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Abstract Diverse repertoires of hypervariable immunoglobulin receptors (TCR and BCR)14

recognize antigens in the adaptive immune system. The development of immunoglobulin receptor15

repertoire sequencing methods makes it possible to perform repertoire-wide disease association16

studies of antigen receptor sequences. We developed a statistical framework for associating17

receptors to disease from only a small cohort of patients, with no need for a control cohort. Our18

method successfully identifies previously validated Cytomegalovirus and type 1 diabetes19

responsive TCR� sequences .20

21

Introduction22

T-cell receptors (TCR) and B-cell receptors (BCR) are hypervariable immunoglobulins that play23

a key role in recognizing antigens in the vertebrate immune system. TCR and BCR are formed24

in the stochastic process of V(D)J recombination, creating a diverse sequence repertoire. These25

receptors consist of two hypervariable chains, the � and � chains in the case of TCR. Progress in26

high throughput sequencing now allows for deep profiling of TCR� and TCR� chain repertoires,27

by establishing a near-complete list of unique receptor chain sequences, or “clonotypes”, present28

in a sample. Most sequencing data available correspond to TCR� only, but the same principles29

discussed below apply to TCR� repertoires, or to paired �� repertoires.30

Comparison of sequenced repertoires has revealed that in any pair of individuals, large numbers31

of TCR� sequences have the same amino acid sequence Venturi et al. (2011). Several mechanisms32

leading to the repertoire overlap have been identified so far. The first mechanism is convergent33

recombination. Due to biases in V(D)J recombination process, the probability of generation of34

some TCR� sequences is very high, making them appear in almost every individual multiple times35

and repeatedly sampled in repertoire profiling experiments Britanova et al. (2014). This sharing36

does not result from a common specificity or function of T-cells corresponding to the shared TCR�37

clonotypes, and may in fact correspond to cells from the naive compartment in both donors Quigley38

et al. (2010), or from functionally distinct subsets such as CD4 and CD8 T-cells. The second possible39

reason for TCR sequence sharing is specific to identical twins, who may share T cell clones as a40
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Figure 1. Method principle and pipeline. (Top left) Sequence overlap between two TCR or BCR repertoires.
(Bottom left) There are two major mechanisms for sequence sharing between two repertoires: convergent

recombination and convergent selection. Because convergent recombination favors sequences with high

generation probabilities, these two classes of sequences have different distributions of the generative

probability, Pgen(�). (Right) We estimate the theoretical Pgen(�) for each sequence � and compare it to Pdata(�),
which is empirically derived from the sharing pattern of that sequence in the cohort. Comparison of these two

values allows us to calculate the analog of a p-value, namely the posterior probability that the sharing pattern is

explained by the convergent recombination alone, with no selection for a common antigen.

consequence of cord blood exchange in utero via a shared placenta Pogorelyy et al. (2017). Note41

that in that scenario both the � and � chains are shared together. The third and most interesting42

mechanism for sharing the sequence of either the � or � or both chains is convergent selection in43

response to a common antigen. From functional studies, such as sequencing of MHC-multimer44

specific T-cells, it is known that the antigen-specific repertoire is often biased, and the same antigen-45

specific TCR � or � chain sequences can be found in different individualsMiles et al. (2011); Dash46

et al. (2017); Glanville et al. (2017).47

Reproducibility of a portion of the antigen-specific T-cell repertoire in different patients creates48

an opportunity for disease association studies using TCR� repertoire datasets Faham et al. (2017);49

Emerson et al. (2017). These studies analyse the TCR� sequence overlap in large cohorts of healthy50

controls and patients to identify shared sequences overrepresented in the patient cohort. Here we51

propose a novel computational method to identify clonotypes which are likely to be shared because52

of selection for their response to a common antigen, instead of convergent recombination. Our53

approach is based on a mechanistic model of TCR recombination and is applicable to small cohorts54

of patients, without the need for a healthy control cohort.55

Results56

As a proof of concept, we applied our method to two large publicly available TCR� datasets from57

Cytomegalovirus (CMV)-positive Emerson et al. (2017) and type 1 diabetes (T1D) Seay et al. (2016)58

patients. In both studies the authors found shared public TCR� clonotypes that are specific to59

CMV-peptides or self-peptides, respectively. Specificity of these clonotypes was defined using60

MHC-multimers. We show that TCR� chain sequences functionally associated with CMV and T1D in61

these studies are identified as outliers by our method.62

The main ingredient of our approach is to estimate the probability of generation of shared63

clonotypes, and to use this probability to determine the source of sharing (see Fig. 1). Due to the64

limited sampling depth of any TCR sequencing experiment, chances to sample the same TCR� clono-65
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Figure 2. A. CDR3aa of antigen specific clonotypes (red circles) have less generative probability than
other clonotypes shared among the same number of donors. The number of in silico rearrangements
obtained for each TCR� sequence in our simulation (which is proportional to generation probability for each
clonotype in a given VJ combination Ppost (�)), plotted against the number of patients with that TCR� clonotype.
B. Model prediction of generative probabilities agrees well with data. To directly compare Ppost (�) to data,
we estimate the empirical probability of occurrence of sequences, Pdata(�), from its sharing pattern across
donors (see Methods). In A. and B. red dots indicate significant results (adjusted P < 0.01, Holm’s multiple
testing correction), while red circles point to the responsive clonotypes identified in the source studies.

type twice are low, unless this clonotype is easy to generate convergently, with many independent66

generation events with the same TCR� amino acid sequence in each individual (convergent recom-67

bination), or if corresponding T-cell clone underwent clonal expansion, making its concentration68

in blood high (convergent selection). Thus, we reasoned that convergently selected clonotypes69

should have a lower generative probability than typical convergently recombined clonotypes. To test70

this, we estimated the generative probability of the TCR� ’s Complementarity Determining Region 371

