/ttplu+sJwpl
https://paperpile.com/c/OyK8sR/Pmhuj
https://paperpile.com/c/OyK8sR/FbsMe
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matrices of edges) to a set of behavioural variables by estimating independent linear 86 

transformations for the two sets of variables such that they are maximally correlated. Here we 87 

replicated this previous work in a larger subject sample (almost double the number of 88 

individuals), and adopt CCA to determine which key aspect of rfMRI data is uniquely associated 89 

with behaviour. 90 

 91 

Parcellation methods that can be used to estimate network matrices include the use of 92 

anatomical, functional, and multi-modal atlases (Glasser et al., 2016; Tzourio-Mazoyer et al., 93 

2002; Yeo et al., 2011), with functional parcellations often being data driven via techniques such 94 

as clustering and independent component analysis (ICA) (Beckmann, DeLuca, Devlin, & Smith, 95 

2005; Craddock, James, Holtzheimer, Hu, & Mayberg, 2012). Data-driven approaches such as 96 

ICA have been used to identify consistent large-scale resting state networks (Damoiseaux et al., 97 

2006), and to characterise FC abnormalities in a variety of mental disorders (Littow et al., 2015; 98 

Pannekoek et al., 2015). Any given parcellation is typically defined at the group level, and hence 99 

additional steps are required to map a group-level parcellation onto individual subjects’ data 100 

(that has undergone registration to a common space), in order to obtain subject-specific parcel 101 

timeseries and associated connectivity edge estimates. Timeseries derived from hard (binary, 102 

non-overlapping) parcellations are often obtained using a simple masking approach (i.e., 103 

extracting the averaged BOLD timeseries across all voxels or vertices in a node), whereas ICA 104 

parcellations (partially overlapping, soft parcellations that contain continuous weights) are 105 

mapped onto single-subject data using dual regression analysis or back projection (Calhoun, 106 

Adali, Pearlson, & Pekar, 2001; Filippini et al., 2009). The first stage of a dual regression 107 

approach involves multiple spatial regression of group ICA maps into each preprocessed 108 

individual dataset to obtain subject-specific timeseries; the second stage is a multiple temporal 109 

regression of these stage 1 timeseries into the same preprocessed dataset to obtain subject-110 

specific spatial maps. Note, dual regression is, to some extent, expected to underestimate 111 

subject-specific spatial variability because it involves post-hoc regressions of a group-level set 112 

of spatial maps, which are unlikely to be an accurate model for the data of individual subjects. 113 

Indeed, previous work has shown that, in the presence of spatial variability or inaccurate 114 

intersubject alignment, these common methods for mapping group parcellations onto individuals 115 

do not recover accurate subject-specific functional regions, and this can severely impact the 116 

accuracy of estimated timecourses and derived FC edges (Allen, Erhardt, Wei, Eichele, & 117 

Calhoun, 2012; Smith et al., 2011). 118 

 119 

https://paperpile.com/c/OyK8sR/3umXs+lsqQw
https://paperpile.com/c/OyK8sR/3umXs+lsqQw
https://paperpile.com/c/OyK8sR/3Hl0N+523gl
https://paperpile.com/c/OyK8sR/ma0uZ+zWNxW
https://paperpile.com/c/OyK8sR/3Hl0N+523gl
https://paperpile.com/c/OyK8sR/3umXs+lsqQw
https://paperpile.com/c/OyK8sR/rDmA5
https://paperpile.com/c/OyK8sR/iCUat+IG8YQ+xTor7
https://paperpile.com/c/OyK8sR/ma0uZ+zWNxW
https://paperpile.com/c/OyK8sR/HUO9L+17yzz
https://paperpile.com/c/OyK8sR/3umXs+lsqQw
https://paperpile.com/c/OyK8sR/HUO9L+17yzz
https://paperpile.com/c/OyK8sR/iCUat+IG8YQ+xTor7
https://paperpile.com/c/OyK8sR/rDmA5
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More recently, several studies have developed more thorough characterisations of the patterns 120 

of spatial variability in network topography across subjects (i.e., spatial shape, size and position 121 

of functional regions) (Glasser et al., 2016; Gordon, Laumann, Adeyemo, Gilmore, et al., 2016; 122 

Gordon, Laumann, Adeyemo, & Petersen, 2015; Laumann et al., 2015; Swaroop Guntupalli & 123 

Haxby, 2017; Wang et al., 2015). For example, Glasser et al showed that the subject-specific 124 

spatial topology of area 55b in relation to the frontal and premotor eye fields substantially 125 

diverged from the group average in 11% of subjects (Glasser et al., 2016). In addition, the size 126 

of all cortical areas, including large ones like V1, varies by twofold or more across individuals 127 

(Amunts, Malikovic, Mohlberg, Schormann, & Zilles, 2000; Glasser et al., 2016). This extensive 128 

presence of spatial variability across individuals highlights the need for analysis methods that 129 

are adaptive and better able to accurately capture functional regions in individual subjects. 130 

Another approach that aims to achieve a more accurate subject-specific description of this 131 

spatial variability is PROFUMO, which simultaneously estimates subject and group probabilistic 132 

functional mode (PFM) maps and network matrices (instead of separate parcellation and 133 

mapping steps). Specifically, PROFUMO is a matrix factorisation model that decomposes data 134 

into estimates of subject-specific spatial maps, time courses, and amplitudes using a variational 135 

Bayesian approach with both spatial and temporal priors that seek to optimise for both spatial 136 

map sparsity and temporal dynamics consistent with haemodynamically-regularised neural 137 

activity (Harrison et al., 2015). PROFUMO adopts a hierarchical approach by iteratively 138 

optimising subject and group estimates (instead of first estimating group components using 139 

group ICA and separately mapping these onto subjects using dual regression), and is therefore 140 

expected to more accurately capture subject-specific spatial variability than does dual 141 

regression. Other approaches are available to obtain group and subject parcellations in one 142 

step, for example using a groupwise normalised cut spectral clustering approach (Shen, 143 

Tokoglu, Papademetris, & Constable, 2013). In the present study, we show that the spatial 144 

variability across subjects captured in PFMs is strongly associated with behaviour. 145 

 146 

Conceptually, network edges are commonly thought of as reflecting coupling strength between 147 

spatially separated neuronal populations. However, as discussed above, edge estimates are 148 

highly sensitive to spatial misalignments across individuals. Additionally, correlation-based edge 149 

estimates are influenced by the amplitudes of localised spontaneous rfMRI fluctuations (Duff, 150 

Makin, Smith, & Woolrich, 2017), which have been shown to capture trait variability across 151 

subjects, and state variability within an individual over time (Bijsterbosch et al., 2017). These 152 

findings demonstrate the sensitivity of edge-strength estimates to many different types of 153 

https://paperpile.com/c/OyK8sR/xTor7+vfCLN
https://paperpile.com/c/OyK8sR/jSiIq
https://paperpile.com/c/OyK8sR/jSiIq
https://paperpile.com/c/OyK8sR/iNON3
https://paperpile.com/c/OyK8sR/xQb1z+XPrGR+GyfaA+K6WGz+wRUnT+xTor7
https://paperpile.com/c/OyK8sR/5rcB9
https://paperpile.com/c/OyK8sR/xQb1z+XPrGR+GyfaA+K6WGz+wRUnT+xTor7
https://paperpile.com/c/OyK8sR/xQb1z+XPrGR+GyfaA+K6WGz+wRUnT+xTor7
https://paperpile.com/c/OyK8sR/xTor7
https://paperpile.com/c/OyK8sR/oHaD
https://paperpile.com/c/OyK8sR/oHaD


6 

subject variability, and highlight the need to identify which aspects of FC tap most directly into 154 

behaviourally-relevant population-level variability. Here, we investigate the complex 155 

relationships between different features of an rfMRI dataset and also the associations with 156 

variability across individuals in terms of their performance on behavioural tests, their lifestyle 157 

choices, and demographic information. Using data from the Human Connectome Project (HCP), 158 

we provide evidence for systematic differences in the spatial organisation of functional regions. 159 

We then use simulations that manipulate aspects of the data such that, for example, only cross-160 

subject spatial variability is present in the data (i.e., by fixing edge strength to be the group 161 

average for each individual) to investigate whether these differences reflect meaningful cross-162 

subject information and drive edge estimates for several common FC approaches. 163 

 164 

  165 
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Results 166 

Cross-subject information in fMRI-derived measures 167 

To determine whether a given rfMRI-derived FC measure contains meaningful cross-subject 168 

information rather than random variability, we adopted an approach that makes use of the 169 

extensive set of behavioural, demographic, and lifestyle data acquired in the HCP. Our first 170 

analysis aims to determine which measures obtained from rfMRI and task data most strongly 171 

relate to interesting behavioural variability across individuals. Using Canonical Correlation 172 

Analysis (CCA), we extracted population modes of cross-subject covariation that represent 173 

maximum correlations between combinations of variables in the subject behavioural measures 174 

and in the fMRI-derived measures, uncovering multivariate relationships between brain and 175 

behaviour. For example, previous work has used CCA on HCP data to identify a mode of 176 

population covariation that linked a positive-negative axis of behavioural variables to patterns of 177 

FC edge strength (Smith et al., 2015). A specific pattern of connectivity, primarily between “task-178 

negative” (default mode) regions (Raichle et al., 2001), was found to be linked to scores on 179 

positive factors such as life satisfaction and intelligence, and inversely associated with scores 180 

on negative factors such as drug use.  181 

 182 

CCA works by finding a linear combination of behavioural measures (V) that is maximally 183 

correlated with a linear combination of rfMRI-derived measures (U). CCA scores for each 184 

subject are obtained for the behavioural and fMRI-derived measures (V and U), which represent 185 

the subject’s position along the population continuum for the latent CCA variable(s). The key 186 

result of a CCA analysis for each mode of covariation is the correlation between U and V, 187 

denoted rUV, which describes the strength of the multivariate brain-behaviour relationship. Given 188 

that CCA explicitly optimises rUV, it is essential to perform permutation testing in order to test the 189 

significance of the CCA result. To determine which behavioural measures contribute strongly to 190 

the CCA result, V is subsequently regressed into original non-imaging variables (Figure 1B; 191 

although interpretation of these results is complicated by behaviour-behaviour correlations). 192 

Additionally, U is used to visualise variation at both the population extremes (see Figure 2 below 193 

and Figure 2-figure supplements 2-7), and across the full population continuum (Supplementary 194 

video files). 195 

 196 

We applied a separate CCA analysis for each of the various fMRI-derived measures (including 197 

https://paperpile.com/c/OyK8sR/8NZDD
https://paperpile.com/c/OyK8sR/rvl9l
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spatial, network matrix, and amplitude measures). The results (Figure 1 and Supplementary file 198 

