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Abstract Generalization during aversive decision-making allows us to avoid a broad range of

potential threats following experience with a limited set of exemplars. However, over-

generalization, resulting in excessive and inappropriate avoidance, has been implicated in a variety

of psychological disorders. Here, we use reinforcement learning modelling to dissect out different

contributions to the generalization of instrumental avoidance in two groups of human volunteers (N

= 26, N = 482). We found that generalization of avoidance could be parsed into perceptual and

value-based processes, and further, that value-based generalization could be subdivided into that

relating to aversive and neutral feedback � with corresponding circuits including primary sensory

cortex, anterior insula, amygdala and ventromedial prefrontal cortex. Further, generalization from

aversive, but not neutral, feedback was associated with self-reported anxiety and intrusive

thoughts. These results reveal a set of distinct mechanisms that mediate generalization in

avoidance learning, and show how specific individual differences within them can yield anxiety.

DOI: https://doi.org/10.7554/eLife.34779.001

Introduction
During aversive decision-making, generalization allows application of direct experience with a lim-

ited subset of dangerous real-world stimuli to a much larger set of potentially related stimuli. For

example, if eating a particular foraged fruit has led to food poisoning in the past, it may be adaptive

to avoid similar-appearing fruit in the future. As an evolutionarily well-conserved process, generaliza-

tion enables safe and efficient navigation of a complex and multidimensional world (Sutton and

Barto, 1998; Ghirlanda and Enquist, 2003). However, over-generalization, resulting in inappropri-

ate avoidance of safe stimuli, actions or contexts, has been suggested as a possible pathological

mechanism in a range of psychological disorders including anxiety, chronic pain, and depression

(Duits et al., 2015; Dymond et al., 2015; Vlaeyen and Linton, 2012; Harvie et al., 2017;

Pearson et al., 2015).

Previous work on aversive generalization has focused on predicting punishments in passive (Pav-

lovian) designs. Such studies have revealed evidence of heightened subjective, physiological and

neural responses to stimuli that bear perceptual similarity to learned exemplars (Dymond et al.,

2015). However, the extent to which these observations extend to a decision-making context �

that is whether or not to make an avoidance response in the face of certain stimuli, allowing us to

exert control over experience of aversive outcomes � is unclear. Although Pavlovian processes can

influence avoidance learning, the latter involves acquisition of a fundamentally distinct set of values

relating to actions themselves. This is a clinically important distinction, as theories of many psycho-

logical disorders relate specifically to excessive avoidant behaviour over and above subjective fear
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(Krypotos et al., 2015) � for example, by reducing opportunities for extinction of inappropriate

fear or allowing unnecessary avoidance to transfer to habit-based control (Arnaudova et al., 2017;

LeDoux et al., 2017; Gillan et al., 2014).

There are a number of potential mechanisms by which avoidance generalization could be imple-

mented by the brain. As emphasised in some accounts, perceptual uncertainty in stimulus identity

alone can effectively yield generalization. Although there is debate about how well discriminative

ability is controlled for in many generalization experiments (Struyf et al., 2015), there is good evi-

dence that experience with aversive outcomes alters the representation of predictive stimuli in pri-

mary sensory cortices (Weinberger, 2007; Sasaki et al., 2010; Wigestrand et al., 2017), and that

this may result in changes to absolute stimulus discriminability (Resnik et al., 2011; Laufer and Paz,

2012; Aizenberg and Geffen, 2013). On the other hand, generalization may also occur at the level

of value representations, by the transfer of acquired value to similar, but discriminable cues during

learning. In the Pavlovian case, several well-established behavioural phenomena implicate value-

related processes at play in generalization across species (Hanson, 1959; Schechtman et al., 2010).

That both perceptual and value processes might operate in parallel may explain why recent neuroim-

aging studies have highlighted different brain areas (e.g. limbic cortex vs primary sensory regions) as

being key to Pavlovian aversive generalization in humans (Onat and Büchel, 2015; Laufer et al.,

2016).

A further important factor in the control of avoidance learning is reinforcement by neutral (or

‘safety’) states, that signal omission of punishment. It is likely that generalization over these states

can also influence behaviour: for example in the Pavlovian case, evidence for this is seen in ‘peak-

shift’ effects, whereby the presence of a perceptually similar safety cue appears to inhibit response

to nearby aversive cues (Hanson, 1959). It is therefore possible that under-generalization of safety

cues, as opposed to over-generalization of aversive cues, might be a contributing factor to suscepti-

bility to disorders such as generalized anxiety in humans (Grupe and Nitschke, 2013).

