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Abstract During awake consciousness, the brain intrinsically maintains a dynamical state in which

it can coordinate complex responses to sensory input. How the brain reaches this state

spontaneously is not known. General anesthesia provides a unique opportunity to examine how the

human brain recovers its functional capabilities after profound unconsciousness. We used

intracranial electrocorticography and scalp EEG in humans to track neural dynamics during

emergence from propofol general anesthesia. We identify a distinct transient brain state that

occurs immediately prior to recovery of behavioral responsiveness. This state is characterized by

large, spatially distributed, slow sensory-evoked potentials that resemble the K-complexes that are

hallmarks of stage two sleep. However, the ongoing spontaneous dynamics in this transitional state

differ from sleep. These results identify an asymmetry in the neurophysiology of induction and

emergence, as the emerging brain can enter a state with a sleep-like sensory blockade before

regaining responsivity to arousing stimuli.

DOI: https://doi.org/10.7554/eLife.33250.001

Introduction
During emergence from general anesthesia, the brain transitions out of the unconscious state and

recovers its ability to process complex sensory information and coordinate behavioral responses.

General anesthesia causes a profound disruption of information processing across large-scale corti-

cal (Alkire et al., 2008; Liu et al., 2012; Hudetz, 2012; Lewis et al., 2012; Dehaene et al., 2014;

Sarasso et al., 2014) and thalamocortical networks (Alkire et al., 2000; Ching et al., 2010;

Mhuircheartaigh et al., 2010; Nı́ Mhuircheartaigh et al., 2013; Vijayan et al., 2013; Akeju et al.,

2014; Baker et al., 2014; Flores et al., 2017), and suppression of arousal systems (Lydic and
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Baghdoyan, 2005; Franks, 2008; Brown et al., 2011), which then spontaneously reverts as the

anesthetic drug clears. While several studies have characterized the transition in electrophysiological

dynamics occurring at loss of consciousness during anesthetic inductions (Gugino et al., 2001;

Feshchenko et al., 2004; Ferrarelli et al., 2010; Supp et al., 2011; Lewis et al., 2012), less is

known about the dynamics that occur during emergence from general anesthesia and how they sup-

port recovery of a behaviorally responsive state (Purdon et al., 2013; Hudson et al., 2014;

Mukamel et al., 2014).

Electrophysiological evidence shows that many anesthetic-induced neurophysiological dynamics

undergo relatively symmetric transitions: shifts in spectral power, spatial correlations, phase-ampli-

tude coupling, and spike coherence that are observed during anesthetic induction gradually reverse

as drug concentrations are lowered (Breshears et al., 2010; Lee et al., 2010; Purdon et al., 2013;

Mukamel et al., 2014; Vizuete et al., 2014). However, it is also clear that the process of emerging

from anesthesia is not identical to anesthetic induction. Emergence occurs at lower anesthetic doses

than induction (Friedman et al., 2010), and this hysteresis suggests that state-dependent processes

also shape the transitions in and out of anesthesia. Behaviorally, some patients experience delirium,

a transient state of agitation and confusion which can arise during emergence from anesthesia

(O’Brien, 2002), suggesting that distinct neural mechanisms may underlie emergence. EEG and local

field potential recordings have suggested that the process of emergence may involve stepping

through discrete dynamical states (Lee et al., 2011; Hudson et al., 2014). Electrophysiological stud-

ies in rodents show that propofol-induced coherent alpha and delta oscillations, which appear to

mediate the functional disruption of thalamus and cortex during anesthesia, recover in a spatiotem-

poral sequence during emergence that is different from induction (Flores et al., 2017). These obser-

vations are consistent with a history-dependent process, in which the current brain state influences

the process by which the next brain state is reached. However, a neurophysiological mechanism or

network dynamic that is engaged selectively during emergence, rather than induction, is not known.

eLife digest General anesthesia is essential to modern medicine. It allows physicians to

temporarily keep people in an unconscious state. When infusions of the anesthetic drug stop,

patients gradually recover consciousness and awaken, a process called emergence. Previous studies

using recordings of electrical activity in the brain have documented spontaneous changes during

anesthesia. In addition, the way the brain responds to sounds or other stimulation is altered. How

the brain switches between the anesthetized and awake states is not well understood.

Studying the changes that happen during emergence may help scientists learn how the brain

awakens after anesthesia. A key question is whether the changes that occur during emergence are

the reverse of what happens when someone is anesthetized, or whether it is a completely different

process. Knowing this could help clinicians monitoring patients under anesthesia, and help scientists

understand more about how the brain transitions into the awake state.

Now, Lewis et al. show that people go through a sleep-like state right before awakening from

anesthesia-induced unconsciousness. In the experiments, recordings were made of the electrical

activity in the brains of people emerging from anesthesia. One set of recordings was taken in people

with epilepsy, who had electrodes implanted in their brains as part of their treatment. Similar

recordings of brain electrical activity during emergence were also made on healthy volunteers using

electrodes placed on their scalps. In both groups of people, Lewis et al. documented large changes

in electrical activity in the brain’s response to sound in the minutes before emergence.

These patterns of electrical activity during emergence were similar to those seen in patients

during a normal stage of sleep (stage 2). Patients who were about to wake up from general

anesthesia had suppressed brain activity in response to sounds, such as their name. Moreover, this

sleep-like state happened only during emergence, indicating it is a distinct process from going

under anesthesia. The experiments also suggest that the brain may use a common process to wake

up after sleep or anesthesia. More studies may help scientists understand this process and how to

better care for patients who need anesthesia.

DOI: https://doi.org/10.7554/eLife.33250.002
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In addition to shifts in spontaneous neurophysiological dynamics, sensory processing is also

strongly affected by induction and emergence from general anesthesia. Sensory-evoked potentials

(event-related potentials, ERPs) index specific phases of cognitive information processing and can

provide diagnostic measures of unconscious patients (Boly et al., 2011; King et al., 2013). Several

studies of ERPs during anesthesia have shown that disruption of higher level cognitive processing is

reflected by a reduction in amplitude of the mismatch negativity (MMN), potentials evoked by unex-

pected sensory input. The MMN declines in amplitude during induction of anesthesia

(Simpson et al., 2002; Heinke et al., 2004), whereas lower-level responses such as the auditory

steady-state response persist during sedation, and are abolished at deep anesthetic levels

(Plourde and Picton, 1990). Cortical responses to direct stimulation using TMS are more spatially

constrained and less complex during propofol-induced unconsciousness (Sarasso et al., 2015), con-

sistent with fragmentation of large-scale brain network activity during propofol anesthesia

(Lewis et al., 2012). The propagation of sensory information through thalamocortical circuits is thus

differentially affected at increasing doses of anesthesia, with higher-level, longer-latency responses

extinguished at low drug levels and then further suppression of short-latency evoked activity at high

drug levels.