1a and b) reveal that highly similar associations with behaviour and life factors occur across a 199 

wide range of different fMRI-derived measures. Correlating the behavioural subject weights (V) 200 

across the different CCA instances in Figure 1 shows that a similar behavioural mode is 201 

obtained from the independent instances of CCA (particularly for those CCAs that have a high 202 

rU-V and low PU-V; Figure 1-figure supplement 1). Mapping these subject weights onto behaviour 203 

through correlation reveals consistent positive associations with, for example, fluid intelligence, 204 

life satisfaction, and delayed discounting, and consistent negative correlations with use of 205 

tobacco, alcohol and cannabis. All behavioural correlations with mean correlation r>|0.25| 206 

(chosen for visualisation purposes) are shown in Figure 1B. The results show that spatial 207 

features such as PFM subject spatial maps and subject task contrast maps are strongly 208 

associated with behaviour. Overall, these findings reveal that a large variety of fMRI measures 209 

have similarly strong associations with behaviour. 210 

 211 

Direct comparison between the results in Figure 1 (Supplementary file 1a) and the 212 

HCP_MMP1.0 parcellation (e.g. the 360-region ‘Glasser parcellation’ (Glasser et al., 2016)) and 213 

against associated fractional surface area (in native space as a ratio to total surface area, for 214 

each of the 360 parcels in the HCP_MMP1.0 parcellation) is challenging due to the large 215 

difference in the number of subjects (n=819 for Figure 1 and n=441 for HCP_MMP1.0). 216 

Therefore, we have included an analysis on all PFM metrics in a reduced number of subjects 217 

(the same n=441 subjects) in order to facilitate direct comparison between these two recent 218 

parcellation approaches that both aim to achieve accurate detection of subject-specific spatial 219 

boundaries (Supplementary file 1b). These results show that spatial features from a variety of 220 

sources (surface area, multimodal parcellation and PFMs) are strongly associated with 221 

measures of behaviour and lifestyle. Also note that network matrices obtained by the 222 

HCP_MMP1.0 parcellation are more predictive of behaviour than are PFM network matrices. 223 

 224 

*Figure 1 approximately here* 225 

 226 

For correlation-based parcellated FC estimates (network edges), a common assumption is that 227 

functional coupling is primarily reflected in the edges. However, true network coupling 228 

information can in theory be manifested anywhere along a continuum of appearing purely in 229 

spatial maps at one extreme (as is the case when performing temporal ICA, where the temporal 230 

correlation matrix between components is by definition the identity matrix (Smith et al., 2012)), 231 

https://paperpile.com/c/HUDDHu/UJT8Z
https://paperpile.com/c/OyK8sR/CFgWC
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or purely in edge estimates at the other extreme (as is often assumed to be the case when 232 

using an individualised hard parcellation). In theory, true network coupling information can be 233 

manifested along a continuum ranging from spatial maps to network matrices. On one extreme, 234 

coupling information is purely contained in spatial maps, as is the case when performing 235 

temporal ICA (where the temporal correlation matrix is by definition the identity matrix). On the 236 

other extreme, coupling information can be fully contained in network matrices as is often 237 

assumed to be the case when using an individualised hard parcellation (however, coupling can 238 

only be represented fully in edge estimates if all subjects are perfectly functionally aligned to the 239 

parcellation, and if the node timeseries amplitudes do not contain useful cross-subject 240 

information). It is likely that the dimensionality of the decomposition may influence this; for 241 

example, for a low-dimensional decomposition (into a small number of large-scale networks), 242 

much cross-subject variation in functional coupling is likely to occur between sub-nodes of the 243 

networks, which is therefore more likely to be represented in the spatial maps, whereas in a 244 

higher dimensionality decomposition this information is more likely to be represented in the 245 

network matrix. However, the results in Figure 1 show that this CCA mode of population 246 

covariation is significantly present in both spatial maps and network matrices for both low and 247 

high dimensional decompositions (ICA 25 and 200). Therefore, the potential role of 248 

dimensionality is not sufficient to explain the common information present in spatial maps, 249 

timeseries amplitudes, and network matrices. 250 

 251 

The presence of this behaviourally meaningful spatial variability is somewhat surprising, 252 

because these data were aligned using a Multimodal Surface Matching (MSM) approach 253 

(Robinson et al., 2014, 2018), driven by both structural and functional cortical features (including 254 

myelin maps and resting state network maps). MSM has been shown to achieve very good 255 

functional alignment compared with other methods, and particularly compared with volumetric 256 

alignment approaches or surface-based approaches that use cortical folding patterns rather 257 

than areal features (Coalson, Van Essen, & Glasser, n.d.). However, residual cross-subject 258 

spatial variability is still present in the HCP data after the registration to a common surface atlas 259 

space (in part due to the constrained parameterisation of MSM and in part because weighted 260 

regression subject maps used to drive MSM may not fully capture all spatial variability). In line 261 

with this, approaches which are expected to better identify residual subject spatial variability 262 

(specifically, PFM spatial maps and subject task contrast maps in Figure 1) show strong 263 

correspondence between spatial variability and behaviour/life-factor measures.  264 

 265 

https://paperpile.com/c/OyK8sR/LFlbl+bIap
https://paperpile.com/c/OyK8sR/HBrQm
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To better understand what spatial features represent behaviourally-relevant cross-subject 266 

information, we visually explored what aspects of the PFM spatial maps contributed to the CCA 267 

result in Figure 1 by calculating representative maps at extremes of the CCA mode of 268 

population covariation (based on CCA subject scores). While the PFM maps are estimating 269 

using the full set of cortical and subcortical grayordinates, we focus on cortical findings because 270 

these contribute most strongly to the CCA results. The results reveal complex changes in spatial 271 

topography (Figure 2, Figure 2-figure supplements 2-7, and supplementary video files 1-9). For 272 

example, comparing left versus right panels shows the right inferior parietal node of the DMN 273 

extending farther into the intraparietal sulcus (in the vicinity of area IP1 (Choi et al., 2006; 274 

Glasser et al., 2016)) in subjects who score higher on the behavioural positive-negative mode of 275 

covariation. Qualitative inspection of Figure 2-figure supplements 2-7 suggests that many of the 276 

difference maps show notable bilateral symmetry. 277 

 278 

*Figure 2 approximately here* 279 

 280 

Spatiotemporal simulations demonstrating potential sources of variability in edges 281 

Figure 1 showed that functionally-relevant cross-subject variability is represented in a variety of 282 

different measures derived from both resting state and task fMRI. These widespread similarities 283 

in correlations with behaviour across a range of measures invite the question of whether the 284 

same type of trait variability is meaningfully and interpretably reflected in a wide range of rfMRI 285 

measures, or whether (for example) estimates of network matrices may instead primarily reflect 286 

trait variability in spatial topography or amplitude (and not coupling strength). Therefore, we 287 

wanted to determine to what extent correlation-based FC measures derived from rfMRI can be 288 

influenced by specific aspects of the rfMRI data such as true topography and true coupling. To 289 

this end, we generated simulated datasets based on the original PFM subjects and/or group 290 

spatial maps and timeseries. By holding either the individual (simulated) subjects’ spatial maps 291 

or the network matrices fixed to the group average we eliminated specific forms of underlying 292 

subject variability from the simulated data (Figure 3). Note, we used PFMs in order to generate 293 

simulated data because the PROFUMO model separately estimates spatial maps, network 294 

matrices and amplitudes, thereby allowing each aspect to be fixed to the group average prior to 295 

generating simulated data using the outer product (as described in detail in equation [1], and in 296 

the section on ‘Creating simulated data’ in the Material and Methods). Previous simulation 297 

results have shown that PROFUMO is able to accurately estimate spatial maps and network 298 

https://paperpile.com/c/OyK8sR/p6z7c+xTor7
https://paperpile.com/c/OyK8sR/p6z7c+xTor7
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matrices in the presence of cross-subject variability in spatial topography, relative strength of 299 

subregions, and between-mode connectivity (Harrison et al., 2015). The aim of the simulation 300 

analyses was to determine which features in the rfMRI data are likely to be most strongly 301 

reflected in network matrices estimated from rfMRI data. We assess this in terms of the amount 302 

of variability across subjects that can be explained, as this is the most relevant application in 303 

biomarker studies and in neuroimaging research more generally.  304 

 305 

Timeseries were extracted from both the simulated and original datasets, and network matrices 306 

were estimated. Each simulated dataset was assessed using three metrics: i) comparing 307 

subject-specific simulated and original network matrices (Znetwork matrix in Table 1), ii) comparing 308 

cross-subject variability in the simulated and original network matrices (Rcorrelation in Table 1), and 309 

iii) determining how much of the cross-subject variability in simulated and original network 310 

matrices is behaviourally informative using CCA (see Table 1 legend).  311 

 312 

*Figure 3 approximately here* 313 

 314 

The results (Table 1 and Supplementary file 1c and d) show that, when the subject-varying 315 

aspects of the simulations were exclusively driven by spatial changes across subjects (with the 316 

predefined network matrix and amplitudes being identical for all subjects), up to 62% (i.e. 317 

square of Rcorrelation=0.79 from Supplementary file 1d “maps only”) of the cross-subject variance 318 

present in the network matrices obtained from the original data was regenerated. Hence, this 319 

finding reveals that very similar network matrices can be obtained for any individual subject 320 

even if the only aspect of the rfMRI that is varying across subjects is the topographic information 321 

in PFM spatial maps. In addition, the variance that can be explained by spatial maps is 322 

behaviourally relevant; the CCA results were similarly strong (typically having the same 323 

permutation-based p-values) from simulated network matrices driven purely by spatial changes, 324 

compared with those obtained from the original dataset.  325 

 326 

The influence of amplitudes on FC estimates was relatively minor (less than 2.5% of variance 327 

was explained by amplitude in all our simulations; i.e. square of Rcorrelation=0.15 from Table 1 328 

“amplitudes only”), although, when amplitudes were combined with spatial maps feeding into the 329 

simulations, the amplitudes did in most cases result in an increase in original network matrix 330 

regeneration.  331 

 332 

https://paperpile.com/c/OyK8sR/5rcB9


12 

Table 1: 333 
 Simulation 

driven by true 

subject 

variability in: 
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ix
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d
e
 

S
p

a
ti

a
l 
m

a
p

 

Z 

network 

matrix 

R 

correlati

on 

CCA r 

U-V 

CCA 

P U-V 

CCA r 

U-Uica 

ICA 
D = 200 
N=819 

 