(CDR3) amino-acid sequences that were shared between several patients. Since no algorithm exists72

that can compute this generative probability directly, our method relies on the random generation73

and translation of massive numbers of TCR nucleotide sequences using a mechanistic statistical74

model of V(D)J recombinationMurugan et al. (2012), as can be easily performed e.g. using the IGoR75

softwareMarcou et al. (2017).76

In Fig.2A we plot for each clonotype the number of donors sharing that clonotype against77

its generation probability. Disease-specific TCR� variants validated by functional tests in source78

studies are circled in red. Note that validated disease-specific TCR� sequences have a much lower79

generation probability than the typical sequences shared by the same number of donors. We80

developed a method of axis transformation (see Methods and Materials) to compare the model81

prediction with data values on the same scale (Fig.2B), so that outliers can be easily identified by82

their distance to identity line. Our method can be used to narrow down the potential candidates for83

further experimental validation of responsive receptors. Additional information, like the expansion84

of the identified TCR� clonotype in the inflammation site, the presence of the same clonotype in the85

repertoire of activated or memory T-cells, or absence in a cohort of healthy controls, could provide86

additional evidence for functional association of identified candidates with a given condition.87

Our method also identifies other significant outliers than reported in the source studies (shown88

in red, and obtained after multiple-test correction – see Methods), which may have three possible89

origins. First, they may be associated with the condition, but were missed by the source stud-90

ies.Second, they may be due to other factors shared by the patients, such as features involved in91
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thymic or peripheral selection, or reactivity to other common conditions than CMV (e.g. influenza92

infection). Third, they can be the result of intersample contamination. Our approach is able to93

diagnose the last explanation by estimating the likelihood of sharing at the level of nucleotide94

sequences (i.e. synonymously), as detailed in the Methods section.95

Discussion96

Antigen receptor sequencing currently has little clinical applications. One of the most important97

ones is diagnostics and tracking of malignant T-cell and B-cell clones in lymphomas, where it allows98

for directly measuring the abundances of certain clones at different timepoints. Our method allows99

for a sequence-based theoretical prediction of T-cell abundances at the population level, and for100

the identification of T-cell clones associated with infectious and autoimmune conditions. Extensive101

databases of condition-associated clones can provide a means of disease diagnostics and extend102

the clinical utility of antigen receptor repertoire sequencing technologies.103

This method may also be useful in the analysis of known antigen-specific TCR clonotypes. The104

typical source of such TCR sequences are MHC-multimer positive cells isolated from one or a few105

donors Shugay et al. (2017); Tickotsky et al. (2017). Some of these antigen-specific clonotypes are106

private, and are hard to find in other patients, providing limited diagnostic value. Our method is107

able to distinguish these clones from publicly responding clonotypes that are likely to be shared by108

many patients using only their CDR3 amino acid sequences.109

The cohort size necessary for the identification of antigen-specific clonotypes with our method110

varies (see “Designing the experiment” subsection in Methods). It depends on the strength and111

diversity of the response to the given antigen. CMV and other Herpesviridae (EBV, HSV), are able112

to cause a persistent infection, and a large fraction of the TCR repertoire of CMV-positive donors113

are believed to be specific to them—on average, up to 10% of CD8+ cells are specific to a single114

CMV epitope in elderly individuals Khan et al. (2004). However, it was shown that in a human115

acute infection model of yellow fever vaccination, virus-specific T-cell clones are one of the most116

abundant in the TCR repertoire and occupy up to 12% of the CD8+ T-cell repertoire. This response117

is short-lived and contracts significantly a month after immunization Miller et al. (2008). So the118

peak of an immune response is the best timepoint to search for antigen-specific TCRs in acute119

infections using this method. T-cell response to herpesviruses is also not unique in terms of public120

clonotype involvement—in ankylosing spondylitis Faham et al. (2017), 30-40% of patients share a121

certain TCR� aminoacid sequence, which is more than the fraction of patients sharing CMV-specific122

clonotypes that we analysed in this study.123

Our approach can be used on other hypervariable receptor chains (TCR�, BCR heavy and light124

chains), as well as other species (mice, fish, etc.). Both � and � chains contribute to T-cell receptor125

specificity. Single-cell or paired sequencing technologies ??Zemmour et al. (2018) could identify126

partner receptor chains for condition-associated TCR � or � chain sequences identified with our127

approach. Antigenic peptides recognized by complete T-cell receptors could then be recovered in128

vitro using yeast-display libraries of peptide-MHC Gee et al. (2017). As paired sequencing becomes129

more widespread, our method can be extended to the analysis of full paired TCR by applying the130

exact same analysis using the joint recombination probability of �� clonotypes.131

Recent advances in computational methods allow us to extract TCR repertoires from existing132

RNA-Seq data Bolotin et al. (2017); Brown et al. (2015). Huge numbers of available RNA-Seq datasets133

from patients with various conditions can be used for analysis and identification of novel virus,134

cancer, and self reactive TCR variants using our method. The more immunoglobulin receptors with135

known specificity are found using this type of association mapping, the more clinically relevant136

information can be extracted from immunoglobulin repertoire data.137
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Materials and Methods138

Statistical analysis139

Problem formulation140

Our framework is applicable to analyze the outcome of a next generation sequencing experiment141

probing the immune receptor repertoires of n individuals with a given condition, e.g. CMV or Type 1142

diabetes. We denote byMi the number of unique amino acid TCR sequences in patient i, i = 1,… , N .143

For a given TCR amino acid sequence �, we set xi = 1 to indicate that � is present in patient i’s144

repertoire, and xi = 0 otherwise. For a given shared sequence �, we want to know how likely its145

sharing pattern is under the null hypothesis of convergent recombination, correcting for the donors’146

different sampling depths. In other words, is � overrepresented in the population of interest? If � is147

significantly overrepresented, we also want to quantify the size of this effect.148