At the deepest levels of anesthesia, when brain activity enters a state of ‘burst suppression’ alter-

nating between periods of isoelectric silence (suppressions) and periods of high-amplitude activity

(bursts), sensory stimuli can trigger the onset of a burst (Hartikainen et al., 1995; Kroeger and

Amzica, 2007). It is therefore clear that external sensory input can still influence cortical activity dur-

ing profound anesthesia. However, evoked responses during burst suppression are qualitatively dif-

ferent than those observed during normal sensory processing, as they typically manifest as a large-

amplitude burst containing the spectral dynamics of the pre-bursting state (Lewis et al., 2013),

rather than the distinct ERP waveform with classical components related to specific phases of cogni-

tive information processing seen in the waking state. Sensory input during burst suppression thus

appears to drive nonspecific cortical activity rather than effective processing of sensory information.

The neural dynamics supporting the brain’s ability to spontaneously recover wakeful conscious-

ness, regain sensory perception and resume complex cortical responses following the profound dis-

ruption caused by general anesthesia are not well understood. Late components of the ERP

continue to be disrupted even after patients have recovered consciousness and early components

have returned to baseline (Plourde and Picton, 1991; Koelsch et al., 2006), suggesting that emer-

gence represents a graded and prolonged return to the normal awake state rather than a simple

reversal of anesthesia induction. It is still unclear what ongoing brain dynamics contribute to altered

sensory processing during emergence from anesthesia.

Here, we use two independent datasets � intracranial recordings from patients emerging from

anesthesia after surgery, and high-density EEG recordings from a study of emergence in healthy vol-

unteers under controlled laboratory conditions � to provide a multiscale analysis of neural dynamics

during emergence from anesthesia. By defining the trajectory of changes in ongoing neural dynamics

and sensory evoked responses during the process of emergence, we identify a new transitional brain

state that occurs just before emergence from anesthesia. This state is marked by stimulus-evoked

cortical down states that resemble the K-complexes which are hallmarks of stage two non-rapid eye

movement (N2) sleep. However, its spontaneous dynamics qualitatively differ from sleep. We show

that this state occurs primarily in the minutes prior to awakening, identifying a novel transitional

brain state that is selective to anesthetic emergence.

Results
We analyzed intracranial recordings from 12 patients (13 sessions) with intractable epilepsy during

emergence from propofol general anesthesia. Subjects were implanted with subdural electrocorti-

cography (ECoG) and/or penetrating depth electrodes (1095 total electrodes). Emergence record-

ings took place immediately after completion of clinically indicated surgery to implant intracranial

electrodes. Recordings began during maintenance of anesthesia through the clinical infusion of pro-

pofol (Figure 1a), and continued after the infusion was stopped as the patient emerged from anes-

thesia and regained consciousness. In 8 of these subjects, recordings were also obtained during a

gradual anesthetic induction when patients returned for a second surgery 1–3 weeks later. We pre-

sented auditory stimuli every ~3–6 s throughout the emergence period, allowing us to assess cortical
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Figure 1. Auditory stimuli can evoke large, slow, asymmetric events during emergence from general anesthesia.

(A) Schematic of experimental procedures for intracranial study. (B) Example trace from a single subject shows that

a subset of auditory trials induce large evoked potentials. Data were lowpass filtered at 40 Hz and downsampled

to 100 Hz for display. (C) Zoomed-in view of one event, with gray box highlighting region in zoomed-out view. (D)

Median of events within 2 s of stimulus onset across all subjects, including all channels with at least five event trials

(n = 190 channels). Shaded region is quartiles. Sign has been flipped to be negative across all channels. (E) Mean

waveform in channel with the most events for an example subject, aligned to the event peak (n = 38 events).

Shaded region is standard error. (F) Mean waveform aligned to peak across all subjects and mean gamma power

during the event (n = 13 sessions, 13 channels, 1339 events). Shaded region is standard error. (G) Normalized

spectrogram of high frequencies in same subject and channel as panel E, shows large drop in gamma power

during events detected in individual subjects. Gray bar placed around frequency range with 60 Hz line noise.

DOI: https://doi.org/10.7554/eLife.33250.003

The following source data and figure supplement are available for figure 1:

Source data 1. Mean processed LPs for each intracranial subject during emergence.

DOI: https://doi.org/10.7554/eLife.33250.005

Figure 1 continued on next page
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reactivity to sensory stimuli as drug levels declined. Auditory stimuli consisted of either click trains at

40 Hz in one ear and 84 Hz in the other (2 s duration), non-verbal sounds, or spoken words (see

Materials and methods).

Auditory stimuli can induce large-amplitude evoked potentials during
emergence
During emergence from general anesthesia, we observed that in a subset of trials, auditory stimuli

elicited a large (>100 mV) and slow (duration >1 s) evoked potential (Figure 1b,c) across many elec-

trodes. We developed an automatic detection algorithm to identify these events, which we termed

large potentials (LP). LPs were defined as events of >400 mV amplitude lasting >400 ms (see Materi-

als and methods for additional details). We chose these thresholds to conservatively detect only

large events while ignoring small or ambiguous LP-like events. 16% of electrodes (n = 1095 electro-

des) exhibited at least five events using this detector. This number included electrodes from every

patient, as at least two electrodes with � 5 LPs were detected in each emergence session. To char-

acterize the relationship between these events and the auditory stimulation, we analyzed all trials on

which an LP occurred within two seconds of stimulus onset. The mean stimulus-triggered event on

each electrode (Figure 1d) had a median peak amplitude of 236 mV (quartile range (QR): 183–295),

a value that was lower than the detection threshold due to averaging together events with slightly

different peak times. The peak of the mean stimulus-triggered event occurred 1.01 s (QR:0.7–1.38)

after stimulus onset, and lasted 0.28 s (full-width at half max; QR: 0.05–0.47), a waveform that was

far slower and larger in amplitude than typical auditory-evoked responses in the awake state. The

LPs thus rank among the largest electrophysiological signals observed in human cortex, indicating

synchronization of electrical signaling among a substantial fraction of the local neuronal population.

The average stimulus-aligned waveform across patients can be temporally blurred due to differ-

ences in timing across subjects and electrode locations. To more precisely assess the amplitude and

waveform of these events, we selected the electrode with the most events in each subject, and ana-

lyzed the mean waveform of all detected events aligned to their peak. The peak-aligned events on

these electrodes were larger (median amplitude = 550 mV) and had an asymmetric morphology

(Figure 1c, d, e), with a sharper onset than offset (mean rise = 165 ms, mean fall = 285 ms, 95% con-

fidence interval (CI) for difference=[84 156] ms, bootstrap; p=0.0002, Wilcoxon signed-rank test) and

large post-peak rebound. Aligning to stimulus onset thus confirmed these events were auditory-

evoked, whereas analyses aligning to the peak demonstrated that the waveform of the events was

large and asymmetric, with substantial variability in exact time-to-peak.