Nothing 
Amps & maps  

Connectivity only 
Amplitudes only 

Maps only 

- 
- 

✓ 

- 
- 

- 

✓ 

- 

✓ 

- 

- 

✓ 

- 
- 

✓ 

-0.0003  
1.14  
0.47  
0.22  
0.78  

0.03  
0.60  
0.65  
0.15  
0.54  

0.65  
0.71  
0.69  
0.69  
0.72  

0.32017  
0.00001  
0.00028  
0.00052  
0.00001  

0.11  
0.52  
0.40  
0.45  
0.62  

 334 

Given the complex information present in PFM spatial maps, the effect of spatial information on 335 

network matrices can result from cross-subject variability in: i) network size, ii) relative strength 336 

of regions within a given network, or iii) size and spatial location of functional regions. We 337 

performed two further tests to distinguish these influences by thresholding and binarising the 338 

subject-specific spatial maps used to create the simulated data. Maps were either thresholded 339 

using a fixed threshold (removing the influence of relative strength), or (separately) using a 340 

percentile threshold (removing the influence of relative strength and size, as the total number of 341 

grayordinates in binarised PFM maps is fixed across subjects and PFMs). The role of subject-342 

varying spatial maps in driving the resulting estimated network matrices remains strong when 343 

highly simplified binarised maps are used to drive the simulations (Supplementary file 1e), 344 

further supporting our interpretation that the results are largely driven by the shape of the 345 

functional regions (i.e., variability in the location and shape of functional regions across 346 

subjects), rather than by size or local strength. 347 

Unique contribution of topography versus coupling 348 

The results presented above show that a large proportion of the variance in estimated network 349 

matrices is also represented in spatial topography. This suggests either that cross-subject 350 

information is represented in both the coupling strength between neural populations and in the 351 

‘true’ underlying spatial topography, or that edge estimates obtained from rfMRI data primarily 352 

reflect cross-subject spatial variability (which indirectly drives edge estimates through the 353 

influence of spatial misalignment on timeseries extraction, particularly when group parcellations 354 

are mapped onto individual subjects in the case of imperfect alignment). To test these 355 

hypotheses further, we investigated the unique information contained in spatial maps and 356 
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network matrices using a set of 15 ICA basis maps derived from HCP task contrast maps 357 

(Figure 4A). These basis maps can be thought of as the spatial building blocks that can be 358 

linearly combined to create activation patterns for any specific HCP task contrast, and can be 359 

considered here to be another functional parcellation.  360 

 361 

The advantage of using basis maps derived from task data is that the tasks essentially act as 362 

functional localisers that allow for the precise localisation of task-related functional regions 363 

within an individual; results at a single-subject level are not influenced in any way, including 364 

spatially, by the group results, as they are derived via the standard task-paradigm analysis (i.e. 365 

which relies solely on temporal information, and is not influenced by the group-level maps). The 366 

equivalence between group- and subject-level contrasts (i.e. the inherent assumption in any 367 

group-level analysis, namely that the group “2BK-0BK” contrast map directly relates to any 368 

subject-level “2BK-0BK” contrast) means that any combination of group-level contrasts is 369 

equally valid as a combination at the subject-level, but with the advantage that the resulting 370 

subject maps will be faithful to the precise location of functional regions that the subject-specific 371 

contrast maps capture. Hence, subject-based task basis maps are the most accurate 372 

description of subject-specific locations of functional regions, at least with respect to those 373 

regions identifiable from the range of tasks used.  374 

 375 

To investigate the implications of these task-localised maps on typical rfMRI analyses, either 376 

group-based task basis maps or subject-based task basis maps were entered into a dual 377 

regression analysis against subjects’ resting-state fMRI data to obtain network matrices (from 378 

dual regression stage 1 timeseries) and rfMRI-based spatial maps (from dual regression stage 379 

2) for each subject (Figure 4B). Subsequently, CCA was performed to determine how well each 380 

of the group-based and subject-task-based rfMRI maps and network matrices was able to 381 

predict behavioural variability. Furthermore, a ‘partial CCA’ was performed to characterise the 382 

unique variance that task rfMRI maps carry over and above network matrices, and vice versa. 383 

Here, we regressed any variance explained by network matrices out of the spatial maps prior to 384 

running the ‘partial CCA’ to determine the unique information contained in spatial maps (and 385 

vice versa, i.e., regressed any variance explained by spatial maps out of network matrices 386 

before running the ‘partial CCA’).  387 

 388 

The results from the CCAs against behavioural measures show that task rfMRI spatial maps 389 

(both subject- and group-based) capture more behavioural information than network matrices 390 
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(and continue to reach significance in the partial CCA), consistent with the PFM spatial results 391 

presented in Figure 1. While the full CCA result is marginally stronger for group-task-based 392 

rfMRI spatial maps compared with subject-task-based rfMRI spatial maps, these group derived 393 

maps do not contain a large amount of unique spatial information (as shown by the reduced 394 

partial CCA result). The strongest partial CCA result was obtained from subject-task-based 395 

rfMRI maps (far right in Figure 4C), which are the maps that are expected to contain the most 396 

accurate representation of subject-specific functional regions. The results for these spatial maps 397 

show the smallest difference between the full and partial CCA results (particularly compared 398 

with the spatial maps obtained from the group-task-based rfMRI maps). This suggests that 399 

subject variability is more uniquely represented in the spatial information, rather than filtering 400 

through into the network matrices. Importantly, this interpretation is supported by the fact that 401 

subject-task-based rfMRI network matrices explain the behavioural data considerably less well 402 

than group-based task-rfMRI network matrices (difference: p=0.0005 for full network matrices), 403 

confirming that spatial information is a significant factor in estimated network matrices.  404 

 405 

Taken together, these results show that, while network matrices obtained from dual regression 406 

against group-level maps do contain behaviourally relevant cross-subject information, this can 407 

be almost completely explained by variability in spatial topographical features across subjects 408 

(to the extent that we can detect it). Hence, dual regression network matrices (obtained from 409 

multiple regression against group spatial maps) apparently contain little unique cross-subject 410 

information regarding coupling strength that is not also reflected in spatial topographical 411 

organisation. However, it is possible that network matrices obtained using parcellation methods 412 

and timeseries extraction approaches that are better able to capture subject-specific spatial 413 

variability (such as the HCP_MMP1.0 parcellation) do contain unique cross-subject information; 414 

further research is needed to test this possibility. Additionally, network matrices may contain 415 

unique state-level information relevant to ongoing behaviour (e.g. in a task paradigm).  416 

 417 

*Figure 4 approximately here* 418 

 419 

 420 

  421 
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Discussion 422 

Here, we have identified a key aspect of rfMRI data that directly reflects interesting variability in 423 

behaviour and lifestyle across individuals. Our results indicate that spatial variation in the 424 

topography of functional regions across individuals is strongly associated with behaviour (Figure 425 

1). In addition, network matrices (as estimated with masking or dual regression against group-426 

level hard or soft parcellations) reflect little or no unique cross-subject information that is not 427 

also captured by spatial topographical variability (Figure 4 and Figure 4-figure supplement 1). 428 

This unexpected finding implies that the common interpretation of FC as representing cross-429 

subject (trait) variability in the coupling strength of interactions between neural populations may 430 

not be a valid inference (although within-subject state-dependent changes in coupling may still 431 

be reflected in FC measures). Specifically, we show that up to 62% of the variance in rfMRI-432 

derived network matrices (a measure commonly taken as a proxy for coupling) can be explained 433 

purely by spatial variability. These findings have important implications for the interpretation of 434 

FC, and may contribute to a deeper mechanistic understanding of the role of intrinsic FC in 435 

cognition and disease (Mill, Ito, & Cole, 2017).  436 

 437 

Our findings are consistent with previous research that has highlighted the presence of 438 

structured cross-subject spatial variance in both functional and anatomical networks (Glasser et 439 

al., 2016; Gordon, Laumann, Adeyemo, Gilmore, et al., 2016; Noble et al., 2015; Sabuncu et al., 440 

2016; Tong, Aganj, Ge, Polimeni, & Fischl, 2017; Xu et al., 2016). Furthermore, recent work has 441 

shown that resting state spatial maps can be used to predict task activation maps from 442 

individual subjects very accurately (Tavor et al., 2016), and that interdigitated and highly 443 

variable subnetworks can be identified within individuals (Braga & Buckner, 2017). Therefore, 444 

the presence of behaviourally relevant cross-subject variance in maps of functional (co-) 445 

activation in itself is not surprising. However, the fact that these variations in spatial 446 

topographical features capture a more direct and unique representation of subject variability 447 

than temporal correlations between regions defined by group parcellation approaches 448 

(coupling), was unexpected. The implication of this finding is that the cross-subject information 449 

represented in commonly adopted ‘connectivity fingerprints’ largely reflects spatial variability in 450 

the location of functional regions across individuals, rather than variability in coupling strength 451 

(at least for methods that directly map group-level parcellations onto individual data). 452 

Specifically, our partial CCA results (Figure 4) show that network matrices (as often estimated) 453 

contain little unique trait-level cross-subject information that is not also reflected in the spatial 454 

https://paperpile.com/c/OyK8sR/vCbKH+GyfaA+jc327+wnfLT+B5aKV+xTor7
https://paperpile.com/c/OyK8sR/vCbKH+GyfaA+jc327+wnfLT+B5aKV+xTor7
https://paperpile.com/c/OyK8sR/vCbKH+GyfaA+jc327+wnfLT+B5aKV+xTor7
https://paperpile.com/c/OyK8sR/cCMIB
https://paperpile.com/c/OyK8sR/rd009
https://paperpile.com/c/OyK8sR/iQqS
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topographical organisation of functional regions.  455 

 456 

How the functional organisation of the brain is conceptualised and operationally defined is of 457 

direct relevance to the interpretation of these findings. Some hard parcellation models of the 458 

human cortex (such as the Gordon and Yeo parcellations (Gordon, Laumann, Adeyemo, 459 

