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Abstract A universal and unquestioned characteristic of eukaryotic cells is that the genome is

divided into multiple chromosomes and encapsulated in a single nucleus. However, the underlying

mechanism to ensure such a configuration is unknown. Here, we provide evidence that

pericentromeric satellite DNA, which is often regarded as junk, is a critical constituent of the

chromosome, allowing the packaging of all chromosomes into a single nucleus. We show that the

multi-AT-hook satellite DNA-binding proteins, Drosophila melanogaster D1 and mouse HMGA1,

play an evolutionarily conserved role in bundling pericentromeric satellite DNA from heterologous

chromosomes into ‘chromocenters’, a cytological association of pericentromeric heterochromatin.

Defective chromocenter formation leads to micronuclei formation due to budding from the

interphase nucleus, DNA damage and cell death. We propose that chromocenter and satellite DNA

serve a fundamental role in encapsulating the full complement of the genome within a single

nucleus, the universal characteristic of eukaryotic cells.

DOI: https://doi.org/10.7554/eLife.34122.001

Introduction
Satellite DNA is AT-rich, non-coding, repetitive DNA that is abundant in centromeric and pericentro-

meric heterochromatin. Unlike the satellite DNAs that comprise the vast majority of natural centro-

meres (Willard, 1990; Sun et al., 1997, 2003), the role of pericentromeric satellite DNA remains

obscure: although function for a few satellite DNA repeats has been implied in certain cellular pro-

cesses such as meiotic segregation of achiasmatic chromosomes, X chromosome dosage compensa-

tion and formation of lampbrush-like loops on the Y chromosome during male meiosis (Yunis and

Yasmineh, 1971; Bonaccorsi et al., 1990; Dernburg et al., 1996; Menon et al., 2014), a unifying

theme for pericentromeric satellite DNA function remains elusive. Moreover, highly divergent satel-

lite DNA sequences even among closely related species has led to the idea that satellite DNA does

not serve a conserved function and is mostly a selfish element or junk (Doolittle and Sapienza,

1980; Walker, 1971). Pericentromeric satellite DNA repeats are proposed to be sources of genomic

instability, as their misexpression is associated with the formation of genotoxic R-loops and DNA

damage (Zhu et al., 2011; Zeller et al., 2016; Zeller and Gasser, 2017). Most studies on pericen-

tromeric heterochromatin have focused on the mechanisms to repress satellite DNA transcription,

and accordingly, a clear rationale for the existence of most pericentromeric satellite DNA is still

lacking.

Cytologically, it is well documented that pericentromeric satellite DNA from multiple chromo-

somes is clustered into chromocenters in interphase nuclei in diverse eukaryotes including Drosoph-

ila, mouse and plants (Figure 1A) (Jones, 1970; Pardue and Gall, 1970; Gall et al., 1971;

Fransz et al., 2002). While multiple factors such as epigenetic modifications and transcription of

repetitive DNA from pericentromeric DNA sequences are known to be required for chromocenter
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formation (Peters et al., 2001; Probst et al., 2010; Bulut-Karslioglu et al., 2012; Pinheiro et al.,

2012; Hahn et al., 2013), the ultimate consequences of disrupted chromocenter formation has

never been addressed, leaving the function of chromocenters unknown.

In this study, we explored the role of pericentromeric satellite DNA/chromocenters by studying

multi-AT-hook proteins, D1 from Drosophila melanogaster and HMGA1 from mouse. D1 and

HMGA1 are known to bind specific pericentromeric satellite DNA, and we show that these proteins

are required for chromocenter formation. When chromocenters are disrupted in the absence of

these proteins, cells exhibited a high frequency of micronuclei formation, leading to DNA breakage

and cell death. We show that micronuclei are formed during interphase by budding from the

nucleus. We further show that D1 binding to the target DNA sequence is sufficient to bring it to the

chromocenter. High-resolution imaging revealed chromatin threads positive for D1/HMGA proteins

and satellite DNA that connect heterologous chromosomes. Taken together, we propose that chro-

mocenter formation via bundling of satellite DNA from heterologous chromosomes functions as a

mechanism to encapsulate the full complement of the genome into a single nucleus. We suggest

that satellite DNA function as a critical constituent of chromosomes and may serve an evolutionarily

conserved role across eukaryotic species.

Results

The multi-AT-hook satellite DNA binding proteins, Drosophila D1 and
mouse HMGA1, localize to chromocenters
D1 in Drosophila melanogaster and HMGA1 in mouse are multi-AT-hook proteins; D1 contains 10

AT-hooks, HMGA1 contains three AT-hooks and both proteins contain C-terminal acidic domains

(Aulner et al., 2002). D1 and HMGA1 are known to bind the Drosophila {AATAT}n satellite DNA

(~8% of the Drosophila male diploid genome) and mouse major satellite DNA (~6% of the mouse

genome), respectively (Goodwin et al., 1973; Rodriguez Alfageme et al., 1980; Levinger and Var-

shavsky, 1982b; Levinger and Varshavsky, 1982a; Lund et al., 1983). The {AATAT}n satellite is dis-

tributed across 11 loci on multiple chromosomes as visualized by DNA fluorescence in situ

hybridization (FISH) on mitotic chromosome spreads (Figure 1B) (Lohe et al., 1993;

Jagannathan et al., 2017). However, it is typically clustered into a few foci in Drosophila interphase

nuclei, colocalizing with the D1 protein (Figure 1C). The D1/{AATAT}n foci stained positively for

H3K9me2 in interphase nuclei (Figure 1C), a well-established characteristic of constitutive

eLife digest On Earth, life is divided into three domains. The smallest of these domains includes

all the creatures, from sunflowers to yeasts to humans, that have the genetic information within their

cells encased in a structure known as the nucleus. The genomes of these organisms are formed of

long pieces of DNA, called chromosomes, which are packaged tightly and then unpackaged every

time the cell divides. When a cell is not dividing, the chromosomes in the nucleus are loosely

bundled up together.

It is well known that DNA is the blueprint for the building blocks of life, but actually most of the

genetic information in a cell codes for nothing, and has unknown roles. An example of such ‘junk

DNA’ is pericentrometric satellite DNA, small repetitive sequences found on all chromosomes.

