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Abstract Much is known about the neural circuits of conditioned fear and its relevance to

understanding anxiety disorders, but less is known about other anxiety-related behaviors such as

active avoidance. Using a tone-signaled, platform-mediated avoidance task, we observed that

pharmacological inactivation of the prelimbic prefrontal cortex (PL) delayed avoidance. Surprisingly,

optogenetic silencing of PL glutamatergic neurons did not delay avoidance. Consistent with this,

inhibitory but not excitatory responses of rostral PL neurons were associated with avoidance

training. To test the importance of these inhibitory responses, we optogenetically stimulated PL

neurons to counteract the tone-elicited reduction in firing rate. Photoactivation of rostral (but not

caudal) PL neurons at 4 Hz impaired avoidance. These findings suggest that inhibitory responses of

rostral PL neurons signal the avoidability of a potential threat and underscore the importance of

designing behavioral optogenetic studies based on neuronal firing responses.

DOI: https://doi.org/10.7554/eLife.34657.001

Introduction
Core symptoms of post-traumatic stress disorder and other anxiety disorders include excessive fear

and avoidance (American Psychiatric Association, 2013). The neural mechanisms of excessive fear

have been well-characterized in rodents using Pavlovian fear conditioning (Johansen et al.,

2011; Duvarci and Pare, 2014; Herry and Johansen, 2014; Giustino and Maren, 2015; Do Monte

et al., 2016), yet the mechanisms of active avoidance are just beginning to emerge. Previous work

in rats has shown that the prefrontal cortex, amygdala, and striatum are all necessary for the expres-

sion of active avoidance (Martinez et al., 2013; Moscarello and LeDoux, 2013; Beck et al., 2014;

Jiao et al., 2015; LeDoux et al., 2017). Using a tone-signaled, platform-mediated avoidance task,

we observed that pharmacological inactivation of the prelimbic prefrontal cortex (PL) impaired the

expression of avoidance without affecting freezing (Bravo-Rivera et al., 2014). Furthermore, avoid-

ance that persisted following extinction was correlated with excessive PL activity, as indicated by the

immediate early gene cFos (Bravo-Rivera et al., 2015), suggesting that PL activity may drive the

expression of active avoidance.

Important questions remain, however, regarding the role of PL in avoidance. First, how do PL

neurons signal avoidance? Fear conditioning mainly induces excitatory responses to conditioned

tones in PL that correlate with freezing (Baeg et al., 2001; Burgos-Robles et al., 2009; Sotres-

Bayon et al., 2012; Isogawa et al., 2013; Pendyam et al., 2013; Chang et al., 2010), but the firing

properties of PL neurons in active avoidance have not been studied. In platform-mediated

Diehl et al. eLife 2018;7:e34657. DOI: https://doi.org/10.7554/eLife.34657 1 of 19

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.34657.001
https://doi.org/10.7554/eLife.34657
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


avoidance, PL signaling of avoidance may differ from PL signaling of freezing or foraging for food

(Burgos-Robles et al., 2013), both of which can interfere with platform avoidance. Second, does

avoidance involve all of PL or only specific subregions?

We addressed these questions by recording PL neurons during tone-signaled, platform-mediated

avoidance. We then optogenetically silenced or activated PL neurons based on the observed firing

patterns. We found that inhibitory (rather than excitatory) tone responses of rostral PL neurons were

associated with avoidance. Opposing these inhibitory responses with photoactivation delayed or

prevented active avoidance, suggesting that prefrontal inhibition signals the ‘avoidability’ of danger.

Results

Pharmacological inactivation of PL delays avoidance
We first replicated our prior findings that pharmacological inactivation of PL with the GABA-A ago-

nist muscimol (MUS) impaired avoidance in this task (Bravo-Rivera et al., 2014), with two modifica-

tions: (1) we used fluorescently labeled MUS to assess spread to adjacent regions, and (2) we

analyzed the time course of avoidance behavior across the 30 s tone. Because the 2 s shock co-ter-

minates with the tone, the rat has 28 s to stop pressing the lever for food and step onto the platform

to escape the shock. Furthermore, in this task, avoidance comes at a cost, as it competes with access

to food. Thus, the involvement of PL could vary with changes in the cost and/or urgency of avoid-

ance as the tone progresses (Zeeb et al., 2015; Hosking et al., 2016).

Histological analysis showed that MUS was confined to PL in its mid rostral-caudal extent

(Figure 1A). Rats with substantial spread to adjacent infralimbic cortex were excluded (n = 3). In

some cases, MUS reached the ventral half of cingulate cortex (Cg1), and these cases were included

due to similar functions of Cg1 and PL in conditioned fear (Courtin et al., 2014) and avoidance

(Orona and Gabriel, 1983; Freeman et al., 1996). Following surgical implantation of cannulas, rats

were trained in platform-mediated avoidance over 10 days as previously described (Figure 1B,

Bravo-Rivera et al., 2014; Rodriguez-Romaguera et al., 2016). On Test 1 (Day 11), we infused

MUS into PL at the same concentration as our prior studies using fluorescent MUS (Do-Monte et al.,

2015b; Rodriguez-Romaguera et al., 2016) and waited 45 min before commencing a 2-tone test of

avoidance expression (without shock). Figure 1C shows that MUS inactivation significantly reduced

the time spent on the platform during the tone, as compared to saline (SAL) infused controls (SAL

92% vs. MUS 57%, t(28) = �4.019, p<0.001, Bonferroni corrected). An analysis of avoidance across

the tone in 3 s bins (Figure 1D) indicated that MUS-infused rats were significantly delayed in their

initiation of avoidance (repeated measures ANOVA, F(1,9) = 4.076, p<0.001; post hoc, 0–15 s

**p<0.01, 15–21 s *p<0.05), and 2/13 rats never avoided (Mann Whitney U Test, p<0.001,

Figure 1E). MUS also increased tone-induced freezing (Figure 1E top inset; SAL = 36% vs.

MUS = 55% freezing, t(28) = 2.460, p=0.020) but had no effect on suppression of bar pressing

(Figure 1E bottom inset; SAL = 0.922 vs. MUS = 0.984 suppression ratio, t(28) = 0.194, p=0.848).

Inactivation of PL had no effect on locomotion, as indicated by distance traveled during a 5 min

open field test (SAL n = 10, 13.23 m vs. MUS n = 10, 12.53 m, t(18) = 0.513, p=0.614, Figure 1—fig-

ure supplement 1). Nor was there an effect on anxiety, as assessed with time spent in the center of

the open field (SAL = 15.69 s vs. MUS = 18.76 s, t(18) = 0.933, p=0.363, Figure 1—figure supple-

ment 1). Thus, pharmacological inactivation of PL delayed the expression of active avoidance.

