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Abstract Engineering of GPCR constructs with improved thermostability is a key for successful

structural and biochemical studies of this transmembrane protein family, targeted by 40% of all

therapeutic drugs. Here we introduce a comprehensive computational approach to effective

prediction of stabilizing mutations in GPCRs, named CompoMug, which employs sequence-based

analysis, structural information, and a derived machine learning predictor. Tested experimentally on

the serotonin 5-HT2C receptor target, CompoMug predictions resulted in 10 new stabilizing

mutations, with an apparent thermostability gain ~8.8˚C for the best single mutation and ~13˚C for

a triple mutant. Binding of antagonists confers further stabilization for the triple mutant receptor,

with total gains of ~21˚C as compared to wild type apo 5-HT2C. The predicted mutations enabled

crystallization and structure determination for the 5-HT2C receptor complexes in inactive and

active-like states. While CompoMug already shows high 25% hit rate and utility in GPCR structural

studies, further improvements are expected with accumulation of structural and mutation data.

DOI: https://doi.org/10.7554/eLife.34729.001

Introduction
G-protein coupled receptors (GPCRs) represent the largest family of transmembrane proteins, which

is involved in regulation of all major physiological functions and comprises more than 25% of estab-

lished therapeutic targets (Lagerström and Schiöth, 2008; Rask-Andersen et al., 2014). However,

high conformational flexibility and low thermostability of these receptors have always presented

major challenges for their structural, biophysical, and biochemical characterization. With exception

of visual rhodopsin, structural characterization of all other 50 GPCRs so far required substantial

efforts in protein engineering to design GPCR constructs suitable for crystallization (Cherezov et al.,

2007; Warne et al., 2009; Chun et al., 2012; Katritch et al., 2013; Stevens et al., 2013; Pándy-

Szekeres et al., 2018). The design typically involves truncations of N- and C- termini, replacements

of flexible loops and/or termini with soluble fusion domains (Chun et al., 2012), stabilizing co-crys-

tallization partners (Zhang et al., 2015), and in many cases introduction of one or more point muta-

tions (reviewed in (Heydenreich et al., 2015)).
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Point mutations have shown to be especially important for thermostabilizing GPCR and making

them amenable for structure-based drug design applications, which involve receptor co-crystalliza-

tion with typically low-affinity hit or lead compounds. For example, point mutations were used to

thermostabilize b1-adrenergic (ADRB1) and A2A adenosine (A2AAR) receptors in both agonist and

antagonist bound states, resulting in more than a dozen structures for each receptor including co-

crystals with ligands in a micromolar affinity range (Moukhametzianov et al., 2011;

Christopher et al., 2013; Warne et al., 2008; Warne et al., 2011). In the case of thermostabilized

A2AAR, structural and biophysical characterization of initial hits led to structure-based discovery and

optimization of preclinical candidates for Parkinson disease (Langmead et al., 2012). Moreover,

thermostabilized GPCR constructs can streamline biochemical characterization of ligand binding in

sensor-based high-throughput screening (HTS) (reviewed in (Kumari et al., 2015)) and measure-

ments of ligand-binding kinetics by surface plasmon resonance (SPR) (Christopher et al., 2013;

Congreve et al., 2011; Rich et al., 2009).

However, currently employed experimental identification of stabilizing mutations by alanine scan-

ning (Errey et al., 2015) or directed evolution approaches (Egloff et al., 2014; Schlinkmann et al.,

2012) is a very resource consuming process, and only a few GPCRs have been successfully stabilized

so far (reviewed in (Vaidehi et al., 2016)). Furthermore, stabilizing mutations obtained by these

methods have shown very limited transferability between different GPCRs (Heydenreich et al.,

2015; Serrano-Vega and Tate, 2009), requiring extensive stabilization campaigns to be performed

for each individual receptor.

eLife digest The trillions of cells in the human body rely on receptors that sit in their cell

membranes to communicate with each other. Hundreds of different receptors belong to the G

protein-coupled receptor superfamily (called GPCRs for short) and play vital roles in the all organs

and bodily systems. Indeed, GPCRs are the targets for almost 40% of therapeutic drugs. As such,

deciphering the shape and activity of GPCRs is key to understanding the normal workings of the

human biology and could help scientists discover new treatments for various diseases, from

depression to high blood pressure to cancer. These receptors, however, are notoriously flimsy and

unstable, making them difficult to work with in the laboratory.

Different approaches have been developed to make GPCRs more stable, usually by swapping

one or a few of the amino acid building blocks in the protein for other amino acids. Currently, this

requires a costly and slow trial-and-error approach in which each amino acid out of 300-400 in the

protein is mutated and tested experimentally.

To speed up and reduce the cost of the process, Popov et al. asked if a computer could predict

which mutations in the protein would stabilize it, meaning that fewer proteins would actually need to

be tested. Four computer algorithms based on four different principles were developed and

verified. The first one compares the target GPCR to other closely related receptors, trying to detect

variations that cause the instability. The second tries to build in specific stabilizing interactions, or

“bridges”, between different parts of the receptor. The third algorithm searches the known

structures of other GPCRs for useful mutations. Finally, the fourth one uses accumulated data on the

stability of hundreds of mutations in different GPCRs to train a machine learning predictor to

recognize stabilizing mutations.

All four algorithms produced useful predictions in a real-life project. Indeed, when combined in

one computational tool, named CompoMug, the algorithms made it possible to detect optimal

mutations in a human GPCR called 5-HT2C. This made the protein much easier to work with in the

laboratory, and ultimately helped to solve its three-dimensional structure (which was reported in a

separate study, published earlier in 2018)

The 5-HT2C receptor is involved in regulating, among other things, mood and appetite. Details of

its structure might therefore help researchers to design new antidepressants and obesity treatments.

Moreover, CompoMug is already helping structural biologists to solve the structures of other

GPCRs, which will further facilitate many aspects of GPCR drug discovery.

DOI: https://doi.org/10.7554/eLife.34729.002
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Computational approaches could provide a cost- and time-effective alternative for GPCR stabili-

zation. The already existing in silico prediction tools for soluble proteins (Kumar et al., 2006;

Khan and Vihinen, 2010), however, are not effective for GPCRs because they do not take into

account peculiarities of the 7-transmembrane (7TM) nature of the receptors. At the same time,

although some of the recently developed GPCR-specific methodologies can be successful in explain-

ing known experimentally-derived mutations (Vaidehi et al., 2016; Bhattacharya et al., 2014), their

success in prediction of new stabilizing mutations has been limited so far, and has not resulted yet in

successfully solved crystal structures of new GPCRs.