The large, slow, and asymmetric waveform of the LPs resembles K-complexes (KCs), a characteris-

tic electrophysiological graphoelement that occurs spontaneously or following sensory stimulation

during stage two non-rapid eye movement (NREM) sleep (Loomis et al., 1938; Colrain, 2005;

Halász, 2016). The KC corresponds to a cortical DOWN state (Cash et al., 2009), in which local neu-

ronal firing is suppressed. To test whether LPs mark a similar cortical dynamic, we analyzed high-fre-

quency power in the LFP, which is correlated with local spike rates (Ray and Maunsell, 2011),

during all detected LPs. We selected the electrode with the most LPs in each subject and computed

the peak-triggered power, and found that LPs correlated with a strong reduction in broadband

gamma-range (40–100 Hz) power (�1.29 dB, CI=[�0.4–2.5], bootstrap; p=0.04, Wilcoxon signed-

rank test, Figure 1f,g), suggesting they too represent a DOWN state with suppression of neural

activity. This peak-locked analysis included both stimulus-evoked and spontaneous events. A sub-

stantial proportion (28%) of detected LPs appeared to occur spontaneously, as they were not pre-

ceded by an experimental stimulus within 2 s, although other auditory input present in the clinical

environment may have contributed to their generation. When the spectral analysis was instead per-

formed relative to the onset of the auditory stimulus, including only trials where LPs appeared within

2 s of a stimulus, we found that this decrease in high-frequency power reached a minimum at 1.3 s

post-stimulus, suggesting that the auditory-evoked potentials were also associated with prolonged

Figure 1 continued

Figure supplement 1. Schematic of datasets used.

DOI: https://doi.org/10.7554/eLife.33250.004
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suppression of neuronal activity. This slow timecourse is also similar to the timing of auditory-evoked

KCs during sleep (Colrain et al., 1999).

Large evoked potentials involve a spatially distributed frontotemporal
network
Intracranial recordings provide precise, millimetre-scale spatial resolution, enabling mapping of the

cortical sources of LPs. We measured the amplitude of the mean stimulus-evoked response across

all electrodes, on trials that evoked an LP in at least one electrode. We aligned mean responses to

stimulus onset, to allow consistent comparisons across channels that could exhibit different peak

times. Most subjects exhibited LPs on multiple electrodes, with amplitude of the evoked potential

varying widely across regions (Figure 2a). However, many electrodes exhibited no sign of an LP

Figure 2. Spatial distribution of the large evoked potential. (A) Example surface reconstruction of a single subject, where color indicates absolute value

of the amplitude of the mean potential over all ‘event trials’. (B) Number of electrodes exhibiting LP occurrence across regions (excluding white matter

and regions with <= 5 electrodes). Stars indicate regions with significantly higher proportions of high-LP channels than the mean rate (alpha = 0.05,

Bonferroni corrected). (C) Timecourse of the mean stimulus-evoked potential across a grid of electrodes in Patient seven shows that evoked potentials

can occur on a large number of channels (black dashed line shows time of stimulus onset).

DOI: https://doi.org/10.7554/eLife.33250.006
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Figure 3. Large evoked potentials occur during a brief transitional state. (A) Evoked potentials in a patient with a

long emergence recording, shows that LPs appear as the propofol concentration declines, and then subside

shortly after the patient’s first spontaneous movement (seen at ~2200–2900 s). Z-scored ERPs averaged in sliding

window of 60 s every 15 s. Gray shading covers window with insufficient (<8) events for averaging. (B) Normalized

evoked potentials in a patient with both an emergence and an induction recording. The pattern is asymmetric,

with stimulus-locked LPs occurring only during emergence. Z-score shows mean ERP normalized to the pre-

stimulus baseline in each time window. This patient was under light anesthesia at the end of surgery and LPs

appeared even before the propofol infusion was turned off. (C) Amplitude of the peak ERP across all subjects,

locked to ROC (movement onset) and normalized to pre-stimulus baseline. Evoked potential amplitude across all

subjects peaks in the 400 s prior to ROC, and then returns to baseline after ROC, indicating that LPs mostly occur

in the minutes preceding ROC. As a control, the peak pre-stimulus baseline z-score across subjects is plotted in

black, with gray shading indicating its mean value ±3*st.dev. over time. (D) Boxplot of absolute value of mean ERP

amplitude at 0.5–1 s post-stimulus in the eight subjects with both induction and emergence recordings. ERPs are

small at baseline, sedation, and post-LOC. They are largest in the bin after propofol is turned off and before ROC.

(E) Mean spectra across patients within the same 3 min time bins, red bars indicate frequency bands with

significant difference (p<0.05, bootstrap). The post-ROC state has greater low-frequency (<2 Hz), alpha/beta (~10–

24 Hz) and gamma (~30–50 Hz) power than the awake pre-anesthesia baseline (n = 7 subjects). (F) Same,

Figure 3 continued on next page
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despite showing ongoing local electrophysiological activity, indicating that these were not global

cortical events. The percentage of grid and strip electrodes with at least five detected LPs was high-

est in frontal and temporal cortex (39% of frontal electrodes, 36% of temporal electrodes,

Figure 2b), which had significantly higher proportions than the mean rate (26%, CI=[24 29], p<0.05,

Bonferroni corrected binomial test). Fewer parietal electrodes exhibited detectable LPs (11%). We

also found that LPs were recorded on 35 of the 129 depth electrodes placed in gray matter (27%),

including on deep contacts placed in hippocampus. The peak timing and morphology of the evoked

potential varied across space within individuals (Figure 2c). Overall, our intracranial recordings sug-

gest that LPs were restricted to a specific frontotemporal network of cortical regions rather than a

globally coherent slow wave.

Sensory-evoked LPs occur during a time-limited transitional state
To determine the timecourse of the stimulus-evoked LPs, we computed sliding window measures of

the mean evoked response over time, including all trials, on the electrode for each subject that

exhibited the most LPs. The LPs were primarily observed after propofol was turned off but before

the patient exhibited signs of recovery (Figure 3a,b). This effect was seen in the mean amplitude of

the ERP over time: the normalized ERP amplitude increased across subjects in the ~300 s prior to

the first behavioral sign of emergence, and subsided again thereafter (Figure 3c). In the eight

patients who had recordings in both induction and emergence, we analyzed the mean ERP ampli-

tude relative to behavioral state changes and found that the LPs occurred predominantly during

emergence, particularly in the pre-return of consciousness (pre-ROC) period, and not during induc-

tion (Figure 3d). Since our induction used a gradual infusion (Figure 1a), patients were guaranteed

to pass through a plasma concentration level during induction that matched their level at emer-

gence, demonstrating this transient state was selective to the process of emergence rather than only

a particular dosage level.

To test what ongoing dynamics accompanied this transitional LP state, we analyzed spectral con-

tent within each epoch. We found that the dynamics during emergence were substantially different

from induction, exhibiting significantly greater low-frequency (<2 Hz) and alpha power even after

awakening (Figure 3e). Comparing the three minutes immediately after behaviorally defined loss of

consciousness (LOC) during induction, and the three minutes immediately prior to return of con-

sciousness (ROC), a smaller but otherwise similar power difference was evident (Figure 3f).