Photosilencing of PL glutamatergic neurons does not delay avoidance
Because pharmacological inactivation of PL delayed avoidance, we reasoned that tone-induced

activity in PL would be essential for avoidance early in the tone. To assess this, we used an optoge-

netic approach, expressing the microbial opsin archaerhodopsin (ArchT) in PL, which causes a hydro-

gen proton efflux to hyperpolarize neurons when exposed to 532 nm (green) light (Chow et al.,

2010; Han et al., 2011). We delivered ArchT by infusing an adeno-associated virus (AAV) encoding

both ArchT and enhanced yellow fluorescent protein (eYFP) under the control of the CAMKIIa pro-

moter to target glutamatergic neurons (Jones et al., 1994, AAV5:CaMKIIa::eArchT3.0-eYFP;

Liu and Jones, 1996, Van den Oever et al., 2013, Warthen et al., 2016). We first confirmed in

anesthetized rats that ArchT silences PL neurons by recording extracellular activity from ArchT-

infused rats exposed to green light (Figure 2A). Laser illumination significantly decreased the firing

Diehl et al. eLife 2018;7:e34657. DOI: https://doi.org/10.7554/eLife.34657 2 of 19

Research article Neuroscience

https://doi.org/10.7554/eLife.34657


rate of 38/70 neurons and increased the firing rate of 9/70 neurons (Wilcoxon signed-ranks test com-

paring pre-laser vs laser activity of each unit using 1 s time bins, all p’s <0.05).

Next, we infused ArchT bilaterally into PL, distinguishing rostral PL (rPL; defined as dorsal to

medial orbitofrontal cortex and anterior to the infralimbic cortex) from caudal PL (cPL; defined as

dorsal to the infralimbic cortex; Figure 2B) based on distinct connectivity of these subregions

(Floyd et al., 2000; Floyd et al., 2001). 4–6 weeks after viral infusion, 10 days of avoidance training

commenced. Rats were then given a 2-tone test of avoidance expression, with laser illumination con-

current with the first tone only. Surprisingly, avoidance was not impaired by photosilencing of either

rPL (Figure 2C; t(30) = 0.792, p=0.435) or cPL (Figure 2D; t(14) = 0.471, p=0.646). Photosilencing also

had no effect on the time course of avoidance in rPL (Figure 2E left) or cPL (Figure 2F left). How-

ever, rPL-ArchT rats avoided significantly earlier than eYFP controls, as measured by avoidance

latency (Figure 2E right, Mann Whitney U test, p=0.021). With respect to freezing, there was no sig-

nificant effect of photosilencing in rPL (Figure 2C top inset, t(30) = 1.939, p=0.062) or cPL

(Figure 2D top inset, t(14) = 0.590, p=0.565). Suppression of bar pressing was also unaffected by

photosilencing in either location (Figure 2C bottom inset, rPL: t(30) = 0.415, p=0.681; Figure 2D bot-

tom inset, cPL: t(14) = 0.984, p=0.342). The lack of impairment of avoidance may suggest that we

failed to sufficiently inhibit PL activity via ArchT photosilencing. However, photosilencing rPL neurons

during early avoidance training (on day 2) significantly reduced tone-induced freezing (eYFP-control:

31% (n = 9) vs. eYFP-ArchT: 7% (n = 8), t(15) = 0.288, p=0.012, Figure 2—figure supplement 1).

Thus, contrary to our initial hypothesis, excitatory activity of PL projection neurons does not

appear to be necessary for avoidance behavior. Instead, silencing rPL tended to facilitate avoidance

Figure 1. Pharmacological inactivation of prelimbic cortex delays avoidance. (A). Schematic of MUS infusion showing the minimum (dark orange) and

maximum (light orange) extent of infusion into PL. (B). Rats were trained across 10 days to avoid a tone-signaled foot-shock by stepping onto a

platform. On Day 11, rats received two tone presentations (without shock) 45 min after MUS infusion. On Day 12, rats received a second 2-tone test

drug free. (C). Percent time on platform during Tone 1 on Days 10, 11, and 12 for MUS and saline controls (SAL, n = 17; grey) and MUS rats (n = 13,

orange). (D). Time spent on platform in 3 s bins for Test 1 (Tone 1) revealed that MUS rats were significantly delayed in their avoidance compared to

SAL controls (repeated measures ANOVA, post hoc Tukey). (E). Latency of avoidance for each rat (Mann Whitney U test, Tone 1, Test 1). Inset: Effect of

MUS inactivation (Tone 1, test 1) on freezing (top) and percent suppression of bar pressing (bottom) during the tone (unpaired t-test). Data are shown

as mean ± SEM; *p<0.05, **p<0.01, ***p<0.001.

DOI: https://doi.org/10.7554/eLife.34657.002

The following source data and figure supplement are available for figure 1:

Source data 1. Open field measures following MUS infusion in PL.

DOI: https://doi.org/10.7554/eLife.34657.004

Figure supplement 1. Assessment of locomotion and anxiety following pharmacological inactivation of PL.

DOI: https://doi.org/10.7554/eLife.34657.003
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Figure 2. Optogenetic silencing of prelimbic neurons does not delay avoidance. (A). Left: Schematic of ArchT expression and optrode placement in

anesthetized rats (n = 2). Middle: Rasters and peristimulus time histogram of a single PL neuron showing a decrease in firing rate during laser

illumination (8–10 mW, 532 nm, 10 s ON, 10 s OFF, 10 trials). Right: Proportion of PL neurons that exhibited a decrease (blue, n = 38), increase (gold,

n = 9), or no change (grey, n = 23) in firing rate. (B). Schematic of virus infusion, location of min/max expression of AAV in rPL (pink) and cPL (purple),

followed by avoidance training and test. At Test, 532 nm light was delivered to rPL or cPL during the entire 30 s tone presentation (Tone 1). (C). Left:

Micrograph of ArchT expression and optical fiber placement in rPL. Right: Percent time on platform at Cond (Day 10, Tone 1) and Test (Day 11, Tone 1

with laser ON and Tone 2 with laser OFF) for rPL-eYFP control (n = 15, grey) and rPL-ArchT rats (n = 17, green). Inset: There was no effect of rPL

photosilencing (Tone 1 at Test) on freezing (top) and percent suppression of bar pressing (bottom) during the tone (unpaired t-test). (D). Left:

Micrograph of ArchT expression and optical fiber placement in cPL. Right: Percent time on platform during Cond and Test for cPL-eYFP control (n = 7,

grey) and cPL-ArchT rats (n = 9, green). Inset: There was no effect of cPL photosilencing (Tone 1 at Test) on freezing (top) and percent suppression of

bar pressing (bottom) during the tone (unpaired t-test). (E). Left: Time spent on platform in 3 s bins (Tone 1 at Test) revealed no effect of silencing rPL-

ArchT neurons compared to eYFP controls (repeated measures ANOVA). Right: Latency of avoidance for each rat (Tone 1 at Test). rPL-ArchT rats

showed a decrease in avoidance latency (Mann Whitney U test, p=0.021). (F). Timeline of avoidance (left) and latency (right) for cPL-eYFP control rats

and cPL-ArchT rats. All data are shown as mean ± SEM; *p<0.05.