Huckins, et al., 2016; Yeo et al., 2011)) aim to fully represent connectivity information in the 460 

edges (i.e. correlations between node timeseries). Thus, hard parcellations of this type assume 461 

piecewise constant connectivity within any one parcel (i.e. each parcel is assumed to be 462 

homogeneous in function, with no state- or trait-dependent within-parcel variability in functional 463 

organisation). In contrast, the HCP_MMP1.0 multimodal parcellation presumes within-area 464 

uniformity of one or more major features, but overtly recognises within-area heterogeneity in 465 

other features, including connectivity, most notably for distinct body part representations (‘sub-466 

areas’) of the somatomotor complex. Soft parcellation models (such as PROFUMO (Harrison et 467 

al., 2015)) allow for the presence of multiple modes of (potentially overlapping) functional 468 

organisation. Therefore, PFMs represent connectivity information through complex interactions 469 

between amplitude and shape in the spatial maps, and through network matrices. Our findings 470 

show that both the PROFUMO and the multimodal parcellation models successfully capture 471 

behaviourally-relevant cross-subject spatial variability (Supplementary file 1b), but that the 472 

precise location of where this spatial variability is represented overlaps only modestly between 473 

the two approaches (Figure 2-figure supplement 1). Given the differences in the key 474 

assumptions made by the two models (i.e. binary parcellation versus multiple modes of 475 

functional organisation), this is not unexpected. However, it does highlight the need for further 476 

research into the optimal representation of (subject-specific) functional organization in the brain. 477 

 478 

For most of the results presented in this work, we estimated spatial information using functional 479 

data (either resting or task fMRI data). While a comprehensive investigation of related 480 

anatomical features is beyond the scope of this work, we did identify significant correlations 481 

between fractional surface area size and subject CCA weights (Figure 2-figure supplement 1). 482 

This result suggests that anatomical variability in the cortical extent of a number of higher level 483 

sensory and cognitive brain regions may contribute to the overall findings presented here. 484 

Further research into the relationship between structural features and functional connectivity 485 

measures, and their contribution to trait-level subject variability is needed to test this hypothesis.  486 

 487 

Our findings are relevant to a wide variety of approaches used to study connectivity. For 488 

https://paperpile.com/c/OyK8sR/41TuD+iCUat
https://paperpile.com/c/OyK8sR/41TuD+iCUat
https://paperpile.com/c/OyK8sR/5rcB9
https://paperpile.com/c/OyK8sR/5rcB9
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example, our simulation results (Tables 1 and Supplementary file 1c and d) reveal similar 489 

results regardless of whether we adopt a dual-regression or a masking approach to obtain 490 

timeseries, and the findings also do not differ qualitatively according to whether full or partial 491 

correlation is used to estimate network matrices. Therefore, our findings are relevant to any 492 

approach that is based on timeseries extracted from functional regions defined at the group-493 

level (including graph theory methods and spectral analyses). The implications of this work may 494 

also extend beyond resting-state fMRI. For example, generative models such as dynamic 495 

causal modelling (DCM) are increasingly used to stratify patient populations (Brodersen et al., 496 

2014), and to achieve predictions for individual patients (Stephan et al., 2017). Previous work 497 

has shown that including parameters for the position and shape of functional regions in 498 

individual subjects into the model improves DCM results and better differentiates between 499 

competing models (Woolrich, Behrens, & Jbabdi, 2009). It is currently unknown to what extent 500 

cross-subject variability observed with these timeseries-based fMRI metrics reflects true 501 

coupling between neural populations, rather than being indirectly driven by spatial variability and 502 

misalignment, but given that many of these studies are conducted using alignment methods that 503 

perform substantially worse than the MSMAll surface-based alignment used in this study 504 

(Coalson et al., n.d.), this is likely a significant confound for such studies. Going forward, it is 505 

important to disambiguate the influence of spatial topography to enable the estimation of fMRI 506 

measures that uniquely reflect coupling strength between neural populations.  507 

 508 

Significant advances have already been made in recent years in order to tackle the issue of 509 

spatial misalignment across individuals. For example, the HCP data used in this work were 510 

spatially aligned using the multimodal surface mapping (MSM) technique, which achieves very 511 

good functional alignment by using features that are more closely tied to cortical areas (although 512 

note that, since the time of the HCP release, refinements to the MSM algorithm and 513 

regularisation have resulted in further improvements in the observed functional alignment of 514 

HCP data (Robinson et al., 2014, 2018)). Therefore, gross misalignment is unlikely to play a role 515 

in our results. In fact, some of the behaviourally relevant variability may have been ‘corrected’ in 516 

the MSM pipeline prior to our analyses (indeed, the same positive-negative mode of population 517 

covariation is identified when running the CCA on MSM warp fields; and the fractional surface 518 

area results in Supplementary file 1b and Figure 2-supplementary file 1 reflect the full variability 519 

from native space, and are not affected by the alignment accuracy). Therefore, it is possible that 520 

the degree to which spatial information may influence FC estimates varies considerably across 521 

studies, depending on the spatial alignment algorithm that was used, and the amount of subject 522 

https://paperpile.com/c/OyK8sR/LFlbl+bIap
https://paperpile.com/c/OyK8sR/HBrQm
https://paperpile.com/c/OyK8sR/D6uw3
https://paperpile.com/c/OyK8sR/KZlKz
https://paperpile.com/c/OyK8sR/dNBGa
https://paperpile.com/c/OyK8sR/D6uw3
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spatial variability this has removed. It is encouraging that significant efforts have recently gone 523 

into the methods for more accurately estimating the spatial location of functional parcels in 524 

individual subjects in recent years (Chong et al., 2017; Glasser et al., 2016; Gordon, Laumann, 525 

Adeyemo, Huckins, et al., 2016; Hacker et al., 2013; Harrison et al., 2015; Varoquaux, Gramfort, 526 

Pedregosa, Michel, & Thirion, 2011; Wang et al., 2015), and into advanced hyperalignment 527 

approaches (Chen et al., 2015; Guntupalli et al., 2016; Guntupalli & Haxby, 2017). The present 528 

results highlight the importance of such advances, and call for the continued development, 529 

comparison, and validation of such approaches. 530 

 531 

In conclusion, we have demonstrated that spatial topography of functional regions are strongly 532 

predictive of variation in behaviour and lifestyle factors across individuals, and that timeseries-533 

based methods (as often estimated based on group-level parcellations) contain little unique 534 

trait-level information that is not also explained by spatial variability.  535 

 536 

 537 

 538 

 539 

 540 

  541 

https://paperpile.com/c/OyK8sR/K6WGz+5rcB9+xTor7+Csspn+w5vUP+5eU0R+41TuD
https://paperpile.com/c/OyK8sR/eP4E+uHxd+pAfG
https://paperpile.com/c/OyK8sR/K6WGz+5rcB9+xTor7+Csspn+w5vUP+5eU0R+41TuD
https://paperpile.com/c/OyK8sR/K6WGz+5rcB9+xTor7+Csspn+w5vUP+5eU0R+41TuD


19 

Materials and Methods 542 

Dataset 543 

For this study we used data from the Human Connectome Project S900 release (820 subjects 544 

with fully complete resting-state fMRI data, 452 male, mean age 28.8 ± 3.7 years old) (Van 545 

Essen et al., 2013). Data were acquired across four runs using multiband echo-planar imaging 546 

(MB factor 8, TR = 0.72 sec, 2mm isotropic voxels) (Moeller et al., 2010; Ugurbil et al., 2013). 547 

Data were preprocessed according to the previously published pipeline that includes tools from 548 

FSL, Freesurfer, HCP’s Connectome Workbench, multimodal spatial alignment driven by myelin 549 

maps, resting state network maps, and resting state visuotopic maps (“MSMAll”), resulting in 550 

data in the grayordinate coordinate system (Fischl, Sereno, & Dale, 1999; Glasser et al., 2013, 551 

2016; Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012; Marcus et al., 2013; Robinson 552 

et al., 2014; Smith, Beckmann, et al., 2013). ICA-FIX-cleanup was performed on individual runs 553 

to reduce structured noise (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). ICA-FIX 554 

achieves 99% sensitivity and 99% specificity on HCP data when compared to manual 555 

classification by trained raters (Smith, Beckmann, et al., 2013). Only subjects with the full 4800 556 

resting state timepoints (4 scans of 1200 TRs each) were included for the analyses performed in 557 

this work. A detailed overview of quality assessment in the Human Connectome Project was 558 

previously published (Marcus et al., 2013). 559 

Data Availability 560 

HCP data are freely available from https://db.humanconnectome.org. The version of MSMAll 561 

that is compatible with the approach implemented for the alignment of HCP data can be found 562 

here: http://www.doc.ic.ac.uk/~ecr05/MSM_HOCR_v2/ (Robinson et al., 2018). Matlab code 563 

used in this work can be found here: https://github.com/JanineBijsterbosch/Spatial_netmat 564 

(Bijsterbosch, 2017). Data from many figures in this study will (upon manuscript acceptance) be 565 

freely available at https://balsa.wustl.edu/study/show/kKM0.  566 

Inferring functional modes 567 

In order to obtain estimates of the spatial shape and size of functional networks for every 568 

subject, we decompose the HCP data into a set of probabilistic functional modes (PFMs) via the 569 

PROFUMO algorithm (Harrison et al., 2015). A set of � PFMs describe each subject’s data 570 

(� grayordinates; ܶ time points; ܦ� ∈ ��×�) in terms of a set of subject-specific spatial maps 571 

https://paperpile.com/c/OyK8sR/5rcB9
https://paperpile.com/c/OyK8sR/R6SI8
https://paperpile.com/c/OyK8sR/bIap
https://paperpile.com/c/OyK8sR/R6SI8
https://paperpile.com/c/OyK8sR/IL7v3+GciZ8+Z95kf+wpUO+LHTn+LFlbl+xTor7
https://paperpile.com/c/OyK8sR/IL7v3+GciZ8+Z95kf+wpUO+LHTn+LFlbl+xTor7
https://paperpile.com/c/OyK8sR/BeDRg+gXiUw
https://paperpile.com/c/OyK8sR/wpUO
https://paperpile.com/c/OyK8sR/LHTn
https://paperpile.com/c/OyK8sR/AiirC+E3pe7
https://paperpile.com/c/OyK8sR/IL7v3+GciZ8+Z95kf+wpUO+LHTn+LFlbl+xTor7
http://www.doc.ic.ac.uk/~ecr05/MSM_HOCR_v2/
https://db.humanconnectome.org/
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(�� ∈ ��×�), amplitudes (ℎ� ∈ ��) and timecourses (ܣ� ∈ ��×�), all of which are linked via the 572 

outer product model: 573 

�ܦ 574   =  ��  ∗  ݀�ܽ�ሺℎ�ሻ  ∗ �ܣ   +  �       [1] 575 

 576 

These subject-specific decompositions are linked by a set of hierarchical priors. In the spatial 577 

domain, the group-level parameters encode the grayordinate-wise means, variances and 578 

sparsity of the subject maps, while in the temporal domain, the group-level priors constrain the 579 

subject-level network matrices (note that the component amplitudes and hierarchical priors are 580 

recent extensions to the PFMs model and were not included in the original PROFUMO paper 581 

