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Abstract We use optical trapping to continuously bend an isolated microtubule while

simultaneously measuring the applied force and the resulting filament strain, thus allowing us to

determine its elastic properties over a wide range of applied strains. We find that, while in the low-

strain regime, microtubules may be quantitatively described in terms of the classical Euler-Bernoulli

elastic filament, above a critical strain they deviate from this simple elastic model, showing a

softening response with increasingdeformations. A three-dimensional thin-shell model, in which the

increased mechanical compliance is caused by flattening and eventual buckling of the filament

cross-section, captures this softening effect in the high strain regime and yields quantitative values

of the effective mechanical properties of microtubules. Our results demonstrate that properties of

microtubules are highly dependent on the magnitude of the applied strain and offer a new

interpretation for the large variety in microtubule mechanical data measured by different methods.

DOI: https://doi.org/10.7554/eLife.34695.001

Introduction
Microtubules (MTs) are long slender hollow cylindrical filaments with an approximate inner and outer

diameter of 15 nm and 25 nm (Nogales et al., 1999). They are an indispensable structural element

in biology, and their mechanical properties play an critical role in defining the shape and functionali-

ties of various cellular architectures including neuronal axons, cilia and flagella, centrioles as well as

the mitotic spindle (Howard, 2001). Therefore, a quantitative understanding of their mechanical

properties is essential for elucidating the properties of various biological structures and functions

(Schaedel et al., 2015; Wells and Aksimentiev, 2010; Schaap et al., 2006). A number of experi-

mental studies have measured either the flexural rigidity (EI) or persistence length (lP) of MTs, two

closely related quantities that determine a filament’s resistance to bending (see Hawkins et al.,

2010). However, there is a considerable disagreement between different reported values of MT elas-

tic moduli (Mickey and Howard, 1995), the dependence of the elastic moduli on the presence of

stabilizing agents (taxol and GMPCPP), as well as a possible length-dependence of flexural rigidity

(Pampaloni et al., 2006; Kis et al., 2002).

In principle, the properties of microtubules can be measured by either visualizing their intrinsic

thermal fluctuations (Gittes et al., 1993; Mickey and Howard, 1995; Pampaloni et al., 2006;

Brangwynne et al., 2007; Janson and Dogterom, 2004; Cassimeris et al., 2001) or by applying an

external force through optical trapping or hydrodynamic flow experiments (Kikumoto et al., 2006;

van Mameren et al., 2009; Van den Heuvel et al., 2008; Venier et al., 1994; Felgner et al., 1996;

Kurachi et al., 1995; Dye et al., 1993). Because of significant rigidity of MTs these two types of
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measurements typically probe different deformation (strain) regimes. Thermally induced fluctuations

only induce small strain deformations, while methods that use external forces are more suited to

probe the high-strain regime. The existing measurements of microtubule mechanics have been

extensively reviewed iteHawkins2010. Careful review of this data shows that the majority of measure-

ments that rely on the filament fluctuations in the low strain regime yield values of microtubule flex-

ural rigidity around , while measurements at high strains, tend to be for similarly prepared MTs

(Supplementary file 2).

Here we describe experiments that comprehensively probe the mechanical response of GMPCPP

stabilized microtubules across a wide range of imposed strains. Using optical trapping, we attach

micron-sized silica beads at different points along a single filament and subject it to tensile and com-

pressive forces. This allows us to construct a force-strain relationship for an individual filament that

connects the low and high strain regimes that were probed separately in previous experiments. In

the compression region, which corresponds to microtubule bending, the buckling force increases lin-

early in the initial (low strain) region, but quickly deviates from this trend and saturates at some criti-

cal strain, and it gradually decreases at high strain values. Such behavior indicates softening of MTs,

an outcome that cannot be captured by the ideal Euler-Bernoulli model. We show that the mechani-

cal response of MTs is well-captured by an anisotropic elastic shell model with three coarse grained

elastic parameters (oneshear, and two stretching moduli). Our numerical simulations demonstrate

that the softening in the high strain regime can be ascribed to cross-sectional ovalization and even-

tual buckling, an effect first described for macroscopic hollow cylinders by Brazier (Brazier, 1927;

Calladine, 1983). For microtubule filaments in particular, cross-sectional flattening and buckling in

response to compressive radial strains has also been described (Kononova et al., 2014).

To test the validity of our method we calibrate our experiments and theory using a different bio-

logical filament - the bacterial flagellum. Similar to microtubules, flagella are long-filamentous cylin-

drical biopolymers with an outer diameter of ~ 24 nm (Yonekura et al., 2003). Furthermore, like

microtubules flagella have a hollow core; however, their core diameter is only 2 nm. Therefore fla-

gella should effectively behave as solid cylinders. Most wild-type flagella have a characteristic helical

superstructure. We use flagellin monomers isolated from Salmonella typhimurium, strain SJW1660,

which have a point mutation in their amino-acid sequence that causes them to assemble into straight

filaments (Kamiya et al., 1980). A simple model based on Euler-Bernoullibeams quantitatively

describes the measured force curve in all strain regimes. Such measurements validate our experi-

mental method while also providing an estimate of the elastic properties of flagellar filaments that

are in reasonable agreement with thefew existing measurements (Louzon et al., 2017; Darnton and

Berg, 2007; Fujime et al., 1972).

Results

Optical tweezers buckle microtubules
Optical trapping techniques have been used to manipulate and characterize diverse biological sys-

tems, including individual biological filaments and their assemblages (van Mameren et al., 2009;

Hilitski et al., 2015; Wang et al., 1997; Darnton and Berg, 2007). We use independently con-

trolled optical traps to attach a pair of neutravidin-coated silica beads (D ¼ 1�m) to a single, seg-

mented partially biotinylated MT filament (Figure 1A). One of the traps - the detection trap - is held

stationary and used as a force detector by measuring the displacement of its captured bead with

back focal- plane interferometry (see Video 1 of the experiments in supplementary information). The

second optical trap - the manipulation trap - is moved in increments of 2–20 nm in order to exert a

force on the filament, which connects the two beads. Our instrumentation allows us to simulta-

neously apply an external force with optical tweezers and visualize the filament configuration

(Figure 1B). Strain � is defined as:

�¼ db �Lð Þ=L: (1)

where db is the bead separation once the MT has been deformed, and L is the distance between

the beads when there is no force on the MT. The measured force-strain curve exhibits an unex-

pected feature (Figure 2B). For small deformations, the force increases linearly as a function of the

applied strain. Surprisingly, above a critical applied strain (�~ � 0:1) the force-compression curve
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exhibits a qualitatively different behavior. In this regime the applied force remains flat or in some

cases it even declines slightly, even as the strain changes from �0.1 to �0.5. Filaments subjected to

repeated cycles of compression/extension do not seem to exhibit any aging (Figure 2B, inset).