DOI: https://doi.org/10.7554/eLife.34657.005

The following source data and figure supplement are available for figure 2:

Source data 1. Freezing levels following ArchT silencing of rPL neurons.

DOI: https://doi.org/10.7554/eLife.34657.007

Figure supplement 1. Assessment of fear following ArchT silencing of rPL neurons.

DOI: https://doi.org/10.7554/eLife.34657.006
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(as indicated by the decrease in avoidance latency), raising the possibility that avoidance signaling

may involve rPL inhibition rather than excitation.

Inhibitory tone responses of PL neurons are specific to avoidance
An assumption of our photosilencing approach was that increased activity in PL neurons is correlated

with avoidance; however, this hypothesis had never been tested. We therefore performed extracellu-

lar single unit recordings in PL of well-trained rats during avoidance expression. Units were recorded

from the full rostral-caudal extent of PL (Figure 3A). We first characterized PL responses to tone

onset. Both excitatory responses (Z > 2.58, first 500 ms) and inhibitory responses (Z < �1.96, in the

first or second 500 ms) were observed (Figure 3B right). This tone response latency (<1 s) was

selected to ensure that the activity of PL neurons reflected the tone rather than platform entry, which

occurred later than 1 s in 91% of the trials (median = 3.55 s). Figure 3C shows the proportions of

neurons that were significantly responsive (at each 500 ms bin) throughout the tone. The black dots

above the graph indicate the time of platform entry relative to tone onset. Out of 205 neurons, 30

were excited (14%) and 22 were inhibited (11%) at tone onset, relative to 10 s of pre-tone activity

(Figure 3D). Normalized activity throughout the tone for all neurons is shown in Figure 3—figure

supplement 1A–B.

To determine if these tone responses were correlated with avoidance rather than simply auditory

processing, we compared PL responses in this group of rats with those of a naı̈ve control group

trained to press for food and presented with tones in the same chamber with the platform. Naı̈ve

rats were free to mount the platform and explore the chamber but were never shocked. In addition,

to determine whether activity at tone onset might represent the conditioned aversiveness of the

tone, we compared responses in avoidance rats with responses in rats subjected to auditory fear

conditioning in the same chamber (re-analysis of data from Burgos-Robles et al., 2009). Surpris-

ingly, there were no significant differences in the percentage of excitatory tone responses in the

avoidance group compared to the naı̈ve or fear conditioned groups (Figure 3D top right; avoid-

ance-trained: 30/205 (14%), naı̈ve: 20/166 (12%), fear: 25/191 (13%), Chi Square = 0.547, p=0.761).

Inhibitory responses, however, occurred more frequently in avoidance-trained rats compared to the

other two groups (avoidance-trained: 22/205 (11%), naı̈ve: 3/166 (2%), fear: 3/191 (2%), Chi

Square = 22.545, p<0.001). Group differences between tone responses are shown for the first 5 s of

the tone in Figure 3D (bottom). Note the marked differences between avoidance and naı̈ve groups

for inhibitory, but not excitatory, responses at tone onset.

Platform entry responses are not specific to avoidance
We next examined PL activity at platform entry, defined as the moment at which the rat’s head

entered the platform zone (Figure 3E–G), compared to the same baseline used for tone onset. Both

excitatory (Z > 2.58 in the first 500 ms) and inhibitory (Z < �1.96 in the first or second 500 ms)

responses to platform entry were observed (Figure 3E right). Figure 3F shows the proportion of

neurons that were responsive at each 500 ms time bin around platform entry (black dots above the

graph show tone onsets). PL neurons showed excitation (n = 26/175; 15%) and inhibition (n = 16/

175; 9%) at platform entry (Figure 3G left), but neither differed significantly from the naı̈ve group

(Figure 3G right: n = 23/160 excited, p=0.331; n = 10/160 inhibited, p=0.197 Fisher Exact). Platform

responses across the first 5 s after platform entry are shown in Figure 3G (bottom). Cells showing

excitatory responses to the tone were largely distinct from cells showing excitatory responses to

platform entry, but there was some overlap between responses showing inhibition (Figure 3H).

Together, these results suggest that responses to platform entry represent sensory perception and/

or motor responses rather than avoidance of threat (Amir et al., 2015).

We next asked if the latency of PL inhibition to the tone correlated with the latency of platform

entry. Inhibition latency was defined as the start of the first inter-spike interval (ISI) that was signifi-

cantly longer than the average pre-tone ISI (Z > 1.65; p<0.05). 133/205 neurons showed at least one

ISI that satisfied this criterion. The latency of inhibition showed no correlation with the latency of

platform entry (r = 0.022, Pearson correlation, Figure 3—figure supplement 1E). For each cell, we

averaged its inhibitory latency across all the trials in which successful avoidance was observed (out of

nine trials in each session, n = 284 trials), as well as the avoidance latency on those trials. The inhibi-

tory response in most cells preceded platform entry (88/133 cells) but was not correlated with the
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Figure 3. Active avoidance is correlated with inhibition in rostral PL neurons. (A). Location of recordings across PL (n = 6 avoidance-trained and n = 8

naı̈ve rats). (B). Left: Schematic of rat behavior at tone onset during unit recordings. Right: single unit examples of excitatory (gold rasters) and inhibitory

(blue rasters) tone responses. Each row represents a single trial. (C). Proportion of excitatory (gold) or inhibitory (blue) neurons at each 500 ms bin

across the tone. Time of platform entry (black dots), for all successful trials (n = 284) in avoidance rats is indicated relative to tone onset. (D). Left: Heat

map of normalized (z-score) responses to tone onset (Time = 0 s) of neurons in avoidance rats. Each row represents one neuron, bin = 0.5 s. Arrows

Figure 3 continued on next page
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latency of platform entry (r = 0.078, Figure 3—figure supplement 1F). In fact, similar inhibition was

observed in trials where the rat chose not to avoid (n = 107 trials, dashed orange line in Figure 3—

figure supplement 1F). The latency of headturn, which was the first movement the rat made before

proceeding to the platform, also did not correlate with the latency of inhibitory responses (Fig-

ure 3—figure supplement 1E). Rather than signaling avoidance behavior, therefore, inhibitory

responses in PL appear to signal that shock can be avoided (an avoidance option), regardless of

whether the rat chose to avoid on that trial.