(Harrison et al., 2015)). The PROFUMO framework gives us sensitive estimates of key subject-582 

level parameters, while ensuring that there is direct correspondence between PFMs across 583 

subjects. 584 

 585 

PROFUMO was run on the rfMRI data from all 820 subjects with a dimensionality of 50 PFMs. 586 

Importantly, the signal-subspace of any given subject’s dataset can be straightforwardly 587 

reconstructed from a set of modes via equation [1], and this can be used to generate the 588 

simulated data as described below. 589 

Canonical Correlation Analysis (CCA) 590 

For the ICA decompositions, amplitudes were estimated for each subject and component as the 591 

temporal standard deviation of the timeseries obtained from stage 1 of a dual regression 592 

analysis. Full and regularised partial correlation matrices were also calculated from these 593 

timeseries. The Tikhonov regularisation rho used during estimation of the partial correlation 594 

matrices was set to 0.01 for the ICA 25, 200 and PFM data (according to previous optimisation 595 

results). For high dimensional parcellations (Yeo and HCP_MMP1.0), the rho was optimised by 596 

finding the maximum correlation between subject and group-average (using rho = 0.01) network 597 

matrices across a range of rho (0.01:0.5), leading to rho=0.03 for Yeo and rho=0.23 for 598 

HCP_MMP1.0 results. Lastly, the subject spatial maps obtained from stage 2 of a dual 599 

regression analysis were used. Similarly, for the PROFUMO decomposition, the PFM 600 

amplitudes, subject spatial maps and timeseries were used. For the HCP_MMP1.0 spatial 601 

results, either group-level or subject-specific node parcellations were used (Hacker et al., 2013). 602 

The subject-specific parcellations contain missing nodes (parcels) in some subjects (Glasser et 603 

al., 2016). Hence, for partial network matrices, the rows and columns in the covariance matrix 604 

https://paperpile.com/c/OyK8sR/5rcB9
https://paperpile.com/c/OyK8sR/xTor7
https://paperpile.com/c/OyK8sR/xTor7
https://paperpile.com/c/OyK8sR/5eU0R
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were set to the scaled group average prior to inverting the covariance matrix. In the resulting 605 

network matrices, the rows and columns relating to missing nodes were set to the group 606 

average (for both partial and full network matrices). Before performing CCA, missing nodes 607 

were accounted for by estimating the subject-by-subject covariance matrix one element at a 608 

time, ignoring any missing nodes for any pair of subjects. The nearest valid positive-definite 609 

covariance matrix was subsequently obtained using nearestSPD in Matlab 610 

(http://uk.mathworks.com/matlabcentral/fileexchange/42885-nearestspd), prior to performing 611 

singular value decomposition as described below. 612 

 613 

Each CCA analysis finds a linear combination of behavioural and life-factor measures (V) that is 614 

maximally correlated with a linear combination of rfMRI-derived measures (U) (Hotelling, 1936): 615 ܻ ∗ ܣ = ܷ ∼ ܺ ∗ ܤ = ܸ. Y is the set behavioural measures, and X are the rfMRI-derived 616 

measures (i.e. spatial maps, or network matrices, or signal amplitudes), ~ indicates that U and V 617 

are approximately equal. A and B are optimised such that the correlation between U and V is 618 

maximal. Summary measures from CCA include the correlation between (paired columns of) U 619 

and V, and the associated p-values (derived from permutation testing over n=100,000 620 

permutations) for the first one or more CCA modes.  621 

 622 

To create the inputs to the CCA, a set of nuisance variables were regressed out of both the 623 

behavioural measures and the amplitudes, network matrices and spatial maps, as done in 624 

(Smith et al., 2015). Subject covariance matrices were subsequently estimated for the 625 

amplitudes, network matrices and for all spatial maps (by summing the covariance matrices of 626 

individual spatial maps). Then a singular value decomposition was performed on the subject 627 

covariance matrices and the first 100 eigenvectors were entered into the CCA (either against 628 

100 eigenvectors obtained from behavioural variables as explained in (Smith et al., 2015), or to 629 

compare PFM spatial maps directly to ICA partial correlation matrices).  630 

 631 

In addition to reporting the CCA results for the strength of the canonical correlation between 632 

imaging and non-imaging measures and the associated p-value (rU-V and PU-V), we also report 633 

the correlation between the CCA subject weights and the weights for the ICA 200 partial 634 

network matrices (rU-Uica). The reason for including this correlation is to facilitate direct 635 

comparison to previously published CCA results from HCP data (Smith et al., 2015). However, 636 

this earlier finding should not be taken as the gold standard CCA result. The rU-Uica correlation 637 

we report is the maximum correlation found between the first CCA mode from the ICA 200 638 

https://paperpile.com/c/OyK8sR/8NZDD
http://uk.mathworks.com/matlabcentral/fileexchange/42885-nearestspd
https://paperpile.com/c/OyK8sR/rU6WG
https://paperpile.com/c/OyK8sR/8NZDD
https://paperpile.com/c/OyK8sR/8NZDD
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partial network matrices, and any of the 100 modes of population covariation obtained for the 639 

comparison CCA result (i.e., the maximum correlation may not be with the strongest CCA 640 

mode). 641 

 642 

Confidence intervals for CCA results in Table 1 were obtained using surrogate data for both the 643 

brain-based CCA input matrix and the behaviour CCA input matrix. To generate the surrogate 644 

data, row and column wise correlations of the original CCA input matrices were maintained 645 

using a multivariate normal random number generator (mvnrnd.m in Matlab). A total of 1000 646 

instances of surrogate data were used to obtain 2.5-97.5% confidence intervals around rU-V. 647 

 648 

For visualisation and interpretation purposes, we created videos of the spatial variability along 649 

the axis of the behavioural CCA mode of population covariation. For this, we took the U 650 

resulting from the CCA between PFM spatial maps and behaviour, and created a linearly 651 

spaced vector that spans just over the full range of U (extending beyond the lowest and highest 652 

measured subject score by 10% of the full range). As the CCA is linear, it is straightforward to 653 

project a set of U values back to form a rank-one reconstruction of the original space, which in 654 

this case is a set of spatial maps. This sequence of spatial maps is an approximation to the 655 

spatial variability that is encoded along the previously reported positive-negative axis. These are 656 

used as the frames for Supplementary video files 1-9, and for the illustrative examples shown in 657 

Figure 2 and Figure 2-figure supplements 2-7.  658 

 659 

The two rfMRI parcellation methods included in Supplementary file 1b (HCP_MMP1.0 and PFM) 660 

explicitly aim to capture cross-subject variability in the spatial location of functional regions. The 661 

subject spatial maps estimated by both methods are strongly associated with cross-subject 662 

behavioural variability (when matching the sample size rU-V did not significantly differ, and 663 

subject weights of the strongest CCA results were moderately correlated rU-U=0.55). Therefore, 664 

it is of interest to compare these results in more detail, to determine whether cross-subject 665 

variability is represented similarly for the two approaches. Furthermore, given that fractional 666 

surface area (the fraction of cortex occupied by each area in the multimodal HCP_MMP1.0 667 

parcellation) was also strongly predictive of behaviour (Supplementary file 1b), we investigated 668 

the potential relationship between rfMRI-based PFM weights, multimodally-defined cortical areal 669 

boundaries (HCP_MMP1.0 parcellation), and structural variation in fractional surface area. To 670 

this end, we averaged CCA subject weights obtained from two separate CCA results (PFM 671 

spatial maps - behaviour, and HCP_MMP1.0 spatial maps - behaviour). These averaged subject 672 
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weights were subsequently correlated against fractional surface area, and against subject-673 

specific PFM and HCP_MMP1.0 spatial maps (grayordinate-wise), to investigate which brain 674 

regions contribute strongly to the association with behaviour, and to compare these localised 675 

effects across methods/modalities. 676 

Creating simulated data 677 

In order to create simulated datasets for each subject, we took the outer product between PFM 678 

spatial maps and timeseries. Compared with data that is completely simulated, this approach 679 

has the advantage of keeping many features in the data (such as the types of structured noise 680 

that are present, the signal-to-noise ratio, and the autocorrelation structure), while still achieving 681 

investigator control of specific aspects of interest. Data from each run (1200 time points) was 682 

processed separately through the simulation pipeline, including the following steps: 683 

 684 

Timeseries processing: 685 

Variance normalisation: Each original PFM subject timecourse was set to unit variance, and the 686 

variances were retained. �� = �ܽ�ሺܣ��ሻ; ܤ� = �ܣ ∗ ݀�ܽ�ሺ��− / ሻ 687 

Whitening: The ZCA whitening transform (Bell & Sejnowski, 1997) was used to remove any 688 

correlations between timeseries: ܼ� = ܿ��ሺܤ�ሻ− / ; �ܥ  = �ܤ ∗ ܼ� 689 

Network matrix application: Timeseries were modified such that the induced correlation matched 690 

a pre-specified structure. : ܦ� = �ܥ ∗ �. In the simulations that use a fixed group network matrix, 691 

this pre-specified correlation structure was estimated by projecting the S900 group average 692 

HCP dense connectome (following Wishart Rolloff) onto the group PFM spatial maps.  693 

Restore variances: At this stage the variances of the original timeseries are restoredܧ� = �ܦ ∗694  ݀�ܽ�ሺ�� / ሻ. This gives a set of simulated timeseries ܧ� which have all the same properties as 695 

the reference timeseries (ܣ�), except for their correlation structure. 696 

 697 

Pseudo-PFM generation: We modify the inferred PFMs by selectively setting some of the 698 

parameters to their group averages. For example, if we set  ��̂ = ��, where �� is the mean over 699 

all 820 subject maps, then we can eliminate any spatial variability across subjects. Similarly, we 700 

can set the temporal correlations to a fixed group mean using the procedure described above to 701 

remove any variability in FC across subjects. In order to remove amplitude variability across 702 

subjects, we add in group averaged variances instead of the subject variances. These simulated 703 

PFMs are then described by the simulated maps, amplitudes and timeseries, namely �̂�, ℎ̂� and 704 

https://paperpile.com/c/OyK8sR/qXEVt
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 705 .�ܣ̂