Overview149

Under the null hypothesis, the presence of � in a certain number of donors is explained by in-
dependent convergent V(D)J recombination events in each donor. Given the total number of

recombination events that led to the sequenced sample of donor i,Ni, the presence of given amino

acid sequence � in donor is Bernoulli distributed with probability

pi = ⟨xi⟩ =
(

1 − Ppost(�)
)Ni , (1)

Ppost(�) = Pgen(�) ×Q, (2)

where Ppost(�) is the model probability that a recombined product found in a blood sample has150

sequence � under the null hypothesis. It is formed by the product of Pgen(�), the probability151

to generate the sequence �, estimated using a V(D)J recombination model (see the following152

subsubsection ), and Q, a constant correction factor accounting for thymic selection (see Estimation153

of the correction factor Q subsubsection ). The number of independent recombination events154

Ni leading to the observed unique sequences in a sample i is unknown, because of convergent155

recombination events within the sample, but it can be estimated from the number of unique156

sequencesMi, using the model distribution Ppost (see Estimation of Ni subsubsection ).157

We also calculate the posterior distribution of Pdata(�), corresponding to the empirical counterpart158

of Ppost(�) in the cohort, inferred from the sharing pattern of � across donors. We use information159

about the presence of � in our donors, x1,… , xn and the sequencing depth for each donor,N1,… , Nn160

(see Estimation of Pdata(�) subsubsection ), yielding the posterior density: �(Pdata|x1,… , xN ).161

Finally, we estimate the probability, given the observations, that the true value of Pdata is smaller162

than the theoretical value Ppost predicted using V(D)J recombination model, analogous to a p-value163

and used to identify significant effects:164

ℙ(Ppost > Pdata) = ∫

Ppost

0
�(Pdata|x1,… , xn)dPdata. (3)

To estimate the effect size q(�) we compare Pdata to Ppost ,165

q(�) =
Pdata(�)
Ppost(�)

. (4)

Estimation of Pgen, the probability of generation of a TCR CDR3 amino acid sequence166

To procedure outlined above requires to calculate Pgen(�), the probability to generate a given167

CDR3 amino acid sequence. Methods exist to calculate the probability of TCR and BCR nucleotide168

sequences from a given recombination modelMurugan et al. (2012);Marcou et al. (2017), but are169

impractical to calculate the probability of amino acid sequences, because of the large number of170

codon combinations that can lead to the same amino acid sequence,
∏L

a=1 ncodons(�(a)), where L is171

the sequence length, and ncodons(�) the number of codons coding for amino acid �. The number is172

about 1.4 × 107 for a typical CDR3 length of 15 amino acid.173

5 of 12



Manuscript submitted to eLife

Instead, we estimated Pgen(�) using a simple Monte-Carlo approach. We randomly generated a174

massive number (Nsim = 2 × 109) of recombination scenarios according to the validated recombina-175

tion modelMurugan et al. (2012):176

P �
rearr

(r) = P (V )P (D, J )P (delV |V )P (insV D) (5)

×P (delDl,delDr|D)P (insDJ )P (delJ |J ).

The resulting sequences were translated, truncated to only keep the CDR3, and counted. Pgen(�) was177

approximated by the fraction of events thus generated that led to sequence �. This approximation178

becomes more accurate as Nsim increases, with an error on Pgen(�) scaling as (Pgen(�)∕Nsim)1∕2.179

Estimation of the correction factor Q180

Not all generated sequences pass selection in the thymus. Pgen systematically underestimates the181

frequency of recombination event that eventually make it into the observed repertoire. To correct182

for this effect, we estimate a correction factor Q, as was suggested in Elhanati et al. (2014):183

Ppost(�) = Pgen(�) ×Q. (6)

Contrary to Elhanati et al. (2014), which learned a sequence-specific factor for each individual,184

here we assume that all observed sequences passed thymic selection. Q is a normalization factor185

accounting for the fact that just a fraction Q−1 of sequences pass thymic selection. This factor is186

determined for each VJ-combination as an offset when plotting logPgen against logP ∗
data (see the187

following subsubsection for definition of P ∗
data), using least squares fitting.188

Estimation of Pdata(�), the probability of sequence occurrence in data189

The variable xi indicates the presence or absence of a given TCR amino acid sequence � in the ith190

dataset with Ni recombination events per donor. We want to estimate Pdata(�), which is a fraction of191

recombination events leading to � in the population of interest. According to Bayes’ theorem, for a192

given �, the probability density function of Pdata reads:193

�(Pdata|x1,… , xn) =
ℙ(x1,… , xn|Pdata)�prior(Pdata)

∫ 1
0 ℙ(x1,… , xn|Pdata)�prior(Pdata) dPdata

. (7)

The likelihood is given by a product of Bernouilli probabilities:194

ℙ(x1,… , xn|Pdata) =
N
∏

i=1

[

1 − (1 − Pdata)Ni
]xi [(1 − Pdata)Ni

]1−xi , (8)

and a flat prior �prior(Pdata) = const is used.195

We estimate P ∗
data (shown in Fig. 2B) as the maximum of the posterior distribution:196

P ∗
data = argmax

Pdata
�(Pdata|x1,… , xn). (9)

Estimation of Ni, the number of recombination events197

The total number Ni of recombination events in ith dataset is unknown, but we can count the198

number of unique CD3 acid sequencesMi observed in the sequencing experiment. For a typical199

TRB experiment, convergent recombination is relatively rare and one could use Ni ≈ Mi as an200

approximation. However, for less diverse loci (e.g TRA), or for much higher sequencing depths, one201

should correct for convergent recombination, as the the observed number of unique aminoacid202

sequences could be much lower than the actual number of corresponding recombination events.203