Here, we address three key questions: first, is there good evidence for generalization in avoid-

ance learning in humans?; second, can we distinguish behavioural and neural components relating to

eLife digest People apply what they have learned from past experiences to similar situations, a

phenomenon known as generalization. For example, if eating a particular food caused illness, a

person will likely avoid foods that look or smell similar in the future. Generalization can be helpful

because it allows people to decide how to act in new situations. But over-generalizing after a bad

experience could lead an individual to fear benign scenarios. This may lead to unnecessary anxiety.

It can also create a negative cycle where people avoid certain situations or objects, which prevents

them from learning that they are safe.

Now, Norbury et al. show what happens in the brain when making decisions that involve

generalization. In the experiments, volunteers were told seeing a particular flower design would lead

to a painful electric shock, unless they pushed a button to ‘avoid’ that image. Individuals completed

this task in a magnetic resonance imaging machine so Norbury et al. could observe their brain

activity while they completed the task. A second group of individuals were asked to complete a

similar task online, but instead of being shocked they lost money if they failed to hit a key when they

saw the ‘dangerous’ flower. The online participants also filled out a survey about their experience of

various psychological symptoms.

Norbury et al. used computer modeling to reconstruct how people decided whether or not to

avoid images that looked similar to the harm-associated images but were in fact safe (did not lead

to pain or losing money). The experiments showed that different parts of the brain were involved in

different parts of the generalization process. Areas of the brain that interpret vision, fear, and safety

played distinct roles. People who generalized more from harmful outcomes were more likely to

report feeling anxious and having intrusive negative thoughts in their everyday lives. A better

understanding of the brain processes that cause these symptoms in different situations might help

scientists develop better treatments for conditions like anxiety in the future.

DOI: https://doi.org/10.7554/eLife.34779.002
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perceptual, aversive value, and safety value?; and third, which if any component predicts relevant

psychological symptoms? We used a custom-designed perceptual task in conjunction with reinforce-

ment learning modelling to study two groups: a laboratory-based sample (N = 26) who performed a

pain avoidance task with concurrent neuroimaging (fMRI), and a larger cohort of individuals

(N = 482), who performed a monetary loss avoidance task online alongside a battery of question-

naires designed to probe relevant psychological symptom dimensions (Gillan and Daw, 2016).

Results
The overall study design is summarised in Figure 1a. In both groups of participants, generalization

of instrumental responding was tested using a costly avoidance paradigm (Figure 1c). Briefly, partici-

pants were instructed that they would see a series of flower-like shapes on their screen, some of

which were ‘safe’, and some of which were ‘dangerous’. If they saw a dangerous shape and made no

response, there was a high chance that they would receive a painful electric shock (fMRI sample), or

lose 10 cents from their cash stake (online sample using Amazon Mechanical Turk, AMT). If they saw

a safe shape, they would never receive a shock (or lose money) on that trial. In order to escape the

possibility of a painful shock (or monetary loss) when they thought a dangerous shape had been pre-

sented, participants were told they could press the ‘escape’ button on their keypad. Participants

were instructed that the aversive outcome would never occur on a trial when they had pressed the

‘escape’ button – but – that, importantly, pressing the button was associated with a small cost. Spe-

cifically, each time they pressed the escape button, it would be registered on a counter at the bot-

tom of their screen. At the end of each block of the task, they would receive additional painful

shocks (or lose additional cash) depending on how many times they had pressed the button during

that block (one extra shock or 10 cent loss per every five button presses). The optimal strategy (in

order to minimise the amount of pain received or money lost) would therefore be to press the but-

ton if they thought they saw a dangerous shape, but not press if they thought a safe shape was on

the screen.

Crucially, on a small proportion of trials, the presented shapes were generalization stimuli (GSs).

GSs were individually generated using precise estimates of perceptual ability (as measured on the

first study session for the fMRI group) to be 75% reliably perceptually distinguishable from the task

stimuli associated with aversive outcomes (CS+ s). (Due to time constraints and lack of control over

testing environment, GS were generated based on average perceptual acuity from a pilot study in

the online group.) The perceptual task (Figure 1b) was custom designed based on the recommenda-

tions of a recent review (Struyf et al., 2015). Specifically, in order to provide a fair test of perceptual

performance during the generalization task, stimuli were not instantly comparable (in order to ensure

that GSs would be reliably discriminable in an absolute sense, when presented in isolation;

[Slivinske and Hall, 1960]), and testing occurred in the same emotional context (i.e. under threat of

painful shock).