Figure 1. Probing the bending and stretching of microtubules using an optical trap. (A) Schematic of the experimental setup for microtubule

compression and stretching (note: not to-scale). Beads of radius 0.5 �m manipulated through optical traps are attached to the filament via biotin-

streptavidin bonds. The left trap remains fixed, while the right one is incrementally displaced towards or away. The bead separation db is different from

the trap separation dt due to the displacement between the centers of each bead and the corresponding trap. The force exerted by the traps on the

beads is proportional to this displacement, with the constant of proportionality being the optical trap stiffness. The (effective) MT length L is the length

between the attachment points of the two beads (but note that multiple bonds may form). The arclength coordinate s is measured from the left

attachment point and takes value between 0 and L: 0<s<L. A cross-sectional profile is shown to illustrate our definition of ‘eccentricity’ or ‘flatness’ e ¼
R� að Þ=R (Equation 4) where 2a is the length of the small axis and R is the radius of the undeformed MT cross-section, taken to be R ¼ 12 nm in our

simulations. (B) Series of fluorescence images from microtubule compression experiment. Trap positions represented through red circles of arbitrary

size are drawn for illustration purposes and may not precisely represent actual trap positions, since neither beads nor traps are visible in fluorescence

imaging. The mobile trap is moved progressively closer to the detection trap in the first four snapshots, resulting in increasingly larger MT buckling

amplitudes. The mobile trap then reverses direction, decreasing the buckling amplitude as seen in the last two snapshots. The scale bar represents 5

�m, the end-to-end length of the MT is approximately 18 �m, and the length of the MT segment between the optical beads is 7.7 �m.

DOI: https://doi.org/10.7554/eLife.34695.002
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Flagellar filaments exhibit no
anomalous softening at high strains
The softening of microtubules at high-strains is

not predicted by simple elastic filament models

of microtubule elasticity. A plausible hypothesis is

that the hollow core of the microtubules signifi-

cantly changes the effective elastic properties of

the filament. To examine this hypothesis and

quantitatively test our experimental method we

measured the force-strain curve of bacterial fla-

gellar filaments. As mentioned previously, the

hollow core of flagellar filaments is only 2 nm.

Therefore, we expect theywill exhibit classical

slender-rod-like behavior that should be captured

by a one-dimensional filament model.

The measured strain-force curve of a flagellar

filament is qualitatively different from that

observed for microtubules (Figure 3B). In both the compression and extension regime, the force

monotonically increases. For classical buckling, the amplitude of thedeformed beam scales as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F � Fc

p
, where Fc ¼ p2B=L2 is the classical buckling force (Timoshenko and Gere, 2012). For small

deflections, since the strain goes like the square of the amplitude, the force-displacement curve

should be roughly linear with strain, starting at Fc (albeit growing very slowly). However, for the clas-

sical buckling analysis, the compressive force is assumed to apply directly along the centerline of the

beam. Experimentally, this is not the case, since the force is exerted on the filament through trapped

micron-sized beads, which displace the force contact points away from the beam’s long axis. There-

fore to quantitatively compare experiments to theory we numerically solved a more realistic problem

that accounts for the entire filament-bead configuration. We also note that the slope in the exten-

sion region is higher than that in the compression region. Because the force is not applied along the

filament centerline, in response to extensional forces the filament bends in the proximity of the bead

attachments point. It is more difficult to bend the filament into such a configuration, hence the larger

slope of the extensional regime.

By tuning a single parameter, flexural rigidity B, the force-strain curve obtained from simulations

of a 1D filament model can be quantitatively fitted to the experimental data (Figure 3B). In the com-

pressive regime, the data is well fitted by simulationsin which the bending rigidity B ¼ 4pN� �m2.

Note that the agreement extends to very large strains approaching �0.7. The fitting procedure was

repeated for eight distinct flagella filaments, yielding flexural rigidity that ranges from 3.2 to 5.25

pN� �m2, with a mean around 4:1� 0:6 pN� �m2,. Interestingly, this value is close to the value of

Video 1. Microtubule buckling experiment, showing

two ‘back-and-forth’ cycles. The microtubule is labeled

with fluorescent dye Alexa-647 and is actively kept in

the focal plane. The scale bar represents 5 �m.

Approximate positions of the optical traps are shown

by red circles of arbitrary size.

DOI: https://doi.org/10.7554/eLife.34695.003

Video 2. Flagellum buckling experiment. (left)

Simulation of microtubule buckling experiment shown

in Figure 4, first panel. The length of the microtubule

between the optical bead attachment points is 3.6 �m

while the size of the optical beads is 0.5 mum. The

shape of the cross-section located halfway along the

microtubule is also shown. (right) Force-strain curves

from experiment (blue) and simulation (red). The

simulation curve is synchronized with the visualization

on the left.

DOI: https://doi.org/10.7554/eLife.34695.004

Video 3. Flagellum buckling experiment, showing

three ‘back-and-forth’ cycles. The scale bar represents

5 �m. Approximate positions of the optical traps are

shown by green circles of arbitrary size. Measured force

vector and magnitude are also indicated.

DOI: https://doi.org/10.7554/eLife.34695.005
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3:5pN� �m2 and 2:9pN� �m2 reported, respectively for the coiled and straight forms of flagella

(Louzon et al., 2017; Darnton and Berg, 2007). The magnitude of B suggests that Young’s modulus

for the straight flagellum is GPa.

3d model explains microtubule softening
Quantitative agreement between experimentally measured force-strain curves of flagellar filaments

and simulation results validate our experimental technique, while also demonstrating that the flagel-

lar filaments behave as simple elastic filaments. However, the same one-dimensional model is not

capable of reproducing the more complex elastic behavior observed in microtubule filaments. At

most, it can describe the low strain regime of the force-compression curve (Figure 2B, green dashed

curve). To explain theelastic behavior of microtubules over the entire strain regime we developed a

more comprehensive 3D model of microtubules that explicitly accounts for their hollow center. We

model the microtubule as a 3D orthogonal network of springs wrapped into a cylinder (Figure 2A).