In this study, we present a set of complementary approaches for predicting stabilizing mutations

in GPCRs combined into a CompoMug tool (COMputational Predictions Of MUtations in GPCRs).

CompoMug consists of four modules: knowledge-based, sequence-based, structure-based, and

machine-learning-based, taking maximum advantage of accumulated structural and biophysical data.

We applied CompoMug to identify stabilizing point mutations for the 5-HT2C receptor, which is an

important pharmacological target for the treatment of obesity and neuropsychiatric disorders.

Experimental assessment showed that 10 out of the 39 predicted mutations improved stability of

the receptor by more than 1.5˚C, and one mutation resulted in increase of the apparent melting

temperature by up to ~8.8 ± 1.3˚C, which is among the highest reported improvements in thermo-

stability by a single point mutation in GPCRs. Moreover, combinations of two or three mutations led

to even higher thermostability gains, some of which were compatible with both agonist and antago-

nist binding. Finally, the mutants predicted by CompoMug allowed for the determination of two 5-

HT2C crystal structures in both agonist-bound and antagonist-bound complexes. The CompoMug

provides a computational platform for thermostabilization of other GPCRs and can be further

evolved with an accumulation of experimental mutation data.

Computational methods
CompoMug consists of four modules: knowledge-based, sequence-based, structure-based, and

machine-learning-based, - combining several approaches to compose a list of the candidate point

mutations, which can improve the stability of a GPCR. The general workflow of CompoMug is pre-

sented in Figure 1. Below we describe each of the modules in details.

Knowledge-based module
The knowledge-based module employs a short list of established point mutations that have been

already shown to improve stability and helped to solve structures for multiple GPCRs. Although in

general stabilizing point mutations are not transferable across different GPCRs (Serrano-Vega and

Tate, 2009), several specific mutations located in structurally or functionally conserved sites have

shown increased chances to be beneficial for multiple receptors. Such known point mutations, listed

in Table 1, could be good candidates for new GPCR targets, even for those with relatively low

homology to solved GPCRs. For example, the mutation of a residue in position 3.41 to Trp (X3.41W,

where X stands for any residue, and superscript shows GPCRdb numbering (Isberg et al., 2015)),

first identified in the b2 adrenergic receptor (Roth et al., 2008), has been now tested in more than

20 receptors by the GPCR Network (Stevens et al., 2013) and has shown to increase stability for

several of them, helping to solve crystal structures for at least six receptors so far. The list also

includes mutations that target residues in the sodium binding pocket, e.g. D2.50N, S3.39A, and

D7.49N mutations (Kruse et al., 2012; Fenalti et al., 2014; Katritch et al., 2014). Sodium ions play

an important role in class A GPCR signaling (Katritch et al., 2014), and, therefore, modifications in

the sodium-binding site, e.g. by D7.49N mutation, can decouple ligand binding from conformational

changes in the intracellular side of the receptor (Katritch et al., 2014; Massink et al., 2015). Such

decoupling apparently reduces conformational heterogeneity of the receptors, resulting in thermo-

stabilization of some receptors, like A2AAR (White et al., 2018), and facilitating their structure deter-

mination, especially in complexes with agonists (see Table 1). Note, that while currently only a few

mutations in class A can be classified as transferrable ‘knowledge-based’, the list may continue to

grow with an accumulation of additional knowledge on mutations, and also expand to include spe-

cific transferrable mutations in other GPCR classes. Algorithmically, we implemented the knowl-

edge-based module as a simple procedure, which checks mutations from Table 1, and assigns score
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1.0 if the mutation is potentially applicable (i.e. the wild type residue in the target GPCR corre-

sponds to a residue in Table 1), and 0.0 otherwise.

Sequence-based module
The sequence-based module looks for residues of the target receptor that deviate from a standard

conservation pattern in an evolutionarily related group of GPCRs, e.g. receptor orthologs, a subfam-

ily or a branch of the GPCR tree. We hypothesized that such residues in GPCRs are more likely to be

destabilizing, and restoring conserved amino acids in such positions might result in receptor

CompoMug
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Figure 1. CompoMug architecture. The method comprises four modules to predict stabilizing point mutations. The knowledge-based and sequence-

based modules operate with only the sequence information about the target receptor, while the structure-based and machine-learning-based modules

operate with the structural information. ML – machine learning; MSAs – multiple sequence alignments.

DOI: https://doi.org/10.7554/eLife.34729.003

Table 1. Knowledge-based transferable point mutations in Class A.

Position Mutation Role Receptor (PDB ID)

2.50 D->N Sodium pocket AA2AR (5WF5)

3.39 S->A Sodium pocket AA2AR (5WF6)

3.40 I->V, A P-I-F microswitch motif ADRB1 (4BVN), APJ (5VBL)

3.41 X->W stabilization of TM3, TM4, TM5 interface 5HT2B (4IB4), 5HT1B (4IAR), ADRB1 (5A8E), ADRB2 (3NY8), CXCR4 (3ODU), DRD3 (3PBL)

3.49 D,G->A DRY motif FFAR1 (5TZR), NTR1 (4XES)

5.58 Y->A Conserved activation microswitch FFAR1 (5TZR), ADRB1 (4BVN)

6.37 L->A Interferes with DRY motif function AA2AR (5IU4), NTR1 (4GRV)

7.49 D->N Sodium pocket P2RY1 (4XNV), P2Y12 (4PXZ)

X = any residue

DOI: https://doi.org/10.7554/eLife.34729.004
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stabilization. In CompoMug, the ‘deviation score’ for an amino acid residue is estimated based on

multiple sequence alignment (MSA) of evolutionary related homologous sequences:

Scoreaak ¼
Cmax
k �Caa

k

NMSA

�
Caa
k

Cmax
k

; (1)

where NMSA is the total number of sequences in the MSA, Cmax
k is the number of sequences with the

most conserved amino acid residue at the position k, and Caa
k is the number of sequences that have

the same residue aa as the target sequence in this position. As one can see from Equation 1, the

first term is the highest when the target sequence has the most infrequent amino acid in the position

k, that is, it approaches 1, when Caa
k ¼ 1 and Cmax

k »NMSA. The second term penalizes the position k if

it lacks a dominating conserved amino acid at the position, that is, the penalty is increased as Cmax
k is

decreased. The total score varies from -1.0 to 1.0, where maximum score 1.0 is ascribed to a deviat-

ing amino acid in a super-conserved position (e.g. x.50 in GPCRs). In other words, the preference is

given to mutations of rarely observed amino acids in the otherwise highly conserved positions.