Opposing inhibition within rostral PL delays or prevents avoidance
Further analysis revealed that all neurons showing inhibition to the tone were located in rPL (blue,

n = 22), with none in cPL (Figure 3I–J). Most inhibitory responses (n = 18/22) were brief, ending

by ~10 s after tone onset, whereas a smaller proportion were sustained throughout the tone (n = 4/

22, Figure 3—figure supplement 1C). Neurons showing inhibition reduced their firing rate from 6

to 2 Hz on average (Figure 3J) and were putative projection neurons based on their spike width and

baseline firing rate (>225 ms, <15 Hz, from our previous study of PL neurons; Sotres-Bayon et al.,

2012, see Figure 3—figure supplement 1D).

If inhibition within rPL signals the avoidability of a tone-signaled shock, we reasoned that oppos-

ing this inhibition should remove this option and impair avoidance. To oppose inhibition, we used

channelrhodopsin (ChR2) targeting CAMKIIa-positive neurons to activate rPL neurons throughout

the tone at 4 Hz, to counter the tone-induced decrease from 6 to 2 Hz. To validate our method, we

first measured extracellular unit activity in anesthetized rats from ChR2-expressing rPL neurons

exposed to blue light (473 nm, Figure 4A). Figure 4B shows a representative rPL neuron increasing

its firing rate with photoactivation. We found that 4 Hz photoactivation increased the firing rate in

38% of the neurons and decreased the firing rate in 24% of the neurons (Figure 4C left; n = 112, 4

Hz, 30 s duration, 5 ms pulse width, 8–10 mW illumination, p<0.05). Photoactivation induced less

than 4 Hz activity (3.33 Hz) suggesting that neurons failed to respond to some light pulses

(Figure 4C right), as has previously been observed for ChR2 (Warden et al., 2012). Photoactivation

at 2 Hz had an even weaker effect, increasing the firing rate from 0.4 to 1.19 Hz on average

(Figure 4D–E).

We next infused ChR2 bilaterally into either the rPL or cPL and began avoidance conditioning 3–4

weeks after AAV infusion (Figure 5A). Following 10 days of avoidance training, rats were exposed to

Figure 3 continued

indicate bins used to determine excitatory (gold, first 500 ms bin), or inhibitory (blue, first or second 500 ms bin) tone responses. Right: Pie charts

showing proportions of excited, inhibited, or non-responsive neurons at tone onset in avoidance (n = 30, 22, 153, respectively), naı̈ve (n = 20, 3, 143,

respectively), and fear conditioned (n = 25, 3, 163, respectively) rats. Proportions of inhibitory responses were significantly greater in avoidance rats

compared to naı̈ve and fear conditioned rats (Chi Square test). Bottom: Percentage of cells that were excited in avoidance (gold) or naı̈ve (light gold)

rats (left) or inhibited in avoidance (blue) or naı̈ve (light blue) rats (right) around tone onset (Fisher exact tests). (E). Left: Schematic of rat entering

platform after tone onset during unit recordings. Right: single unit examples of excitatory (gold rasters) and inhibitory (blue rasters) platform entry

responses. (F). Proportion of excitatory (gold) or inhibitory (blue) neurons at platform entry. Time of tone onset (black dots), for all successful trials

(n = 284) in avoidance rats is indicated relative to platform entry. (G). Left: Heat map of normalized responses to platform entry (Time = 0 s) of neurons

in avoidance rats. Right: Pie charts showing proportions that were excited, inhibited, or non-responsive neurons at platform entry in avoidance (n = 26,

16, 133, respectively) and naı̈ve rats (n = 23, 10, 127, respectively). Bottom: Percentage of cells that were excited in avoidance (gold) or naı̈ve (light gold)

rats (left) or inhibited in avoidance (blue) or naı̈ve (light blue) rats (right) after platform entry (Fisher exact tests). (H). Venn diagram illustrating the

number (and percentage) of excitatory and inhibitory responsive cells responding to tone onset, platform entry, or both. (I). Left: Proportion of neurons

responding to tone onset in rostral PL (left) and caudal PL (right) in avoidance (dark bars) and naı̈ve (light bars) groups. There were significantly more

inhibitory tones responses in rPL vs cPL (Fisher Exact test). Right: Proportion of neurons responding to platform entry in rostral PL (left) and caudal

(right) PL in avoidance and naı̈ve rats. (J). Top: Sagittal view of location of inhibitory tone responsive neurons (blue). Bottom: Average inhibitory

response of neurons decreased from a baseline firing rate of 5.8 Hz to 1.98 Hz at tone onset. Data are shown as mean ± SEM; *p<0.05, **p<0.01,

***p<0.001.

DOI: https://doi.org/10.7554/eLife.34657.008

The following source data and figure supplement are available for figure 3:

Source data 1. PL unit recording data.

DOI: https://doi.org/10.7554/eLife.34657.010

Figure supplement 1. Characterization of PL single unit responses during avoidance.

DOI: https://doi.org/10.7554/eLife.34657.009
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two tones presented in the absence of shock. PL neurons were illuminated throughout the first tone

(4 Hz, 30 s). Photoactivation of rPL neurons at 4 Hz markedly reduced avoidance expression as

reflected in the time spent on the platform (Figure 5B; eYFP-control, n = 9, 87% vs. ChR2-eYFP, n =

14, 27%, t(21) = �4.779, p<0.001, Bonferroni corrected; see Video 1). In contrast to rPL, photoactiva-

tion of cPL had no significant effect on avoidance (Figure 5C, t(14) = 1.531, p=0.148) or its time

course (Figure 5E).