All interactions between particles are defined in terms of a stretching energy Vstretch k; l; l0ð Þ or a

bending energy Vbend k;f;f0ð Þ, where l is the distance between a particle pair, f is the angle defined

by a triplet, and the subscript’ zero’ denotes the separation that minimizes particle interaction

energy. Explicitly,

Vstretch k; l; l0ð Þ ¼ 1

2
k l� l0ð Þ2; (2)

Vbend k;f;f0ð Þ ¼ 1

2
k f�f0ð Þ2: (3)

Neighboring triplets in the axial and azimuthal directions encode bending energies (Table 1)

through the parameters ka (Figure 2A, dark blue), respectively kc (Figure 2A, dark green) and equi-

librium angles of p, respectively 144p=180. Shearing is encoded by the same type of energy function

as bending (Table 1), but with parameter ks (Figure 2A, brown) and rest angle p=2:

Vshear ks;fsð Þ ¼ Vbend ks;fs;p=2ð Þ. The shearing interaction is defined for any triplet of neighbors that

are not all along the axial or azimuthal directions. The microtubule-optical bead contact is modeled

via parameters kb and kb, which are made sufficiently large to enforce the constraints of inextensibil-

ity and fixed attachment point. The relationship between these microscopic parameters and the

macroscopic parameters Ea, Ec, and G (axial Young’s modulus, circumferential Young’s modulus, and

shear modulus) can be derived based on the planar spring-network model and the orthotropic elas-

tic shell model (Sim and Sept, 2013; Wang et al., 2006) and are shown in Table 1.

The 3D microtubule model quantitatively explains the softening that is observed in experimentally

measured force-strain curves of microtubules. Overall we investigated the properties of 10 different

filaments with lengths between 3 and 15 �m (Figure 4) and fitted 10 different force-strain curves to

our theoretical model. Fitting each measurement curve yields independent yet consistent estimates

of the Young’s modulus in axial and circumferential directions, Ea, Ec, as well as the shear modulus,

G. We obtain Ec that varies between 3–10 MPa, and Ea between 0.6–1.1 GPa, which is in reasonable

agreement with values reported in the literature (see Discussion). This observation confirms that

microtubules are highly anisotropic materials. Interestingly, our values for shear modulus, G, are in

the GPa range (Table 2), which is significantly higher than the largest values reported in the litera-

ture. This likely indicates that the microtubule deformations in our experiments are large enough to

reach the point of deforming the tubulin units themselves rather than the bonds between them (see

Discussion).

Cross-sections flatten and eventually buckle
With quantitative agreement between experiments and theory we are in a position to elucidate the

microscopic origin of the microtubule softening at high strains. The decrease in the buckling force is

directly associated with ovalisation of the microtubulecross-section. Plotting the microtubule cross-

section at different deformation strains effectively demonstrates this effect. Figure 5A show the

force-strain data for a microtubule of length 8.3 �m. The point labeled a is close to the boundary of

the region where the 1D model (Figure 5A, green dashed line) fails, while points b and c are both

inside the high-strain non-classical regime. The large inset shows a snapshot of the
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simulatedmicrotubule corresponding to point c and smaller insets show cross-sectional profiles at

Figure 2. Discrete mechanical network model of microtubule. (A) Schematic of spring network model of microtubule. Red particles discretize the

filament while yellow particles represent the optical beads. Top inset: closeup of a region of the microtubule model, showing the 3D arrangement of

the particles. Right inset: further closeup of the region, showing the defined interactions between particles. In the circumferential direction, ten particles

are arranged in a circle of radius R ¼ 12 nm, (only three particles are shown in the inset) with neighboring pairs connected by springs of stiffness kc and

rest length p (light green). Neighboring triplets in the circumferential direction form an angle fc and are characterized by a bending energy interaction

with parameter kc (dark green). In the axial direction, cross-sections are connected by springs of stiffness ka (light blue) running between pairs of

corresponding particles. Bending in the axial direction is characterized by a parameter ka and the angle fa formed by neighboring triplets (dark blue).

All other triplets of connected particles that do not run exclusively in the axial or circumferential direction encode a shearing interaction with energy

given by Vbend ks;fs;p=2ð Þ (Table 1) with parameters ks and fs (yellow), where the stress-free shear angle is p=2. (B) Force-strain curve for a microtubule

of length 7.1 �m from experiment (blue) and simulation using a 1D model (green, dashed) or a 3D model (red). Arrows on the red curve indicate

forward or backward directions in the compressive regime. The bending rigidity for the 1D model fit is B ¼ 12pN�m2. The fit parameters for the 3D

model are Ea ¼ 0:6 GPa, Ec ¼ 3 MPa, and G ¼ 1:5 GPa. Errorbars are obtained by binning data spatially as well asaveraging over multiple runs. Inset:

Raw data from individual ‘forward’ (green) and ‘backward’ (yellow) runs.

DOI: https://doi.org/10.7554/eLife.34695.006
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indicated locations. While cross-sectional deformations vanish at the endpoints (i.e. at the locations

of the optical beads, shown in blue), deformations in the interior are considerable.

To quantify the cross-sectional deformation profiles more explicitly, we define a measure of

cross-sectional eccentricity as:

e¼ R� a

R
; (4)

where a is semi-minor axis (Figure 1A) and R¼ 12 nm is the radius of the undeformed microtu-

bule cross-section. e¼ 0 corresponds to a circular cross-section, while larger values of e correspond

to increasingly flatter cross-sections. The cross-sectional profile of a buckled filament in the low-

strain regime (point a in Figure 5A) has e»0 almost everywhere (Figure 5B, green line), reflecting

the fact that the simplified 1D model (Figure 5A, green dashed line) semi-quantitatively predicts the

applied force. Point b in Figure 5A marks the onset of the high-strain regime. Here the flatness e

measurably deviates from its undeformed value. Noticeably, e also varies along the filament contour

length, attaining largest distortions at the filament midpoint (Figure 5B, blue line line). The signifi-

cant cross-sectional deformations in the high-strain regime demonstrate that the non-classical behav-

ior of force with compressive strain in microtubules isindeed due to cross-sectional flattening. The

location of the force plateau is highly sensitive on the circumferential Young’s modulus, Ec, and sig-

nificantly less on the other parameters. Increasing Ec shifts the onset of the plateau towards larger

compressive strains, eventually leading to its disappearance.

It is well-established that local cross-sectional buckling (kinking) can occur in a thin-walled tube

because of cross-sectional ovalization (Huang et al., 2017). This is indeed what we observe - the

cross-section is circular (Figure 5B, green and blue curves) until a critical bending moment is

reached. The blue curve in Figure 5B represents the profile right before the local buckling transition;

afterwards, a sharp increase in e takes place at the middle, representing the development of a kink.