Figure 2A and B schematically show the score computation given an MSA. Apparently, any conser-

vation-related score depends on the set of sequences used to construct the MSA. For example,

orthologs share very high sequence similarity with respect to the target GPCR resulting in a few, but

usually very clear deviation patterns. On the other hand, comparison with GPCR sequences from dif-

ferent branches has a much more complex conservation pattern that may result in many false posi-

tive candidates. To capture the sequence deviations at different levels of GPCR hierarchy, we

composed several sets of sequences to construct various MSAs. Specifically, we used five MSAs: (1)

ortholog sequences corresponding to the species variations of the target receptor, (2) sequences

corresponding to the common sub-family (sequence identity for the TM regions >40%), (3) sequen-

ces corresponding to the common GPCR branch (sequence identity for the TM regions >30%), (4)

sequences corresponding to the whole non-olfactory class A GPCR (Rios et al., 2015), and (5)

sequences corresponding to the crystallized receptors. MSAs were generated with the structure-

based alignment tool of the GPCRdb (Isberg et al., 2015), and in case of the whole class A align-

ment updated using MAFFT software (Katoh and Frith, 2012).

Although the last MSA is not directly related to the evolutionary variation, it may contain informa-

tion relevant for the GPCR stability and propensity for crystallization. At the same time, the MSA for

whole class A GPCR would capture rare variations in the most conserved residue positions of class

A, including N1.50, D(E)R3.50Y, FxxxCWxP6.50 and NP7.50xxY. Given all five MSAs, we computed posi-

tional scores for each MSA, as well as the global score as the average of the individual MSA scores.

In a special case of non-conserved Gly residues, we multiplied the ‘deviation score’ by factor of 2, to

account for Gly usually destabilizing effect on a-helical secondary structure in the transmembrane

helices of the receptor. Figure 2 schematically shows the workflow of the sequence-based module

applied to the 5-HT2C receptor.

Structure-based module
The structure-based module is focused on identifying pairs of residues, which could form a salt

bridge (also called ionic lock) when replaced with charged amino acids, or disulfide bonds when

replaced with cysteines. Such ionic locks and covalent bonds can help to restrict the conformational

flexibility of the receptor and improve stability. A successful use of the structure-based approach

requires an accurate 3D structural model, which can be derived based on the close homology with a

known crystallographic structure. In this study, structural models were obtained using the template-

based homology modeling implemented in ICM-Pro v.3.8 molecular modeling suite (molsoft.com),

followed by the backbone regularization and exhaustive Monte-Carlo side-chain refinement in inter-

nal coordinates. To predict potential ionic locks in the structural model, the search is performed for

pairs of residues that satisfy the following criteria: i) residues are separated in sequence by at least

five residues to exclude pairs of residues belonging to the same a-helix, ii) side chains point toward

each other and do not point to the lipid membrane, iii) residue’s C
b

-C
b

distance lies in the range

from 7.0 Å to 10.0 Å, and iv) mutations of residues to at least one of four charged pairs (E-K, E-R,

D-K, D-R) improve predicted free energy of the receptor after thorough local conformational optimi-

zation of the mutants (Equation 2)
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Emut
folded �Emut

unfolded<E
wt
folded �Ewt

unfolded (2)

We used energy calculation implemented in the Molsoft ICM-Pro v.3.8. software (molsoft.com).

The structural model of the mutant type was obtained by mutation of a given residue followed by

Monte Carlo sampling of the flexible side chains for the mutated residue and the neighboring resi-

dues. Then the free energy of the unfolded and folded states for the wild and mutant types was

approximated by a sum of the empirically derived residue-specific energies.

In order to predict stabilizing disulfide bonds in the receptor, we first employed the DbD software

(Craig and Dombkowski, 2013) to obtain the initial list of candidates. DbD scans all pairs of resi-

dues in a protein and selects those that satisfy geometrical parameters of the disulfide bond, when

replaced with cysteines. The geometrical parameters, e.g. �3 angle and Cb � Cb distance, were

obtained from analysis of protein structures in PDB. Given the DbD predictions, the final list of candi-

dates was derived using the energy criterion implemented in ICM-Pro (see Equation 2). Figure 3

schematically represents the structure-based module.

Figure 2. Sequence-based module. (A) Example of an MSA for orthologs of 5HT2 receptors, residues colored according to their chemical properties.

(B) Computed scoring matrix from the MSA_5HT2 in the sequence-based module (C) Example of the scoring matrices for five different MSAs. (D)

Combined net scoring matrix. Each position is colored according to the score, from blue (minimal score) to red (maximal score).

DOI: https://doi.org/10.7554/eLife.34729.005
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Machine learning module
With the accumulation of experimental data on the stability of GPCR mutants, it becomes feasible to

derive powerful prediction models using machine learning techniques. Our prediction model is

derived using (i) a training benchmark, composed from site-specific mutations performed on GPCRs

with known structure, (ii) a feature vector, consisting of structure-based and energy-based descrip-

tors, which reflect important changes in the protein upon a point mutation, and (iii) a support vector

machine method as implemented in the libsvm package (Chang and Lin, 2011). Each of these steps

is described below in details.

Training benchmark
To compose the training benchmark we used available alanine scanning mutagenesis data for three

GPCR receptors: neurotensin receptor NTS1 (Shibata et al., 2009), A2A adenosine receptor

(Magnani et al., 2008), and b1 adrenergic receptor ADRB1 (Serrano-Vega et al., 2008). Point muta-

tions that improve thermostability of these receptors were used as positive examples, while reverse

mutations were used as negative examples for training. Further, in order to expand the training

benchmark, we considered the remaining alanine mutations, that is, those which were not reported

as stabilizing, as negative examples. It is worth to note that such assumptions may introduce some

false negative examples into the training set, because some of the alanine mutations were filtered

ionic 

lock

disulfide

bond

A

B

Figure 3. Schematic representation of mutations generated by the structure-based module. (A) Design of an Asp-Lys ionic lock by the point mutation

of an Ala residue. (B) Design of a disulfide bridge by the double mutation of Ala residues..