Importantly, the task stimulus array (in terms of arrangement of CS+ and CS- stimuli in perceptual

space) was specifically chosen to probe asymmetries in generalization behaviour that result from

value-based mechanisms – see Figure 1b. One such potential asymmetry is a characteristic shift in

peak responding from the CS+ to surrounding GSs, away from the direction of the CS- in perceptual

space (known as ‘peak shift’), that has been proposed to result from the interaction of excitatory and

inhibitory generalization gradients around CS+ and CS- stimuli following Pavlovian conditioning

(Hanson, 1959). Crucially, the asymmetric array used here allowed us to compare responses to CS

+ GSs both near and far in perceptual space from the CS- – enabling detection of gradient interac-

tion effects such as peak shift in instrumental avoidance, and allowing the separation of oppositely

signed generalization gradients around CS+ and CS- stimuli.

We conducted a series of analyses on data from our two cohorts in order to address our key

questions. First, we used reinforcement learning modelling to investigate whether there was evi-

dence of value-based generalization in avoidance behaviour. Next, we used univariate fMRI data

analysis to identify brain regions that encoded modelled internal quantities specific to value-based

generalization processes. We then took a multivariate approach to investigate how the distributed

representation of generalization stimuli in these regions changed over the course of the task, and

how this related to individual differences in generalization. Finally, we used data from our online
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Figure 1. Study design and overall behaviour summary. (a) Study design and protocol for the two participant groups; fMRI, laboratory and functional

imaging sample; AMT, Amazon Mechanical Turk (web-based) sample. (b) Delayed-punished perceptual task, used to determine 75% reliably

perceptually distinguishable generalization stimuli (GSs) on in individual basis for the generalization of instrumental avoidance task (c) in the fMRI

sample (in the AMT sample, GSs were generated based on mean perceptual acuity determined in pilot testing). (d) Summary of behaviour on the

generalization task in fMRI and (e) AMT samples. ISI, inter-stimulus interval; ITI, inter-trial interval; CS+, conditioned stimulus with pain or loss outcome,

CS-, conditioned stimulus with neutral outcome (no pain or loss). Error bars represent SD. *p=0.006, **p<0.001, paired sample t-tests.

DOI: https://doi.org/10.7554/eLife.34779.003

The following figure supplements are available for figure 1:

Figure supplement 1. Relationship between mean avoidance on generalization stimulus (GS) trials during the generalization of instrumental avoidance

task, and mean post-task visual analogue scale pain/loss expectancy ratings.

DOI: https://doi.org/10.7554/eLife.34779.004

Figure supplement 2. Proportionate avoidance for individiual task stimuli (top row) and by CS type and block number (bottom row) for the

generalization of instrumental avoidance task.

DOI: https://doi.org/10.7554/eLife.34779.005

Figure supplement 3. Effects of conditioning on perceptual acuity for task stimuli.

DOI: https://doi.org/10.7554/eLife.34779.006
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questionnaire battery to determine whether specific elements of avoidance generalization were

related self-reported psychological symptoms.

Evidence for generalization in avoidance behaviour
For both groups of participants, the frequency of avoidance in response to generalization stimuli

was intermediate to that evoked by CS- and CS+ stimuli (all p<0.0001, paired-sample t tests; fMRI:

GS vs CS- t25 = 7.57, mean difference = 0.18 [95%CI 0.14–0.24], GS vs CS+ t25 = �17.6, mean

difference = �0.60 [95%CI �0.67 to �0.54]; AMT: GS vs CS- t481 = 27.0, mean difference = 0.35

[95%CI 0.33 – 0.38], GS vs CS+ t481 = �26.6, mean difference = �0.20 [95%CI �0.19 to �0.21];

Figure 1d,e). Despite never having been associated with the aversive outcome, participants also

rated GSs significantly higher than CS- (but lower than CS+) stimuli on post-task pain/loss expec-

tancy scales (all p<0.0001, paired-sample t tests; fMRI: GS vs CS- t25 = 5.69, mean difference = 24.1

[95%CI 15–33], GS vs CS+ t25 = �8.14, mean difference = -52 [95% CI �39 to �66]; AMT: GS vs CS-

t481 = 29.4, mean difference = 41.7 [95%CI 40.0–44.6], GS vs CS+ t481 = �16.5, mean different = -18

[95% CI �16.0 to �20.3], on visual analogue scales ranging 0–100; [Figure 1d,e]).

There was also a significant positive relationship between relative GS avoidance and relative GS

pain/loss expectancy rating post-task in both groups (fMRI, Spearman’s r = 0.655, p=0.00027; AMT,

Spearman’s r = 0.432, p=2.2e-16; both measures within-participant z-transformed, for relationships

between raw scores see [Figure 1—figure supplement 1]). This suggests that a higher frequency of

avoidance responding (plus associated lack of extinction) translated into higher conscious negative

expectancy beliefs for generalization stimuli. There was no relationship between proportionate

avoidance on GS trials and perceptual acuity at session 1 (individual q values) or absolute intensity of

the painful electrical stimulation (current amplitude) in the fMRI sample (all p>0.2).