 706 

Data reconstruction: Finally, the full data can be reconstructed as per [1]:  ̂ܦ�  =  �̂� ∗  ݀�ܽ�ሺℎ̂�ሻ �ܣ̂  707∗   +  � . Spatio-temporally white-noise (with variance matched to the original data) is added to 708 

the activity described by the simulated modes to give a dataset that preserves the properties of 709 

the original data, but, crucially, one where we have direct control over where in the model 710 

subject variability can appear. 711 

 712 

Once the simulated data is generated for each run, we extracted timeseries from both the 713 

simulated and original data using two different approaches that are commonly adopted in the 714 

literature. Dual regression analysis was performed using the group ICA maps that were 715 

estimated using the (original) HCP group data, and that are freely available with the S900 data 716 

release (www.humanconnectome.org). Two dimensionalities were tested, so for each simulated 717 

dataset dual regression was performed against 25 and against 200 group ICA components. The 718 

timecourses estimated in stage 1 of the dual regression analysis were used to compute network 719 

matrices (Filippini et al., 2009; Nickerson, Smith, Öngür, & Beckmann, 2017). Mean timeseries 720 

were also extracted from a set of 109 binary regions of interest (ROIs) based on the Yeo 721 

parcellation, and from the HCP_MMP1.0 group parcellations and individual subject parcellations 722 

(Glasser et al., 2016). The 109 Yeo ROIs were obtained from the 17-network parcellation (Yeo 723 

et al., 2011), by separating each of the 17 networks into individual contiguous regions that had a 724 

surface cluster area of at least 20 mm2. Timecourses were used to estimate full and regularised 725 

partial correlation network matrices using FSLnets (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). 726 

Z-transformation was applied to the network matrices before further comparisons. The network 727 

matrices derived from simulated data are compared against network matrices calculated from 728 

the original data as described below. 729 

 730 

Firstly, we compare the simulated network matrix to the original network matrix for each subject, 731 

to determine how similar the measured FC is. For each subject the node-by-node full or 732 

regularised partial network matrix estimated from the simulated data is reshaped into a single 733 

column after removing the diagonal and is correlated against the reshaped original estimated 734 

network matrix. Prior to reshaping the simulated and original network matrices, the respective 735 

group average network matrix (simulated or original) is subtracted from the subject network 736 

matrix, so that the subsequent correlation is sensitive to the unique subject variability instead of 737 

being driven by the group connectivity patterns. As such, a correlation coefficient between 738 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets
https://paperpile.com/c/OyK8sR/iCUat
https://paperpile.com/c/OyK8sR/xTor7
https://paperpile.com/c/OyK8sR/iCUat
http://www.humanconnectome.org/
https://paperpile.com/c/OyK8sR/HUO9L+ZHpA3
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demeaned simulated and original network matrices is estimated for each subject. The Fisher r-739 

to-z transform was applied to these correlations before averaging across subjects. This first test 740 

assesses how different a subject is from the group (and the similarity of this difference between 741 

original and simulated network matrices), and therefore does not test for cross-subject 742 

variability. 743 

 744 

Secondly, the subject-by-subject correlation matrix was estimated from the subject-wise 745 

simulated network matrices. Again, this matrix was reshaped into a vector after discarding the 746 

diagonal and was correlated against the reshaped subject-by-subject correlation matrix obtained 747 

from the original network matrices. The aim of this test was to directly compare the cross-748 

subject variability present in the simulated and original data, which is very important given that 749 

variability across subjects is typically of primary interest in FC research. Hence, this analysis 750 

aims to compare the cross-subject variability in original or simulated network matrices, as 751 

opposed to comparing the similarity of original and simulated network matrices within an 752 

individual subject (as is the case for the preceding approach). 753 

 754 

The last test of the simulated network matrices was to perform a CCA against the set of 755 

behavioural and life-factor measures (Smith et al., 2015). A CCA was performed on the 756 

simulated network matrices against the subject behavioural measures as described below. To 757 

assess the CCA results, we report the correlation between U and V (for the first, strongest mode 758 

of population covariation), the associated permuted p-value (n=100,000 permutations, 759 

respecting family structure), and the maximum correlation between any of the simulated U and 760 

the first U obtained when using the original ICA 200 dimensionality partial network matrices 761 

describing the positive-negative mode of covariation (Smith et al., 2015). 762 

Simulations with further spatial map modulations 763 

The PFM subject spatial maps contain a relatively complex set of information. This may include 764 

relative differences in amplitude in different brain regions that are part of the same mode, which 765 

effectively reflect connectivity rather than spatial shape and size. In order to exclude these 766 

potential connectivity-related aspects of the spatial maps and isolate the role of spatial shape, 767 

we simplified the spatial maps for some of the simulations presented. For this, the spatial maps 768 

were thresholded at a very liberal threshold of 1 (arbitrary units specific to the PFM algorithm) 769 

and binarised. The sign was retained such that grayordinates in the subject PFM maps with 770 

values >1 were set to 1 and grayordinates with values <-1 were set to -1 and all others to zero. 771 

https://paperpile.com/c/OyK8sR/8NZDD
https://paperpile.com/c/OyK8sR/8NZDD
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A liberal threshold was purposefully used as we wanted to retain extended (broad, low) shape 772 

information, and just remove any information encoded in the (relative) grayordinate amplitudes. 773 

Using a fixed threshold across subjects retains cross-subject variability in the size of networks. 774 

To further remove this source of information and focus purely on the shape of networks, we 775 

applied a percentile threshold such that the size of networks is fixed across subjects 776 

(grayordinates > 95th percentile set to 1 and grayordinates < 5th percentile set to -1, leading to 777 

each individual PFM map having the same size of 4564 1s and 4564 -1s across all subjects). 778 

The results of simulations where the maps were modulated in this way prior to calculating the 779 

simulation’s space-time outer product are presented in Supplementary file 1e, including results 780 

for which the maps were both thresholded and binarised, percentile thresholded and binarised, 781 

and also results for maps that were thresholded (at 1) but not binarised.  782 

Comparing cross-subject similarities between different types of imaging measures  783 

Given that variability between subjects is of primary interest in rfMRI research, this analysis 784 

aimed to directly compare the cross-subject variability present in a range of measures obtained 785 

from the original data. Between-subject correlation matrices were calculated from network 786 

matrices (ICA25, ICA200 and PFM50), from PFM amplitudes and from spatial maps (ICA25 and 787 

ICA200 dual regression stage 2 spatial maps, and PFM50 spatial maps). These subject by 788 

subject correlation matrices were reshaped after discarding the diagonal, and full and partial 789 

correlations were calculated between the subject correlation matrices (Figure 4-figure 790 

supplement 1). 791 

Unique contribution of topography versus coupling 792 

To obtain a basis set of spatial maps based on task contrast data, we performed a spatial ICA 793 

(with a dimensionality of 15) on the concatenated group-averaged task contrast maps (a total of 794 

86 maps, 47 of which are unique). The ICA dimensionality was determined based on the 795 

proportion variance explained in the PCA data reduction step (99.0% for d=15). Spatial ICA was 796 

performed on the group-average task contrasts maps to avoid the correspondence problem that 797 

would arise if ICA were applied separately to individual subject task contrast maps. This 798 

resulted in a set of ICA weights (15*86), which describe the contribution of each task contrast 799 

map to each extracted ICA component. The outer product of these weights with either the 800 

group-averaged contrast maps or the corresponding subject-specific contrast maps was used to 801 

obtain maps to drive subsequent dual regression analysis. Dual regression analysis (driven by 802 

either group-averaged or subject-specific task basis maps after normalising the maximum of 803 
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each subject and component map to 1) was run against subject resting state data to obtain 804 

timeseries and maps. CCA against behaviour was performed separately on the resulting 805 

network matrices and spatial maps as described above. Additionally, partial CCA was 806 

performed to determine the unique information contained in network matrices and in spatial 807 

maps. For this, any variance explained by network matrices was regressed out of the spatial 808 

maps and vice versa (i.e. was ‘partialled out’), before running the “partial CCA”. Specifically the 809 

100 eigenvectors used as the input matrix to the CCA (as explained above and following (Smith 810 

et al., 2015)) for partial network matrices were regressed out of the 100 eigenvectors for the 811 

spatial maps before running CCA, or conversely the 100 eigenvectors for spatial maps were 812 

regressed out of the 100 eigenvectors for the network matrices before running CCA. 813 

https://paperpile.com/c/OyK8sR/8NZDD
https://paperpile.com/c/OyK8sR/8NZDD
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Figure and table legends 1048 

Figure 1: Highly similar associations between behaviour and the brain occur across 16 distinct 1049 

measures derived from fMRI. A) Comparison of strength of CCA result for network matrices, 1050 

spatial maps and amplitudes (node timeseries standard deviation) derived from several distinct 1051 

group-average spatial parcellations/decompositions: ICA decompositions at two scales of detail 1052 

(dimensionalities of 25 and 200, with “ICA200 partial network matrix” corresponding to the 1053 

measures used previously (Smith et al., 2015)); a PROFUMO decomposition (PFM; 1054 

dimensionality 50); an atlas-based hard parcellation (108 parcels (Yeo et al., 2011)), task 1055 

contrast spatial maps (86 contrasts, 47 unique), and warp field from native space to MSMAll 1056 

alignment. Each bar reports a separate CCA analysis (first CCA mode shown), performed 1057 

against behaviour/life-factors. A similar mode of variation is found across most of the 1058 

parcellation methods and different fMRI measures. rUV is the strength of the canonical 1059 

correlation between imaging and non-imaging measures. Error bars indicate confidence 1060 

intervals (2.5-97.5%) estimated using surrogate data (generated with the same correlation 1061 

structure), and red lines reflect the p<0.002 significant threshold compared with a null 1062 

distribution obtained with permutation testing (i.e. family-wise-error corrected across all CCA 1063 

components and Bonferroni corrected across a total of 25 CCAs performed, see Supplementary 1064 

file 1a and b for the full set of results). CCA estimates the highest possible ruv given the dataset; 1065 

therefore, the null distribution for low-dimensional brain data (e.g. ICA 25 amplitude) is expected 1066 

to be lower than for high-dimensional brain data. B) Set of non-imaging variables that correlate 1067 

most strongly with the CCA mode (averaged subject weights V across results marked with * in 1068 

A; i.e. p=0.00001) with behavioural variables. Position against the y-axis and font size indicate 1069 

strength of correlation.  1070 

 1071 

Figure 1-figure supplement 1: Similarity of behavioural subject weights from a range of 1072 

separate CCA analyses between MRI-derived measures and behavioural measures. For each 1073 

CCA instance, the mode with the maximum correlation with the ICA200 partial network matrix 1074 

was selected for comparison. Absolute correlation values between behavioural subject weights 1075 

(V) are shown and reveal that a comparable behavioural mode is obtained from the CCAs. 1076 

 1077 

Figure 2: A: representative maps of the two extreme ends (identified based on the low and high 1078 

extremes along a linearly spaced vector that spans the full range of subject CCA scores) of the 1079 