Evoked LPs detected in scalp EEG reveal asymmetric induction and
emergence dynamics
While the intracranial recordings suggested asymmetry between induction and emergence, due to

time constraints in the operating room we were not able to measure intracranially over prolonged

periods. To test these dynamics in a more controlled setting and in a population of healthy subjects,

we next analyzed scalp EEG data recorded during a stepped infusion of propofol in healthy volun-

teers (Purdon et al., 2013; Mukamel et al., 2014), during presentation of auditory stimuli that were

click trains, words, and the subject’s own name. This stepped infusion protocol induced slow

changes in propofol concentration and behavioral responses (Figure 4a,b). The steady-state auditory

evoked potential to the auditory click train stimuli also declined, quantified as the induced power at

40 Hz, corresponding to the click frequency (Figure 4c). To confirm this decrease was selective to

the auditory-evoked band rather than broadband, we also analyzed power at a ’control’ frequency

of 22 Hz (i.e., not the stimulus frequency) and found no change. We next examined the traces and

Figure 3 continued

demonstrates a broadband increase in power above 10 Hz in the emerging state, relative to immediately after

LOC during induction (n = 8 subjects). Red bars indicate significant differences at p<0.05 (bootstrap).

DOI: https://doi.org/10.7554/eLife.33250.007

The following source data is available for figure 3:

Source data 1. Mean amplitudes of the ERP for each intracranial subject across conditions.

DOI: https://doi.org/10.7554/eLife.33250.008
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found that large evoked potentials were clearly visible during emergence after large-amplitude slow

oscillations subside (Figure 4d,e,f).

To apply the same LP detector, we focused on a frontal EEG electrode, as frontal electrodes had

high LP rates in our intracranial data (Figure 2b) and did not exhibit the large auditory-evoked

potentials of the temporal electrodes. We detected stimulus-evoked LPs (peak >7 s.d., Figure 4)

during emergence from propofol anesthesia in 4 out of 10 subjects, despite the lower spatial resolu-

tion of the scalp recordings (Figure 4e,f,g). If the detection threshold was lowered (peak >5 s.d.),

we could also observe brief traces of similar events in the induction period in 3 of the 10 subjects.

However, these periods were brief and infrequent (Figure 4e), suggesting that this brain state

occurs primarily (but not exclusively) during emergence (Figure 4—figure supplement 1). While we

detected these events in a frontal electrode, LP events were observed broadly across the scalp (Fig-

ure 4—figure supplement 1), consistent with the widespread spatial profiles we observed in the

intracranial data. These results in healthy volunteers confirmed that the LPs were not related to epi-

leptic events in the patients. Furthermore, they show that LPs occurred primarily during emergence

(Figure 4h,i, fig. supp. 1) even in these experiments with a prolonged induction period, lasting more

than twice as long as the emergence period.

In these subjects, the LPs were also found to be stimulus-selective: they occurred preferentially in

response to the sound of words and names, and did not occur following click-train stimuli

(Figure 4h, Figure 4—figure supplement 1). In contrast, no such stimulus selectivity was observed

in the intracranial patients, as each stimulus type could elicit LPs (in the channel with the most events

in each subject, LPs occurred within 2 s of 21% of word stimuli; 20% of sounds stimuli; 22% of click-

train stimuli). A key difference between these two datasets was the relative frequency of the name

and word stimulus categories, which were infrequent (20% names/words, 80% clicks) in the scalp

data but were evenly distributed in the intracranial data (30% words, 40% clicks, 30% sounds). The

increased saliency of an infrequent stimulus may thus increase the probability of an LP, similar to

reports for KCs during sleep (Colrain et al., 1999).

We observed LPs for a prolonged period that could extend after the initial ROC in the scalp EEG

dataset (Figure 4h,i, Figure 4—figure supplement 1), whereas LPs were only present before ROC

in the intracranial dataset (Figure 3d, Figure 4—figure supplement 1). This difference likely reflects

the differences in arousal state across these two datasets: in the intracranial study, the drug was

completely shut off and patients emerged rapidly as drug levels monotonically decreased. In con-

trast, in the scalp EEG dataset, the propofol levels were lowered in a gradual, stepped fashion

(Figure 4a), leading to a prolonged emergence period over tens of minutes. These large LPs there-

fore may be present not only in the minutes prior to any sign of ROC, but may continue through

emergence until a relatively heightened arousal state is reached.

Evoked responses strongly resemble spontaneous K-complexes during
sleep
Although the LPs shared some properties with the spontaneous KCs that occur during N2 sleep, the

propofol emergence period could be expected to also exhibit significant differences from natural

sleep. To test the similarity between events during sleep and during emergence, we obtained intra-

cranial recordings during sleep from a subset of the patients (n = 3 patients). To compare the LPs

detected during propofol with the spontaneous KCs during sleep, we first verified that the automatic

detection algorithm could identify events in the sleep datasets. We found that 64% of manually iden-

tified KCs were also flagged by the automatic detector, suggesting this approach could be used to

quantitatively compare the two phenomena within this patient cohort (although the high number of

misses, 36%, suggests it should not be employed as a KC detector for more general purposes).

The LPs recorded during emergence and the sleep KCs shared an overall profile of large (>100

mV) and slow (~1 s) waveforms (Figure 5a). No significant difference in median amplitude was seen

between the propofol and sleep datasets (grouped median in sleep = 644 mV (CI=[630 673]), propo-

fol = 647 mV (CI=[623 665]), bootstrap; p=0.59, Wilcoxon rank-sum test), and the distributions of

event amplitudes shared a high degree of overlap (Figure 5b).

The spatial distribution of sleep KCs also appeared very similar to that seen during emergence

from propofol anesthesia (Figure 5c,d). To test this spatial similarity, we computed the mean event

waveform across all electrodes, triggered on the peak of each event detected in a single electrode

with a large number of events in both the sleep and propofol recordings. We found that the mean
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Figure 4. Large evoked potentials can be detected during emergence in scalp EEG recordings. (A) Experimental design for scalp EEG volunteer study:

target propofol plasma concentration increased and decreased as a controlled step function. (B) Behavioural response rate in one subject shows times

of loss of consciousness (LOC) and recovery of consciousness (ROC). (C) Steady state auditory evoked potential (SSAEP) at lateral electrodes to the click

train stimulus (repetition rate 40 Hz, red) declines during propofol general anesthesia; the control frequency (22 Hz) shows no SSAEP. (D) EEG at a

central electrode over the entire recording shows high-amplitude, low-frequency power during the anesthetized period. Prior to ROC (around 120 min,

marker 4), large unipolar negative potentials are observed (arrow). (E) Stimulus-triggered average exhibits large, slow potentials prior to return to the

awake state, but not during induction or during maintenance. (F) Example records from the epochs marked in panel D show that sensory-evoked LPs in

the scalp EEG occur during emergence (4), but not pre-anesthesia baseline (1), pre-LOC (2) or profound unconsciousness (3). (G) Median of events in a

central channel occurring during ROC following click stimuli. Shaded region is interquartile range. (H) Timecourse of ERP amplitudes in the same

individual subject: boxplot indicates variability of mean ERP amplitude across individual trials. LPs selectively appear during emergence, and are evoked

by the infrequent word and name stimuli (orange, green), but not by the frequent noise bursts (black). Stars indicate significance at p<0.01 with

Wilcoxon signed-rank test. This subject exhibits a slow emergence with LPs appearing around and after the initial onset of ROC. (I) Boxplot of absolute

value of mean ERP amplitude across all subjects estimated within 5 min windows during each epoch. Colored points show individual subjects.