This raises the question as to whether the observed avoidance on the GS trials was over and

above that which would be expected from perceptual uncertainty alone. Notably, mean proportion-

ate avoidance on GS trials in the fMRI group was around 0.2 (or ~0.25 when scaled relative to indi-

vidual mean CS+ avoidance) – which, given that GSs were generated to be 75% reliably

distinguishable from CS+s, is what might have been predicted from a purely perceptual account of

task performance. Mean reaction times for making avoidance responses were also significantly

slower for GS compared to CS+ stimuli in both groups, suggesting greater uncertainty on these tri-

als (p=0.006, p=2.07e-11, paired sample t tests; fMRI: t25 = 3.00, mean difference = 167 ms [95% CI

51.2–282], AMT: t481 = 6.87, mean difference = 38.8 ms [95% CI 27.7–49.9]; [Figure 1d,e]). To

resolve this issue, we tested for the presence of additional value-based generalization processes in

both datasets using a principled model comparison approach.

Simply, we fitted a series of reinforcement learning models to avoidance data from both samples

(modified Q-learning algorithms, with trial-by-trial varying learning rates determined by the Pearce-

Hall associability rule, [Sutton and Barto, 1998; Le Pelley, 2004] – see Materials and methods).

Firstly, we fit a model with perceptual ‘generalization’ only (modelled as 25% chance of perceptual

confusion between GSs and the adjacent CS+) – that is where all task stimuli were treated as inde-

pendent states, with no transfer of value across states. Secondly, we fit a model with perceptual gen-

eralization plus an additional value-based generalization process. As there is some evidence that

generalization functions are approximately Gaussian in shape, at least along a single perceptual

dimension (Ghirlanda and Enquist, 2003), this was implemented as a Gaussian smoothing of stimu-

lus value across perceptual space, with a single free parameter (s) governing the width of this func-

tion. Thirdly, we fit a model with perceptual generalization plus two additional free parameters

governing width of additional value-based generalization processes – one for aversive (shock/loss)

and one for neutral (no shock/no loss) feedback (sA and sN, respectively). This model was informed

by previous empirical observations that generalization functions vary in gradient or width for aver-

sive, neutral, and rewarding feedback (Schechtman et al., 2010; Resnik and Paz, 2015;

Laufer et al., 2016).

The above models were fit to avoidance data from both groups using a variational Bayes

approach to model inversion, under a mixed-effects framework (whereby within-subject priors are

iteratively refined and matched to the inferred parent population distribution; see

Materials and methods). Random-effects Bayesian model comparison indicated that in both samples

the model with two additional value-generalization mechanisms (separately governing width of gen-

eralization from aversive and neutral feedback) best accounted for the avoidance data, as indexed
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by exceedance probability (probability that the model in question was the most frequently utilised in

the population; fMRI, EP = 0.823, AMT, EP =~ 1; Figure 2a).

For both fMRI and AMT data, this model provided a good account of avoidance decisions. Mean

predictive accuracy (r2, for binary choice data this is equivalent to the percentage of correct classifi-

cations) was 0.868 (±0.07) for fMRI and 0.849 (±0.11) for AMT groups, and the Bayesian ‘p value’

(posterior probability of the null hypothesis of random choice) was �6.8e-7 for all fMRI participants,

and �0.026 for 477/482 AMT participants. In both groups, values of the parameter describing the

width of aversive feedback (sA) were unrelated to values of other model parameters governing

learning rate, choice bias, and choice stochasticity (see Materials and methods; all p>0.09), suggest-

ing sufficient parameter identifiability. In both samples, sA values were significantly larger than val-

ues of the parameter governing width of generalization from neutral (safe) feedback, sN, indicating

wider generalization for aversive compared to neutral outcomes (p=3.0e-8, p=2.2e-16, related-sam-

ples Wilcoxon signed rank tests; fMRI: mean sA=0.752 ± 0.29, mean sN=0.028 ± 0.03; AMT: mean

sA=0.695 ± 0.23, mean sN=0.057 ± 0.05). Interestingly, sA values were not significantly related to sN

values (fMRI group, Spearman’s r = �0.169, p>0.4; AMT group, r = 0.06, p>0.17), suggesting these

may be at least partially independent processes.