With further compression, subsequent kinks can develop - one at a time - in its vicinity. The red curve

in Figure 5B, for example, shows five kinks (visible as spikes in the flatness profile) in the microtubule

configuration corresponding to the point labeled esc in Figure 5A. The inset in Figure 5B shows

that the corresponding curvature profiles effectively mirror the flatness profiles in the main figure.

Thus, discontinuities in the curvature profile of a filament signal the existence of cross-sectional ovali-

zation and eventual kinking. In simulations, the formation of kinks can be identified directly from the

force-strain plots as a small drop in the buckling force (Figure 5A, red). Indeed, hysteresis associated

with forward and backward compressionis observed in simulations in which the filament forms kinks.

The often observed persistence of hysteresis at very low strains, as seen in Figures 2B, 4 and 5, is

likely a simulation artefact, due to the lattice getting trapped in a local minimum; the addition of

Table 1. List of microscopic parameters for the 3D model, their physical significance, the energy

functional associated with them (Equation2 or Equation 3), and their connection to the relevant

macroscopic elastic parameter.

Parameters, angles, and lengths are highlighted in Figure 2A. where h» 2:7 nm and h0 » 1:6 nm are

the microtubule’s thickness and effective thickness (see Materials and methods), respectively and fac-

tors involving the Poisson ratios na and nc are neglected.

Microscopic Physical Associated Relation to

Parameter Significance Energy Macroscopic moduli

ka Axial stretching 1

2
ka la � dð Þ2 Eahp

d

ka Axial bending 1

2
ka fa � pð Þ2 1

6

Eah
3

0
p

d

kc Circumferential stretching 1

2
kc lc � pð Þ2 Echd

p

kc Circumferential bending 1

2
kc fc � 144p=180ð Þ2 1

6
Ech

3

0
d=p

ks Shearing 1

2
ks fs � p=2ð Þ2 2Ghpd

DOI: https://doi.org/10.7554/eLife.34695.008
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Figure 3. Discrete mechanical model of bacterial flagellum. (A) Schematic of spring network model for bacterial flagellum. Green particles discretize

the flagellum while blue particles represent the optical beads. Right inset: closeup of a region of the filament, showing that neighboring masses are

connected by linear springs of stiffness k which give rise to a stretching energy Vstretch k; l; l0ð Þ according to Equation 2, where l0 is the stress-free length

of the springs. In addition, each triplet of neighbors determines an angle f which dictates the bending energy of the unit: Vbend k;f;pð Þ (Equation 3).

Figure 3 continued on next page
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thermal noise either eliminates hysteresis or eliminates its low-strain persistence. Experimental data

is too noisy to draw any conclusions regarding the presence or absence of hysteresis.

Critical curvature is relatively small
The critical bending moment MB at which a hollow tube becomes unstable, leading to local collapse

and kinking, is given by (Brazier, 1927):

MB »
2

ffiffiffi

2
p

p

9
h2RE; (5)

Figure 3 continued

Left inset: closeup of the region where the bead connects to the flagellum. The bead particle is connected to a single particle of the flagellum by a very

stiff spring kb of stress-free length b corresponding to radius of the optical bead. In addition, there is a bending interaction Vbend kb;fb;p=2ð Þ, where fb

is the angle determined by the bead, its connecting particle on the flagellum, and the latter’s left neighbor. (B) Force-strain curve from experiment

(blue) and simulation (yellow) for a flagellum of length L ¼ 4.1 �m. Errorbars are obtained by binning data spatially as well as averaging over multiple

runs. The bending rigidity obtained from the fit is B ¼ 4 pN � �m2. The classical buckling force for a rod of the same length and bending rigidity with

pinned boundary conditions is Fc » 2:3pN.

DOI: https://doi.org/10.7554/eLife.34695.007

Figure 4. Plots of force F as a function of strain � (Equation 1) for microtubules ranging in length from 3:6 to 11:1�m (blue). Best-fit curves from

simulation of the 3D model (red) and fit parameters (top) are shown for each plot. Arrows on the red curves indicate forward or backward directions in

the compressive regime.

DOI: https://doi.org/10.7554/eLife.34695.009
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where h is the tube thickness, R is the radius, and E is its elastic modulus. Brazier’s result applies

to isotropic, infinitely long tubes. It has been extended to orthotropic materials (Huang et al., 2017)

by replacing E with the geometric mean of Ea and Ec and to finite-length tubes by including a

numerical correction factor (Takano, 2013), so that we expect the following scaling for MB:

MB ~h
2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EaEc

1� nanc

r

~h2R
ffiffiffiffiffiffiffiffiffiffi

EaEc

p
: (6)

To understand this result, we first carry out simulations after subtracting the energy due to shear

deformations and compute a ‘modified’ force as the derivative of all energies except for the shear

energy. This modified force is then used to calculatea modified, shear-agnostic, critical bending

moment. Multiplying force computed this way by the maximum vertical displacement of the filament

yields the value of MB observed in simulation (Figure 6, vertical axis), which we compare to values of

MBcomputed according to Equstion 6 using a numerical factor of unity (Figure 6, horizontal axis).

We confirmed the scaling predicted in Equation 6 by running additional simulations, varying the

length of the microtubule L, their elastic moduli Ea, Ec, and G, and the size of the trapped bead

beyond the typical range of our experiments (see Figure 6).

Our experimental results (Figure 6, stars) suggest that the critical bending moment is generally in

the range MB »1000–2000 pN nm. This approximate range of the critical bending moment enables

us to estimate the critical curvature at which softening occurs (as curvatures may be more easily

extracted from experiments). Upon Brazier buckling, the curvature profile spikes at the location of

the kink(s), just like the flatness profile (Figure 5B, inset), showing the correspondence betweencriti-

cal curvature and critical bending moment. Values of MB of around 1000–2000 pN nm imply a critical

curvature for the onset of softening on the order of 0.1 rad / �m, given a bending rigidity B of ~ 10–

20 pN ��m2. This estimate is confirmed by simulations, which show that the critical curvature at the

onset of the Brazier buckling is close to 0.2 rad / �mfor seven of eight experimental datasets (and

0.3 for the other dataset). Such values are small enough that they are likely reached and exceeded

at least in some systems both in vivo, as in the beating flagella of Chlamydomonas (Sartori et al.,

2016; Geyer et al., 2016) and in vitro, as in microtubule rings observed in gliding assays (Liu et al.,

2011).