However, new experiments by Jagannathan et al. show that, in the nucleus of animal cells, certain

DNA binding proteins make chromosomes huddle together by attaching to multiple

pericentrometric satellite DNA sequences on different chromosomes. In fact, if these proteins are

removed from mice and fruit flies cells grown in the laboratory, the chromosomes cannot be

clustered together. Instead, they ‘float away’, and the membranes of the nucleus get damaged,

possibly buckling under the pressure of the unorganized DNA.

These events damage the genetic information, which can lead to the cell dying or forming

tumors. ‘Junk DNA’ therefore appears to participate in fundamental cellular processes across

species, a result that opens up several new lines of research.

DOI: https://doi.org/10.7554/eLife.34122.002
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Figure 1. Multi-AT-hook proteins, D1 and HMGA1, are required for chromocenter formation in Drosophila and mouse cells. (A) Schematic of

pericentromeric heterochromatin being organized into the chromocenter. (B) FISH against {AATAT}n satellite (red) on the Drosophila neuroblast mitotic

chromosomes co-stained with DAPI (blue) indicating the location of {AATAT}n in the Drosophila genome. (C) FISH against {AATAT}n satellite (red) in

spermatogonial cells immunostained for H3K9me2 (blue) and D1 (green). Dotted lines indicate nucleus. Bars: 5 mm. (D) Drosophila neuroblast mitotic

chromosomes stained for D1 (green), phospho-histone H3 Serine 10 (pH3-S10) (blue) and Cid/CENP-A (red). (E–G) FISH against the mouse major

satellite (green) on C2C12 mitotic chromosomes co-stained with DAPI (blue) (E), in interphase MOVAS cells co-stained for DAPI (blue) and HMGA1 (red)

(F) and in MOVAS cells expressing GFP-D1 (blue) stained for HMGA1 (red) (G). (H, I) FISH against {AATAT}n satellite (red) in control (D1LL03310/+) (H)

and D1LL03310/Df (I) spermatogonial cells stained for DAPI (blue) and Vasa (green). (J) Quantification of spermatogonial cells with disrupted

chromocenters (+/+ control n = 117, D1LL03310/Df n = 89) from three independent experiments. p-Value from student’s t-test is shown. Error bars: SD.

(K, L) FISH against the major satellite (green) in siControl (K) and siHMGA1 (L) transfected MOVAS cells co-stained with DAPI (blue). (M) Quantification

of cells with disrupted chromocenters from siControl (n = 304) and siHMGA1 (n = 329) from three independent experiments.

DOI: https://doi.org/10.7554/eLife.34122.003

Figure 1 continued on next page
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heterochromatin/chromocenters (Guenatri et al., 2004). Consistently, D1 localized near the centro-

mere (marked by Drosophila CENP-A, Cid) on mitotic chromosome spreads (marked by phospho-H3

S10) (Figure 1D). These results suggest that D1 is a chromocenter-localizing protein, via its binding

to the {AATAT}n satellite DNA.

The mouse HMGA1 protein was originally identified as an abundant non-histone component of

mammalian chromatin (Goodwin et al., 1973; Lund et al., 1983) with subsequent studies demon-

strating its binding to satellite DNA (Strauss and Varshavsky, 1984; Radic et al., 1992). Mouse

major satellite, which is present in pericentromeric regions of all chromosomes (Figure 1E)

(Lyon and Searle, 1989), clustered into DAPI-dense chromocenters positive for HMGA1 protein

(Figure 1F, Figure 1—figure supplement 1A,B), revealing an analogous relationship to D1/

{AATAT}n satellite in Drosophila. Interestingly, we found that Drosophila D1 protein localizes to

major satellite/chromocenters when ectopically expressed in multiple mouse cell lines (Figure 1G,

Figure 1—figure supplement 1C,D), suggesting that D1 and HMGA1 may possess an orthologous

and conserved function as satellite DNA/chromocenter-binding proteins.

D1 and HMGA1 are required for organizing chromocenters
We next examined the effects of D1 mutation and siRNA-mediated knockdown of HMGA1 on chro-

mocenters. We used two D1 alleles, D1LL03310 and D1EY05004, which we show to be protein null

alleles, evidenced by near-complete loss of anti-D1 antibody staining (Figure 1—figure supplement

2A–C). When these alleles were combined with the D1 deficiency allele, Df(3R)BSC666, it led to

severe declustering of {AATAT}n satellite DNA (Figure 1H–J, Figure 1—figure supplement 2D–E),

suggesting that D1 is required for clustering of pericentromeric satellite DNA into chromocenters.

We observed D1’s requirement for chromocenter formation in multiple cell types (Figure 1—figure

supplement 2F–I), but we largely focused on spermatogonial cells, where the phenotypes (such as

cell death) were most penetrant and severe.

We also examined the requirement for HMGA1 in mouse chromocenter formation. Following

siRNA-mediated knockdown of HMGA1, which led to near complete loss of HMGA1 protein (see

Figure 2D,E and Figure 2—figure supplement 1A–B,D–E for efficiencies of HMGA1 knockdown),

we observed chromocenter disruption in multiple mouse cell lines (Figure 1K–M, Figure 1—figure

supplement 2J–L). These results suggest that D1 and HMGA1 have an orthologous function to

organize pericentromeric satellite DNA into chromocenters.

Loss of D1/HMGA1 leads to micronuclei formation
To explore the function of chromocenters and satellite DNA, we examined the effects of D1 muta-

tion/HMGA1 knockdown, which showed strikingly similar phenotypes. We found that D1 mutation as

well as siRNA-mediated HMGA1 knockdown in multiple mouse cell lines resulted in a significant

increase in micronuclei formation (Figure 2A–F, Figure 2—figure supplement 1A–F).

Micronuclei are known to have compromised nuclear envelope integrity, leading to DNA damage

and catastrophic chromosomal rearrangement therein (Crasta et al., 2012; Hatch et al., 2013).