CCA mode of population covariation continuum are shown for the default mode network (DMN, 1080 

https://paperpile.com/c/OyK8sR/8NZDD
https://paperpile.com/c/OyK8sR/iCUat
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the PFM mode that contributed most strongly to the CCA mode of population covariation). The 1081 

top row shows that the inferior parietal node of the DMN differs in shape and extends into the 1082 

intraparietal sulcus in subjects who score high on the positive-negative CCA mode (left), 1083 

compared with subjects who score lower (right). The bottom row shows that medial prefrontal 1084 

and posterior cingulate/ precuneus regions of the DMN differ in size and shape as a function of 1085 

the CCA positive-negative mode. The representative maps at both extremes are thresholded at 1086 

± 2 (arbitrary units specific to the PFM algorithm) for visualisation purposes (the differences are 1087 

not affected by the thresholding; for unthresholded video-versions of these maps, please see 1088 

the Supplementary video files which can be downloaded here to aid the review process: 1089 

https://drive.google.com/drive/folders/0B6J0Q9KXPsNYWmlhTENpa3BKRmc?usp=sharing). 1090 

The grey contours are identical on the left and right to aid visual comparison, and are based on 1091 

the group-average maps (thresholded at 0.75). Spatial changes of all PFM modes can be seen 1092 

in the Supplementary video files and in Figure 2-figure supplements 2-7. B: difference maps 1093 

(positive - negative; thresholded at ± 1) are shown to aid comparison. C: A summary of 1094 

topographic variability across all PFM modes, showing PFM correlations with CCA subject 1095 

weights (at each grayordinate the maximum absolute r across all PFMs is displayed). An 1096 

extended version of C is available in Figure 2-figure supplement 1. Data of figure 2 available at: 1097 

https://balsa.wustl.edu/8lVx. 1098 

 1099 

Figure 2-figure supplement 1: Comparison of the cortical representation of associations with 1100 

behaviour across fractional area, HCP_MMP1.0 individual subject parcellation and PFM spatial 1101 

maps. A: Correlations between fractional area and behaviour were highly consistent between 1102 

left and right hemispheres, and revealed relatively high correlations in higher order sensory and 1103 

cognitive regions. Specifically, bilaterally significant (FDR corrected p<0.05) positive 1104 

associations between larger surface area and higher scores on the positive-negative mode of 1105 

population covariation were found in area POS2 of the parieto-occipital sulcus and in area IPS1 1106 

of the dorsal visual processing stream; bilaterally significant negative correlations were identified 1107 

in the cingulate motor area 24dv, premotor area 6r, and inferior parietal cortex (areas PFt, PFm, 1108 

PGi). B: Qualitative comparison between the spatial localisation of strongest correlations with 1109 

behaviour across all three datasets reveals that many regions that contribute strongly in either 1110 

the HCP_MMP1.0 or in the PFM individual subject spatial estimates spatially overlap or adjoin 1111 

cortical areas in which fractional surface area was also closely linked to behaviour. This 1112 

qualitative finding suggests that differences in regional surface area may drive many of the 1113 

results presented in this work, although further research is needed to confirm this interpretation 1114 

https://drive.google.com/drive/folders/0B6J0Q9KXPsNYWmlhTENpa3BKRmc?usp=sharing
https://balsa.wustl.edu/8lVx
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(for visual comparison the PFM correlation maps are shown using a higher threshold 1115 

pFDR<0.0001, |r|>0.218, and HCP_MMP1.0 correlation maps are correlated at pFDR<0.05; 1116 

|r|>0.159). C: Un-thresholded HCP_MMP1.0 correlations with CCA subject weights; these are 1117 

the maximum absolute r across all parcels, and therefore do not contain the parcel structure 1118 

itself. D: Un-thresholded PFM correlations with CCA subject weights (maximum absolute r 1119 

across all PFMs). The cortical localisation of strong associations with behaviour do not closely 1120 

overlap between PFMs and the HCP_MMP1.0 parcellation (i.e. red and blue regions in B and 1121 

un-thresholded maps in C/D). This lack of exact correspondence of the representations of 1122 

cross-subject variability may reflect differences between the HCP_MMP1.0 and PROFUMO 1123 

models (the former being a hard parcellation with no overlap between parcels, and the latter 1124 

being a soft parcellation that includes complex and often overlapping networks), and differences 1125 

in the data types driving the parcellation (PROFUMO being driven by rfMRI data only, and the 1126 

HCP_MMP1.0 parcellation being driven by data from multiple different modalities). Data 1127 

available at https://balsa.wustl.edu/mK28. 1128 

 1129 

Figure 2-figure supplement 2: Representative maps of the two extreme ends of the positive-1130 

negative continuum for five PFMs. Maps can directly be compared between the left (negative) 1131 

and the middle (positive), and difference maps are shown on the right (blue=negative>positive; 1132 

yellow=positive>negative). Arbitrary thresholds used for visualisation purposes (same 1133 

thresholds for all maps), see videos for the unthresholded continuum. Gray outlines are based 1134 

on group average maps and are identical between left and right images to facilitate comparison. 1135 

Data available at https://balsa.wustl.edu/07pz, https://balsa.wustl.edu/21kq, 1136 

https://balsa.wustl.edu/rKMN, https://balsa.wustl.edu/xK16, https://balsa.wustl.edu/PGw5. 1137 

 1138 

Figure 2-figure supplement 3: Representative maps of the two extreme ends of the positive-1139 

negative continuum for five PFMs. Maps can directly be compared between the left (negative) 1140 

and the middle (positive), and difference maps are shown on the right (blue=negative>positive; 1141 

yellow=positive>negative).  Arbitrary thresholds used for visualisation purposes (same 1142 

thresholds for all maps except map 15, where lower thresholds were used), see videos for the 1143 

unthresholded continuum. Gray outlines are based on group average maps and are identical 1144 

between left and right images to facilitate comparison. Data available at 1145 

https://balsa.wustl.edu/KMGg, https://balsa.wustl.edu/Nq9K, https://balsa.wustl.edu/G1mN, 1146 

https://balsa.wustl.edu/LBLx, https://balsa.wustl.edu/pKwg. 1147 

 1148 

https://balsa.wustl.edu/mK28
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Figure 2-figure supplement 4: Representative maps of the two extreme ends of the positive-1149 

negative continuum for five PFMs. Maps can directly be compared between the left (negative) 1150 

and the middle (positive), and difference maps are shown on the right (blue=negative>positive; 1151 

yellow=positive>negative).  Arbitrary thresholds used for visualisation purposes (same 1152 

thresholds for all maps), see videos for the unthresholded continuum. Gray outlines are based 1153 

on group average maps and are identical between left and right images to facilitate comparison. 1154 

Data available at https://balsa.wustl.edu/9qw5, https://balsa.wustl.edu/kKxK, 1155 

https://balsa.wustl.edu/07m9, https://balsa.wustl.edu/21gB, https://balsa.wustl.edu/rKw9. 1156 

 1157 

Figure 2-figure supplement 5: Representative maps of the two extreme ends of the positive-1158 

negative continuum for five PFMs. Maps can directly be compared between the left (negative) 1159 

and the middle (positive), and difference maps are shown on the right (blue=negative>positive; 1160 

yellow=positive>negative). Arbitrary thresholds used for visualisation purposes (same 1161 

thresholds for all maps), see videos for the unthresholded continuum. Gray outlines are based 1162 

on group average maps and are identical between left and right images to facilitate comparison. 1163 

Data available at https://balsa.wustl.edu/xKwn, https://balsa.wustl.edu/PG0X, 1164 

https://balsa.wustl.edu/7B1G, https://balsa.wustl.edu/6M1K, https://balsa.wustl.edu/16mg. 1165 

 1166 

Figure 2-figure supplement 6: Representative maps of the two extreme ends of the positive-1167 

negative continuum for five PFMs. Maps can directly be compared between the left (negative) 1168 

and the middle (positive), and difference maps are shown on the right (blue=negative>positive; 1169 

yellow=positive>negative).  Arbitrary thresholds used for visualisation purposes (same 1170 

thresholds for all maps except map 20, where lower thresholds were used), see videos for the 1171 

unthresholded continuum. Gray outlines are based on group average maps and are identical 1172 

between left and right images to facilitate comparison. Data available at 1173 

https://balsa.wustl.edu/5g1G, https://balsa.wustl.edu/nKVP, https://balsa.wustl.edu/gKkP, 1174 

https://balsa.wustl.edu/Mlpw, https://balsa.wustl.edu/Brql. 1175 

 1176 

Figure 2-figure supplement 7: Representative maps of the two extreme ends of the positive-1177 

negative continuum for five PFMs. Maps can directly be compared between the left (negative) 1178 

and the middle (positive), and difference maps are shown on the right (blue=negative>positive; 1179 

yellow=positive>negative).  Arbitrary thresholds used for visualisation purposes (same 1180 

thresholds for all maps), see videos for the unthresholded continuum. Gray outlines are based 1181 
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on group average maps and are identical between left and right images to facilitate comparison. 1182 

Data available at https://balsa.wustl.edu/lK0L, https://balsa.wustl.edu/qK7x, 1183 

https://balsa.wustl.edu/jK9z, https://balsa.wustl.edu/wKjp, https://balsa.wustl.edu/4nL6. 1184 

 1185 
Table 1: Results from simulated datasets in which one or more of the network matrices, 1186 

amplitudes and spatial maps are fixed to the group average to remove any subject variability 1187 

associated with it. Results in each row were driven by variables in which subject variability was 1188 

preserved, as indicated with ✓ (variables with ‘-’ were fixed to the group average). Results are 1189 

shown for within-subject correlations between simulated and original z-transformed network 1190 

matrices (Znetwork matrix), similarities of cross-subject variability represented in simulated and 1191 

original network matrices (Rcorrelation), and for results obtained from the CCA against behaviour 1192 

(where rU-V is the strength of the canonical correlation between imaging and non-imaging 1193 

measures, PU-V is the associated (family-wise error corrected) p-value estimated using 1194 

permutation testing, taking into account family structure, and rU-Uica is the correlation of a CCA 1195 

mode (subject weights) with the positive-negative mode of population covariation obtained from 1196 

ICA200 partial network matrices as used in (Smith et al., 2015). For brevity, this Table presents 1197 

results from full correlation network matrices obtained from a dual regression of ICA 200 maps 1198 

onto the simulated data (because this approach closely matches previously published findings 1199 

(Smith et al., 2015)), results for other parcellations are in Supplementary file 1c and for partial 1200 

correlation network matrices in Supplementary file 1d. The results for a wide range of different 1201 

parcellations show comparable trends (i.e., a large proportion of cross-subject variability is 1202 

captured purely by spatial maps, as indicated by the highlighted rows), and this main result is 1203 

also found when using partial network matrices (e.g., for ICA 200, 0.512=26% variance 1204 

explained in partial network matrices was captured by spatial information, and 0.542=29% 1205 

variance explained in full network matrices was captured by spatial information).  1206 