The average number of unique sequences resulting from Ni recombination events is, in theory:204

⟨Mi⟩ =
∑

�∈T
(1 − Ppost(�))Ni . (10)

where T is the set of sequences that can pass thymic selection. To estimate that number, we205

generate a very large number Nsim of recombinations, leading to Nuni unique CDR3 amino acid206
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sequences for which Pgen is estimated as explained above. We take T to be a random subset of207

unique sequences, T ⊂ {�1,… , �Nuni
}, of size |T | = Nuni∕Q, and we apply Eq. 10.208

Using this equation we plot the calibration curve for the TRBV5-1 TRBJ2-6 VJ datasets in Fig. 3.209

For comparison the case of no thymic selection (Q = 1) is shown in red. The inversion of this curve210

yields Ni as a function ofMi.211
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Figure 3. Calibration curve for TRBV5-1 TRBJ2-6 combination. Here we plot the fraction of unique amino
acid sequences to recombination events against the logarithm of the number of recombination events. The

blue line corresponds to the theoretical solution with selection, the red line corresponds to the theoretical

solution without selection.

Pipeline description212

In this section we describe how to apply our algorithm to real data. All the code and data necessary213

to reproduce our analysis is available online on github (https://github.com/pogorely/vdjRec/).214

We start with annotated TCR datasets (CDR3 amino acid sequence, V-segment, J-segment), one215

per donor. Such datasets are produced by MiXCR Bolotin et al. (2015), immunoseq (http://www.216

adaptivebiotech.com/immunoseq) and most other software for NGS repertoire data preprocessing.217

Data we used was in immunoseq format, publicly available from https://clients.adaptivebiotech.218

com/immuneaccess database.219

We proceed as follows:220

1. Split datasets by VJ combinations. The resulting datasets correspond to lists of unique CDR3221

amino acid sequences for each donor and VJ combination.All following steps should be done222

independently for each VJ combination.223

2. (Optional). Filter out sequences present in only one donor to speed up the downstream224

analysis.225

3. Generate a large amount of simulated nucleotide TCR sequences for a given VJ combination.226

Extract and translate their CDR3, and count how many times each sequence appears in the227

simulated set (restricting to sequences actually observed in donors for better efficiency). The228

resulting number divided by the total number of simulated sequences is an estimate of Pgen.229

4. Estimate P ∗
data for each sequence in the dataset, see Estimation of Pdata(�) subsubsection .230
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5. Using P ∗
data and Pgen, estimate for each VJ combination the normalization Q by minimizing231

∑n
j=1(logP

∗
data(�j) − logPgen(�j) − logQ)2, see Estimation of the correction factor Q subsubsection ,232

where �j , j = 1,… , n are the shared sequences.233

6. Calculate Ppost = Q × Pgen. Calculate the p-value (Eq. 3) and effect size (Eq. 4).234

Usage example235

Data sources236

Data from Emerson et al. (2017) and Seay et al. (2016) is publicly available from the immuneac-237

cess database: https://clients.adaptivebiotech.com/immuneaccess. For our analysis, we only238

considered VJ combinations for which the authors identified condition-associated clonotypes with239

MHC-multimer proved specificity. CDR3 aminoacid sequences and V and J segment of these TCR240

clonotypes are given in Table 1.

CDR3aa V-segment J-segment Antigen source Ref.

CASSLAPGATNEKLFF TRBV07-06 TRBJ1-4 CMV Emerson et al. (2017)
CASSPGQEAGANVLTF TRBV05-01 TRBJ2-6 CMV Emerson et al. (2017)
CASASANYGYTF TRBV12-3,-4 TRBJ1-2 CMV Emerson et al. (2017)
CASSLVGGPSSEAFF TRBV05-01 TRBJ1-1 self Seay et al. (2016); Gebe et al. (2009)
Table 1. Published antigen-specific clonotypes used to test the algorithm.

241

Analysis results242

We applied our pipeline to identify CMV-specific and self-specific TCR sequences listed in Table 1.243

For our analysis we used only case cohorts, without controls. For each dataset we followed our244

pipeline described in subsection . We found that sequences reported in the source studies as being245

both significantly enriched in the patient cohort, and antigen-specific according to MHC-multimers,246

were the most significant in 3 out of 4 datasets. In the remaining TRBV12 dataset, the sequence of247

interest was the top 40most significant out of 27, 699 sequences present in at least two CMV-positive248

donors.249

CDR3aa V J Ag.source . p-value rank p-value Effect size

CASSLAPGATNEKLFF 07-06 1-4 CMV 1/1637 1.2 × 10−17 8.8

CASSPGQEAGANVLTF 5-01 2-6 CMV 1/5549 1.8 × 10−17 42.3

CASASANYGYTF 12-3,-4 1-2 CMV 40/27669 2.5 × 10−14 28.8

CASSLVGGPSSEAFF 5-01 1-1 self 1/2646 9.5 × 10−19 524

Table 2. Output of the algorithm for sequences from table 1.