Importantly, only a model including additional value-based generalization mechanisms can gener-

ate asymmetries in avoidance behaviour across pairs of generalization stimuli (peak shift), as appar-

ent in Figure 1—figure supplement 2. Further, example traces for two representative participants

from the fMRI group (Figure 2b) illustrate that stimulus values tend to asymptote – i.e. that under

this model generalization of value across stimuli is assumed to be relatively constant over time. This
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assumption is consistent with our behavioural data, in that a time-on-task analysis showed that after

initial period of exploratory learning (blocks 1–2), generalization in terms of GS avoidance remains

fairly stable. In both groups of participants, there were significant effects of both CS type and block

number, and a CS type*block interaction, on proportionate avoidance responding (fMRI:

F2,50=406.3, F4,100=6.14, F8,200=8.68, respectively; AMT: F2,962=1077.9, F4,1962=24.3, F8,3848=263.0,

respectively; all p<0.001, repeated-measures ANOVA). In the fMRI sample, the CS type*block inter-

action was driven by lower avoidance for CS+ stimuli in block one compared to the rest of the task

(p�0.004; other CS types no significant differences between blocks; pairwise comparisons Bonfer-

roni corrected for multiple comparisons). This suggests a strategy of exploratory non-avoidance to

enable proper learning of CS+ stimuli in block 1, but fairly constant generalization of avoidance

across later blocks. In the AMT sample, there was also lower avoidance for CS+ stimuli in block one

vs other blocks (all p<0.001), but a decrease in avoidance for CS- stimuli in later blocks (3-5) vs ear-

lier blocks (1 and 2; all p<0.001). Overall GS avoidance showed small increases then decreases over

first three blocks (p<0.001), before stabilising between blocks 4 and 5 (p>0.5, Bonferroni-corrected

pairwise comparisons; see [Figure 1—figure supplement 2]).

Evidence for effects of conditioning on perceptual acuity
In the fMRI group, perceptual acuity for task stimuli was tested both before and after carrying our

the generalization of instrumental avoidance paradigm, in order to test for possible effects of aver-

sive conditioning on discriminability of the generalization stimuli (the three test sessions were carried

out on three consecutive days for all participants, so any detected changes would likely reflect post-

consolidation changes in perceptual performance).

There was no strong evidence for change in perceptual acuity in terms of q value (difference in

shape ‘spikiness’ parameter rho for 75% reliable perceptual discrimination) pre- vs post- conditioning

(mean q 0.071 ± 0.015 on session 1, 0.065 ± 0.019 on session 3; non-significant trend towards

greater acuity on session 3, p=0.061, related-samples Wilcoxon signed rank test; [Figure 1—figure

supplement 3]). Bayesian model comparison indicated that a model where generalization stimulus

discriminability was held constant at 75% better accounted for avoidance data than one where dis-

criminability was held constant at the estimated post-test (session 3) level, or a model where GS dis-

criminability was assumed to be linear between session 1 and session three values (exceedance

probability for the 75% constant model = ~1; [Figure 1—figure supplement 3]). Therefore GS dis-

criminability was held constant across trials at 75% in all models.

Differences in avoidance behaviour between lab-based and online
cohorts
As can be seen in Figure 1, both mean avoidance and mean aversive outcome expectancy ratings

for GSs (under non-avoidance) were higher in the AMT compared to the MRI sample (mean propor-

tionate GS avoidance in MRI group: 0.22 ± 0.14, AMT: 0.63 ± 0.18; mean pain/loss expectancy rating

[out of 100] in MRI group: 30 ± 23, AMT: 63 ± 19). One potential explanation for this difference is

that there was lower absolute discriminability of generalization stimuli for the AMT participants.

Although q values (difference in r between CS+ and GS stimuli) were similar for the online and lab-

based cohorts (0.071 ± 0.015 for the MRI group, and 0.065 for all AMT participants), we were unable

to control factors such as participant distance from screen, and experimental window minimisation,

that may have led to GSs being less discriminable than estimated in our pilot study (see

Materials and methods). In addition, it is possible that participants conducting the study online paid

less attention to the task than supervised lab-based participants (e.g. were multi-tasking), resulting

in higher rates of stimulus-independent responding. Finally, it is possible that there were group-level

differences in decision bias for the monetary loss compared to the pain reinforcer – for example due

to differences in overall aversiveness between the two outcomes. Indeed, there was evidence of a

difference in decision bias, as captured by the softmax bias parameter, between groups. The mean

bias against deciding to avoid was 0.415 ± 0.14 in the MRI sample, and 0.315 ± 0.15 in AMT sample

(p=0.0013, 95% CI for difference 0.04–0.16, t28.5=3.56; Welch-Satterthwaite two-sample t test; nb

large difference in N between groups).
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Brain regions encoding model quantities specific to value-based
generalization
As our behavioural data provided evidence for the presence of generalization in instrumental avoid-

ance in both groups, we next employed a univariate analysis approach to our functional imaging

data in order to investigate whether model quantities specific to value-related generalization pro-

cesses were encoded in regional blood oxygen level-dependent (BOLD) signals.