DOI: https://doi.org/10.7554/eLife.33250.009

The following source data and figure supplement are available for figure 4:

Source data 1. Mean ERP for each EEG subject (baseline).

DOI: https://doi.org/10.7554/eLife.33250.011

Source data 2. Mean ERP for each EEG subject (post LOC).

DOI: https://doi.org/10.7554/eLife.33250.012

Source data 3. Mean ERP for each EEG subject (post ROC).

DOI: https://doi.org/10.7554/eLife.33250.013

Source data 4. Mean ERP for each EEG subject (pre ROC).

DOI: https://doi.org/10.7554/eLife.33250.014

Figure supplement 1. Evoked potentials in scalp EEG dataset.

DOI: https://doi.org/10.7554/eLife.33250.010
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event amplitude across electrodes was significantly correlated when comparing sleep and propofol

(R = 0.92,0.62,0.71, for the three patients, Figure 5c, Figure 5—figure supplement 1), meaning

that electrodes with large KCs were likely to also exhibit large LPs during emergence. Overall, the

shared waveform, spatial distribution, and timing of these events suggest that the LPs observed dur-

ing propofol emergence may engage the circuit mechanisms that generate KCs during natural sleep.

Figure 5. The events observed during propofol emergence resemble K-complexes seen during natural sleep. (A) Example traces of automatically

detected events on a single channel during propofol emergence and during sleep in the same subject. (B) Distribution of absolute value of event

amplitudes in emergence and in sleep. Waveform distributions are very similar across the two datasets. (C) The amplitude of the mean event on

individual channels is highly consistent across sleep and emergence; large values are the channels with large LPs. Channels with large LPs consistently

also show large KCs; channels with no LPs (near-zero amplitudes) do not have large KCs during sleep. In each patient, the spatial profile of events is

highly consistent across sleep and emergence. (D) Timeseries across eight grid channels during emergence and during sleep demonstrates that the LPs

typically occur on the same channels and with the same polarity as the KCs seen in natural sleep. Red stars indicate events detected on multiple

channels; black arrows show timing of auditory stimuli.

DOI: https://doi.org/10.7554/eLife.33250.015

The following source data and figure supplement are available for figure 5:

Source data 1. Channelwise peak amplitudes (Patient 1).

DOI: https://doi.org/10.7554/eLife.33250.017

Source data 2. Channelwise peak amplitudes (Patient 8).

DOI: https://doi.org/10.7554/eLife.33250.018

Source data 3. Channelwise peak amplitudes (Patient 12).

DOI: https://doi.org/10.7554/eLife.33250.019

Figure supplement 1. Correlated spatial properties of events across emergence and sleep.

DOI: https://doi.org/10.7554/eLife.33250.016
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Given the resemblance of the LPs to KCs, we next tested whether ongoing spectral dynamics

within the LP period resembled N2 sleep. We computed the power spectrum during a manually

selected period exhibiting LPs during emergence, and compared these to segments of sleep record-

ings manually identified as N2 sleep. We found substantial differences in these spectra, with propo-

fol emergence exhibiting more power across a broad frequency range of 10 to 40 Hz throughout all

recorded cortical regions (Figure 6, median difference = 5.6 dB, CI=[3.9 6.1], bootstrap; p<0.001 in

each subject, Wilcoxon signed-rank test). In addition, the sleep spectra exhibited clear spindle power

(10–14 Hz) peaks across cortical regions, whereas the emergence spectra exhibited either no peak

or a spatially restricted frontal alpha (~10 Hz) peak characteristic of deep propofol anesthesia

(Figure 6c). These results demonstrate that while some common neurophysiological events can be

observed in stage two sleep and in this transient emergence period, emergence is a distinct brain

state that is not identical to sleep.

Discussion
Using both intracranial ECoG and scalp EEG recordings, we found that emergence from general

anesthesia is accompanied by a transient state in which auditory stimuli can evoke large potentials

(LPs) corresponding to all-or-none cortical suppressions lasting several hundred milliseconds. LPs

strongly resemble the K-complexes observed in N2 sleep, although the neural dynamics of emer-

gence from general anesthesia nevertheless represent a distinct state. This state appeared primarily

during emergence and foreshadowed the return of behavioral responsiveness, suggesting it repre-

sents a distinct brain state through which patients transition as they recover consciousness. Our data

Figure 6. Ongoing electrophysiological dynamics differ between sleep and emergence. (A) Example spectrum

from a single channel: emergence is associated with stronger broadband power at frequencies >10 Hz than N2

sleep. (B) Difference in 10–40 Hz power across all electrodes in emergence (E) vs. N2 sleep (S), categorized by

anatomical location: power is significantly lower across all electrodes during sleep in each subject (p<0.001,

signed-rank test). (C) Spatial profile of dynamics in a single patient categorized by spatial location: while alpha and

spindle dynamics vary spatially, 10–40 Hz power is elevated during emergence across a broad cortical region.

DOI: https://doi.org/10.7554/eLife.33250.020
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indicate that the brain’s response to propofol is hysteretic, such that the current state is determined

not only by the drug concentration but also by the recent history of the brain’s activation.

The brain state we observed appears to be distinct from the sedated state experienced by

patients during slow anesthetic induction, as it was exclusively observed during emergence and not

induction of general anesthesia in the intracranial recordings. A small number of LPs were detected

during induction of anesthesia in a subset of subjects over the course of extremely long (>1 hr)

inductions in the scalp EEG dataset, but these were rare and vastly outnumbered by the more fre-

quent LPs occurring during emergence. In addition, a previous intracranial study of slow (~1 hr)

inductions of propofol general anesthesia did not report analogous events (Nourski et al., 2017),

suggesting this phenomenon is primarily a signature of emergence. We also found that this transi-

tional state is not identical to sleep: comparing neural dynamics during sleep and emergence from

general anesthesia in the same subjects identified substantial differences in the power spectrum.

The frontal alpha rhythm characteristic of propofol anesthesia is still present during emergence

(Feshchenko et al., 2004; Murphy et al., 2011; Purdon et al., 2013), but not during N2 sleep, indi-

cating these are distinct brain states. Spontaneous alpha rhythms during propofol are thought to be

generated by increased inhibitory tone in thalamic circuits, causing an intrinsic ~10 Hz dynamic to

emerge (Ching et al., 2010). These alpha rhythms are still present during the LPs, suggesting the

thalamus may be exhibiting an altered excitatory/inhibitory balance as compared to sleep. However,

despite the difference in spontaneous dynamics, the LP events themselves share many common

properties with sleep, exhibiting highly similar waveforms and spatial profiles. In addition, LPs

occurred at higher rates in response to more salient stimuli. A similar effect has also been found in

sleep, as salient stimuli (such as rare stimuli or the subject’s own name) produce larger KC peaks dur-

ing sleep (Colrain et al., 1999; Perrin et al., 1999). These events may therefore reflect an analogous

effect of arousing stimuli in sleep and emergence, which could conceivably be related to some simi-

larity in circuit state, such as ongoing tonic vs. bursting dynamics in thalamus. The common morphol-

ogy of the LPs we observe during emergence and the KCs characteristic of sleep suggest that

similar circuit mechanisms are engaged by auditory stimuli despite differences in the ongoing spon-

taneous dynamics.