Identifying contaminations250

Intersample contamination may complicate high-throughput sequencing data analysis in many251

ways. It could occur both during library preparation or the sequencing process itself Sinha et al.252

(2017). Contaminations have the same nucleotide and amino acid sequence in all datasets, and253

so our method identifies them as outliers, because their sharing cannot be explained by a high254

recombination probability.255

Our method provides a tool to diagnose contamination. Given an amino-acid sequence present256

in many donors, wemeasure its theoretical nucleotide diversity using the same simulation approach257

we used to calculate the generative probability Pgen of the amino acid sequence (see Estimation of258

Pgen subsubsection ). If the diversity of the simulated nucleotide sequences is much larger than259

observed in the data, it is a sign of contamination.260
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We applied this approach to the CDR3 sequence CASSLVGGPSSEAFF associated to Type 1 diabetes,261

and found 19 recombination events consistent with that amino acid sequence out of our simulated262

dataset. We found 18 different nucleotide variants out of the 19 total possible. In contrast, in the263

data this clononotype had the same nucleotide variant in all of the 8 donors in which it was present.264

That variant was absent from the simulated set. A one-sided Fisher exact test gives a p < 10−6265

probability of this happening by chance, indicating contamination as a likely source of sharing.266

Designing the experiment267
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Figure 4. Simulation of the method performance with different cohort sizes, sequencing depths, effect
sizes and target clone abundances in population. In panels A. B. C. we plot the number of simulations (out
of 100) where a clone with a given effect size q (line color, see legend) and P̃data (x-axis) is found to be significant
using our approach, for cohort sizes of 10, 30 and 100 donors respectively. Larger cohort sizes and effect sizes

make it possible to resolve clonotypes with lower abundance in the population. In panel D. we show the effect
of sequencing depth for fixed q = 10: larger numbers of clonotypes sequenced per donor allow us to resolve
less frequent clones, since a clone of a given P̃data is detected in a larger fraction of donors (panel E.).

Our approach also allows us to obtain important estimates for experiment design. A number268

of variables affect detection of an antigen-specific clone using our approach: the abundance of269

the clone in the general population (represented by Pdata in our approach), the cohort size, the270

sequencing depth Ni in each donor in the cohort, and also the effect size. Fixing any two of these271

variables results in a constraint between the other two and the affects the probability to detect272

an antigen-specific clonotype, which translates into the statistical power of the method. As an273

example of such an analysis, we fix the cohort size at 10, 30 or 100 donors (see Fig. 4A. B. C.274

respectively) and the sequencing depth at Ni = 1000 unique clones sequenced per repertoire for a275

given VJ-combination in each donor in the cohort. We ask how frequently a disease specific clone276

with P̃data abundance in the population and effect size q = P̃data∕Ppost is detected with our method.277

To address this question for each value P̃data we perform a simulation: we simulate x1, x2,… , xn278
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Bernoulli variables, each with a pi = 1 − e−NiP̃data success probability. For a given value of P̃data and q279

there is a single value of Ppost = P̃data∕q. Then we calculate280

ℙ(Ppost > Pdata) = ∫

Ppost

0
�(Pdata|x1,… , xn)dPdata, (11)

where �(Pdata|x1,… , xn) is the posterior density, and check if ℙ(Ppost > Pdata) is below a significance281

threshold of 0.0001. Such a low significant threshold in this example is chosen to take into account282

the multiple testing correction: we assume that about 1000 shared clones would be tested in a283

such analysis and p<0.01 after multiple testing is chosen as the significance threshold in this study,284

which gives p<0.0001 before the Bonferroni multiple testing correction. Then we plot the number285

of simulations in which a significant result was obtained for given effect size q and P̃data for the clone286

of interest and the fraction of donors with this sequence in the simulated cohort (see Fig. 4E, blue287

curve). Unsurprisingly, the effect size plays a role in the probability to detect an antigen specific288

clone, and the detection is not possible at all if the clone is not shared between several donors289

in the cohort (in our example this happens for P̃data < 10−5) irrespective to the effect size. Larger290

cohort sizes can help to resolve clones with lower abundances, but sequencing depth also has a291

strong effect on the power of the approach. In Fig. 4D and E we show simulation results for a fixed292

q = 10 and different sequencing depths Ni of 100, 1000 or 10000 clones per donor in a given VJ293

combination. Interestingly, a large sequencing depth (black curve) can lead to a situation when an294

abundant and frequently generated clone will not be detected by the algorithm, because it will be295

found in all donors in the cohort. An additional test that checks the predictions by lowering the296

sequencing depth in silico by downsampling can solve this problem.297

Another complicated question is how Pdata is related to the number of clones and the fraction of298

the repertoire involved in the response to the infection in a given donor. If the same antigen-specific299

clone is present in every donor, Pdata is close to the average abundance of this clone in the repertoire.300

However one can imagine an opposite situation where the response is so diverse and private that301

different clones respond to a given antigen in each donor. It was previously shown that the diversity302

and publicness of responding T-cell clonotypes varies a lot across antigens Dash et al. (2017). Our303

approach is restricted to the identification of public antigen-specific clonotypes, which may not exist304

for all antigens.305

Acknowledgments306

This work was supported by Russian Science Foundation grant№15-15-00178, and partially sup-307

ported by European Research Council Consolidator Grant№724208.308

References309

Bolotin DA, Poslavsky S, Davydov AN, Frenkel FE, Fanchi L, Zolotareva OI, Hemmers S, Putintseva EV, Obraztsova310

AS, Shugay M, Ataullakhanov RI, Rudensky AY, Schumacher TN, Chudakov DM. Antigen receptor repertoire311

profiling from RNA-seq data. Nature Biotechnology. 2017; 35(10):908–911. http://www.nature.com/doifinder/312

10.1038/nbt.3979, doi: 10.1038/nbt.3979.313

Bolotin DA, Poslavsky S, Mitrophanov I, Shugay M, Mamedov IZ, Putintseva EV, Chudakov DM. MiXCR: software314

for comprehensive adaptive immunity profiling. Nature Methods. 2015 apr; 12(5):380–381. http://dx.doi.org/315

10.1038/nmeth.3364http://www.nature.com/doifinder/10.1038/nmeth.3364, doi: 10.1038/nmeth.3364.316

Britanova OV, Putintseva EV, Shugay M, Merzlyak EM, Turchaninova MA, Staroverov DB, Bolotin DA, Lukyanov S,317

Bogdanova EA, Mamedov IZ, Lebedev YB, Chudakov DM. Age-Related Decrease in TCR Repertoire Diversity318