Therefore, we first examined a possible defect in nuclear envelope integrity in D1 mutant. We found

that loss of D1 led to breaching of the nuclear envelope both in major and micronuclei, visualized by

the cytoplasmic leakage of nuclear GFP (nlsGFP) (Figure 2G–I), suggesting that nuclear envelope

integrity might be generally compromised. Consistently, we observed mislocalization of nuclear

envelope proteins in D1 mutant spermatogonia. We frequently observed that lamin surrounded the

nucleus incompletely in D1 mutant (1.9% in control (n = 52) and 68.9% in D1 mutant (n = 58))

(Figure 2J,K, arrows indicate lamin-negative regions on the nuclear membrane). We also observed

cytoplasmic ‘holes’, which resemble the nucleus in that they exclude cytoplasmic proteins such as

Figure 1 continued

The following figure supplements are available for figure 1:

Figure supplement 1. Multi-AT-hook proteins, Drosophila D1 and mouse HMGA1, localize to chromocenters in various mouse cell types.

DOI: https://doi.org/10.7554/eLife.34122.004

Figure supplement 2. Drosophila D1 and mouse HMGA1 are required for chromocenter formation.

DOI: https://doi.org/10.7554/eLife.34122.005
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Figure 2. D1/HMGA1 loss-of-function results in micronuclei formation, and defective nuclear envelope integrity. (A, B) Control (D1LL03310/+) (A) and

D1LL03310/Df mutant (B) spermatogonial cells stained for DAPI (red), Vasa (blue) and LaminDm0 (green). Arrow indicates micronucleus. Bars: 5 mm. (C)

Quantification of micronuclei-containing cells from +/+ control (n = 269) and D1LL03310/Df (n = 334) from three independent experiments. p-Value from

student’s t-test is shown. Error bars: SD. (D, E) siControl (D) and siHMGA1 transfected (E) MOVAS cells stained for DAPI (blue), HMGA1 (red) and Lamin

(green). Arrow indicates micronucleus. (F) Quantification of micronuclei-containing cells in siControl (n = 518) and siHMGA1 (n = 588) transfected cells

from four independent experiments. (G, H) Control (D1LL03310/+) (G) and D1LL03310/Df (H) spermatogonia expressing nls-GFP (green) stained for Vasa

(blue) and LaminDm0 (red). nlsGFP was observed in cytoplasm in D1LL03310/Df spermatogonia. (I) Quantification of spermatogonia with cytoplasmic GFP

(>1 mm exclusions or pan-cytoplasmic) in D1LL03310/+ (n = 810) and D1LL03310/Df (n = 780) testes from two independent experiments. (J, K) D1LL03310/+

(J) and D1LL03310/Df (K) spermatogonia expressing ER-GFP marker (green) stained for Vasa (blue) and LaminDm0 (red). Arrowhead points to ER marker-

positive micronucleus. Arrows point to site of weak nuclear LaminDm0 staining. (L, M) Control (D1LL03310/+) (L) and D1LL03310/Df (M) spermatogonia

stained for Vasa (blue) and LaminDm0 (green) and Otefin (red). Arrowhead points to Otefin-containing micronucleus. Arrows point to site of weak

nuclear LaminDm0 staining.

DOI: https://doi.org/10.7554/eLife.34122.006

The following figure supplement is available for figure 2:

Figure supplement 1. Formation of micronuclei upon chromocenter disruption in C3H10T1/2 and C2C12 mouse cells.

Figure 2 continued on next page

Jagannathan et al. eLife 2018;7:e34122. DOI: https://doi.org/10.7554/eLife.34122 5 of 19

Research article Cell Biology Chromosomes and Gene Expression

https://doi.org/10.7554/eLife.34122.006
https://doi.org/10.7554/eLife.34122


Vasa (Figure 2K, arrowhead), but are devoid of nuclear lamin (Figure 2K, arrowhead). These ‘holes’

were often surrounded by an ER marker, which normally surrounds the nuclear envelope (Figure 2J)

(Dorn et al., 2011). Similarly, Otefin, an inner nuclear membrane LEM-domain protein

(Barton et al., 2014), also showed perturbed localization (2.7% in control (n = 109) and 24.5% in D1

mutant (n = 106)) (Figure 2L,M, arrows indicate lamin/Otefin negative regions on the nuclear enve-

lope while the arrowhead indicates Otefin-positive micronuclei). Taken together, these results show

that D1 mutant cells exhibit compromised nuclear envelope integrity, which is associated with micro-

nuclei formation.

Loss of D1/HMGA1 leads to accumulation of DNA damage
It has been shown that defects in nuclear envelope integrity can lead to extensive DNA damage in

the major nucleus and micronuclei (Crasta et al., 2012; Hatch et al., 2013; Zhang et al., 2015;

Denais et al., 2016; Raab et al., 2016). Nuclear envelope defects and extensive DNA damages

therein lead to catastrophic chromosomal breaks/rearrangements termed chromothripsis

(Crasta et al., 2012; Hatch et al., 2013). Such catastrophic DNA breaks/rearrangements are specu-

lated to lead to tumorigenesis (Hatch and Hetzer, 2015).

Consistent with defective nuclear envelope integrity, we observed extensive DNA damage

(revealed by g-H2Av) in both major and micronuclei (Figure 3A–F, arrows point to damaged DNA in

micronuclei in B and D). Likely as a result of DNA damage and defective nuclear envelope integrity,

D1 mutant testes rapidly degenerated (Figure 3—figure supplement 1A,B). When Omi, a gene

required to promote germ cell death (Yacobi-Sharon et al., 2013), was knocked down in D1 mutant

testes, it restored the cellularity in D1 mutant testis (Figure 3—figure supplement 1C–D), but the

surviving cells showed a dramatic increase in DNA damage (Figure 3—figure supplement 1E–F).

Under these conditions, we observed that surviving germ cells in D1 mutant testes showed a high

frequency of chromosome breaks compared to control, revealed by FISH on metaphase chromo-

some spreads from spermatocytes (3.7% in control (n = 27) vs. 15.8% in D1 mutant (n = 57))

(Figure 3G,H, arrowheads indicate sites of chromosome breaks). These results show that loss of D1/

HMGA1 results in compromised nuclear envelope integrity, leading to extensive DNA damage and

chromosomal breaks.