DOI: https://doi.org/10.7554/eLife.34729.006
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out due to the lower expression level, rather than due to a decrease in the receptor stability. Overall,

the training benchmark consists of 79 stabilizing point mutations and 923 non-stabilizing point

mutations.

Feature vector
Given the training set, we projected each point mutation as a vector onto a feature space, where the

coordinates of the feature vector encode information relevant to a change in the receptor stability

upon introducing the point mutation. To compose a feature vector, we used characteristics of three

different types. Namely, for wild type and mutated residues we used sequence-based characteristics,

which could be extracted from the primary structure of the protein (hydrophobicity, polarity, charge,

side chain volume, solvent-accessible area, polarizability), structure-based characteristics, which

could be extracted from the secondary and the tertiary structures of the protein (number of polar,

charged, hydrophobic, and aromatic contacts, residue exposure, contact area, void volume, relative

accessible solvent area), and energy-based characteristics, which could be extracted from the tertiary

structures of the protein given the force-field (potential of mean force, electrostatic, van der Waals,

solvation, hydrogen bond, and total energies). To obtain a structural model of a mutant type we

mutated a given residue and performed Monte Carlo minimization with flexible side chains of the

mutated residue and its neighboring residues, keeping the rest of the receptor rigid, using the Mol-

soft ICM-Pro v.3.8. software (molsoft.com). To calculate components of the feature vector we used

built-in functions of ICM-Pro.

Support Vector Machine classifier
Feature vectors computed for each point mutation in the training benchmark are then combined

into the feature matrix. Each entry in the feature matrix is labeled with +1, if the corresponding point

mutation stabilizes receptor, or �1 otherwise. Given this mapping of point mutations into the fea-

ture space, one can construct a hypersurface which separates +1 feature vectors from �1 feature

vectors, using the support vector machine (SVM) approach. We used the libsvm package libraries

(Chang and Lin, 2011) to accomplish this task. There are two free parameters in this classification

problem. Namely, the regularization parameter C, which is a tradeoff between the misclassification

and ‘smoothness’ of the separating hypersurface, and the kernel parameter g, which corresponds to

the variance of the radial basis function. Optimal values for these parameters were defined using the

two-fold cross-validation procedure (see below). Figure 4 schematically represents the machine-

learning-based module.

Cross-validation of the machine learning classifier
To validate the machine learning classifier the data set was randomly split into two parts: the training

part, which consists of 65% of the training set, and the validation part, which consists of the remain-

ing 35%. Each subset was adjusted to retain the ratio of the +1 feature vectors, corresponding to

stabilizing point mutations, and �1 feature vectors, corresponding to non-stabilizing point muta-

tions. To optimize the performance of the algorithm, we scanned values of the two free parameters

(C and g) on a grid [0.0, 50.0]�[0.0, 50.0] with a step size of 0.2 for both parameters, thus, yielded

250*250 = 62,500 different prediction models. Then for each prediction model, we calculated the

positive predictive value (PPV), which is the ratio of true positive rate (TPR) and the sum of true posi-

tive and false positive rates (FPR) predictions:

PPV ¼
TPR

TPRþFPR
(3)

We repeated this procedure 10 times and scored parameters, based on the rank of each pair

(rank one corresponds to the maximum PPV) in each cross-validation run:

Score C;gð Þ ¼
X

10

j¼1

Rank PPV
j
i

� �

maxiScore C;gð Þi
(4)

We identified four pairs of parameters C and g in different grid regions, which resulted in
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approximately the same low score, but provided different expected true positive and false negative

rates (see Figure 5).

Finally, we re-derived four prediction models on the whole training set using the obtained param-

eters C and g. The estimated TPR and FPR for each derived prediction model are presented in

Figure 5B. As one can see we chose prediction models with different TPR and FPR. The reason for

that is to control the number of output predictions (note that ‘all �1’ model, that is, model that

treats all point mutations as non-stabilizing, has perfect FPR, while ’all +1’ model, that is, model that

treats all point mutations as stabilizing has perfect TPR). For example, the first prediction model out-

puts only a few predictions, but with high confidence, in contrast to the fourth prediction model,

which outputs more predictions, but also increases the number of false positive ones. The total score

of a point mutation is, thus, weighted according to the prediction model.

Figure 4. Machine-learning-based module. (A) Example of structural models for the wild-type and mutant-type receptor. (B) Schematic representation

of the point mutations mapped into the feature space. (C) Schematic representation of the prediction model as the separation curve in the feature

space. (D) The net scoring matrix calculated with respect to the weights of the prediction models (blue and red colors correspond to the lowest and

highest scores, respectively).

DOI: https://doi.org/10.7554/eLife.34729.007
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Post processing
Given the output predictions from each module, we then filtered out point mutations that may affect

ligand binding. For this purpose, we analyzed GPCR-ligand interactions in solved GPCR structures

(Munk et al., 2016) and excluded residue positions that appear in the binding pocket in more than

five different class A GPCR structures. We also did not consider predictions in the less conserved

regions that lack secondary structure, e.g. loops and N/C – termini, since the modeling accuracy for

these regions is much lower, compared to the transmembrane alpha-helical core.

Experimental methods
Protein construct
The sequence of the human 5-HT2CR gene was synthesized by GenScript. The modified thermostabi-

lized apocytochrome b562RIL (BRIL) as a fusion partner was inserted into the receptor’s third intracel-

lular loop (IL3) at L246 and M300 of the human 5-HT2CR gene, using overlapping PCR. The construct

was further optimized by truncation of N-terminal residues 1–39 and C-terminal residues 393–458.

Figure 5. Cross-validation of the machine learning module. (A) The cross-validation grid for the parameters C and g. Pairs of C and g of the top 4

prediction models are depicted with green numbered circles. (B) Estimated true (TPR) and false (FPR) positive rates for the derived prediction models

along with prediction weight, which is added to score of a point mutation.

DOI: https://doi.org/10.7554/eLife.34729.008
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The DN-5-HT2C-BRIL-DC DNA was subcloned into a modified pFastBac1 vector for expression in

Spodoptera frugiperda (Sf9) cells. The chimera sequence has a haemagglutinin (HA) signal sequence

followed by a FLAG tag at the N-terminus, a PreScission protease site, and a 10 � His tag at the

C-terminus. Rationally designed point mutations were engineered into the 5-HT2CR gene by stan-

dard QuickChange PCR.