In addition to work highlighting the role of the insula, amygdala, and primary sensory cortex in

aversive generalization following Pavlovian conditioning (Ghosh and Chattarji, 2015; Onat and

Büchel, 2015; Resnik and Paz, 2015; Laufer et al., 2016), previous functional imaging studies have

identified the striatum and prefrontal cortex as encoding generalization gradients in healthy human

volunteers (Dunsmoor et al., 2011; Greenberg et al., 2013; Lissek et al., 2014). However, the con-

tribution of perceptual uncertainty (i.e. absolute discriminability of ‘generalization stimuli’ compared

with other conditioned stimuli) is not always adequately addressed in the study of such gradients.

Here, we used a strict parametric approach to identify additional variance in regional BOLD that can

be attributed to our winning value-based generalization model, over and above that which can be

explained by a purely perceptual account. This was achieved by using serially orthogonalised regres-

sors derived from each model to predict trial-by-trial variation in BOLD signal in our regions of inter-

est (see Figure 3a and Materials and methods).

We found evidence for the encoding of additional variance in trial-by-trial expected stimulus val-

ues derived from the value-based generalization model in both the anterior insular cortex and the

dorsal striatum (Figure 3b). BOLD signal was greater when the expected value of a particular stimu-

lus was lower (or the predicted probability of receiving a painful shock if an avoidance response was

not made was higher) in the left anterior insula (pWB = 0.0073, k = 73, peak voxel [�30,23,–4],

Z = 4.71; sub-threshold trend in the right anterior insula: pSVC = 0.073, k = 9, peak voxel [42,23,-1],

Z = 3.45), and right caudate (pSVC = 0.024, k = 20, peak voxel [9,8,8], Z = 3.95). There was no evi-

dence for univariate encoding of this signal in primary visual cortex (V1) or the amygdala. We also

found no evidence for negative encoding of aversive value (greater BOLD signal with lower pre-

dicted probability of shock, or ‘safety signalling’) in the ventromedial prefrontal cortex (vmPFC).

In addition to expected value signals, we examined potential encoding of prediction errors, which

are the main learning signals in reinforcement learning (PEs; defined as the difference between

actual and predicted outcome on any given trial – see Materials and methods). We focused our anal-

ysis on negatively signed PEs (generated on trials where no shock was received, but the predicted P

(shock) was >0), as this both constrains analysis to trials where an avoidance response was not made

(on avoidance trials PE = 0, by definition), and gives greater weighting to generalization trials where,

due to perceptual uncertainty alone, predicted P(shock) will be >0, but no aversive outcome is ever

delivered. (Positively signed PEs are highly collinear with shock administration and therefore are

hard to detect under our design.)

We also found evidence of significant encoding of additional variance in PE signals from the

value-based generalization model in insula and striatum (Figure 3c). Specifically, BOLD signal was

greater when trial PE was more negative in the anterior insula, bilaterally (left: pSVC = 9.72e-5,

k = 93, peak voxel [�33,20,11], Z = 5.48; right: pSVC = 0.024, k = 19, peak voxel [33,26,-4], Z = 4.35),

right insula more posteriorly (pSVC = 5.85e-5, k = 65, peak voxel [48,8,-4], Z = 4.40), putamen, bilat-

erally (left: pSVC = 0.024, k = 20, peak voxel [�27,–4,�1], Z = 4.29; right: pSVC = 0.009, k = 31, peak

voxel [33,2,-1], Z = 4.06), and right pallidum (pSVC = 0.046, k = 14, peak voxel [18,5,2], Z = 3.74). Sig-

nificant clusters were also observed in the mid cingulate cortex (pWB = 0.001, k = 103, peak voxel

[6,14,44], Z = 4.46), left parietal operculum (pWB = 3.56e-5, k = 168, peak voxel [�48,–25,14],

Z = 4.10), right inferior parietal lobule (pWB = 0.003, k = 90, peak voxel [54,-40,26], Z = 3.82) and

inferior frontal gyrus (pWB = 0.023, k = 56, peak voxel [42,5,35], Z = 4.31) � but we found no evi-

dence of encoding of value generalization-derived PE signals in V1, the amygdala, or vmPFC.