Discussion
Using optical trapping we have determined the mechanical properties of microtubules by measuring

how the strain changes with an applied extensile/compressive force. We found that the force

required to buckle the filament levels off or decreases with increasing compressive strain, demon-

strating that microtubules significantly soften above a critical strain. Such non-classical behaviors are

quantitatively captured by overdamped molecular dynamics simulations of an orthotropic cylindrical

shell model. The simulations reveal that microtubule softening is a consequence of cross-sectional

deformations enabled by a small circumferential Young’s modulus of a few MPa.

MT softening could explain large variation of bending rigidity results
While it is known that MTs do not behave as isotropic Euler-Bernoulli slender rods - since, for

instance, lateral bonds between adjacent protofilaments are much weaker than longitudinal bonds

along protofilaments (Nogales et al., 1999; VanBuren et al., 2002; Huang et al., 2008) -many

Table 2. Range of macroscopic elastic parameters that fit experimental data for microtubules and

flagella.

System Fit parameters Range that fits data

Ea 0.6–1.1 GPa

Microtubule Ec 3–10 MPa

G 1.5–6 GPa

Flagellum B 3–5 pN�m2
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Figure 5. (A) Force-strain curve for a microtubule of length 8.3 �m from experiment (blue) and simulation using a 1D model (green, dashed) or a 3D

model (red). Arrows on the red curve indicate forward or backward directions in the compressive regime. Errorbars are obtained by binning data

spatially as well as averaging over multiple runs. The fit parameters for the 3D model are Ea ¼ 0:9 GPa, Ec ¼ 4 MPa, and G ¼ 4 GPa. The bending

rigidity for the 1D model fit is B ¼ 23pN�m2. Labels a, b, and c indicate specific points in the 3D simulation model. (inset) Snapshot from simulation

Figure 5 continued on next page

Memet et al. eLife 2018;7:e34695. DOI: https://doi.org/10.7554/eLife.34695 11 of 22

Research article Cell Biology Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.34695


groups have used the Euler-Bernoulli beam model to interpret their data (Kikumoto et al., 2006;

Brangwynne et al., 2006; Li, 2008; Takasone et al., 2002; Jiang and Zhang, 2008). Introducing a

shear degree of freedom to the Euler-Bernoulli beam results in a Timoshenko beam model. This

model remains inadequate, however, since it does not allow for anisotropy between the axial and

circumferential directions, which is substantial and plays an important role in the mechanical behav-

ior of MTs (Deriu et al., 2010; Huang et al., 2008; Tuszyński et al., 2005). Clearevidence support-

ing this assertion comes from experiments in which microtubules subject to osmotic pressure buckle

radially at very low critical pressures (~ 600 Pa) – over four orders of magnitude lower than what is

expected for an isotropic shellwith E ~ 1 GPa (Needleman et al., 2005). More sophisticated models

of MTs as anisotropic elastic cylindrical shells allow for an additional degree of freedom in the radial

direction and can be found in papers that examine MT persistence length (Sim and Sept, 2013;

Deriu et al., 2010; Ding and Xu, 2011; Gao et al., 2010), oscillation modes (Kasas et al., 2004),

response to radial indentation (Huang et al., 2008), or buckling under osmotic pressure

(Wang et al., 2006).

Despite numerous studies on microtubule mechanics, considerable disagreement continues to

persists regarding their coarse-grained elastic properties, including their bending rigidity or shear

modulus (Hawkins et al., 2010). It is even unclear whether bending rigidity depends on the MT

length or not (see, for example, [Pampaloni et al., 2006; Kis et al., 2002; Deriu et al., 2010;

Zhang and Meguid, 2014] versus [Gittes and Schmidt, 1998; Kikumoto et al., 2006; Van den Heu-

vel et al., 2008]). Some of the disparity in measured elastic properties can be attributed to the varia-

tions in theexperimental protocols that could affect density of defects and filament heterogeneity as

well as the number of microtubule protofilaments (Zhang and Meguid, 2014). Furthermore, differ-

ent methods of stabilizing microtubules could also affect their coarse-grainedproperties. However,

our work suggests that a significant source of variation could arise for a more fundamental reason,

especially when interpreting results on mechanically deformed filaments. This is because theoretical

models used so far to analyze properties of mechanical MT experiments may lack sufficient complex-

ity to accurately describe all deformation regimes, and experiments that rely on the mechanical

interrogation techniques have rarely if ever simultaneously explored the behavior of filaments in

both large and small deformation regimes. In such a case, the force-strain curves are frequently mea-

sured only at high strains and thus leads to significant errors when extrapolated across all strain

regimes using overly-simplistic Euler-Bernoulli or Timoshenko beam models. This methodology can

significantly underestimate the microtubule persistence lengths that are measured using applied

mechanical deformations. Indeed, a comprehensive summary of experimental results on MT flexural

rigidity (Hawkins et al., 2010) strongly supports this interpretation: for example, the average flex-

ural rigidity of Taxol stabilized MTs found via thermal fluctuations is more than twice as large as the

average rigidity found from force-based experiments.

Large shear modulus likely reflects physical deformation of tubulin units
Fitting experimentally measured force-strain curve to our theoretical model provides an estimate of

the microtubule elastic moduli Ea, Ec, and G (Table 2), which can be compared to values reported in

the literature. The range of axial Young’s moduli Ea that fits our experiments is 0.6–1.1 GPa, consis-

tent with values of 0.5–2 GPa reported previously in the literature (Deriu et al., 2010;

Enemark et al., 2008; Wells and Aksimentiev, 2010; Sept and MacKintosh, 2010). Similarly, we

find Ec between 3–10 MPa, which is consistent with figures of a few MPa reported by some groups

(Wang et al., 2006; Tuszyński et al., 2005), though other groups also report Ec on the order of 1

GPa (Zeiger and Layton, 2008; Schaap et al., 2006). The discrepancy can be reconciled by noting

that small radial deformations only impactthe weak bridges between adjacent protofilaments, while

Figure 5 continued

corresponding to the point labeled c. Smaller insets show the shape of the cross-section at indicated points. (B) Profiles of flatness e (Equation 4) along

the dimensionless arclength coordinate s ¼ s=L (see Figure 1A) at points identified in panel A as a (green), b (blue), and c (red). Three insets show the

shape of the cross-section at indicated points for the curve labeled c (red). A fourth inset shows the curvature profiles corresponding, by color, to the

flatness profiles in the main figure.
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Figure 6. (bottom) Expected (Equation 6, with a numerical factor of unity) versus observed critical bending moments MB of simulated microtubules of

various lengths, elastic moduli, and optical bead sizes. Data points that correspond to actual experimental parameters are marked with stars, while the

rest are marked with black circles. The shaded region is zoomed-in on (top), to show that most experimental points fall in the range about 1000–2000

pN� nm.