Protein expression in Bac-to-Bac baculovirus expression system
The Bac-to-Bac Baculovirus Expression System (Invitrogen) was used to generate high-titer recombi-

nant baculovirus (>109 viral particles per ml). Recombinant baculovirus was produced by transfecting

recombinant bacmids (2.5–5 mg) into Spodoptera frugiperda (Sf9) cells (2.5 ml, density of 106 cells

per ml) using 5 ml of X-tremeGENE HP DNA Transfection Reagent (Roche) and Transfection Medium

(Expression Systems). After 4 d of shaking at 27˚C, P0 viral stock (~109 virus particles per ml) was har-

vested as the supernatant of the cell suspension to produce high-titer viral stock. Viral titers were

analyzed by flow cytometry on cells stained with gp64-PE antibody (Expression Systems). 5-HT2CR

was expressed by infecting Sf9 cells at a cell density of 2–3 � 106 cells per ml with P1 virus at MOI

(multiplicity of infection) of 5. Cells were harvested by centrifugation 48 hr post infection and stored

at �80˚C for future use.

Protein purification
Thawed insect cells were disrupted in a hypotonic buffer containing 10 mM MgCl2, 20 mM KCl, 10

mM HEPES (pH 7.5) and EDTA-free complete protease inhibitor cocktail tablets (Roche). The iso-

lated raw membranes were extensively washed by twice repeated centrifugation at 40000 rpm for

30 min at 4˚C in the same hypotonic buffer. Subsequently, soluble and membrane associated pro-

teins were removed in a high osmotic buffer containing 10 mM MgCl2, 20 mM KCl, 1.0 M NaCl, 10

mM HEPES (pH 7.5) and EDTA-free complete protease inhibitor cocktail tablets (three times). Puri-

fied membranes were flash-frozen in liquid nitrogen and stored at �80˚C for further use. Purified

membranes were thawed at room temperature and incubated in the presence of 50 mM ligand and

protease inhibitor cocktail at 4˚C for 2 hr. The membranes were incubated with 1.0 mg/ml iodoace-

tamide (Sigma) for 30 min and were solubilized in the buffer containing 50 mM HEPES (pH 7.5), 1%

(w/v) n-dodecyl-beta-D-maltopyranoside (DDM, Anatrace), 0.2% (w/v) cholesterol hemisuccinate

(CHS, Sigma-Aldrich) and 150 mM NaCl, at 4˚C for 2.5 hr. The solubilized 5-HT2CR proteins in the

supernatant were isolated by high-speed centrifugation (Beckman), and then incubated at 4˚C over-

night with TALON IMAC resin (Clontech), 800 mM NaCl and 20 mM imidazole as the final buffer

concentration. The resin was washed with 10 column volumes of washing buffer I containing 50 mM

HEPES (pH 7.5), 0.1% (w/v) DDM, 0.02% (w/v) CHS, 800 mM NaCl, 10% (v/v) glycerol, 20 mM imidaz-

ole, 50 mM ligand (only for the ligand binding case), and six column volumes of washing buffer II con-

taining 50 mM HEPES (pH 7.5), 0.02% (w/v) DDM, 0.004% (w/v) CHS, 500 mM NaCl, 10% (v/v)

glycerol and 50 mM ligand (only for the ligand binding case) without imidazole. The protein was

eluted using four column volumes of elution buffer containing 50 mM HEPES (pH 7.5), 0.02% (w/v)

DDM, 0.004% (w/v) CHS, 500 mM NaCl, 10% (v/v) glycerol, 250 mM imidazole and 50 mM ligand

(only for the ligand binding case). The 5-HT2CR protein sample was concentrated to ~10 mg/ml using

a 100 kDa cutoff concentrator (Sartorius). The protein yield and monodispersity were measured by

analytical size-exclusion chromatography, aSEC (Agilent).

Protein Stability conducted by CPM Assays
Protein thermostability was measured by a microscale fluorescent thermal stability assay as previ-

ously detailed (Alexandrov et al., 2008). For thermostability assay, CPM (N-([4-(7-diethylamino-4-

methyl-3-coumarinyl) phenyl] maleimide) dye was dissolved in DMSO at 4 mg/ml as stock solution

and diluted 1:20 in buffer (25 mM HEPES, pH 7.5, 500 mM NaCl, 5% (v/v) glycerol, 0.01% (w/v)

DDM, 0.002% (w/v) CHS) before use. 1 ml of diluted CPM was added to the same buffer with

approximately 0.5–2 mg 5-HT2C receptor in a final volume of 50 ml. The thermal denaturation assay

was performed in a Rotor-Gene realtime PCR cycler (Qiagen). The excitation wavelength was 365

nm and the emission wavelength was 460 nm. All assays were performed over a temperature range

from 25˚C to 95˚C using a temperature range rate 2.0 ˚C/min. The stability data were processed

with GraphPad Prism.
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Results

Limited benchmarking with alanine scanning data
The initial training set benchmarking of the CompoMug prediction algorithms was performed with

the alanine scanning data available for neurotensin receptor NTS1 (Shibata et al., 2009), adenosine

receptor AA2AR (Magnani et al., 2008), and b1 adrenergic receptor ADRB1 (Serrano-Vega et al.,

2008; Heydenreich et al., 2015). Due to the nature of the experimental data, such comparison is

limited to only X to A (where X is any residue) and A to L point mutations, and the benchmark

employed only sequence-based and machine learning modules. For each receptor, we kept top 40

predicted single point mutations and compared the results with the experimental alanine data for

the three receptors (see Supplementary file 1). For the human AA2AR, turkey ADRB1, and rat NTS1

receptors CompoMug successfully predicts 20, 11, and 9 stabilizing mutations out of 39, 18, and 20

reported mutations in the transmembrane region, suggesting about 50% recall rate in this initial

benchmark.

Application of CompoMug to the 5-HT2C receptor
To test the algorithms in a real case of a blind predictions for a new target prospective screening,

we applied CompoMug to predict stabilizing point mutations for the serotonin 5-HT2C receptor. The

5-HT2C receptor is widely expressed within the central and the peripheral nervous systems and

appears to play a prominent role in psychiatric disorders. Thus, obtaining the structure of this recep-

tor could help for better understanding and treatment of the pathophysiology of obesity and psychi-

atric disorders including schizophrenia, anxiety, and depression (Wacker et al., 2013)(Peng et al.,

2018).

To select candidates for point mutations we used the knowledge-based, sequence-based, struc-

ture-based and machine-learning modules of CompoMug as described in Computational Methods.