There is evidence that neuromodulatory arousal systems mediate emergence from general anes-

thesia, distinct from induction. Disruption of orexinergic signaling increases the time required for

emergence from anesthesia, but does not change the dose-response sensitivity for induction

(Kelz et al., 2008). Coherent alpha (8–12 Hz) and delta (1–4 Hz) oscillations develop rapidly and per-

vasively across medial prefrontal cortex and thalamus at loss of consciousness induced by propofol,

and likely mediate the functional disruption of these areas, contributing to the state of unconscious-

ness (Flores et al., 2017). During emergence, these oscillations dissipate in a sequence distinct from

induction, beginning with superficial cortical layers and medial and intralaminar thalamic nuclei, fol-

lowing known cortical and thalamic projection patterns for dopaminergic and cholinergic signaling

(Flores et al., 2017). Neuromodulatory activity during emergence could therefore create unique cor-

tical and thalamic circuit states that enable LP responses to sensory stimulation. Given the similarity

between LPs under anesthesia and sleep K-complexes, similar mechanisms might also play a role in

modulating levels of arousal during sleep.

The LPs we observe are qualitatively different from the ongoing slow oscillations that occur dur-

ing deep anesthesia (Steriade et al., 1993; Breshears et al., 2010; Murphy et al., 2011;

Lewis et al., 2012). LPs occur after the ongoing slow oscillation has largely subsided and reflect an

isolated cortical DOWN state elicited by auditory stimulation, rather than a rhythmic cortical

dynamic. However, the occurrence of LPs increases power in the same low-frequency bands of the

spectrum that are occupied by the slow oscillation. Future studies may therefore need to take care

that their analyses differentiate between these two distinct states, as increased low-frequency power

may indicate isolated LP occurrence and foreshadow awakening, and will be important to distinguish

from the slow oscillations of deep anesthesia.

While the LPs were strikingly large, they may have been obscured in previous studies due to the

brief and transient nature of the state in which they occur. In addition, we observed substantial het-

erogeneity across patients in terms of the frequency and timing of the LPs. In the intracranial data

this heterogeneity may be partially explained by variation in electrode location, the duration and

complexity of the surgery, and dosage of clinical medications administered to each patient. In the

scalp EEG data, however, drug levels were controlled and no surgery was performed, yet
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heterogeneity across subjects was still present. This heterogeneity is also consistent with clinical

observations, as patients are much more variable in how long they take to emerge than they are in

induction. Following anesthetic emergence, patients exhibit variable levels of arousal, with some

patients taking hours to return to alertness (Larsen et al., 2000). While animal studies have reported

stereotyped transitions between states (Hudson et al., 2014), possibly due to increased experimen-

tal control and genetic similarity between individual animals, human studies have suggested that

individuals may exhibit different trajectories during emergence from anesthesia (Hight et al., 2014),

and undergo different transitions between distinct, potentially sleep-like states (Chander et al.,

2014). This variability may reflect individual differences in arousal regulatory circuits or even in drug

diffusion rates across the brain. It may also be that some patients pass through the transient stage

too quickly for it to be identified using our analyses. Another possibility is individual physiological

differences, such as receptor density or vascular properties, could modulate the relative rate of drug

clearance in cortex and subcortex, and that only some individuals may experience this state. How-

ever, since these events were detected in all the intracranial patients we studied, it may be that the

transient state occurs in most patients but is more challenging to detect in scalp EEG due to blurring

of signals measured at the scalp. In addition, the healthy volunteers received a smaller total amount

of propofol than the clinical patients, and may therefore have been more likely to emerge too rap-

idly to detect this brief state.

The precise circuit mechanisms that generate the LP phenomenon are not clear, and will be chal-

lenging to identify with certainty using data from human subjects. However, we suggest that the

sleep K-complex may share some mechanistic parallels with the LPs observed here. The KC is an iso-

lated cortical DOWN state (Cash et al., 2009) and is likely to also involve thalamic circuits

(Jahnke et al., 2012; Mak-McCully et al., 2014). While previous animal studies have identified spon-

taneous KCs during maintenance of ketamine-xylazine anesthesia (Amzica and Steriade, 1998a),

these occurred as part of an ongoing slow oscillation rather than the isolated auditory-evoked events

seen here and during N2 sleep. Moreover, those events were not selective to anesthetic emergence,

suggesting they represent a different phenomenon. Stimulus-evoked potentials in animal studies

have primarily reported stimulus-evoked responses with a faster timecourse than the LPs reported

here (Amzica and Steriade, 1998b), perhaps reflecting a different phenomenon during relatively

stable states of anesthesia in most animal studies, compared with dynamic changes during awaken-

ing. Future animal studies should therefore track the gradual process of emergence to identify the

mechanisms of the isolated LPs identified here. One possible mechanism is that increased thalamic

activation leads to strong stimulation of the thalamic reticular nucleus (TRN), leading to a thalamic

and subsequent cortical suppression. This theory would be consistent with animal studies that have

induced slow waves through stimulation of TRN and suppression of thalamocortical neurons

(Lewis et al., 2015), and with human imaging studies demonstrating that emergence is associated

with increased activity in subcortical arousal structures such as thalamus (Långsjö et al., 2012). Alter-

natively, it may be that an inhibitory shift in the excitatory/inhibitory balance in cortex leads to a local

profound suppression in response to sensory input, generating a local LP that can then spread

across cortex or through corticothalamic projections. Future studies could explore these theories fur-

ther through causal manipulations of cortical and thalamic activity during a gradual emergence

process.

These future investigations could also address some limitations of the current study. As intracra-

nial electrodes are placed solely based on clinical need, we did not obtain whole-brain coverage,

and had no thalamic recordings. Animal studies could investigate more systematically the spatial

profile of the observed LPs. In addition, due to the nature of our experiment taking place in the

operating room, we were constrained in timing and could not record throughout a continuous induc-

tion, maintenance, and emergence. In addition, the induction and emergence recordings were not

counterbalanced in time due to the ordering of implant and explant procedures. They could poten-

tially exhibit small changes in electrode position and signal-to-noise-ratio. While our data suggest no

major difference in recording quality that could explain the striking LPs we observe, and we observe

the LPs in scalp EEG as well despite opposite temporal ordering, more subtle phenomena could

depend on differences in the recordings across these sessions. Highly controlled volunteer studies,

as in our scalp data, will therefore be useful counterparts to any future intracranial investigations of

these phenomena. Finally, our patient sample was small due to the rare nature of these recordings,

and therefore we could not examine how the heterogeneity of LP dynamics might relate to
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emergence time or other clinical outcomes. Gathering datasets in larger patient cohorts would be

very valuable for investigating how these dynamics can inform patient monitoring and predict func-

tional outcomes. In particular, the LP events could potentially be used to monitor depth of anesthe-

sia or predict when a patient will emerge, or they may be found to relate to emergence-related

clinical outcomes, such as delirium. Future clinical studies would be highly beneficial for investigating

these questions.