Examination of the time course of avoidance showed that photoactivation of rPL significantly

reduced avoidance throughout the tone (Figure 5D left; repeated measures ANOVA, main effect

(Group), F(1) = 18.642, p<0.001, interaction effect (Group x Time) F(9) = 1.156, p=0.326, post hoc, 3–

30 s, all p’s < 0.01). Photoactivation delayed avoidance in 7/14 rats and blocked avoidance entirely

in 7/14 rats (Figure 5D right; Mann Whitney U test, p<0.001). Photoactivation had no significant

effect on freezing or suppression of bar pressing in either rPL (Figure 5D insets, freezing: t(21) =

1.121, p=0.275; suppression: t(21) = 1.343, p=0.194) or cPL (Figure 5E insets, freezing: t(14) = 0.0702,

p=0.494; suppression: t(14) = 0.483, p=0.636). Photoactivation at 2 Hz had no effect on avoidance

expression (Figure 5F). Furthermore, shifting the 4 Hz photoactivation to the inter-tone interval did

not impair avoidance (Figure 5G). Thus, the photoactivation-induced impairment of avoidance

showed specificity with respect to location, time, and frequency. Finally, reducing the duration of 4

Hz photoactivation to the first 15 s of the tone delayed, but did not prevent, avoidance as indicated

by time on platform (Figure 5H left; Mann Whitney U test, p’s <0.05 at 9–15 s) and avoidance

latency (Figure 5H right, t(17) = 3.363, p=0.004). 4 Hz photoactivation of rPL had no effect on loco-

motion, as indicated by distance traveled in an open field (eYFP-control n = 11, 2.71 m vs. ChR2-

eYFP, n = 15, 2.25 m, t(24) = 0.941, p=0.356, Figure 5—figure supplement 1). Nor did it have any

effect on anxiety levels, as assessed by time spent in the center of the open field (eYFP-

Figure 4. Single-unit recording with photoactivation in rostral PL neurons of anesthetized rats. (A). Schematic of ChR2 expression and optrode

placement (n = 4 rats). (B). Rasters and peristimulus time histograms of a representative single neuron showing increased firing rate during 4 Hz laser

illumination (8–10 mW, 473 nm, 30 s ON, 30 s OFF, five trials). (C). Left: Proportion of neurons showing an increase (gold, n = 43), decrease (blue,

n = 27), or no change (grey, n = 42) in firing rate with laser ON. Right: Average firing rate at baseline (dark grey) and 4 Hz photoactivation for neurons

showing increased (gold) changes in firing rate. (D). Rasters and peristimulus time histograms of a representative single neuron showing increased firing

rate during 2 Hz laser illumination (8–10 mW, 473 nm, 30 s ON, 30 s OFF, five trials). (E). Left: Proportion of neurons showing an increase (n = 27),

decrease (n = 15), or no change (n = 34) in firing rate with laser ON. Right: Average firing rate at baseline, and 2 Hz photoactivation for neurons

showing increased changes in firing rate. Data are shown as mean ± SEM.

DOI: https://doi.org/10.7554/eLife.34657.011

The following source data is available for figure 4:

Source data 1. ChR2 anesthetized unit recording data.

DOI: https://doi.org/10.7554/eLife.34657.012
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Figure 5. 4 Hz photoactivation of neurons in rostral PL delays or prevents avoidance. (A). Schematic of viral infusion and location of min/max spread of

AAV expression in rPL (pink) and cPL (purple), followed by avoidance training. At Test, 473 nm light was delivered to rPL or cPL during the 30 s tone

presentation (Tone 1). (B). Left: Micrograph of ChR2 expression and optical fiber placement in rPL. Right: Percent time on platform at Cond (Day 10,

Tone 1) and Test (Day 11, Tone 1 with laser ON and Tone 2 with laser OFF) for rPL-eYFP control rats (grey, n = 9) and rPL-ChR2 rats (blue, n = 14). (C).

Left: Micrograph of ChR2 expression and optical fiber placement in cPL. Right: Percent time on platform during Cond and Test for cPL-eYFP control

rats (grey, n = 7) and cPL-ChR2 rats (blue, n = 9). (D). Left: Time spent on platform in 3 s bins (Tone one at Test) revealed that rPL-ChR2 rats were

significantly delayed in their avoidance compared to eYFP controls (repeated measures ANOVA, post hoc tukey). Right: Latency of avoidance for each

rat (Mann Whitney U test, Tone 1 at Test). 7/14 rats never avoided. Inset: There was no effect of rPL photoactivation (Tone 1 at Test) on freezing (top)

and percent suppression of bar pressing (bottom) during the tone (unpaired t-test). (E). Timeline of avoidance (left) and latency (right) for ChR2-cPL rats

and eYFP controls revealed no effect of 4 Hz photoactivation of cPL. Inset: There was no effect of cPL photoactivation (Tone 1 at Test) on freezing (top)

and percent suppression of bar pressing (bottom) during the tone (unpaired t-test). (F). Timeline of avoidance (left) and latency (right) for rPL-ChR rats

(blue, n = 9) and rPL-eYFP controls (grey, n = 9) revealed no effect of 2 Hz photoactivation. (G). Timeline of avoidance (left) and latency (right) for rPL-

ChR2 rats (blue, n = 13) and rPL-eYFP controls (grey, n = 8) revealed no effect of 4 Hz photoactivation (30 s) during the ITI period. (H). Timeline of

Figure 5 continued on next page
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control = 2.6727 s vs. eYFP-ChR2 = 2.6733 s, t(24) = 4.82e-4, p=0.999, Figure 5—figure supplement

1). Thus, preventing inhibition in rPL glutamatergic neurons severely impaired avoidance expression.

Discussion
In this study, we investigated the mechanisms of prefrontal control over active avoidance. Whereas

pharmacological inactivation of PL delayed avoidance, optogenetic silencing of rostral PL acceler-

ated avoidance. Single-unit recordings revealed that avoidance training was associated with inhibi-

tory, rather than excitatory, tone responses in rostral PL neurons. Consistent with this, opposing

tone-induced inhibition by optogenetically activating rPL neurons delayed or prevented avoidance.

These findings add to a growing body of evidence that inhibition within PL is key for conditioned

behavior (Ehrlich et al., 2009; Ciocchi et al., 2010; Sotres-Bayon et al., 2012; Sparta et al., 2014)

and highlight the importance of using in vivo recordings to guide optogenetic behavioral

manipulations.

Previous work has shown that lesions or inactivation of PL reduces freezing in Pavlovian fear con-

ditioning tasks (Baeg et al., 2001; Vidal-Gonzalez et al., 2006; Sierra-Mercado et al., 2011). In our

platform-mediated avoidance task, however, there was no reduction in freezing following pharmaco-

logical or optogenetic inhibition of PL (present study; Bravo-Rivera et al., 2014). Thus, PL activity is

no longer necessary for freezing following avoidance training. It is therefore unlikely that inhibitory

responses in PL promote avoidance by decreasing freezing. In fact, freezing levels increased follow-

ing MUS inactivation, consistent with loss of avoidance as a possible response to the tone. It is well-

established that early stages of avoidance train-

ing depend on Pavlovian conditioning (acquisi-

tion of tone-shock association), whereas later

stages of training shift to instrumental learning

(platform entry; Mowrer and Lamoreaux, 1946;

Kamin et al., 1963; LeDoux et al., 2017). In

agreement with this shift, we did, in fact,

observe a decrease in freezing following optoge-

netic silencing of PL early in avoidance training.