 1207 

https://paperpile.com/c/OyK8sR/8NZDD
https://paperpile.com/c/OyK8sR/8NZDD
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Figure 4-figure supplement 1: Similarities between cross-subject variations estimated from 1208 

different rfMRI measures. Subject-by-subject correlation matrices are estimated (A), and 1209 

vectorised (B; one subject correlation matrix being estimated for each measure type). The first 1210 

column of the similarities (C; highlighted) shows the relationship (full correlation) between the 1211 

ICA network matrix and various other measures, such as PFM spatial maps and amplitudes, 1212 

and ICA spatial maps. These results show that the ICA network matrix is closely related to PFM 1213 

spatial maps. The first row of the similarities (C; highlighted) shows the same relationship after 1214 

taking into account all the other elements (i.e., the partial correlation between different 1215 

measures). This reveals that PFM spatial maps are strongly linked to the ICA network matrix, 1216 

even after accounting for any variance that can be explained by ICA spatial maps and PFM 1217 

amplitudes. Similar results are obtained for ICA 200 and 25 dimensionality and for partial and 1218 

full network matrices (D). These findings are consistent with the simulation results in table 1, 1219 

showing that estimated network matrices and spatial topography to a large extent overlap in 1220 

terms of the interesting cross-subject variability they represent. Additionally, the results show 1221 

that while dual regression ICA spatial maps are able to capture some of the subject spatial 1222 

variability, subject maps estimated by PROFUMO capture considerably more spatial variability 1223 

over and above the dual regression maps. 1224 

  1225 
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Video file legends 1226 

Video file 1: Unthresholded maps are shown for the 4 PFMs that contribute most strongly to the 1227 

CCA result (14, 45, 35, 33; corresponding stills in Figure 2 and Figure 2-figure supplement 2). 1228 

Each video shows 5 frames representing the continuum from negative to positive CCA results.  1229 

 1230 

Video file 2: Unthresholded maps are shown for the next 4 PFMs that contribute most strongly 1231 

to the CCA result (following earlier video files; 22, 1, 8, 48; corresponding stills in Figure 2-figure 1232 

supplements 2&3). Each video shows 5 frames representing the continuum from negative to 1233 

positive CCA results.  1234 

 1235 

Video file 3: Unthresholded maps are shown for the next 4 PFMs that contribute most strongly 1236 

to the CCA result (following earlier video files; 4, 26, 15, 6; corresponding stills in Figure 2-figure 1237 

supplements 3&4). Each video shows 5 frames representing the continuum from negative to 1238 

positive CCA results.  1239 

 1240 

Video file 4: Unthresholded maps are shown for the next 4 PFMs that contribute most strongly 1241 

to the CCA result (following earlier video files; 40, 12, 50, 46; corresponding stills in Figure 2-1242 

figure supplements 4). Each video shows 5 frames representing the continuum from negative to 1243 

positive CCA results.  1244 

 1245 

Video file 5: Unthresholded maps are shown for the next 4 PFMs that contribute most strongly 1246 

to the CCA result (following earlier video files; 18, 9, 43, 2; corresponding stills in Figure 2-figure 1247 

supplements 5). Each video shows 5 frames representing the continuum from negative to 1248 

positive CCA results. 1249 

 1250 

Video file 6: Unthresholded maps are shown for the next 4 PFMs that contribute most strongly 1251 

to the CCA result (following earlier video files; 29, 11, 37, 24; corresponding stills in Figure 2-1252 

figure supplements 5&6, map 29 is missing from stills because results fall below the still 1253 

threshold). Each video shows 5 frames representing the continuum from negative to positive 1254 

CCA results. 1255 

 1256 

Video file 7: Unthresholded maps are shown for the next 4 PFMs that contribute most strongly 1257 

to the CCA result (following earlier video files; 10, 38, 20, 39; corresponding stills in Figure 2-1258 
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figure supplements 6&7). Each video shows 5 frames representing the continuum from negative 1259 

to positive CCA results. 1260 

 1261 

Video file 8: Unthresholded maps are shown for the next 4 PFMs that contribute most strongly 1262 

to the CCA result (following earlier video files; 49, 7, 19, 30; corresponding stills in Figure 2-1263 

figure supplements 7, map 19 is missing from stills because results fall below the still threshold). 1264 

Each video shows 5 frames representing the continuum from negative to positive CCA results. 1265 

 1266 

Video file 9: Unthresholded maps are shown for the next 4 PFMs that contribute most strongly 1267 

to the CCA result (following earlier video files; 17, 3, 42, 23; corresponding stills in Figure 2-1268 

figure supplements 5, maps 3, 42, 23 are missing from stills because results fall below the still 1269 

threshold). Each video shows 5 frames representing the continuum from negative to positive 1270 

CCA results. 1271 

 1272 

 1273 

 1274 

 1275 

 1276 

 1277 

 1278 

  1279 
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Supplementary file legends 1280 

Supplementary file 1a: Highly similar associations between behaviour and the brain can be 1281 

found across a wide range of different measures derived from fMRI. We included a set of 1282 

network matrices, spatial maps and amplitudes (node timeseries standard deviation) derived 1283 

from several distinct group-average spatial parcellations/decompositions: from ICA 1284 

decompositions at two scales of detail (dimensionalities of 25 and 200); a PROFUMO 1285 

decomposition (PFM; dimensionality 50); an atlas-based hard parcellation (108 parcels(Yeo et 1286 

al., 2011)); task contrast spatial maps (86 contrasts); and MSM warp fields from native space to 1287 

MSMAll aligned data (from estimate_metric_distortion; 1288 

https://github.com/ecr05/MSM_HOCR_macOSX/blob/master/src/MSM/estimate_metric_distortio1289 

n.cc). Each row reports a separate CCA analysis, performed against behaviour/life-factors. A 1290 

very similar mode of variation is found across most of the parcellation methods and different 1291 

fMRI measures. rU-V is the strength of the canonical correlation between imaging and non-1292 

imaging measures (confidence intervals estimated using surrogate data), PU-V is the associated 1293 

(family-wise error corrected) p-value estimated using permutation testing, taking into account 1294 

family structure, and rU-V CI is the 2.5-97.5% confidence interval estimated using surrogate data. 1295 

rU-Uica is the correlation of a CCA mode (subject weights) with the positive-negative mode of 1296 

population covariation obtained from ICA200 partial network matrices as used in(Smith et al., 1297 

2015), and is therefore defined to be 1 in the row containing the results from that CCA. The rU-1298 

Uica result was included because it shows whether different metrics are associated with similar or 1299 

distinct behavioural modes of population covariation (one may expect different rfMRI measures 1300 

to be associated with distinct aspects of behaviour). The final column contains the total number 1301 

of CCA modes with PU-V<0.05 (results in other columns correspond to the most significant CCA 1302 

mode, except for rU-Uica, which relates to the maximum correlation across all CCA modes). 1303 

 1304 

Supplementary file 1b: The rU-V results here are inflated in comparison to the results presented 1305 

in Supplementary file 1a (due to increased overfitting as a result of the parcellation only being 1306 

available in 441 subjects  compared with 819 subjects included for the other CCAs), but the 1307 

associated PU-V can (to some extent) be used for comparison. Therefore, this Table compares 1308 

PFM (d=50), HCP_MMP1.0 (d=360), and fractional surface area (the fraction of cortex occupied 1309 

by each area in the multimodal HCP_MMP1.0 parcellation) on the same set of 441 subjects 1310 

(only considering subjects with a complete set of 4800 resting state timepoints). 1311 

 1312 

https://paperpile.com/c/HUDDHu/HHgZA
https://github.com/ecr05/MSM_HOCR_macOSX/blob/master/src/MSM/estimate_metric_distortion.cc
https://github.com/ecr05/MSM_HOCR_macOSX/blob/master/src/MSM/estimate_metric_distortion.cc
https://paperpile.com/c/HUDDHu/C7gY6
https://paperpile.com/c/HUDDHu/HHgZA
https://paperpile.com/c/HUDDHu/C7gY6
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Supplementary file 1c: Results from simulated datasets in which one or more of the network 1313 

matrices, amplitudes and spatial maps are fixed to the group average to remove any subject 1314 

variability associated with it. Results in each row were driven by variables in which subject 1315 

variability was present, as indicated with ✓ (variables with - were fixed to the group average). 1316 

Results are shown for within-subject correlations between simulated and original z-transformed 1317 

network matrices (Znetwork matrix), across-subject correlations between simulated and original 1318 

subject correlation matrices (Rcorrelation), and for results obtained from the CCA against 1319 

behaviour. Note that comparable CCA results from the original data can be found in 1320 

Supplementary file 1a. This Table presents results from full correlation network matrices. 1321 

 1322 

Supplementary file 1d: Results from simulated datasets in which one or more of the network 1323 

matrices, amplitudes and spatial maps are fixed to the group average to remove any subject 1324 

variability associated with it. Results in each row were driven by variables in which subject 1325 

variability was present, as indicated with ✓ (variables with - were fixed to the group average). 1326 

Results are shown for within-subject correlations between simulated and original z-transformed 1327 

network matrices (Znetwork matrix), across-subject correlations between simulated and original 1328 

subject correlation matrices (Rcorrelation), and for results obtained from the CCA against 1329 

behaviour. This Table presents results from partial correlation network matrices. Note that the 1330 

results flagged with * are poorly estimated as a result of the low rank of the PFM subject 1331 

network matrices (containing 50 PFM modes) used to drive these simulations. The reason for 1332 

this is that the PFM 50-dimensional subject network matrices were added into the data (to keep 1333 

the simulation pipeline identical). This approximated 50-dimensional network matrix is too low 1334 

rank to allow accurate estimation of partial connectivity across a much larger number of nodes. 1335 

The full correlation results in Supplementary file 1c are estimable, and support the 25-1336 

dimensional ICA results. 1337 

 1338 

Supplementary file 1e: Modulating the subject spatial maps by thresholding and binarizing 1339 

retains the shape and size aspects, but removes any relative amplitude information from the 1340 

spatial maps. Binarised % results are binarised after applying a percentile threshold, and 1341 

therefore only retain shape aspects (while fixing the size). The results reveal that even after 1342 

thresholding and binarizing the spatial maps, remaining spatial variability strongly drives the 1343 

cross-subject information present in the resulting network matrices. See earlier Tables for a 1344 

description of the measures.  1345 
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