In summary, we identified a transient brain state that occurs asymmetrically during emergence

from general anesthesia. While deep states of anesthesia have been well characterized and exhibit

stereotyped electrophysiological signatures, tracking transitions between states demonstrates the

existence of transient and heterogeneous dynamics that occur selectively in the minutes before

emergence. This state engages similar sensory-evoked circuit dynamics as in sleep, suggesting the

brain may sometimes experience a sleep-like sensory blockade before recovering from general

anesthesia.

Materials and methods

Clinical setting
Written informed consent was obtained from all patients and experimental procedures were

approved by the Massachusetts General Hospital/Brigham and Women’s Hospital Institutional

Review Board. The enrolled patients had medically intractable epilepsy and underwent surgery to

implant intracranial electrodes for clinical monitoring purposes (Figure 1—figure supplement 1).

The location and number of electrodes implanted was determined by clinical criteria without regard

to this study. Recordings were performed in the hospital operating room as the patients emerged

from propofol general anesthesia. Recordings began after surgery was completed and while the clin-

ical infusion of propofol was still running, and continued throughout the period after the infusion

was stopped and patients emerged from anesthesia, until patients had to be disconnected for trans-

port outside of the operating room. No seizures were recorded in these data. Patients received the

typical clinical regimen of medication throughout the surgery (including paralytics and analgesics),

and in most cases the maintenance infusion also included remifentanil. We acquired intracranial

recordings from 15 patients during emergence. Data from two patients were excluded due to poor

recording quality, and data from one patient was excluded due to failure of the auditory stimulus

equipment. A second emergence recording was acquired from one patient with electrodes

implanted in different locations, and this recording was treated as another subject in the analysis

(total analyzed = 13 sessions, drawn from 12 individuals, five female, mean age 34.5 years, range

21–48 years). In four sessions, patients had only depth electrodes, and in nine sessions they had

both subdural grid/strip and depth electrodes. Eight of these patients were also studied during

gradual induction of general anesthesia when they returned 1–3 weeks later to undergo electrode

removal surgery. In the induction recording, propofol was infused gradually using STANPUMP soft-

ware with a target plasma concentration rising linearly over 10 min to a maximum of 6 mg/mL

(Schnider et al., 1999).

Behavioral task – Intracranial recordings
Auditory stimuli were presented every 3.5–4.5 s with uniform temporal jittering (11 sessions) or every

6 s (two sessions) using EPrime software and air-tube earphones to avoid stimulus-related artifacts in

the electrophysiology data. Stimuli consisted of either a click train with a frequency of 40 Hz in one

ear and 84 Hz in the other, lasting 2 s; a non-verbal sound (e.g. door closing, alarm); or a spoken

word. Stimulus types were pseudorandomized throughout the presentation. Words and sounds

were of neutral or negative affect; these distinctions were not analyzed in detail here. During the

induction of anesthesia prior to the start of the surgery, patients listened to the stimuli and were

asked to press a button to indicate whether the stimulus was a word. During emergence, stimulus

presentation began near the time that the propofol infusion was stopped, and continued until the

patient became responsive. The total presentation duration was 20 min, and if the patient had not

yet emerged at that time then the presentation was restarted. Only two patients began performing

the task at emergence. Due to this behavioral observation, clinical staff also periodically (approxi-

mately every ~1–2 min) asked subjects to open their eyes. Return of behavioral responsiveness was
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marked manually using two definitions: the first spontaneous movement observed by research staff

(labeled ‘First movement’), and the time at which patients began responding to verbal requests to

open their eyes or move their hands (labeled ‘First response’, defined as return of consciousness

(ROC)). In 8 of these patients, the same behavioral task was used during induction of anesthesia 1–3

weeks later when patients returned for surgery to remove the intracranial electrodes. The task began

4 min prior to the start of the gradual propofol infusion and continued for 4 min after the target

plasma level reached its maximum level.

Intracranial electrophysiology data
During anesthetic induction and emergence, intracranial recordings were acquired from depth and/

or subdural grid and strip electrodes, with placement selected solely by clinical staff for clinical pur-

poses. Recordings were acquired with an XLTEK acquisition system at a 2000 Hz sampling rate. Bad

electrodes were manually identified and excluded from further analysis. Depth and strip electrodes

were re-referenced to a bipolar montage in which an adjacent contact was subtracted from each

channel. Grid electrodes were referenced to a Laplacian montage by subtracting the mean of the

immediately neighboring electrodes. Data were detrended, lowpass filtered below 200 Hz, down-

sampled to 500 Hz, and highpass filtered above 0.16 Hz.

Automated event detection
The automated detector was designed to conservatively select events, missing some events but also

reducing false positives. Since occasional large artifacts interfered with event detection, automatic

detection of spontaneous events was restricted to the longest manually identified continuous seg-

ment with acceptable recording quality. All other timepoints were excluded from the automatic

detection window. This approach was chosen due to the nature of the intracranial recording: we

began recording as soon as possible, but clinical interaction with the patient at the beginning and

end of the experiment, as well as connecting and disconnecting electrodes, led to very large artifacts

at these timepoints whereas we obtained a long, stable recording during the emergence process.

The median duration of this segment across patients was 650 s (inter-quartile range: 580–1410 s).

This long segment typically still included some periods with noise, which were rejected automatically

in further analyses as described below. Data were first filtered between 0.2–4 Hz. All positive and

negative peaks with an amplitude of at least 400 mV were identified. The duration of this peak,

defined as the amount of time spent over a threshold of 40 mV, was required to be at least 400 ms.

Peaks with amplitude greater than 1200 mV were discarded as artifact, and events occurring within

500 ms of a previous event were discarded. All events within a single electrode were required to

have the same polarity, selected as whichever polarity was most frequent across all automatically

detected events, since the referencing montage allowed potentials to be either negative- or posi-

tive-going depending on local polarity and electrode positioning.

Event-locked analysis
Trials with a range (peak-trough difference) exceeding 1500 mV were discarded as artifact. Event tri-

als were defined as those trials with an automatically detected event occurring within 2 s of stimulus

onset. The mean of all event trials was computed for each electrode that had at least five event tri-

als. Because different electrodes had different polarities, the sign for negative-going electrodes was

flipped. The median and quartiles were then computed across the pool of all electrode waveforms

(restricted to electrodes with at least five event trials) and all 12 patients. Analyses of individual

waveforms (e.g. Figure 2c) selected the electrode with the most detected events in each patient.