Figure 6 continued on next page
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larger ones may deform the tubulin dimers, which, like typical proteins, have a high stiffness in the

GPa range (Huang et al., 2008; Pampaloni et al., 2006; Needleman et al., 2005).

We also extract the microtubule shear modulus G, which assumes values of a few GPa (Table 2),

which is significantly larger than values reported in the literature (which can vary by as much as five

orders of magnitude) from around 1 (Pampaloni et al., 2006), to 1 MPa (Kis et al., 2002), up to 100

MPa (Deriu et al., 2010; Ding and Xu, 2011; Sept and MacKintosh, 2010). This is surprising, since

it is well-established that microtubule lateral bonds are very compliant; a small shear modulus is

believed to potentially help the microtubule correct defects in assembly by shifting the offset

between protofilaments during the nucleation phase (Sim and Sept, 2013). However, inter-protofila-

ment bonds may be very compliant for small deformations (on the 0.2 nm scale), while larger devia-

tions may approach the limit of physically deforming the tubulin units (Pampaloni et al., 2006).

Following estimates in (Pampaloni et al., 2006), a strain on the order of �0.01 would lead to defor-

mations on the 0.2 nm scale, while our experiments routinely go up to much larger strains around

�0.2. Therefore, it’s likely that the large values we obtained for shear modulus are due to large shear

deformations that surpass the elastic limits of inter-protofilament bonds.

Notably, sufficiently large deformations can induce (reversible) breaking of lateral contacts

between protofilaments and eventually even of longitudinal contacts between subunits in a protofila-

ment as observed in radial indentation simulations (Kononova et al., 2014; Jiang et al., 2017) and

corroborated with scanning force microscopy experiments (Schaap et al., 2004). Therefore, contact

breaking may constitute an alternate or co-occurring reason for the large shear modulus obtained

from fitting our experimental data. Thisis supported by comparable values of bending rigidity

emerging from radial indentation simulations in (Kononova et al., 2014) (25 pN ��m2) and from the

current paper (10–20 pN ��m2 where flattening and buckling become noticeable).

Softening may occur in parameter ranges typical of typical biological
systems
Our experimentally measured force-strain curves imply that the critical curvature for the onset of Bra-

zier buckling is relatively small, around 0.2 rad /�m. Such curvatures are frequently observed in both

in vitro and in vivo systems. For example, long-lived arcs and rings observed in microtubule gliding

assays (Liu et al., 2011; Bourdieu et al., 1995) have curvatures between 0.4–2 rad /�m. From a dif-

ferent perspective, microtubules are the essential structural motif of diverse non-equilibrium materi-

als including active isotropic gels, nematic liquid crystals, motile emulsions and deformable vesicles

(Sanchez et al., 2012; Keber et al., 2014). The rich dynamics of all these systems is driven by the

buckling instability of microtubule bundles that is driven by internal active stress generated by kine-

sin motors. In some systems the curvature associated with this buckling instability is large enough for

microtubule softening to be relevant.

In living organisms, the static curvatures of the quiescent eukaryotic flagella, such as those found

in Chlamydomonas Reinhardtii, are about 0.25 rad /�m (Sartori et al., 2016) while the oscillating

dynamic component can increase the curvature up to about 0.6 rad /�m (Geyer et al., 2016),

although presence of numerous microtubule associated proteins could significantly alter filament’s

mechanical properties. Furthermore, diverse active processes within a cellular cytoskeleton are also

capable of generating highly curved microtubule configurations (Brangwynne et al., 2006). We may

thus speculate about the biological significance of MT softening, with one hypothesis being that it

decreases MT susceptibility to mechanical failure or depolymerization (Mohrbach et al., 2012).

The majority of other previous experiments have only examined the properties of stabilized

microtubules which do not polymerize/depolymerize on relevant timescales. In comparison, a recent

significant advance examined mechanical properties of dynamical microtubules that coexist with a

background suspension of tubulin dimers (Schaedel et al., 2015). In particular, this study demon-

strated that repeated large-scale deformations locally damage microtubules, which leads to effec-

tively softer filaments. This damageis accompanied by a loss of tubulin monomers. Furthermore,

after the external force ceases the damaged filaments effectively self-repair, as the tubulin

Figure 6 continued
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monomers from the background suspensions incorporate back into the damaged regions. In com-

parison, here we study stabilized filaments that do not show any aging phenomena. However, it

seems plausible that the ovalization and the formation of kinks is also relevant to dynamical microtu-

bules, and the regions of high strain might be the location where monomers preferentially dissociate

from filament.

It is also worth noting that the softening of microtubules we observe is analogous to phenomena

that have already been observed and quantified in carbon nanotubes (e.g. see reviews by

[Thostenson et al., 2001; Wang et al., 2007]). In particular, experiments demonstrate the formation

of a single kink, followed by a multiple kink pattern upon further bending (Iijima et al., 1996), while

simulations predict a reduction in effective nanotube stiffness, as the buckling force drops and

remains almost constant after kinking eYakobson1996. Hysteresis due to plastic deformations trig-

gered by kinking events has also been observed, at least in the case of multi-walled carbon nano-

tubes (Jensen et al., 2007). Stiffness variations of carbon nanotubes arise from deformation modes

which cannot be explained by simple Euler-Bernoulli or Timoshenko rod models.

In conclusion, we have found that micron-long microtubules subject to buckling forces of a few

pN become more mechanically compliant at relatively low strains due to significant cross-sectional

deformations and subsequent buckling. This result seems biologically relevant, as the critical curva-

tures for the softening transition are surpassed, for instance, in the beating of Chlamydomonas fla-

gella. Additionally, the softening of MTs with increasing strain provides an explanation for the

discrepancy between values of flexural rigidity inferred by passive (thermal fluctuations) versus active

methods, since the latter typically access higher strains and thus infer effectively lower rigidities.

Despite the complex nature of microtubules, we found that their mechanical properties - at least as

concerning buckling experiments via optical trapping - can be quantitatively summarized by three

elastic moduli, even for very large strains, and need to be accounted for to explain observations that

arise naturally in many biological systems.