We observed both excitatory and inhibitory

signaling in PL during avoidance. Excitatory

responses to platform entry are consistent with

prior cFos studies showing that active avoidance

is correlated with increased PL activity

(Martinez et al., 2013; Bravo-Rivera et al.,

2015). Inhibitory responses to the tone were

observed following avoidance training, but not

fear conditioning, suggesting that inhibition is

specific to avoidance. However, inhibitory tone

responses were not correlated with platform

entry and persisted in trials in which the rat did

not avoid. Instead of signaling avoidance behav-

ior, we suggest that rPL inhibition is a training-

Figure 5 continued

avoidance (left) and latency (right) for and rPL-ChR2 rats (blue, n = 9) and rPL-eYFP controls (grey, n = 10) revealed a delay in avoidance with 4 Hz

photoactivation during the first 15 s of the tone (Mann Whitney U test for time course and avoidance latency). All data are shown as mean ± SEM;

*p<0.05; **p<0.01; ***p<0.001.

DOI: https://doi.org/10.7554/eLife.34657.013

The following source data and figure supplement are available for figure 5:

Source data 1. Open field measures during blue laser illumination in rPL with ChR2.

DOI: https://doi.org/10.7554/eLife.34657.015

Figure supplement 1. Assessment of locomotion and anxiety following 4 Hz photoactivation of rPL neurons.

DOI: https://doi.org/10.7554/eLife.34657.014

Video 1. 4 Hz photoactivation of rostral PL neurons

during the tone impairs avoidance. Video of an

individual rat with ChR2 infused into rPL showing

avoidance behavior on the last day of avoidance

training (Day 10) at Tone 1, followed by the rat’s

behavior at Test (Day 11) with the laser on during the

tone (4 Hz, 30 s duration, 5 ms pulse width, 8–10 mW

light intensity).

DOI: https://doi.org/10.7554/eLife.34657.016
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induced property of the tone, indicating that shock is avoidable and that the rat has the option to

avoid. ‘Avoidability’ in this task resembles ‘controllability’ when rats learn that they can terminate a

shock by running in a wheel (Maier and Seligman, 1976; Maier, 2015). In that task, rats’ control of

shock reduced the activation of serotoninergic neurons in the dorsal raphe, a phenomenon blocked

by PL inactivation (Amat et al., 2005). Thus, inhibition in PL may reduce its effects on target struc-

tures such as the raphe, thereby signaling avoidability/controllability in a variety of contexts.

We impaired avoidance by photostimulating at 4 Hz, which clamped PL glutamatergic neurons to

their basal firing rate and prevented tone-induced inhibition. This rate of stimulation is much lower

than the 20 Hz used in most behavioral studies employing channelrhodopsin (Liu et al., 2012; Felix-

Ortiz and Tye, 2014; Marcinkiewcz et al., 2016; Villaruel et al., 2017; Burgos-Robles et al., 2017;

Warlow et al., 2017). This impairment in avoidance with 4 Hz stimulation was surprising given that

photoactivation of the adjacent infralimbic cortex required stimulation rates � 10 Hz to reduce con-

ditioned freezing (Do-Monte et al., 2015a). As 4 Hz approximates the average firing rate of mPFC

putative projection neurons (Jung et al., 1998; Baeg et al., 2001; Burgos-Robles et al., 2009;

Sotres-Bayon et al., 2012), the impairment in avoidance was likely due to abolishment of

inhibitory responses. Excitatory responses coupled with the loss of inhibitory responses to the tone

would cause PL responses in avoidance-trained rats to resemble those in fear conditioned rats, indi-

cating that the shock is not avoidable. An important caveat, however, is that CaMKIIa-expressing

neurons were activated by ChR2 indiscriminately and were not limited to neurons showing inhibitory

responses to the tone. Thus, in addition to reducing inhibitory responses in one population of cells,

we likely induced some degree of excitation in a separate population of cells. Both mechanisms

would have the effect of increasing tone-induced activity at rPL targets, but ChR2 photoactivation

would be expected to have a greater effect (as we observed). Whereas MUS inactivation would non-

specifically inhibit all neuronal types, it may resemble our 4 Hz photoactivation by preventing any

further inhibition at tone onset.

Neurons in PL project to the basolateral amygdala (BLA) and ventral striatum (VS; Sesack et al.,

1989; Vertes, 2004), both necessary for active avoidance (Darvas et al., 2011; Bravo-Rivera et al.,

2014; Ramirez et al., 2015; Hormigo et al., 2016). Inhibition of excitatory inputs from rPL to VS

may be permissive for avoidance behavior, which would resemble inhibition of VS during food seek-

ing (Rada et al., 1997; Saulskaya and Mikhailova, 2002; Do-Monte et al., 2017). rPL activity may

also modulate avoidance via projections to BLA, thereby activating BLA projections to VS, which

have been shown to drive shuttle avoidance (Ramirez et al., 2015). One possibility is that inputs to

VS from PL and BLA drive different aspects of avoidance: rPL for avoidance early in the tone when it

is less urgent, and BLA for avoidance later in the tone when it is more urgent. In support of this, PL

inhibition often delayed but did not block avoidance, revealing the effect of other inputs to VS later

in the tone.

Excessive avoidance is clinically relevant for PTSD and other anxiety disorders. Rodent PL is con-

sidered to be homologous to the human dorsal anterior cingulate cortex (dACC; Bicks et al., 2015;

Heilbronner et al., 2016). In humans, active avoidance is correlated with functional coupling of the

rostral dACC with the striatum (Collins et al., 2014), and the ability to control aversive stimuli is

associated with decreased activity in the rostral dACC (Wood et al., 2015), consistent with the rPL

inhibition we observed. Furthermore, excessive avoidance in PTSD patients is correlated with

increased activity in rostral dACC (Marin et al., 2016). Thus, reduced inhibition in rostral dACC and

its striatal targets may bias individuals toward avoidance, despite behavioral costs and a low proba-

bility of danger.

Materials and methods

Subjects
A total of 155 adult male Sprague Dawley rats (Harlan Laboratories, Indianapolis, IN) aged 3–5

months and weighing 320–420 g were housed and handled as previously described (Bravo-

Rivera et al., 2014). Rats were maintained on a restricted diet (18 g/day) of standard laboratory rat

chow to facilitate pressing a bar for food on a variable interval schedule of reinforcement (VI-30). All

procedures were approved by the Institutional Animal Care and Use Committee of the University of
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Puerto Rico School of Medicine in compliance with the National Institutes of Health guidelines for

the care and use of laboratory animals.