Micronuclei formation in D1 mutant/HMGA1 knockdown cells is due to
budding from the nucleus during interphase
It has been shown that micronuclei form by lagging chromosomes (Crasta et al., 2012). Thus, we

examined whether D1 mutation/HMGA1 knockdown resulted in mitotic chromosome segregation

errors, causing micronuclei formation. However, we did not observe an increase in lagging chromo-

somes in D1 mutant spermatogonia or HMGA1-depleted mouse cells (Figure 4—figure supplement

1A–G), suggesting an alternative route for micronuclei formation. Instead, time-lapse live observa-

tion showed that micronuclei formed by budding from the interphase nucleus both in Drosophila

spermatogonia and mouse cells (Figure 4A–D). In Drosophila spematogonia, nuclear contents were

visualized by a GFP-tagged nuclear protein, Df31, and RFP-tagged histone H2Av. Control cells sta-

bly maintained nuclear contents for a prolonged time period (only 1 event of nuclear blebbing with-

out concurrent micronuclei formation (as detected by H2Av-RFP) over 1552 min of live imaging)

(Figure 4A). In contrast, D1 mutant cells showed budding off of nuclear contents and micronuclei

formation in interphase (15 nuclear breaches with eight micronuclei formed over 3427 min of live

imaging with a total budding duration of 172 min) (Figure 4B). Similarly, live imaging in mouse cells

using the Hoechst DNA dye revealed that HMGA1 knockdown also resulted in micronuclei formation

during interphase (siControl – no micronuclei formation over 253 min of live observation, siHMGA1 –

three micronuclei formed by budding over 5962 min of live imaging with a total budding duration of

310 min) (Figure 4C,D). These results show that micronuclei in D1 mutant/HMGA1-knockdown cells

are generated during interphase, via budding from the nucleus.

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.34122.007
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Figure 3. D1 mutation/HMGA1 depletion leads to an increase in DNA damage. (A, B) Control (D1LL03310/+) (A) and D1LL03310/Df (B) spermatogonia

stained for DAPI (blue), Vasa (green) and g-H2Av (red). Dotted lines indicate nucleus and arrow points to DNA damage in micronuclei. (C, D) siControl

(C) and siHMGA1 (D) transfected MOVAS cells stained for DAPI (blue), g-H2Av (red) and LaminDm0 (green). Arrow points to DNA damage in

micronuclei. (E) Quantification of g-H2Av positive cells in D1LL03310/+ (n = 317) and D1LL03310/Df (n = 242) spermatogonia from three independent

experiments. (F) Quantification of cells containing >6 g-H2Ax foci in siControl (n = 304) and siHMGA1 (n = 309) transfected cells from three

independent experiments. (G, H) FISH against the rDNA intergenic spacer (IGS) (green), {AATAT}n (red) and {AAGAG}n (blue) on chromosome spreads

from meiotic spermatocytes from control (nos > OmiRNAi, n = 27) and D1 mutant (nos >Omi RNAi; D1LL03310/Df, n = 57) testes co-stained for DAPI (grey).

OmiRNAi was used to block DNA damage-induced cell death. Arrowheads point to chromosome breaks.

DOI: https://doi.org/10.7554/eLife.34122.008

The following source data and figure supplement are available for figure 3:

Source data 1. Quantification of g-H2Ax foci in mouse cells.

DOI: https://doi.org/10.7554/eLife.34122.010

Figure supplement 1. Chromocenter disruption results in germ cell death in Drosophila in an Omi-dependent manner.

DOI: https://doi.org/10.7554/eLife.34122.009
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Figure 4. D1/HMGA1 loss of function results in micronuclei formation due to nuclear budding during interphase. (A, B) Time-lapse live imaging of

control (+/+) (A) and D1LL03310/Df (B) spermatogonial cells expressing Df31-GFP as a nuclear marker and H2Av-RFP as a DNA marker. (C, D) Time-lapse

live imaging of siControl (C) and siHMGA1 (D) MOVAS cells stained with Hoechst 33342. Arrowheads indicate site of micronucleus budding. Time is

indicated in mm:ss. Scale bars: 5 mm.

DOI: https://doi.org/10.7554/eLife.34122.011

The following figure supplement is available for figure 4:

Figure supplement 1. Micronuclei formation upon chromocenter disruption is not a result of mitotic lagging chromosomes.

DOI: https://doi.org/10.7554/eLife.34122.012
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D1 bundles satellite DNA from multiple chromosomes to form
chromocenter
Based on the above results, we postulated that chromocenter formation, that is clustering of satellite

DNA from multiple chromosomes, might be a mechanism to bundle heterologous chromosomes

together to prevent individual chromosomes from floating out of the nucleus. In this manner, the full

set of chromosomes may be retained within a single nucleus. In the absence of chromocenter forma-

tion, individual chromosomes may bud off the nucleus, leading to micronuclei formation.

Previous in vitro experiments indicated that HMGA1 is capable of crosslinking multiple DNA

strands with individual AT-hooks binding AT-rich DNA strands (Vogel et al., 2011). Bundling of

DNA in this manner by D1/HMGA1 could explain how pericentromeric satellite DNA from multiple

chromosomes may be clustered to form chromocenters. A few lines of evidence support this idea.

When Drosophila D1 was expressed in mouse cells, it localized to the chromocenter as described

above (Figure 1G), and its overexpression enhanced chromocenter formation in a dose-dependent

Figure 5. D1 bundles satellite DNA from heterologous chromosomes to form chromocenter. (A, B) C2C12 cells expressing GFP only (blue) (A) or GFP-

D1 (blue) (B) stained for DAPI (red). Dotted lines indicate nucleus. (C) Quantification of chromocenter number relative to expression level of GFP

(n = 29) or GFP-D1 (n = 47). P value and R2 value are indicated from linear regression analysis. (D) FISH against LacO (red) and {AATAT}n (green) on

mitotic neuroblast chromosomes from the LacO strain stained for DAPI (blue), indicating the sites of LacO insertion (arrows). (E, F) FISH against LacO

(red) and {AATAT}n (green) in spermatogonia expressing GFP-D1 (blue) (E) or GFP-LacI-D1 (blue) (F). Arrows indicate location of LacO sequence. (G)

AATAT-LacO distance (nm) in GFP-D1 (n = 97) and GFP-LacI-D1 (n = 69) expressing spermatogonia. P value from student’s t-test is shown. Error bars:

SD. All scale bars: 5 mm.