Measured with Deep and Normalized Sequence Profiling. The Journal of Immunology. 2014 mar; 192(6):2689–319

2698. http://www.jimmunol.org/cgi/doi/10.4049/jimmunol.1302064, doi: 10.4049/jimmunol.1302064.320

Brown SD, Raeburn LA, Holt RA. Profiling tissue-resident T cell repertoires by RNA sequencing. Genome321

medicine. 2015; 7(1):125.322

Dash P, Fiore-Gartland AJ, Hertz T, Wang GC, Sharma S, Souquette A, Crawford JC, Clemens EB, Nguyen THO,323

Kedzierska K, La Gruta NL, Bradley P, Thomas PG. Quantifiable predictive features define epitope-specific T324

10 of 12

http://www.nature.com/doifinder/10.1038/nbt.3979
10.1038/nmeth.3364
http://www.jimmunol.org/cgi/doi/10.4049/jimmunol.1302064
10.4049/jimmunol.1302064
http://www.nature.com/doifinder/10.1038/nbt.3979
http://dx.doi.org/10.1038/nmeth.3364 http://www.nature.com/doifinder/10.1038/nmeth.3364
http://dx.doi.org/10.1038/nmeth.3364 http://www.nature.com/doifinder/10.1038/nmeth.3364
http://dx.doi.org/10.1038/nmeth.3364 http://www.nature.com/doifinder/10.1038/nmeth.3364
10.1038/nbt.3979
http://www.nature.com/doifinder/10.1038/nbt.3979


Manuscript submitted to eLife

cell receptor repertoires. Nature. 2017 jun; 547(7661):89–93. http://dx.doi.org/10.1038/nature22383http:325

//www.nature.com/doifinder/10.1038/nature22383, doi: 10.1038/nature22383.326

Elhanati Y, Murugan A, Callan CG, Mora T, Walczak AM. Quantifying selection in immune receptor repertoires.327

Proceedings of the National Academy of Sciences of the United States of America. 2014 jul; 111(27):9875–328

80. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4103359{&}tool=pmcentrez{&}rendertype=329

abstract, doi: 10.1073/pnas.1409572111.330

Emerson RO, DeWitt WS, Vignali M, Gravley J, Hu JK, Osborne EJ, Desmarais C, Klinger M, Carlson CS, Hansen331

JA, Rieder M, Robins HS. Immunosequencing identifies signatures of cytomegalovirus exposure history and332

HLA-mediated effects on the T cell repertoire. Nature Genetics. 2017 apr; 49(5):659–665. http://dx.doi.org/10.333

1038/ng.3822http://www.nature.com/doifinder/10.1038/ng.3822, doi: 10.1038/ng.3822.334

Faham M, Carlton V, Moorhead M, Zheng J, Klinger M, Pepin F, Asbury T, Vignali M, Emerson RO, Robins335

HS, Ireland J, Baechler-Gillespie E, Inman RD. Discovery of T Cell Receptor � Motifs Specific to HLA-B27-336

Positive Ankylosing Spondylitis by Deep Repertoire Sequence Analysis. Arthritis & Rheumatology. 2017 apr;337

69(4):774–784. http://doi.wiley.com/10.1002/art.40028, doi: 10.1002/art.40028.338

Gebe JA, Yue BB, Unrath KA, Falk BA, Nepom GT. Restricted autoantigen recognition associated with339

deletional and adaptive regulatory mechanisms. Journal of immunology (Baltimore, Md : 1950).340

2009 jul; 183(1):59–65. http://www.ncbi.nlm.nih.gov/pubmed/20199230http://www.pubmedcentral.341

nih.gov/articlerender.fcgi?artid=PMC2924527http://www.ncbi.nlm.nih.gov/pubmed/19535636http:342

//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2811410, doi: 10.4049/jimmunol.0804046.343

Gee MH, Han A, Lofgren SM, Beausang JF, Mendoza JL, Birnbaum ME, Bethune MT, Fischer S, Yang X, Gomez-344

Eerland R, Bingham DB, Sibener LV, Fernandes RA, Velasco A, Baltimore D, Schumacher TN, Khatri P, Quake345

SR, Davis MM, Garcia KC. Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating346

Lymphocytes. Cell. 2017; p. 1–15. https://doi.org/10.1016/j.cell.2017.11.043, doi: 10.1016/j.cell.2017.11.043.347

Glanville J, Huang H, Nau A, Hatton O, Wagar LE, Rubelt F, Ji X, Han A, Krams SM, Pettus C, Haas N, Arlehamn348

CSL, Sette A, Boyd SD, Scriba TJ, Martinez OM, Davis MM. Identifying specificity groups in the T cell receptor349

repertoire. Nature. 2017 jun; 547(7661):94–98. http://dx.doi.org/10.1038/nature22976http://www.nature.350

com/doifinder/10.1038/nature22976, doi: 10.1038/nature22976.351

Grigaityte K, Carter JA, Goldfless SJ, Jeffery EW, Ronald J, Jiang Y, Koppstein D, Briggs AW, Church GM, Atwal GS.352

Single-cell sequencing reveals �� chain pairing shapes the T cell repertoire. . 2017; doi: 10.1101/213462.353

Howie B, Sherwood AM, Berkebile AD, Berka J, Emerson RO, Williamson DW, Kirsch I, Vignali M, Rieder MJ,354

Carlson CS, Robins HS. High-throughput pairing of T cell receptor a and b sequences. Sci Transl Med. 2015;355

7(301):301ra131.356

Khan N, Hislop A, Gudgeon N, Cobbold M, Khanna R, Nayak L, Rickinson AB, Moss PAH. Herpesvirus-Specific CD8357