Rise times and fall times were computed on the mean waveform for each selected electrode, by cal-

culating the amount of time it took to rise and fall from a threshold of 200 mV to the peak of the

mean event waveform. Bootstrapped 95% confidence intervals were calculated by resampling across

subjects with replacement 1000 times, and reporting the 2.5th and 97.5th percentile of the resulting

distribution.

Spectral analysis
Spectrograms were computed using the electrode with the most LPs in each subject. Triggered

spectrograms were computed relative to the peak of the LP waveform selected by the automatic
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detector. Spectral analysis was performed using multi-taper estimation (Chronux, http://chronux.org,

[Bokil et al., 2010]). The analysis used three tapers and a sliding window of 200 ms duration every

50 ms. Spectrograms were normalized within frequencies to the mean power at that frequency

between [�2–1] s prior to the peak. Broadband gamma power was computed by taking the mean

power between 40 and 100 Hz, relative to the mean gamma power in the [�2–1] s window.

Statistical analyses of gamma power were performed on the mean gamma power in the 300 millisec-

onds post-peak using the Wilcoxon signed-rank test. Spectra for ongoing spontaneous dynamics

(Figure 3) used six 30 s epochs within a continuous 3 min time window, using 19 tapers. Spectra

were downsampled by a factor of 4 for display. Statistical comparison between time windows was

performed by a hierarchical bootstrap resampling procedure: (1) resample subjects; (2) resample

epochs within subjects; (3) compute the mean spectrum for each time window on the resampled

time windows; (4) calculate the difference between the two spectra. This procedure was repeated

1000 times to obtain 1000 bootstrap estimates of the difference in the spectra; differences outside

the [2.5,97.5] percentile for more contiguous frequency points than the spectral resolution of the

multitaper estimate were labelled as significant and marked in red. One subject was excluded from

the post-ROC vs. awake baseline comparison because electrode quality became too poor (s.d. >500

mV) after the patient emerged due to motion artifacts. Shaded error bars in the plot were computed

in Chronux using jackknife estimation.

Spatial analysis of evoked potentials
Because the automatic detector imposes an artificial threshold on amplitude for events, the spatial

analysis was performed on the stimulus-evoked potential over all electrodes. This analysis included

only trials that were identified as generating an LP on at least one electrode, and excluded any trials

with amplitude above 1500 mV as noise. The peak amplitude of the mean evoked potential in each

electrode was plotted in color on a 3D reconstruction of the cortical surface generated using Free-

surfer (Fischl, 2012) and with grid and strip electrode coordinates registered to the surface of the

brain (Dykstra et al., 2012). To categorize the spatial location of electrodes, the nearest anatomical

label from the Freesurfer automatic subcortical segmentation or cortical parcellation

(Destrieux et al., 2010) was assigned. Electrodes identified as being in white matter and electrodes

in regions with fewer than five contacts (e.g., putamen, occipital cortex) were excluded from the spa-

tial analysis. Statistical testing of which of the nine regions had significantly high proportions of elec-

trodes with >5 LPs was performed with a binomial test, comparing each region to the mean across

regions, with a Bonferroni correction for multiple comparisons across regions. Displayed grid time-

courses are lowpass filtered below 30 Hz and downsampled to 100 Hz for display.

Timecourse analysis
Sliding window plots over induction and emergence were calculated by averaging all trials within a

window of 60 s sliding every 15 s. For z-score analysis (Figure 3c), the peak amplitude of the ERP

was normalized to the standard deviation of the 1.5 s pre-stimulus, across each 60 s window, and

the plots display the resulting z-scores. Calculations were only included when at least eight stimuli

occurred within the window. When analyzing mean evoked amplitude across time windows

(Figure 3d), a 3 min period for each window was defined, and the mean evoked response was com-

puted. The mean amplitude in the 0.5–1.5 post-stimulus window was then computed for each sub-

ject. As before, one subject was excluded from the post-ROC condition because electrodes began

to be disconnected and recording quality was not usable.

Sleep-intracranial comparison
Recordings of natural sleep were obtained for three of the intracranial recording patients during

their hospital stay (after the emergence recording and prior to the induction recording). An experi-

enced neurophysiologist (G.P.) scored the sleep data and manually labelled the onset and offset

times of a subset of clearly visible KCs in the intracranial recordings for initial validation of the

approach. Sleep data was acquired on a clinical system with a sampling rate of either 500 or 512 Hz.

To match the propofol recording, the same reference electrodes were used for each electrode as in

the emergence dataset, and then all electrodes were filtered between 0.16 Hz and 200 Hz. Any elec-

trodes where the same reference electrodes were not available in both datasets were excluded. For
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analysis of median peak amplitude in individual events, electrodes with at least four events in each

dataset were included. The histogram reflects all detected events on these electrodes, whereas the

statistical test drew the same number of events from both the sleep and the propofol datasets for

each subject. For bootstrap confidence interval estimation, data across subjects were pooled due to

the small number of patients, and the bootstrap drew from datapoints pooled across the three

patients. For comparison, within-subject statistics are also presented. To compare the spatial distri-

bution of events across both datasets, event times were selected from a single electrode with at

least 20 events in both datasets, and then the peak-triggered waveform across all electrodes was

computed using these selected times. The mean value of the peak-triggered waveform between 100

ms pre-peak and 100 ms post-peak was calculated, and this mean event value was then compared

across electrodes. Spectra were compared by identifying four 30 s windows of clean recordings with

high LP rates in the emergence dataset, and randomly selecting four 30 s consecutive windows of

N2 in the sleep dataset. Spectra were computed using Chronux with 19 tapers, downsampled by a

factor of 4 for display, and error bars were computed with the jackknife method at p<0.05.

Scalp EEG dataset
Scalp EEG analysis used data that was previously published (Purdon et al., 2013; Mukamel et al.,

2014) with full details provided in those publications. Briefly, healthy volunteers underwent monitor-

ing with 64-channel EEG during a slow infusion of propofol, targeting a stepped increase from 0 to

5 mg/mL plasma concentration over one hour, and then a stepped decrease until the subjects recov-

ered consciousness. Stimuli consisted of click trains (2 s duration), words, or the subject’s own name,

with stimulus type pseudorandomized throughout the experiment. 80% of the stimuli were click

trains, 10% were words, and 10% were names. The LP analysis used a single frontal EEG electrode.

For each stimulus presentation, we subtracted the mean and divided by the standard deviation dur-

ing the 2 s pre-stimulus period. We then computed the maximum stimulus-evoked amplitude during

the 1 s following stimulus presentation, and averaged these over 1 min windows.
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Data availability

The processed LPs for each intracranial subject during emergence (Figure 1), the mean amplitudes

of the ERP for each subject across conditions (Figure 3), and the channelwise peak amplitudes for

individual subjects (Figure 5) are provided. For Figure 2, the underlying data are fully represented in

the figure. For the scalp EEG dataset, the processed ERPs for the displayed subject with LPs and the

mean amplitudes of the ERP across subjects (Figure 4) have been uploaded. Software for event

detection is available at https://github.com/lauralewis/emergenceLPs (copy archived at https://

github.com/elifesciences-publications/emergenceLPs).
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