Changes in neural representation of generalization stimuli over the
course of the task: relationship to individual differences in avoidance
behaviour
Previous studies in animal models have shown that over the course of conditioning, the representa-

tion of the conditioned stimulus (CS+) in terms of response pattern across many individual units may
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Figure 3. Univariate statistical maps highlight brain regions where changes in BOLD signal is significantly related to trial-by-trial variance in internal

model quantities from the value-based generalization model, over and above that which can be explained by a purely perceptual account. (a)

Schematic of a single trial for the fMRI group, showing the difference in estimated probability of receiving a shock (if no avoidance response is made)

and outcome prediction error, as derived from the perceptual only vs the perceptual + additional value-based generalization models. (b) Significant

Figure 3 continued on next page
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come to resemble that of the primary aversive reinforcer (e.g. Grewe et al., 2017). To complement

our univariate results, we therefore examined how different task stimuli were represented in multi-

variate space using representational similarity analysis (Kriegeskorte et al., 2008). This approach

enables the consideration of the full representational geometry across specific brain regions – how

information is encoded, as well as whether or not it is – and depends on the calculation of distance

metrics to quantify how (dis)similarly different kinds of stimuli are represented in multivariate space

(in fMRI, across all voxels in a particular brain volume).

Following the approach of a recent study of aversive conditioning in rodents (Grewe et al.,

2017), we examined how representational difference changed in our regions of interest earlier

(blocks 1–2) vs later (blocks 3–5) in the task – and, crucially, how this change related to individual dif-

ferences in overall behavioural expressions of conditioning. Specifically, we investigated whether

changes in representation of GS, relative to CS+, stimuli over the course of the task related to indi-

vidual tendency to generalize value from CS+ to GS stimuli – as captured behaviourally in avoidance

responses on GS trials. We calculated a robust, cross-validated estimate of representational dis-

tance, Fisher’s linear discriminant contrast (see Materials and methods, Figure 4a) in order to maxi-

mise the reliability of our results. Importantly, the use of a cross-validated distance measure means

that derived (dis)-similarity estimates are unbiased by noise (which may potentially vary across indi-

viduals and imaging runs), and have a meaningful zero point (Walther et al., 2016).

Overall, for no region of interest was there a significant group level change in representational

distance between GS and CS+ stimuli (all p>0.03, paired-sample t tests; Bonferroni-corrected

threshold = 0.01 for alpha = 0.05). However, across individuals, greater increase in similarity of

representation of GS to CS+ stimuli over the course of the task in primary visual cortex was related

to greater behavioural generalization in terms of greater relative GS avoidance (p=0.010, multiple

linear regression model; Table 1, Figure 4b). For individuals who made a higher relative proportion

of avoidance responses towards generalization stimuli, V1 representation of GS stimuli came to be

more similar to that of CS+ stimuli over the course of the task – but for individuals who avoided less

on GS trials, GS stimuli came to be less similarly represented to CS+s in these regions (for visualisa-

tion of the relationship between raw proportionate GS avoidance and V1 distance change, see

Figure 4d). There was no evidence of a significant relationship between GS�CS+ representational

distance change and relative GS avoidance in the anterior insula, striatum, amygdala or vmPFC

(Table 1, Figure 4b). We confirmed these results by implementing a cross-validated regularised

regression (CV LASSO, see Materials and methods) on the same data (this kind of regression shrinks

non-significant predictor coefficients to zero, and generally results in smaller coefficients compared

to traditional linear regression). Under this robust approach, change in GS�CS+ similarity in V1, but

not other regions, was retained as a significant predictor of relative GS avoidance (b = �0.040), in

the model that minimised mean squared error (MSE).

Using a post hoc test, we examined whether changes in GS�CS+ representational distance in V1

might relate to changes in absolute discriminability of generalization stimuli (as measured on the day

before and day after the generalization test session). Mean discriminability for GSs (CS+ ± q) was

0.75 on session 1, by definition, and 0.79 on session 3 (±0.14, range 0.465–0.994; although note at

the group level there was no significant change in q values measured across sessions, see above).

Under this exploratory analysis, we found evidence of a significant association between change in V1

GS�CS+ representational distance during the task, and post-conditioning changes in perceptual dis-

criminability of the GSs. Individuals who showed an increase in similarity of representation showed

worse perceptual performance post-(vs pre-) conditioning, and those who showed decreased similar-

ity showing better performance (Spearman’s r = 0.518, p=0.007; see [Figure 4—figure supplement

1]). There was no significant relationship between change in perceptual acuity and representational

distance in any other brain region (all p>0.09).