T Cell Immunity in Old Age: Cytomegalovirus Impairs the Response to a Coresident EBV Infection. The Journal358

of Immunology. 2004; 173(12):7481–7489. http://www.jimmunol.org/cgi/doi/10.4049/jimmunol.173.12.7481,359

doi: 10.4049/jimmunol.173.12.7481.360

Marcou Q, Mora T, Walczak AM. IGoR: A Tool For High-Throughput Immune Repertoire Analysis. bioRxiv. 2017;361

http://www.biorxiv.org/content/early/2017/05/23/141143, doi: 10.1101/141143.362

Miles JJ, Douek DC, Price DA. Bias in the �� T-cell repertoire: implications for disease pathogenesis and363

vaccination. Immunology and Cell Biology. 2011 mar; 89(3):375–387. http://www.ncbi.nlm.nih.gov/pubmed/364

21301479http://www.nature.com/doifinder/10.1038/icb.2010.139, doi: 10.1038/icb.2010.139.365

Miller JD, van derMost RG, Akondy RS, Glidewell JT, Albott S, Masopust D, Murali-Krishna K, Mahar PL, Edupuganti366

S, Lalor S, Germon S, Del Rio C, Mulligan MJ, Staprans SI, Altman JD, Feinberg MB, Ahmed R. Human effector367

and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity. 2008 may; 28(5):710–22.368

http://www.ncbi.nlm.nih.gov/pubmed/18468462, doi: 10.1016/j.immuni.2008.02.020.369

Murugan A, Mora T, Walczak AM, Callan CG. Statistical inference of the generation probability of T-cell receptors370

from sequence repertoires. Proceedings of the National Academy of Sciences. 2012 oct; 109(40):16161–16166.371

http://www.ncbi.nlm.nih.gov/pubmed/22988065http://www.pnas.org/cgi/doi/10.1073/pnas.1212755109, doi:372

10.1073/pnas.1212755109.373

11 of 12

http://www.ncbi.nlm.nih.gov/pubmed/20199230 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2924527 http://www.ncbi.nlm.nih.gov/pubmed/19535636 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2811410
http://www.ncbi.nlm.nih.gov/pubmed/21301479 http://www.nature.com/doifinder/10.1038/icb.2010.139
http://doi.wiley.com/10.1002/art.40028
10.1073/pnas.1212755109
10.1038/ng.3822
http://dx.doi.org/10.1038/nature22383 http://www.nature.com/doifinder/10.1038/nature22383
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4103359{&}tool=pmcentrez{&}rendertype=abstract
http://dx.doi.org/10.1038/ng.3822 http://www.nature.com/doifinder/10.1038/ng.3822
http://dx.doi.org/10.1038/nature22976 http://www.nature.com/doifinder/10.1038/nature22976
http://dx.doi.org/10.1038/nature22976 http://www.nature.com/doifinder/10.1038/nature22976
10.1002/art.40028
10.4049/jimmunol.0804046
http://www.ncbi.nlm.nih.gov/pubmed/20199230 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2924527 http://www.ncbi.nlm.nih.gov/pubmed/19535636 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2811410
http://dx.doi.org/10.1038/ng.3822 http://www.nature.com/doifinder/10.1038/ng.3822
http://dx.doi.org/10.1038/nature22383 http://www.nature.com/doifinder/10.1038/nature22383
10.1016/j.immuni.2008.02.020
http://www.ncbi.nlm.nih.gov/pubmed/20199230 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2924527 http://www.ncbi.nlm.nih.gov/pubmed/19535636 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2811410
http://www.jimmunol.org/cgi/doi/10.4049/jimmunol.173.12.7481
10.1038/icb.2010.139
http://www.ncbi.nlm.nih.gov/pubmed/22988065 http://www.pnas.org/cgi/doi/10.1073/pnas.1212755109
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4103359{&}tool=pmcentrez{&}rendertype=abstract
http://dx.doi.org/10.1038/nature22976 http://www.nature.com/doifinder/10.1038/nature22976
10.1016/j.cell.2017.11.043
http://www.ncbi.nlm.nih.gov/pubmed/21301479 http://www.nature.com/doifinder/10.1038/icb.2010.139
http://www.ncbi.nlm.nih.gov/pubmed/20199230 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2924527 http://www.ncbi.nlm.nih.gov/pubmed/19535636 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2811410
http://www.biorxiv.org/content/early/2017/05/23/141143
10.4049/jimmunol.173.12.7481
http://www.ncbi.nlm.nih.gov/pubmed/21301479 http://www.nature.com/doifinder/10.1038/icb.2010.139
https://doi.org/10.1016/j.cell.2017.11.043
10.1073/pnas.1409572111
http://www.ncbi.nlm.nih.gov/pubmed/18468462
http://dx.doi.org/10.1038/ng.3822 http://www.nature.com/doifinder/10.1038/ng.3822
http://www.ncbi.nlm.nih.gov/pubmed/20199230 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2924527 http://www.ncbi.nlm.nih.gov/pubmed/19535636 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2811410
10.1073/pnas.1212755109
10.1073/pnas.1212755109
http://dx.doi.org/10.1038/nature22383 http://www.nature.com/doifinder/10.1038/nature22383
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4103359{&}tool=pmcentrez{&}rendertype=abstract


Manuscript submitted to eLife

PogorelyyMV, Elhanati Y, Marcou Q, Sycheva AL, Komech EA, Nazarov VI, Britanova OV, Chudakov DM, Mamedov374

IZ, Lebedev YB, Mora T, Walczak AM. Persisting fetal clonotypes influence the structure and overlap of375

adult human T cell receptor repertoires. PLOS Computational Biology. 2017 jul; 13(7):e1005572. http:376

//biorxiv.org/content/early/2016/02/09/039297.abstracthttp://dx.plos.org/10.1371/journal.pcbi.1005572, doi:377

10.1371/journal.pcbi.1005572.378

Quigley MF, Greenaway HY, Venturi V, Lindsay R, Quinn KM, Seder Ra, Douek DC, Davenport MP, Price Da.379