DOI: https://doi.org/10.7554/eLife.34122.013

The following source data is available for figure 5:

Source data 1. Quantification of the relative expression of GFP/GFP-D1 and number of chromocenters in mouse cells.

DOI: https://doi.org/10.7554/eLife.34122.014

Source data 2. Quantification of LacO-AATAT distance (nm) in cells expressing GFP-D1 and GFP-LacI-D1.

DOI: https://doi.org/10.7554/eLife.34122.015
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manner (Figure 5A–C): the higher the amount of D1 that was expressed in mouse cells, the fewer

chromocenters per cell was observed (i.e. more clustering). These results suggest that D1 is sufficient

to bundle its binding target, tethering it to chromocenter. Consistent with this idea, we found that

artificial tethering of D1 protein to euchromatic LacO repeat DNA sequences was sufficient to bring

LacO repeats to the chromocenter. D1 protein or D1-LacI fusion protein was expressed in a Dro-

sophila strain in which LacO repeats are inserted in the distal regions of the 2nd chromosome

(Figure 5D, arrows). In control spermatogonial cells expressing wild type D1, LacO repeats were

observed far away from the {AATAT}n satellite foci/chromocenters (Figure 5E,G, arrow indicates site

of LacO repeats in interphase nucleus). However, in cells expressing the LacI-D1 chimeric protein,

we observed recruitment of the LacO repeats close to {AATAT}n/chromocenters (Figure 5F,G, arrow

indicates site of LacO repeats recruited to the chromocenter), demonstrating that D1’s binding to a

DNA sequence is sufficient to incorporate the target sequence into chromocenters.

Although it cannot be visualized how DNA strands from multiple chromosomes might be bundled

in these interphase chromocenters, deconvolution microscopy of D1/HMGA1 proteins on early

mitotic chromosomes revealed proteinaceous threads between chromatin in the process of conden-

sation (Figure 6A,B, arrows indicate D1/HMGA1 threads), which we speculate contributed to bun-

dling of chromosomes in the previous interphase. These threads were also detectable by DNA FISH

against {AATAT}n and the mouse major satellite (Figure 6C,D, dotted lines are alongside the satel-

lite DNA threads), suggesting that satellite DNA bound by D1/HMGA1 can form threads. These

threads likely connect heterologous chromosomes, as we see threads between chromosomes that

are clearly distinct in their morphology (e.g. Figure 6C). These D1/HMGA1 threads are reminiscent

of ‘DNA fibers’, which were observed among mitotic chromosomes, although their function has

never been appreciated (Takayama, 1975; Burdick, 1976; Kuznetsova et al., 2007).

Taken together, these results support a model, in which D1/HMGA1 bind their target sequences

(satellite DNA) on multiple chromosomes and bundle them into chromocenters, likely via their multi-

valent DNA-binding domains (multiple AT-hooks) (Figure 6E).

Discussion
The function of chromocenters, as well as that of satellite DNA, has remained enigmatic, even

though cytological association of pericentromeric satellite DNA into chromocenters was identified

almost 50 years ago (Jones, 1970; Pardue and Gall, 1970). Pericentromeric heterochromatin has

most often been studied and discussed in the context of how to maintain its heterochromatic,

repressed nature (Nishibuchi and Déjardin, 2017), based on the assumption that the underlying

sequences are mostly selfish, which have negative phenotypic consequences when derepressed in

cells (Zeller and Gasser, 2017).

Although satellite DNA’s function has been speculated and implicated in several examples

(Yunis and Yasmineh, 1971; Bonaccorsi et al., 1990; Dernburg et al., 1996; Menon et al., 2014),

the non-coding nature and lack of conservation in repeat sequence among closely related species

led to the idea that they are mostly junk DNA, serving no essential function (Walker, 1971;

Doolittle and Sapienza, 1980). Instead, we propose that satellite DNA is a critical constituent of

eukaryotic chromosomes to ensure encapsulation of all chromosomes in interphase nucleus. Our

results may also explain why the sequences of pericentromeric satellite DNA are so divergent among

closely related species, a contributing factor that led to their dismissal as junk. Based on our model

that pericentromeric satellite DNA serves as a platform for generating heterologous chromosome

association to form chromocenters, the essential feature of satellite DNA is that they are bound by

protein(s) capable of bundling multiple DNA strands. If so, the underlying sequence does not have

to be conserved. Instead, the binding of satellite DNA by a chromocenter bundling protein may be

a critical feature of pericentromeric satellite DNAs. Based on this idea, chromocenter bundling pro-

teins and pericentromeric satellite DNA may be co-evolving.

We observed perturbation of nuclear envelope integrity upon chromocenter disruption. Under-

standing the mechanisms underlying perturbation of nuclear envelope integrity in D1 mutant awaits

future investigation. Previous studies have documented that cytoskeletal forces are transmitted to

chromatin through nuclear envelope and external mechanical forces can cause temporary nuclear

envelope breaches (King et al., 2008; Denais et al., 2016; Hatch and Hetzer, 2016; Raab et al.,

2016). Therefore, we speculate that chromosome bundling in the form of chromocenter may help
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prevent cytoskeletal forces from shearing chromosomes and nuclear envelope: when chromosomes

are not bundled, cytoskeletal forces may be transmitted to individual chromosomes and associated

nuclear envelope, resulting in shearing of nuclear envelope, disrupting its integrity.

In summary, our study provides the first evidence for a conserved function of pericentromeric sat-

ellite DNA and chromocenters. Our data suggest that the multi-AT-hook proteins, D1 and HMGA1,

play an evolutionarily conserved role in the formation of chromocenters, likely via their ability to bind

Figure 6. D1/HMGA1 and satellite DNA form chromatin threads that link chromosomes. (A) Deconvolution microscopy performed on Drosophila

mitotic neuroblasts stained for D1 (cyan) and pH3-S10 (magenta). Arrows in magnified images indicate D1-positive thread connecting two

chromosomes. (B) Deconvolution microscopy performed on CSK-extracted RAW 264.7 macrophages stained for HMGA1 (cyan) and DAPI (magenta).