Materials and methods

Tubulin and microtubule polymerization
Tubulin was purified from bovine brain tissue according to the established protocol (Castoldi and

Popov, 2003). We conjugated two fluorescent dyes: Alexa Flour 568 NHS Ester (Life Technologies,

A-20006), Alexa Flour 647 NHS Ester (Life Technologies, A-20003) orbiotin-PEG-NHS (Thermo Scien-

ti1c, 20217) to tubulin as described previously (Hyman et al., 1991). We prepared NEM-modified

tubulin by incubation of unmodified dimers at a concentration of 13 mg/ml with 1 mM NEM (N-Eth-

ylmaleimide, Sigma, E3876) and 0.5 mM GMPCPP (Jena Bioscience, NU-405S) on ice for 10 min and

then quenching the reaction with 8 mM beta-mercapthoethanol (Sigma, M6250) for another 10 mins

(Hyman et al., 1991). All labeled and unlabeled tubulin monomers were stored at �80�C.

Bead functionalization
Carboxyl silica microspheres (d = 0.97 �m, Bangs Labs SC04N/9895) were coated with NeutrAvidin-

DyLight488 conjugate (Thermo Scientific, 22832) by incubating the mixture of beads and protein at

pH = 8.0 in presence of N-Hydroxysuccinimide (NHS, Sigma, 130672) and N-(3-Dimethylamino-

propyl)-N’-ethylcarbodiimide hydrochloride (EDC, Sigma, E6383). The use of fluorescently labeled

protein allows the bead to be imaged with fluorescence microscopy in order to verify Neutravidin

presence on the surface. However, this is not always desirable. We have tested the protocol with a

number of Neutravidin and Streptavidin proteins from various suppliers (Sigma, Thermo Fisher) and

concluded that the protein attachment to the surface is reliable and reproducible.

Buffer solutions
Microtubules (MTs) were polymerized in the M2B buffer that contained 80 mM PIPES (Sigma,

P6757), 2 mM MgCl 2, 1 mM EGTA (Sigma, E3889) and was titrated to pH = 6.8 with KOH. As a

result of titration with potassium hydroxide, the buffer contained 140 mM of K + ions. In order to

extend the range of accessible ionic strength in the solution, we used M2B- 20 buffer that contained

20 mM PIPES, 2 mM MgCl 2, 1 mM EGTA and was titrated to pH = 6.8 with KOH. As a result of

titration with potassium hydroxide, the buffer contained ~35 mM of K + ions. Oxygen scavenger
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solution was prepared immediately before use by combining equal volumes of solutions of glucose

(Sigma, G7528), glucose oxidase (Sigma, G2133) and catalase (Sigma, C40). Resulting mixture was

dilutedinto the final sample in order to achieve the following concentrations: 40 mM Glucose, 250

nM glucose oxidase, 60 nM catalase (Gell et al., 2010).

Microscopy and optical trapping
The position of the detection bead is sampled with the QPD at a rate of 100 KHz and averaged in

bins of 1000 samples, effectively resulting in a sampling rate of 100 Hz, that is about 100 times per

step. The force on the detection bead is obtained by multiplying the displacement of the bead by

the stiffness ko of the optical trap.

All experiments required simultaneous use of fluorescence and brightfield microscopy modes, as

well as optical trapping. We used an inverted Nikon Eclipse TE2000-U with Nikon PlanFlour 100x oil-

immersion objective (NA = 1.3) equipped with the epifluorescence illumination arm, either a mer-

cury-halide (X-Cite 120Q) or LED (Lumencor SOLA) light source, and an appropriate set of filter

cubes (Semrock). In order to have multiple independently controlled optical traps we used an optical

bench set-up based on two acousto-optical deflectors (AODs) - see (Ward et al., 2015). Briefly, the

AOD consists of a transparent crystal, in which an acoustic wave is inducedby applied radio-fre-

quency (RF, several MHz) electric current. The incoming laser beam interacts with the traveling

sound wave and is deflected at a small angle, which depends on the RF current frequency. When the

AOD crystal is imaged onto the back focal plane of a microscope objective, deflection of the beam

is converted into translation of the focused laser spot in the focal (specimen) plane. By combining

two AODs with perpendicular orientation, one can achieve precise control of the laser trap position

in two dimensions within the focal plane of the microscope Molloy1997.

In our set-up, laser beam from a continuous infrared laser (1064 nm, Coherent Compass CW IR) is

expanded and sent through the AOD (Intra-Action Corp., Model DTD-276HD2). The deflected beam

is sent through a set of telescope lenses into the objective. The deflection angle of the AOD is con-

trolled by custom LabVIEW software, which allows for positioning of optical traps in the x-y plane

with nanometer precision.

In order to calibrate the optical traps, the setup was equipped with a separate laser (830 nm,

Point Source iFlex 2000) and a quadrant photodiode (QPD) detection system (Simmons et al.,

1996). Voltage readings from the QPD, which are directly proportional to the bead x and y coordi-

nates, were obtained with 100 kHz frequency. The voltage readings were Fourier transformed and

the trap stiffness was obtained from the Lorentzian fit to the power spectrum (Berg-Sørensen and

Flyvbjerg, 2004; Gittes and Schmidt, 1998)

Bead attachment
We follow bead-microtubule attachment protocols very similar to those in the literature

(van Mameren et al., 2009; Kikumoto et al., 2006). We prepare segmented microtubules in which

short regions (seeds) are labeled with biotin. The biotinylated seeds and the biotin-free elongated

segment are labeled with two different fluorescent dyes, which allows us to distinguish them and

attach the Neutravidin-coated silica beads to the biotin labeled MT seeds through manipulations

with laser tweezers (Figure 1A). Presence of biotin either throughout the filaments or in localized

segments does not affect the measured single filament buckling force. For the case of the bacterial

flagella, we labeled the entire filament with the fluorescent dye and biotin. In the end, our experi-

ments seem consistent with an essentially rigid microtubule-bead attachment. We note that a finite

range of bead movement or rotation relative to the attachment point would appear as a flat region

near zero strain in the force-strain curve, which we do not observe.

Force averaging
Trap separation is controlled by acousto-optical deflectors (AODs), and changed in discreet steps of

2–10 nm every 0.5–1 s. For a given trap separation, the force on the detection bead is obtained by

multiplying the displacement of the bead (from the center of the optical trap) with the stiffness of

the calibrated optical trap. The position of the detection bead is sampled with a quadrant photodi-

ode (QPD) at a rate of 100 KHz and averaged in bins of 1000 samples, effectively resulting in a sam-

pling rate of 100 Hz. Since trap separation is changed every 0.5–1 s, the force on the bead is
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measured 50–100 times at a given distance. Several cycles of buckling and extension (”back-and-

forth runs’) are performed for a given filament so that in the end, the raw force data is binned by

trap separation and the average and standard deviation of the force in each bin are computed.