In the sequence-based module, we composed five different MSAs (see Supplementary file 2):

orthologs of 5-HT2C receptor, orthologs of all 5-Hydroxytryptamine GPCRs, aminergic receptors

(human only), crystallized receptors (class A only), and class A alignment (non-olfactory) (Rios et al.,

2015). For the structure-based module, we first constructed the 5-HT2C homology model based on

the structure of the 5-HT2B receptor (PDB ID 4IB4) (Wacker et al., 2013). These two serotonin recep-

tor subtypes share 62% of identical residues in the 7TM region (49% for the full sequence). This

structural model was also used to generate 239*19 = 4541 models (considering 239 residues in the

TM regions and 19 possible amino acid substitutions) with conformationally optimized point muta-

tions as the input for the machine-learning-based module, followed by the score assignment with

the derived prediction models. After the post-processing procedure, a list of 39 mutations from dif-

ferent modules was selected for experimental testing, as presented in Table 2 Note, that several

mutations were predicted by more than one module.

Experimental testing of individual CompoMug mutations
A total of 39 mutations predicted by CompoMug (see Table 2) were tested on the apo 5-HT2C
receptor, using the base construct with N- and C- termini truncations and BRIL fusion as described in

Experimental Assays section. The optimal insertion position for BRIL, as well as C- and N-terminal

truncations were determined experimentally starting from the WT construct (without mutations), as

described in the structural paper (Peng et al., 2018). For each point mutation, the receptor was

expressed in a modified pFastBac1 vector in sf9 insect cells, and the aSEC and CPMs profiles were

measured for the unliganded receptor (apo) to quantify its thermostability. Point mutations that

decreased the receptor expression yield or stability, or for which we could not accurately measure

the apparent melting temperature, or did not affect the stability of the protein were disregarded

from further experiments. The Tm measurements were repeated for the 10 stabilizing mutations that

improved expression and increased apparent melting temperature by at least 1.5˚C (bold rows in

Table 2). The most remarkable effect was observed for the C3607.45N point mutation predicted with

the sequence-based module, which increased the thermostability of the receptor by 8.8 ± 1.3˚C in

the initial CPM assays. Other mutations showed a moderate effect on thermostability, increasing the

apparent melting temperature by 1.5–3.9˚C. Six out of ten mutations are substitutions to the hydro-

phobic residues (A, L, or V), three point mutations are substitutions to the polar or charged residues
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Table 2. Predicted CompoMug point mutations for 5-HT2C and results of experimental testing.

Mutations shown as bold improved aSEC and/or thermostability by more than 1.5 oC ; shown as italic had low protein yield or

strong aggregation, Tm not measured.

Mutation CompoMug module aSEC* quality Tm (oC) ± SEM DTm (C)

WT 50.4 ± 0.8 0.0

I621.41V Sequence-based ~ �0.7

G691.48A Sequence-based - �1.4

D992.50N Knowledge-based - -

H8512.51E Structure-based N/A -

G1032.54A Sequence-based - �4.4

Y1253.23K Sequence-based - �2.0

Y1253.23V Sequence-based ~ �0.7

M1433.41W Knowledge-based - 0.6

R1573.55T Machine-learning and Sequence-based - �1.8

R1573.55Q Sequence-based - �2.0

T1694.40K Sequence-based + 0.2

A1714.42L Machine-learning ~ 52.3 ± 1.2 1.9

I1724.43A Sequence-based - 1.1

I1724.43F Sequence-based ~ 0.6

G1844.55A Machine-learning + 51.9 ± 0.1 1.5

N203ECL2D Structure-based - �2.6

F2205.45I Machine-learning ~ 0.0

F2245.48Y Machine-learning and Sequence-based - �3.3

C2355.59F Sequence-based ~ 0.1

L2365.60R Machine-learning and Sequence-based N/A -

V2405.64A Sequence-based + 52.4 ± 0.5 2.0

V2405.64S Sequence-based + 0.3

G3146.38A Machine-learning-based - �4.0

L3336.57V Machine-learning and Sequence-based + 53.7 ± 0.6 3.3

K3487.32A Sequence-based - �4.4

C3607.45N Sequence-based + 59.2 ± 0.5 8.8

G3627.47L Sequence-based + 52.3 ± 0.7 1.9

G3627.47A Sequence-based + 54.3 ± 0.7 3.9

L3707.55D Structure-based - �2.3

K3738.48E Structure-based - �0.4

I3748.49D Structure-based + 53.9 ± 0.8 3.5

I3748.49T Sequence-based + 54.1 ± 0.9 3.7

Y3758.50F Sequence-based - �2.4

N3818.56R Sequence-based ~ 0.6

T671.46C/G1032.54C Structure-based - -

V741.53C/A962.47C Structure-based - -

A872.38C/A1714.42C Structure-based ~ -

A982.49C/A1403.38C Structure-based ~ 52.8 ± 1.0 2.4

T3697.54C/Y3758.50C Structure-based N/A -

*aSEC quality is denoted as improved (+), unchanged (~), and degraded (-) as compared to the base construct apo receptor.

DOI: https://doi.org/10.7554/eLife.34729.009
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(T, N, or D), and one double mutation corresponds to an engineered disulfide bridge (see Table 2).

We also observed that improvements in aSEC and thermostability were well correlated, meaning

that point mutations augmented both aSEC quality and apparent melting temperature.

Design and testing of combined mutations
After testing single mutations, we devised a list of potentially additive double and triple combina-

tions of point mutations, all of them including the C3607.45N mutation. Specifically, we first tested

the C3607.45N mutation in combinations with all other mutations, as well as double mutation

C3607.45N-G3627.47A in combination with other mutants. These double and triple combinations

were tested for the apo receptor and the receptor in complex with different 5-HT2C binding ligands,

including an agonist ergotamine and five different antagonists.