Arrows in magnified images indicate HMGA1-positive thread connecting two chromosomes. (C) Deconvolution microscopy performed on neuroblast

mitotic chromosomes stained for DAPI (magenta) and FISH against {AATAT}n (cyan) from a Drosophila strain containing AATAT-rich B chromosomes

(Bauerly et al., 2014). Dotted lines in magnified images indicate AATAT-positive threads connecting heterologous chromosomes. (D) Deconvolution

microscopy performed on RAW 264.7 macrophages stained for DAPI (magenta) and FISH against major satellite (cyan). Dotted lines in magnified

images indicate major satellite-positive threads connecting two chromosomes. (E) The model of chromosome bundling by D1/HMGA1 and satellite

DNA.

DOI: https://doi.org/10.7554/eLife.34122.016
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and bundle satellite DNA from heterologous chromosomes. Heterologous chromosome association,

mediated by chromocenter-binding proteins, may represent a third mode of chromosomal ‘gluing’

after meiotic homologous pairing and sister chromatid cohesion. Through heterologous association,

the chromocenter plays a fundamental role in maintaining the full complement of the genome, which

is divided into multiple chromosomes, into a single nucleus. This function of the chromocenter may

be conserved in eukaryotic species that contain pericentromeric satellite DNA, thereby bringing

about a signature characteristic of eukaryotic cells.

Materials and methods

Key resources table

Reagent type (species
) or resource Designation Source or reference Identifiers Additional information

Genetic Reagent
(D. melanogaster)

D1EY05004 Bloomington Drosophila
Stock Center

ID_BDSC:17340

Genetic Reagent
(D. melanogaster)

Df(3R)BSC666 Bloomington Drosophila
Stock Center

ID_BDSC:26518

Genetic Reagent
(D. melanogaster)

UAS-OmiRNAi Bloomington Drosophila
Stock Center

ID_BDSC:55165

Genetic Reagent
(D. melanogaster)

UAS-GFP-nls Bloomington Drosophila
Stock Center

ID_BDSC:4776

Genetic Reagent
(D. melanogaster)

UAS-GFP-ER-SR Bloomington Drosophila
Stock Center

ID_BDSC:59042

Genetic Reagent
(D. melanogaster)

D1LL03310 Kyoto Stock Center ID_DGRC:140754

Genetic Reagent
(D. melanogaster)

Df31-GFP Kyoto Stock Center ID_DGRC:110806

Genetic Reagent
(D. melanogaster)

nos-gal4 PMID: 9501989

Genetic Reagent
(D. melanogaster)

hs-flp;nos-FRT-stop-
FRT-gal4,UAS-GFP

PMID: 24465278

Genetic Reagent
(D. melanogaster)

UAS-H2A-YFP PMID: 11146626

Genetic Reagent
(D. melanogaster)

B1 LacO PMID: 12225662

Genetic Reagent
(D. melanogaster)

mtrm126 + B PMID: 24478336 Gift of Dr. Scott Hawley

Recombinant
DNA Reagent

pUASt-GFP-attB PMID: 24465278

Recombinant
DNA Reagent

pUASt-GFP-D1-attB This Paper

Recombinant
DNA Reagent

pUASt-GFP-LacI-D1-attB This Paper

Recombinant
DNA Reagent

pCDNA3 Gift of Dr. Cheng-Yu Lee

Cell Line MOVAS Gift of Dr. Daniel Eitzman

Cell Line C2C12 Gift of Dr. David Bridges

Cell Line RAW264.7 Gift of Dr. Harry Mobley

Cell Line C3H10T1/2 Gift of Dr. Stephen Weiss

siRNA ON-TARGET plus Mouse
HMGA1 siRNA
SMARTpool

Dharmacon/GE
Healthcare

ID_Dharmacon:
L-049293–01

siRNA ON-TARGET plus
Non-targeting pool

Dharmacon/GE
Healthcare

ID_Dharmacon:
L-001810–10

Continued on next page
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Continued

Reagent type (species
) or resource Designation Source or reference Identifiers Additional information

Antibody anti-Vasa Santa Cruz
Biotechnology

ID_SCB: d-26

Antibody anti-H3K9 dimethyl Abcam ID_abcam: ab32521

Antibody anti-Otefin Gift of Dr. Georg Krohne

Antibody anti-D1 This Paper Peptide - CDGENDAND
GYVSDNYNDSESVAA

Antibody anti-LaminDm0 Developmental Studies
Hybridoma Bank

ID_DSHB:
ADL84.12

Antibody anti-g-H2Av Developmental Studies
Hybridoma Bank

ID_DSHB:
UNC93-5.2.1

Antibody Phalloidin-Alexa546 ThermoFisher ID_Thermo
Fisher: a22283

Antibody anti-HMGA1 Abcam ID_abcam: ab129153

Antibody anti-LaminB (C20) Santa Cruz Biotechnology ID_SCB: 2616

Antibody anti-a-tubulin Developmental Studies
Hybridoma Bank

ID_DSHB: 4.3

Antibody anti-g-H2Ax S139 Cell Signaling
Technologies

ID_CST: 2577

Fly husbandry and strains
All fly stocks were raised on standard Bloomington medium at 25˚C. The following fly stocks were

used: D1EY05004(BDSC17340), Df(3R)BSC666 (BDSC26518), UAS-OmiRNAi (BDSC55165), UAS-GFP-nls

(BDSC4776) and UAS-GFP-ER-SR (BDSC59042) were obtained from the Bloomington Drosophila

stock center. D1LL03310 (DGRC140754) and Df31-GFP (DGRC110806) were obtained from the Kyoto

stock center. nos-gal4 (Van Doren et al., 1998), hs-flp;nos-FRT-stop-FRT-gal4,UAS-GFP

(Salzmann et al., 2013), UAS-H2A-YFP (Bellaı̈che et al., 2001) and B1 LacO (Vazquez et al., 2002)

have been previously described. A stock containing B chromosomes, mtrm126 +B (Bauerly et al.,

2014), was a kind gift from Scott Hawley. Chromocenter disruption was scored in Drosophila testes

by assessing {AATAT}n morphology in GFP +cells that were generated as follows in control (hs-flp;

nos-FRT-stop-FRT-gal4,UAS-GFP) and D1 mutant (hs-flp;nos-FRT-stop-FRT-gal4, UAS-GFP;

D1LL03310/Df) flies. Testes were dissected 24 hr following a 20 min heat shock at 37˚C. Chromocen-

ters were considered disrupted in Drosophila and mouse when satellite DNA adopted thread-like

morphology in interphase nuclei. Micronuclei were scored in 0-3 d testes where early germ cell chro-

mosomes were labeled with H2A-YFP. The genotypes used were, control – nos > H2 A-YFP and D1

mutant – nos > H2 A-YFP; D1LL03310/Df.