Notably, then, force is averaged both over time and over multiple runs.

The minimum in the force-displacement curve separates the tensile and the compressive regimes

and allows us to determine the equilibrium bead separation of the beads, that is the effective length

L of the filament segment being actively stretched or buckled. Due to thermal fluctuations and other

noise, experimentally measured forces fluctuate in direction (and magnitude). Since fluctuations in

the direction perpendicular to the line connecting the optical traps average out to zero, the forces

reported in our manuscript are the parallel components. In the manuscript, we present force - aver-

aged and projected as explained - in terms of strain corresponding to bead separation, rather than

optical trap separation (the schematic in Figure 1A illustrates the distinction). We compute bead

separation from trap separation, measured force, and optical trap stiffness.

Simulations of flagellar buckling
To quantitatively describe the measured force-strain curve, the flagellar filament is modeled as a col-

lection of N masses connected to their neighbors with very stiff linear springs of constant k

(Figure 3A, right inset, blue). Bending energy of a triplet is encoded by a parameter k, and f, the

angle determined by the triplet (Figure 3A, right inset, red) according to Equation 3. The trapped

beads are represented as masses connected to their attachment points by springs of stiffness kb and

rest length equal to the radius of the bead b. The optical beads are enforced to remain normal to

the filament at the attachment point by defining a bending energy Vbend kb;p=2ð Þ with a sufficiently

large kb and rest angle p=2 for the triplet consisting of the bead, its attachment point, and a neigh-

boring mass (Figure 3A, left inset).

Since the flagellum and the bead are essentially inextensible, k and kb are set to values which are

sufficiently large to essentially establish them as fixed parameters. The same is true for kb, as

explained above, and for the number N of beads used that make up the flagellum. Thus, the only

free parameter is k, which is related to flexural rigidity B as follows:

k¼ BN

L
:

Simulations of microtubule buckling
To fit experimental data for microtubules we model them as 3D networks of springs and simulate

their quasistatic, overdamped mechanical response via the molecular dynamics software Espresso

(Arnold et al., 2013; Limbach et al., 2006)

In vivo, MTs most commonly appear with 13 protofilaments (although there are exceptions

depending on the cell type), whereas in vitro structures with 9–16 protofilaments have been

observed (Mohrbach et al., 2012). Since the exact structure of microtubules can vary and since it

has been shown that protofilament orientation is not important with respect to mechanical proper-

ties (Hunyadi et al., 2007; Donhauser et al., 2010), we consider the simplest case of 10 aligned

protofilaments. Because microtubule monomers are composed of alpha- and beta-tubulin, they can

contact other monomers laterally through alpha-alpha, beta-beta, or alpha-beta interactions. While

there are differences in these interactions (and generally, in the mechanical properties of alpha- and

beta-tubulin), they are relatively small so that it is safe to neglect these differences (Sim and Sept,

2013; Zhang and Meguid, 2014).

The microtubule is modeled as a planar spring network network wrapped into a cylindrical shell

(Figure 2A). Energies are of two types: stretching energies Vstretch (Equation 2) determined by the

distance between pairs of particles connected by springs, and bending energies Vbend (Equation 3)

determined by the angle formed by neighboring triplets. Anisotropy is achieved by setting indepen-

dent parameters ka, ka and kc, kc for the bending and stretching energies in the axial and circumfer-

ential directions, respectively (Figure 2A). The parameter d (the distance between consecutive

simulated dimers along the same protofilament) can set the level of coarse-graining, with d » 8nm

for real microtubules. The distance between dimers at the same cross-section is denoted by

p ¼ 2R sin p=10ð Þ.
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Table 1 shows the relationship between the microscopic parameters of the model and the three

corresponding macroscopic elastic constants Ea, Ec and G. The formulas are based on the ortho-

thropic elastic shell model and involve an ‘equivalent’ thickness h and a ‘effective’ thickness for

bending h0. The reason for this duality is that the actual thickness of the cross section of a microtu-

bule varies periodically along the circumferential direction, between a minimum of about 1.1 nm (the

‘bridge’ thickness) and a maximum of about 4–5 nm (Huang et al., 2008). When modeled as a shell

of uniform thickness, the actual cross section of a microtubule is replaced by an annular cross section

with equivalent thickness h » 2:7 nm (de Pablo et al., 2003). However, the effective bending stiffness

is different; since most of the strain is localized to the bridges between the protofilaments

(Schaap et al., 2006), the effective bending stiffness is closer to the bridge thickness. According to

(de Pablo et al., 2003; Schaap et al., 2006), h0 » 1:6 nm.

It must be noted that microtubules are not exactly thin shells, while the formulas shown in Table 1

apply in that limit. As a consequence, the numerical factors in the formulas are not precisely correct.

Because of this, the formulas need to be adjusted by numerical factors; we do so by considering, for

instance, a basic shear deformation, computing its elastic strain energy and adjusting the numerical

factor to ensure agreement between the energy computed in the simulation and the theoretical

energy. Interestingly, the orthotropic shell model does not contain an energy penalty for cross-sec-

tional shearing. In simulations, this leads to an unphysical instability which can be resolved, for

instance, by running the simulation at very high damping (which would, however, greatly increase

the runtime). A faster way of resolving this artifact is to stabilize the microtubule in the lateral direc-

tion, effectively not allowing its centerline to break lateral symmetry by going out of plane.

Each optical bead is represented by a particle connected to a single particle on the microtubule

by a very stiff spring as well as a very stiff angle interaction aimed at keeping the ‘bead’ perpendicu-

lar to the attachment point. The left bead is fixed, while the right one is free to move. Starting with

the filament unstretched, we move the mobile bead in small increments dx. After each move, we fix

the position of the bead and allow the system to relax. The relaxation time is (Gittes et al., 1993):

trelax ~
gL4

B
;

where g is the friction coefficient. The parameter g determines both how fast the system relaxes

(smaller g leads to faster relaxation) and how fast its kinetic energy decays (larger g leads to faster

decay). Sufficiently large values of g correspond to overdamped kinetics, but the trade-off between

relaxation and decay of kinetic energy implies that intermediate values of g optimize computation

time. Such values of g are still acceptable, as theywill lead to the same results provided kinetic

energy has dissipated sufficiently and that there are no instabilities. To check that the value of g and

the relaxation timescales are adequate, the system can be run forwards then backwards - if there is

no hysteresis, then the parameters are adequate. This only holds until the system undergoes a kink-

ing transition; once kinking takes place, hysteresis will occur even in the truly overdamped limit.
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