Convergent recombination shapes the clonotypic landscape of the naive T-cell repertoire. Proceedings of the380

National Academy of Sciences of the United States of America. 2010; 107(45):19414–9. http://www.pnas.org/381

content/107/45/19414.short, doi: 10.1073/pnas.1010586107.382

Seay HR, Yusko E, Rothweiler SJ, Zhang L, Posgai AL, Campbell-Thompson M, Vignali M, Emerson RO, Kaddis JS,383

Ko D, Nakayama M, Smith MJ, Cambier JC, Pugliese A, Atkinson MA, Robins HS, Brusko TM. Tissue distribution384

and clonal diversity of the T and B cell repertoire in type 1 diabetes. JCI Insight. 2016 dec; 1(20):1–19.385

https://insight.jci.org/articles/view/88242, doi: 10.1172/jci.insight.88242.386

Shugay M, Bagaev DV, Zvyagin IV, Vroomans RM, Crawford JC, Dolton G, Komech EA, Sycheva AL, Koneva AE,387

Egorov ES, Eliseev AV, Van Dyk E, Dash P, Attaf M, Rius C, Ladell K, McLaren JE, Matthews KK, Clemens EB,388

Douek DC, et al. VDJdb: a curated database of T-cell receptor sequences with known antigen specificity.389

Nucleic Acids Research. 2017; 46(September 2017):419–427. http://academic.oup.com/nar/article/doi/10.390

1093/nar/gkx760/4101254/VDJdb-a-curated-database-of-Tcell-receptor, doi: 10.1093/nar/gkx760.391

Sinha R, Stanley G, Gulati GS, Ezran C, Travaglini KJ, Wei E, Chan CKF, Nabhan AN, Su T, Morganti RM, Conley392

SD, Chaib H, Red-Horse K, Longaker MT, Snyder MP, Krasnow MA, Weissman IL. Index Switching Causes393

“Spreading-Of-Signal” Among Multiplexed Samples In Illumina HiSeq 4000 DNA Sequencing. bioRxiv. 2017;394

http://www.biorxiv.org/content/early/2017/04/09/125724, doi: 10.1101/125724.395

Tickotsky N, Sagiv T, Prilusky J, Shifrut E, Friedman N. McPAS-TCR: a manually curated catalogue of pathology-396

associated T cell receptor sequences. Bioinformatics. 2017 sep; 33(18):2924–2929. https://www.ncbi.nlm.nih.397

gov/pubmed/28481982, doi: 10.1093/bioinformatics/btx286.398

Venturi V, Quigley MF, Greenaway HY, Ng PC, Ende ZS, McIntosh T, Asher TE, Almeida JR, Levy S, Price DA,399

Davenport MP, Douek DC. A mechanism for TCR sharing between T cell subsets and individuals revealed by400

pyrosequencing. Journal of immunology. 2011 apr; 186(7):4285–94. http://www.ncbi.nlm.nih.gov/pubmed/401

21383244, doi: 10.4049/jimmunol.1003898.402

Zemmour D, Zilionis R, Kiner E, Klein AM, Mathis D, Benoist C. Single-cell gene expression reveals a landscape of403

regulatory T cell phenotypes shaped by the TCR. Nature Immunology. 2018; http://www.nature.com/articles/404

s41590-018-0051-0, doi: 10.1038/s41590-018-0051-0.405

12 of 12

http://biorxiv.org/content/early/2016/02/09/039297.abstract http://dx.plos.org/10.1371/journal.pcbi.1005572
10.1371/journal.pcbi.1005572
http://www.ncbi.nlm.nih.gov/pubmed/21383244
10.1371/journal.pcbi.1005572
http://www.nature.com/articles/s41590-018-0051-0
http://www.biorxiv.org/content/early/2017/04/09/125724
http://www.nature.com/articles/s41590-018-0051-0
10.1172/jci.insight.88242
https://insight.jci.org/articles/view/88242
http://www.ncbi.nlm.nih.gov/pubmed/21383244
http://biorxiv.org/content/early/2016/02/09/039297.abstract http://dx.plos.org/10.1371/journal.pcbi.1005572
https://www.ncbi.nlm.nih.gov/pubmed/28481982
https://www.ncbi.nlm.nih.gov/pubmed/28481982
http://www.pnas.org/content/107/45/19414.short
10.1073/pnas.1010586107
http://www.ncbi.nlm.nih.gov/pubmed/21383244
10.1371/journal.pcbi.1005572
http://www.pnas.org/content/107/45/19414.short
10.4049/jimmunol.1003898
http://academic.oup.com/nar/article/doi/10.1093/nar/gkx760/4101254/VDJdb-a-curated-database-of-Tcell-receptor
https://www.ncbi.nlm.nih.gov/pubmed/28481982
http://www.nature.com/articles/s41590-018-0051-0
http://www.pnas.org/content/107/45/19414.short
http://academic.oup.com/nar/article/doi/10.1093/nar/gkx760/4101254/VDJdb-a-curated-database-of-Tcell-receptor
http://biorxiv.org/content/early/2016/02/09/039297.abstract http://dx.plos.org/10.1371/journal.pcbi.1005572
http://academic.oup.com/nar/article/doi/10.1093/nar/gkx760/4101254/VDJdb-a-curated-database-of-Tcell-receptor

	Article File
	Statistical analysis
	Problem formulation
	Overview
	Estimation of Pgen, the probability of generation of a TCR CDR3 amino acid sequence

	Statistical analysis
	Estimation of the correction factor Q
	Estimation of Pdata(), the probability of sequence occurrence in data
	Estimation of Ni, the number of recombination events

	Pipeline description
	Usage example
	Data sources
	Analysis results

	Identifying contaminations
	Designing the experiment