Transgene construction
For construction of UAS-GFP-D1, the D1 ORF was PCR-amplified from cDNA using the following

primer pair, 5’-GATCAGATCTATGGAGGAAGTTGCGGTAAAG-3’ and 5’-GATCCTCGAGTTAGG-

CAGCTACCGATTCGG-3’. The amplified fragment was subcloned into the BglII and XhoI sites of

pUASt-EGFP-attB (Salzmann et al., 2013) resulting in UAS-GFP-D1. For UAS-GFP-LacI-D1, the LacI

ORF (lacking 11 C-terminal residues) (Straight et al., 1996) was synthesized using GeneArt (Thermo-

fisher) and inserted into the BglII site of UAS-GFP-D1 resulting in UAS-GFP-LacI-D1. Transgenic flies

were generated by PhiC31 integrase-mediated transgenesis into the attP40 site (BestGene). For

expression of GFP and GFP-D1 in mouse cells, GFP and GFP-D1 was subcloned from pUASt-EGFP-

attB into pCDNA3 (gift from Cheng-Yu Lee) using EcoRI and XhoI sites.

Cell lines
Mouse MOVAS cells were obtained from Daniel Eitzman. Mouse C2C12 cells were obtained from

David Bridges. Mouse RAW264.7 cells were obtained from Dr. Harry Mobley. Mouse C3H10T1/2

cells were obtained from Stephen Weiss. MOVAS, C2C12 and RAW264.7 cells were maintained in
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Dulbecco’s minimal essential medium (DMEM) (Gibco) supplemented with 10% fetal bovine serum

(FBS). C3H10T1/2 cell line was maintained in alpha minimal essential media (Gibco) supplemented

with 10% fetal bovine serum. All cell lines used were authenticated as mouse cells by the presence

of mouse-specific satellite DNA as is shown throughout the manuscript. Two major cell lines used in

this study, C2C12 and MOVAS cells, were treated with Plasmocin (Invivogen) prior to use as a pre-

caution for mycoplasma infection.

siRNA and transfections
RNA interference (RNAi) against HMGA1 was performed using ON-TARGET plus Mouse HMGA1

siRNA SMARTpool (Dharmacon, L-049293–01) consisting of the following target sequences, CCA

UUUAGCCGCAGCCCGA, AGGCAAACGGGCACCAACA, GGGCGCAGCAGACUGGUUA, GUUCA

UUCUUAGAUACCCA. ON-TARGET plus Non-targeting pool (Dharmacon, D-001810–10) consisting

of the following sequences, UGGUUUACAUGUCGACUAA, UGGUUUACAUGUUGUGUGA, UGG

UUUACAUGUUUUCUGA, UGGUUUACAUGUUUUCCUA, was used as a negative control. siRNA

transfections were performed using DharmaFECT four reagent (Dharmacon, Lafayette, CO) accord-

ing to the manufacturer’s protocol. 25 nM of siControl and siHMGA1 were transfected using Dhar-

maFECT 4 (Dharmacon) according to the manufacturer’s protocol. Cells were fixed for

immunostaining/in situ hybridization 6 days post-transfection. Transient transfection of GFP and

GFP-D1 was performed using Fugene HD (Roche) reagent according to the manufacturer’s protocol.

Immunofluorescence staining and microscopy
For Drosophila tissues, immunofluorescence staining was performed as described previously

(Cheng et al., 2008). Briefly, tissues were dissected in PBS, transferred to 4% formaldehyde in PBS

and fixed for 30 min. Testes were then washed in PBS-T (PBS containing 0.1% Triton-X) for at least

60 min, followed by incubation with primary antibody in 3% bovine serum albumin (BSA) in PBS-T at

4˚C overnight. Samples were washed for 60 min (three 20 min washes) in PBS-T, incubated with sec-

ondary antibody in 3% BSA in PBS-T at 4˚C overnight, washed as above, and mounted in VECTA-

SHIELD with DAPI (Vector Labs). The following primary antibodies were used: rabbit anti-vasa

(1:200; d-26; Santa Cruz Biotechnology), rabbit anti-H3K9 dimethyl (1:200; Abcam, ab32521), guinea

pig anti-Otefin (gift from Georg Krohne, 1:400), chicken anti-Cid (1:500, generated using the syn-

thetic peptide CDGENDANDGYVSDNYNDSESVAA (Covance)), mouse anti-LaminDm0 (ADL84.12,

1:200, Developmental Studies Hybridoma Bank), mouse anti-g�H2Av (UNC93-5.2.1, 1:400, Develop-

mental Studies Hybridoma Bank), Phalloidin-Alexa546 (ThermoFisher, a22283, 1:200). Adherent

mouse cells were fixed in 4% formaldehyde in PBS for 20 min at room temperature on coverslips.