As Figure 6 shows (see Figure 6—source data 1 for raw data), the tested combinations further

improve thermostability of apo receptor, with the maximal observed increase in Tm reaching ~13˚C
for the triple mutation C3607.45N, G3627.47A, A1714.42L. Moreover, binding of antagonist mesuler-

gine improved thermostability of this triple mutant by additional ~8˚C, resulting in a total of 21˚C
increase in Tm, as compared to the apo base receptor construct. Interestingly, this same triple muta-

tion was destabilized by binding of agonist ergotamine as compared to the apo mutant. In general,

while the C3607.45N point mutation makes most substantial contribution to the stability of the apo

and agonist-bound receptor, the addition of most other point mutations (except for V2405.64A)

Figure 6. Apparent thermostability of 5-HT2C constructs with combined CompoMug mutations. In apo form or in complex with an agonist (ergotamine)

or antagonists (doxepin, ritanserin, clozapine, mesulergine, and SB228357). Light colored bars highlight the reference temperatures for the base

construct, the full color bars show the additional effect of mutations on these complexes. The expected error for each measurement does not

exceed 1.2˚C.
DOI: https://doi.org/10.7554/eLife.34729.010

The following source data is available for figure 6:

Source data 1. Data for apparent thermostability of 5-HT2C constructs with combined CompoMug mutations and in complexes with ligands, as shown

in Figure 6 (estimated error <1.2˚C).
DOI: https://doi.org/10.7554/eLife.34729.011

Popov et al. eLife 2018;7:e34729. DOI: https://doi.org/10.7554/eLife.34729 14 of 22

Research article Computational and Systems Biology Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.34729.010
https://doi.org/10.7554/eLife.34729.011
https://doi.org/10.7554/eLife.34729


predominantly stabilizes the antagonist-bound receptor conformation, which was previously less

amenable to crystallization. The biggest contrast between agonist and antagonist bound state ther-

mostability (~16˚C) was observed for the quadruple mutant construct with an engineered disulfide

bond (C3607.45N, G3627.47A, A982.49C/A1403.38C), suggesting that the introduction of the rigid

covalent link between the TM2 and TM3 fixes receptor in the inactive conformational state.

Predicted mutations enable crystallization and structure determination
of 5-HT2C complexes
The predicted stabilizing point mutations made it possible to obtain first crystals of the 5-HT2C
receptor in complex with an antagonist, as well as to improve the diffraction of the agonist-bound

crystals from >4 Å to <3.0 Å, as described in our recent paper (Peng et al., 2018). The predicted

mutations were introduced in the context of an available 5-HT2C construct that included optimized

fusion partner and N-, C- termini truncations. In this context, multiple combinations of CompoMug-

derived mutants resulted in diffracting crystals of the 5-HT2C receptor. At the same time, the single

C3607.45N mutation was found as sufficient to solve structures in complex with agonist ergotamine

(at 3.0 Å resolution), as well as antagonist ritanserin (at 2.7 Å), which is the first antagonist-bound

structure of a serotonin receptor (Peng et al., 2018).

Structural analysis of the predicted thermostabilizing mutations in 5-
HT2C
Determination of the crystallographic structure of the 5-HT2C receptor (Peng et al., 2018) now

allows more detailed analysis of the stabilizing nature of the discovered by CompoMug mutations.

The mutations were modeled based on the atomic structure of the 5-HT2C receptor as shown in

Figure 7.

For example, the A1714.42 residue, located at the intracellular side of TM4, is surrounded by

hydrophobic side chains of Y902.41, F912.42, I1754.46, and its replacement with a longer Leu side

chain could form more favorable hydrophobic contacts. The G1844.55 in the middle of TM4 is

exposed to the lipid membrane and does not form any contacts with the side chains, and its replace-

ment with Ala could have a stabilizing effect on the a-helix conformation and more favorable hydro-

phobic contacts with the lipid environment. The V2405.64 residue does not form any specific contacts

and it is located close to the membrane intracellular boundary, so the V2405.64A mutation may

reduce unfavorable contacts with predominantly charged and polar lipid headgroups in this environ-

ment. The L3336.57 residue points to the membrane and does not form any specific contacts with

the neighboring side chains, and the L3336.57V might improve stability by forming more favorable

hydrophobic contacts with lipids.

The C3607.45 amino acid is rarely observed at the 7.45 position, and it is known that N7.45 plays

important role in the sodium coordination as a part of the sodium binding pocket (Katritch et al.,

2014; Liu et al., 2012). Thus, the C3607.45N point mutation restores the conserved residue in the

sodium binding pocket and improves the stability of the receptor. Given that this point mutation

was necessary to obtain the crystallographic structures of the 5-HT2C receptor in both agonist-bound

and antagonist-bound conformations, while D992.50N was detrimental, the integrity of the sodium

binding pocket in 5-HT2C receptor apparently plays an important role for the overall receptor stabil-

ity. The G3627.47 residue is partially exposed to the lipid environment, thus both the G3627.47L/A

point mutations improve the stability of the receptor by stabilizing the secondary structure of TM7

and ameliorating hydrophobic interactions with the membrane environment. The I3748.49 residue is

surrounded by positively charged K83ICL1, K3738.48, R3768.51, and R3778.52 side chains, so the

I3748.49D/T point mutations may form salt bridges or polar interactions resulting in improved stabil-

ity of the receptor. Finally, the double mutant A982.49C/A1403.38C can form a disulfide bridge

between TM2 and TM3, apparently fixing the inactive conformation of the receptor. The latter

observation is corroborated by the highest differential in thermostability between antagonist and

agonist bound states measured for the combination construct containing the A982.49C/A1403.38C

mutant (Figure 6).
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Discussion
Here we introduced a new comprehensive CompoMug approach for the prediction of stabilizing

mutations in GPCRs and demonstrated its first application. In the 5-HT2C case, CompoMug achieved

a very high success rate of 25% for mutations with substantial, more than 1.5˚C, improvement in Tm

values, which is 5 to 15 times higher than corresponding hit rates found in the experimental alanine

mutagenesis approach for the adenosine or endothelin type B receptors (Lebon et al., 2011;

Okuta et al., 2016). The CompoMug predictions resulted in the discovery of 10 new stabilizing

mutations and enabled the structure determination of the 5-HT2C receptor in complexes with an

agonist and an antagonist. Importantly, our first results suggest that each module of CompoMug is

important and can additively contribute to the discovery of key stabilizing mutations. Below we dis-

cuss strengths and limitations of the individual CompoMug modules and how they can be further

improved with an accumulation of structural and mutation data for the GPCR family.

Knowledge-based is the most established and straightforward approach, which directly copies

some of the well-described mutations that already proved beneficial in crystallization of several

GPCRs. However, while the mutations in the knowledge-based list are considered the most

Figure 7. The stabilizing point mutations modeled in the structure of the ritanserin-bound 5-HT2C receptor (the ligand is not shown). Each mutated

residue and its neighboring residues are represented as sticks and wires, respectively.