Surgery
Rats were anesthetized with isofluorane inhalant gas (5%) first in an induction chamber, then posi-

tioned in a stereotaxic frame (Kopf Instruments, Tujunga, CA). Isofluorane (2–3%) was delivered

through a facemask for anesthesia maintenance. For pharmacological inactivations, rats were

implanted with 26-gauge double guide cannulas (Plastics One, Roanoke, VA) in the prelimbic pre-

frontal cortex (PL; +3.0 mm AP; ±0.6 mm ML; �2.5 mm DV to bregma, 0˚ angle). For optogenetic
experiments, rats were bilaterally implanted with 22-gauge single guide cannulas (Plastics One, Roa-

noke, VA) in the prelimbic prefrontal cortex (PL; +2.6–2.8 mm AP; ±1.50 mm ML; �3.40 mm DV to

bregma, 15˚angle). An injector extending 2 mm beyond the tip of each cannula was used to infuse

0.5 ml of virus at a rate of 0.05 ml/min. The injector was kept inside the cannula for an additional 10

min to reduce back-flow. The injector was then removed and an optical fiber (0.22 NA, 200 nm core,

constructed with products from Thorlabs, Newton, NJ) with 1 mm of projection beyond the tip of

each cannula was inserted for PL illumination. The guide cannula and the optical fiber were

cemented to the skull (C and B metabond, Parkell, Brentwood, NY; Ortho Acrylic, Bayamón, PR). For

unit recording experiments, rats were implanted with a moveable array of 9 or 16 microwires (50 mm

spacing, 3 � 3 or 2 � 8, Neuro Biological Laboratories, Denison, TX) targeting regions of PL along

the rostral-caudal axis. After surgery, triple antibiotic was applied topically around the surgery inci-

sion, and an analgesic (Meloxicam, 1 mg/Kg) was injected subcutaneously. Rats were allowed a mini-

mum of 7 days to recover from surgery prior to behavioral training.

Behavior
Rats were initially trained to press a bar to receive food pellets on a variable interval reinforcement

schedule (VI-30) inside standard operant chambers (Coulbourn Instruments, Whitehall, PA) located in

sound-attenuating cubicles (MED Associates, St. Albans, VT). Bar-pressing was used to maintain a

constant level of activity against which avoidance and freezing could reliably be measured. Rats

were trained until they reached a criterion of �15 presses/min. Rats pressed for food throughout all

phases of the experiment.

For platform-mediated avoidance, rats were trained as previously described (Bravo-Rivera et al.,

2014). Briefly, rats were conditioned with a pure tone (30 s, 4 kHz, 75 dB) co-terminating with a

scrambled shock delivered through the floor grids (2 s, 0.4 mA). The inter-trial interval was variable,

averaging 3 min. An acrylic square platform (14.0 cm each side, 0.33 cm tall) located in the opposite

corner of the sucrose pellet–delivering bar protected rats from the shock. The platform was fixed to

the floor and was present during all stages of training (including bar-press training). Rats were condi-

tioned for 10 days, with nine tone-shock pairings per day with a VI-30 schedule maintained across all

training and test sessions. The availability of food on the side opposite to the platform motivated

rats to leave the platform during the inter-trial interval, facilitating trial-by-trial assessment of avoid-

ance. Once rats learned platform-mediated avoidance, rats underwent a 2-tone expression test (two

tones with no shock). Tone 2 served as an unstimulated within-subject control and was included in

the experimental design to identify any persistent effects of the laser activation. In all optogenetic

experiments, the response to Tone 1 was statistically compared to the eYFP control group at Tone

1.

Drug infusions
The GABA-A agonist muscimol (fluorescent muscimol, BODIPY TMR-X conjugate, Sigma-Aldrich)

was used to enhance GABA-A receptor activity, thereby inactivating target structures. Infusions were

made 45 min before testing at a rate of 0.2 ml/min (0.11 nmol/ 0.2 ml/ per side), similar to our previ-

ous studies (Do-Monte et al., 2015b; Rodriguez-Romaguera et al., 2016).

Viruses
The adeno-associated viruses (AAVs; serotype 5) were obtained from the University of North Caro-

lina Vector Core (Chapel Hill, NC). Viral titers were 4 � 1012 particles/ml for channelrhodopsin

(AAV5:CaMKIIa::hChR2(H134R)-eYFP) and archaerhodopsin (AAV5:CaMKIIa::eArchT3.0-eYFP) and 3
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� 1012 particles/ml for control (AAV5:CaMKIIa::eYFP). Rats expressing eYFP in PL were used to con-

trol for any nonspecific effects of viral infection or laser heating. The CaMKIIa promoter was used to

enable transgene expression favoring pyramidal neurons (Liu and Jones, 1996) in cortical regions

(Jones et al., 1994; Van den Oever et al., 2013; Warthen et al., 2016). Viruses were housed in a

�80˚C freezer until the day of infusion.

Laser delivery
Rats expressing channelrhodopsin (ChR2) in PL were illuminated using a blue diode-pump solid state

laser (DPSS, 473 nm, 2 or 4 Hz, 5 ms pulse width, 8–10 mW at the optical fiber tip; OptoEngine, Mid-

vale, UT), similar to our previous study (Do-Monte et al., 2015a). Rats expressing archaerhodopsin

(ArchT) in PL were bilaterally illuminated using a DPSS green laser (532 nm, constant, 10–12 mW at

the optical fiber tip; OptoEngine). For both ChR2 and ArchT experiments, the laser was activated at

tone onset and persisted throughout the 30 s tone presentation. Laser light was passed through a

shutter/coupler (200 nm, Oz Optics, Ontario, Canada), patchcord (200 nm core, ThorLabs, Newton,

NJ), rotary joint (200 nm core, 2 � 2, Doric Lenses, Quebec city, Canada), dual patchcord (0.22 NA,

200 nm core, ThorLabs), and bilateral optical fibers (made in-house with materials from ThorLabs

and Precision Fiber Products, Milpitas, CA) targeting the specific subregions in PL. Rats were famil-

iarized with the patchcord during bar press training and during the last 4 d of avoidance training

before the expression test.

Single-unit recordings
Rats implanted with moveable electrode arrays targeting PL/Cg1 were either avoidance conditioned

as previously described or exposed to the training environment (platform, tone presentations,

behavior box) in the absence of the shock. Extracellular waveforms that exceeded a voltage thresh-

old were digitized at 40 kHz and stored on a computer. Waveforms were then sorted offline using

three-dimensional plots of principal component and voltage vectors (Offline Sorter; Plexon, Dallas,

TX) and clusters formed by individual neurons were tracked. Timestamps of neural spiking and flags

for the occurrence of tones and shocks were imported to NeuroExplorer for analysis (NEX Technolo-

gies, Madison, AL). Because we used a high impedance electrode in the current study (~750–1000

kOhm), we were unable to sample interneurons. Single units were recorded across the extent of

Cg1, Cg2, and PL. We excluded any units in Cg2 based on histological verification. Portions of Cg1

dorsal to rPL were grouped together for analyses, and portions of Cg1 dorsal to cPL were grouped

together for analyses, ensuring that the proportion of Cg1 units was similar across both PL regions.