Cells were permeabilized in PBS-T for 5 min, rinsed three times with PBS, blocked using 3% BSA in

PBS-T for 30 min at room temperature and incubated with primary antibody diluted in 3% BSA in

PBS-T overnight at 4˚C. Cells were then washed for 30 min (three 10 min washes), incubated with

secondary antibody in 3% BSA in PBS-T for 2 hr at room temperature, washed as above and

mounted in VECTASHIELD with DAPI (Vector Labs). For nucleoplasmic extraction, cells were incu-

bated with CSK buffer (10 mM PIPES pH7, 100 mM NaCl, 300 mM sucrose, 3 mM MgCl2, 0.5% Tri-

ton X-100, 1 mM PMSF) for 10 min at room temperature. After CSK extraction, cells were washed

with PBS and fixed and immunostained as above. The following antibodies were used: rabbit anti-

HMGA1 (1:400, Abcam, ab129153), goat anti-LaminB (C-20) (1:20, Santa Cruz Biotechnology, sc-

2616), mouse anti-a-tubulin (4.3, 1:100, Developmental Studies Hybridoma Bank) and g�H2Ax S139

(2577, 1:200, Cell Signaling Technologies). Images were taken using a Leica TCS SP8 confocal micro-

scope with 63x oil-immersion objectives (NA = 1.4). Deconvolution was performed when indicated

using the Hyvolution package from Leica. Images were processed using Adobe Photoshop software.

Time-lapse live imaging
Testes from newly eclosed flies were dissected into Schneider’s Drosophila medium containing 10%

fetal bovine serum. The testis tips were placed inside a sterile glass-bottom chamber and were

mounted on a three-axis computer-controlled piezoelectric stage. An inverted Leica TCS SP8 confo-

cal microscope with a 63 � oil immersion objective (NA = 1.4) was used for imaging. For mouse live

cell imaging, transfected cells were seeded onto a sterile glass-bottom chamber coated with poly-

lysine. Cells were incubated with Hoechst 33342 for 10 min, rinsed with PBS and fresh medium was
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added to the chamber. Cells were imaged using a stage-top Tokai-Hit incubator that was mounted

on an inverted TCS SP5 confocal microscope with a 63x oil immersion objective (NA = 1.4). All

images were processed using Adobe Photoshop software. Metrics used for quantification of live

imaging were total imaging duration (defined as number of cells x imaging duration), total budding

duration (defined as number of cells with micronuclei that formed by budding x time with budded

micronuclei).

DNA fluorescence in situ hybridization
Whole mount Drosophila testes were prepared as described above, and optional immunofluores-

cence staining protocol was carried out first. Subsequently, samples were post-fixed with 4% formal-

dehyde for 10 min and washed in PBS-T for 30 min. Fixed samples were incubated with 2 mg/ml

RNase A solution at 37˚C for 10 min, then washed with PBS-T +1 mM EDTA. Samples were washed

in 2xSSC-T (2xSSC containing 0.1% Tween-20) with increasing formamide concentrations (20%, 40%

and 50%) for 15 min each followed by a final 30 min wash in 50% formamide. Hybridization buffer

(50% formamide, 10% dextran sulfate, 2x SSC, 1 mM EDTA, 1 mM probe) was added to washed sam-

ples. Samples were denatured at 91˚C for 2 min, then incubated overnight at 37˚C. For mitotic chro-

mosome spreads, testes and larval 3rd instar brains were squashed according to previously

described methods (Larracuente and Ferree, 2015). Briefly, tissue was dissected into 0.5% sodium

citrate for 5–10 min and fixed in 45% acetic acid/2.2% formaldehyde for 4–5 min. Fixed tissues were

firmly squashed with a cover slip and slides were submerged in liquid nitrogen until bubbling

ceased. Coverslips were then removed with a razor blade and slides were dehydrated in 100% etha-

nol for at least 5 min. After drying, hybridization mix (50% formamide, 2x SSC, 10% dextran sulfate,

100 ng of each probe) was applied directly to the slide, samples were heat denatured at 95˚C for 5

min and allowed to hybridize overnight at room temperature. Following hybridization, slides were

washed thrice for 15 min in 0.2X SSC and mounted with VECTASHIELD with DAPI (Vector Labs). For

the in situ experiment described in Figure 4j–m, testes were dissected into PBS and fixed in 4%

formaldehyde for 4 min. Tips of fixed testes were firmly squashed with a cover slip and slides were

submerged in liquid nitrogen until bubbling ceased. Coverslips were removed with a razor blade

and slides were subjected to 5 min washes in 2XSSC and 2XSSC with 0.1% Tween-20. The samples

were denatured in freshly made 0.07N NaOH for 5 min, rinsed in 2X SSC. Hybridization mix (50%

formamide, 2x SSC, 10% dextran sulfate, 100 ng of each probe) was added directly to the slide and

allowed to hybridize overnight at room temperature. Following hybridization, slides were washed

three times for 15 min in 0.2X SSC and mounted with VECTASHIELD with DAPI (Vector Labs). The

following probes were used for Drosophila in situ hybridization: {AATAT}6, {AAGAG}6, IGS and have

been previously described (Jagannathan et al., 2017). LacO probe - 5’-Cy5-CCACAAATTGTTA

TCCGCTCACAATTCCAC-3’. For interphase mouse cells, optional immunostaining was carried out

as above. Subsequently, samples were post-fixed with 4% formaldehyde in PBS for 10 min and

rinsed three times in PBS. Post-fixed cells were incubated with 0.1 mg/ml RNase A solution at 37˚C
for 1 hr, rinsed three times in PBS and denatured in 1.9M HCl for 30 min. After three rinses in ice-

cold PBS, hybridization mix (2X SSC, 60% formamide, 5 mg/ml salmon sperm DNA and 500 nM

probe) was added to the samples and incubated overnight at room temperature. Following hybrid-

ization, coverslips were washed three times for 15 min in 2X SSC and mounted with VECTASHIELD

with DAPI (Vector Labs). For mouse mitotic cells, chromosomes were spread on slides as previously

described. Subsequently, chromosomes were denatured in 70% formamide in 2XSSC for 1.5 min at

70˚C, dehydrated in 100% ethanol and hybridization mix (2X SSC, 60% formamide, 5 mg/ml salmon

sperm DNA and 500 nM probe) was added directly to the slide and incubated overnight at room

temperature. Following hybridization, slides were washed three times for 15 min in 2X SSC and

mounted with VECTASHIELD with DAPI (Vector Labs). The following probe was used: Major satellite

- 5’-Cy3-GGAAAATTTAGAAATGTCCACTG-3’.
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