DOI: https://doi.org/10.7554/eLife.34729.012
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transferable at least within class A GPCR, they still often fail to give any substantial gain in stability

as it happened in the 5-HT2C case for the D992.50N and M1433.41W mutations tested. Moreover,

even in those cases when some of such known transferable mutants are beneficial, they may be not

sufficient to get the optimal crystallization construct, nor to drive thermostability to the point

required for structure-based drug design applications. Ongoing accumulation of mutation results for

more GPCRs, e.g. discovered by other modules, may allow to add some additional mutations to the

knowledge-based module. For example, X3.41- > W mutation was initially discovered based on a

sequence analysis and structure-based energy evaluations (Roth et al., 2008). At the same time, the

recently discovered mutations in the functionally conserved sites (Table 1), e.g. in the P-I-F motif,

DRY motif or sodium site (Katritch et al., 2014), apparently remove the key ‘gears’ from the activa-

tion mechanism, thus confining receptor to the inactive state and reducing conformational heteroge-

neity of the system, which can be beneficial for both thermostabilization and crystallization. In this

respect, the sodium site residues provide the most opportunities, as it has several highly conserved

sodium- and water-coordinating side chains that can be mutated.

The sequence-based module is fast and does not require structural knowledge. More than half of

the tested point mutations (23 out of 39) came from the sequence-based module, with 6 of them

yielding increased thermostability of the receptor, and 8 of them showing neutral effect. One of the

advantages of this module is that mutation candidates have a lower probability to damage the

receptor, because the candidate amino acid naturally occurs in other GPCRs. Moreover, in the par-

ticular case of 5-HT2C receptor, the highest improvement in thermostability was observed for the

C3607.45N point mutation predicted by the sequence-based module. Similar idea of using deviations

in the residue conservation pattern as a potential target for mutation has been used by Chen et al to

stabilize a variant of the ADRB1 receptor (Chen et al., 2012), though its application was limited to

the cases of unusual polar or charged residues. In this study, we used an empirical score that is appli-

cable to all types of residues and allows to quantify the predictions (see Equation1). The score can

be further optimized, for example, one can add specific weights with respect to MSAs, e.g. species

variation may have a higher impact on the score compared to the common GPCR branch variation.

A regression analysis required to adjust the optimal weights for the alignments, however would

require further accumulation of additional stability data for GPCRs.

The structure-based module employs detailed information about residue interactions, and can

potentially be highly predictive. In the 5-HT2C test case, nine tested point mutations were selected

using the structure-based module, and two of them (I3748.49D and A982.49C/A1403.38C) increased

the apparent melting temperature of the receptor. Importantly, the structure-based module can be

very effective in differentiating between active and inactive state stabilizing conformations, and

indeed the A982.49C/A1403.38C disulfide bond 5-HT2C was shown to exclusively stabilize antagonist-

bound complexes, but destabilize an agonist-bound complex (Figure 6). Previously, possibility to

differentially stabilize GPCRs in agonist or antagonist-bund states was shown by experimental ala-

nine mutagenesis study for the A2A receptor (Magnani et al., 2008). The structure-based module

can do it very effectively, however, it requires a high-quality structural model, due to the high sensi-

tivity of disulfide bonds, ionic locks and the corresponding energy terms to the receptor conforma-

tion. An increasing structural coverage of GPCR family, including both active- and inactive-state

conformations will, in turn, allow more accurate models, improving performance and applicability of

the structure-based module.

The machine-learning-based (ML) module allows to identify stabilizing point mutations

overlooked by the other modules, since it uses complex feature vectors trained on previously

obtained experimental data on mutations, rather than pure sequence or structural information. The

machine learning, however, makes the resulting point mutations to be more difficult to interpret. We

used eight point mutations selected by this module, of which four point mutations also showed high

scores in the sequence-based module. Three of the ML point mutations improved the thermostabil-

ity of the receptor. This module critically depends not only on the structural model, but also on the

training set. For the current study, we used the available alanine mutations data, thus, its prediction

power for the residues other than alanine can be limited. This situation will improve with an accumu-

lation of novel stability data, including both experimental results coming from full receptor scanning

and incorporation of mutations predicted by CompoMug in more than a dozen GPCRs.

By design, the four CompoMug modules are based on different principles and use different types

of input information, so they are expected to complement each other, rather than overlap. Indeed,
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our results suggest that most of the successful mutations for 5-HT2C were predicted by only one of

the modules, and overlap in module predictions did not correlate with improved chances for the suc-

cessful mutation, at least in this test case. Moreover, some of the trends in different modules can be

opposite. For example, some of the specific knowledge-based mutations of highly conserved resi-

dues (e.g. D2.50N), can render the receptor dysfunctional, but at the same time help its stability

(White et al., 2018). On the other hand, the sequence-based module is based on a premise that res-

idues deviating from the local conservation pattern are likely to be destabilizing. There is no contra-

diction here, as the evolutionary selection acted differently on different GPCR sites, in some

positions selecting for general stability, but in other positions preserving conformationally unstable,

but functionally critical residues.

The CompoMug tool is being applied to a number of GPCR targets, showing consistently high hit

rates and helping structure determination of several GPCRs, including non-class A receptors (unpub-

lished results). In principle, structure-based and sequence-based modules of CompoMug in their cur-

rent form can be also applied to other membrane proteins families. The feature set of the machine-

learning-based module may also have a more general utility, however, the model would require

retraining on mutation stability data for the target family, where available.

Conclusions
In this study, we present CompoMug - a computational tool to predict stabilizing point mutations in

GPCRs. The four modules of CompoMug synergistically use different types of information on known

transferable mutations, natural sequence variations, structural interactions, and machine learning of

a large dataset of GPCR mutations, respectively, to maximize success rate of predictions. Applied to

the 5-HT2C receptor, CompoMug helped us to identify as many as 10 stabilizing mutations (25% hit

rate), supporting the importance of all four modules. One of the predicted mutations, C3607.45N,

improved the apparent melting temperature of the apo 5-HT2C receptor by 8.8 ± 1.3˚C. Moreover, a

triple mutant C3607.45N, G3627.47A, A1714.42L had its thermostability improved by as much

as ~13˚C, as compared to the base construct apo receptor. Moreover, this C3607.45N mutation in

the optimal fusion construct yielded crystal structures of the 5-HT2C receptor in two distinct confor-

mations, agonist-bound active like and antagonist-bound inactive. CompoMug is being applied to

other receptors of the GPCR family, and performance of its modules can be further improved via the

feedback loop with newly generated experimental data.
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