Data was recorded during the entire session except during the 2 s shock. After conditioning, rats

were tested for avoidance expression.

For avoidance assessment, rats received full conditioning sessions (with shocks) across days. Inclu-

sion of the shock prevented extinction of avoidance. After each day, electrodes were lowered 150

mM to isolate new neurons for the following session the next day. To detect tone-elicited changes in

PL activity, we assessed whether neurons changed their firing rate significantly during the first 500–

1000 ms after tone onset across the first five trials. A Z-score for each 500 ms bin was calculated rel-

ative to 20 pre-tone bins of equal duration (10 s pretone). PL neurons were classified as showing

excitatory tone responses if the initial bins exceeded 2.58 z’s (p<0.01, two-tailed). PL neurons were

classified as showing inhibitory tone responses across time if any of the initial two tone bins

exceeded �1.96 Z’s (p<0.05, two-tailed). A longer response latency for inhibition was chosen to

take into account multi-synaptic pathways that are present in inhibitory circuits.

To detect changes in PL activity during platform entry, we employed the same procedure used

for assessing tone responses. We assessed whether neurons changed their firing rate significantly

during the first 500–1000 ms after platform entry. A Z-score for each 500 ms bin was calculated rela-

tive to the same pretone baseline. Heat maps of single unit data were generated with Z-scores from

baseline through the 28 s after tone onset or platform entry.

To assess the relations between inhibition and avoidance on a trial-by-trial basis, we compared

the latency of inhibition with the latency of platform entry. The latency of the inhibitory response to

the tone was identified as the start of the first interspike interval (ISI) that was significantly longer

than the average ISI in 30 s of pre-tone activity (Z > 1.65; p<0.05) recorded in all cells for each trial.

We then computed the average latency of inhibition and platform entry for each cell recorded across
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all the trials in which successful avoidance was observed (nine trials per session). Avoidance latency

was also averaged on those trials for each cell.

Optrode recordings
Rats expressing ArchT or ChR2 in PL were anesthetized with urethane (1 g/Kg, i.p.; Sigma Aldrich)

and mounted in a stereotaxic frame. An optrode consisting of an optical fiber surrounded by 8 or 16

single-unit recording wires (Neuro Biological Laboratories) was inserted and aimed at PL (AP, +2.8

mm; ML: �0.5; DV: �3.5). The optrode was ventrally advanced in steps of 0.03 mm. Single-units

were monitored in real time (RASPUTIN, Plexon). After isolating a single-unit, a 532 nm laser was

activated for 10 s within a 20 s period, at least 10 times for ArchT-infected PL neurons. For ChR2-

infected PL neurons, a 473 nm laser was activated for 30 s at a rate of 2 or 4 Hz (5 ms pulse width)

within a 90 s period (60 s ITI), at least five times. Single-units were recorded and stored for spike

sorting (Offline Sorter, Plexon) and spike-train analysis (Neuorexplorer, NEX Technologies). Excit-

atory and inhibitory responses were calculated by comparing the average firing rate of each neuron

during the 10 s of laser OFF with the 10 s of laser ON for ArchT neurons and during 30 s laser OFF

just prior to the 30 s of laser ON for ChR2 neurons (Wilcoxon signed-rank test, 1 s bins).

Open field task
Locomotor activity in the open field arena (90 cm diameter) was automatically assessed (ANY-Maze)

by comparing the total distance travelled between 30 s trials (laser off versus laser on), following a 3

min acclimation period for optogenetic experiments. The distance traveled was used to assess loco-

motion and time in center was used to assess anxiety. For pharmacological inactivation experiments,

distance traveled and time in center was measured over a 5 min period following a 3 min acclimation

period 45 min after MUS or SAL was infused prior to sacrificing animals.

Histology
After behavioral experiments, rats were deeply anesthetized with sodium pentobarbital (450 mg/kg

i.p.) and transcardially perfused with 0.9% saline followed by a 10% formalin solution. Brains were

removed from the skull and stored in 30% sucrose for cryoprotection for at least 72 hr before sec-

tioning and Nissl staining. Histology was analyzed for placement of cannulas, virus expression, and

electrodes.

Data collection and analysis
Behavior was recorded with digital video cameras (Micro Video Products, Peterborough, Ontario,

Canada). Freezing and platform avoidance was quantified by observers blind to the experimental

group. Freezing was defined as the absence of all movement except for respiration. Avoidance was

defined as the rat having at least three paws on the platform. We calculated percent suppression of

bar pressing for each tone as previously described (Bravo-Rivera et al., 2014):

pretone rate� tone rateð Þ

pretone rateþ tone rateð Þ
� 100

A value of 0% indicates no suppression, where a value of 100% indicates complete suppression.

To calculate pretone rates, we used the 60 s before tone onset. In a subset of animals, AnyMaze

software was available for recording and calculating freezing, avoidance, and suppression of bar

pressing (Stoelting, Wood Dale, IL). The time spent avoiding during the tone (percent time on plat-

form) was used as our avoidance measure. Avoidance and freezing to the tone was expressed as a

percentage of the 30 s tone presentation. Our experimental groups typically consisted of approxi-

mately 15 animals. This is typical of other laboratories and results in sufficient statistical confidence.

Moreover, it also agrees with the theoretical minimum sample size given by:

n¼
z2s2

d2

where z = the level of confidence desired (in standard deviations), s = the estimate of the population

standard deviation, and d = the acceptable width of the confidence interval. Technical replications,

testing the same measurement multiple times, and biological replications, performing the same test

Diehl et al. eLife 2018;7:e34657. DOI: https://doi.org/10.7554/eLife.34657 14 of 19

Research article Neuroscience

https://doi.org/10.7554/eLife.34657


on multiple samples (individual rats or single units), were used to test the variability in each experi-

ment. Statistical significance was determined with Student’s two-tailed t-tests, Fisher Exact tests, Chi

Square tests, Pearson’s correlation, Mann Whitney U tests, or repeated-measures ANOVA, followed

by post hoc Tukey analyses, and Bonferroni corrections, where appropriate using STATISTICA (Stat-

soft, Tulsa, OK) and Prism (Graphpad, La Jolla, CA).
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