Figure 3 continued

encoding of additional value-based generalization in the expected value of each stimulus (likelihood of receiving a painful shock if no avoidance

response is made), at the time of stimulus onset in the anterior insula and right caudate. (c) Significant encoding of additional value-based

generalization as expressed in prediction error magnitude at the time of outcome receipt in the anterior insula, putamen, and right pallidum. Colour

map shading represents t values.

DOI: https://doi.org/10.7554/eLife.34779.008
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Figure 4. Multivariate fMRI results highlight regions where change in representational geometry over the course of the task between generalization

stimuli (GSs) and pain-associated stimuli (CS+s) is related to individual differences in overall GS avoidance and the model parameter governing width of

generalization from aversive feedback (sA). (a) Schematic of linear discriminant contrast analysis (based on [Kriegeskorte et al., 2007]). Within cross-

validation folds, data from one imaging run is projected onto the optimal decision boundary derived from other runs, in order to remove inflation by

Figure 4 continued on next page
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All the univariate fMRI findings presented above remained significant if re-ran using regressors

derived from a model where perceptual discriminability of GSs changes linearly over the course of

the task from pre- to post-conditioning measured acuity levels (full, unthresholded statistical maps

for all analyses are available at Neurovault; neurovault.org/collections/3177).

Changes in neural representation of generalization stimuli over the
course of the task: relationship to individual differences in value-based
generalization
We also sought to relate individual changes in similarity of representation of GS towards CS+ stimuli

over the course of the task to individual model parameter estimates governing width of generaliza-

tion, specifically from aversive feedback (sA values).

We found that greater increases in similarity of representation of the GS relative to CS+ stimuli

over the course of the task in the anterior insula and amygdala were related to larger generalization

from aversive feedback parameter estimates (p=0.024, p=0.012, respectively, precision-weighted

multiple linear regression model; see Table 2, Figure 4c,e). We also found that GS�CS+ representa-

ational distance change in V1 was related to individual differences in aversive feedback generalisa-

tion – in the opposite direction (p<0.001; Table 2). Somewhat counter-intuitively, increases in

GS�CS+ similarity in V1 were associated with lower aversive value generalisation parameter values

(Figure 4c,e). One possible explanation for this finding is that it is a result of V1-mediated changes

in perceptual acuity for GSs – that is increased GS�CS+ representational similarity over the course

of the task, associated with decreased perceptual acuity for GS stimuli, results in a lower require-

ment for additional value-based generalization in these individuals. Notably, this bi-directional rela-

tionship persisted if individual sA values were re-calculated using a behavioural model that took into

account potential conditioning-induced changes in perceptual acuity (i.e. perceptual discriminability

of generalization stimuli changed linearly across trials from pre- to post- generalization test mea-

sured values; amygdala: b = �0.353, SE = 0.07, t = �5.42, p=2.65e-5; V1: b = 0.204, SE = 0.04,

t = 5.08, p=5.77e-5). This suggests that a putative perceptual vs value-based generalization trade-

Figure 4 continued

noise in the final distance estimate (obtained by averaging across folds). (b) Multiple regression models detailing how changes in representational (dis)

similarity over the course of the task in each ROI relate to overall relative avoidance on generalization trials, and (c) to individual differences in the

model parameter governing width of generalization from aversive feedback. Error bars represent standard error. (d) Visualisation of bivariate

relationships between change in representational geometry and raw GS avoidance (in primary visual cortex), and (e) between change in

representational geometry and individual sA values (in the anterior insula, amygdala, and V1), weighted by individual parameter estimate precision (1/

posterior variance). Larger bubble size represents greater precision (and therefore higher regression weight). Light blue shading on structural images

illustrates the ROI volumes data were extracted from in each case. CV LDC, leave-one-out cross-validated linear discriminant contrast; a insula, anterior

insula; vmPFC, ventromedial prefontal cortex. *p<0.05, **p<0.01.

DOI: https://doi.org/10.7554/eLife.34779.009

The following figure supplement is available for figure 4:

Figure supplement 1. Relationship between change in stimulus discriminability, pre vs post-conditioning, and change in GS�CS+ representational

distance (CV LDC) in the primary visual cortex (V1) over the course of the generalization task.

DOI: https://doi.org/10.7554/eLife.34779.010

Table 1. Changes in representational distance (cross-validated LDC) with conditioning: relationship

to overall generalization stimulus (GS) avoidance.

Change in GS–CS+ representational distance b SE t p

a. insula �0.04287 0.06798 �0.631 0.535

caudate �0.02304 0.04173 �0.552 0.587

amygdala �0.09792 0.09905 �0.989 0.335

V1 �0.10072 0.03531 �2.852 0.010*

vmPFC �0.07407 0.07938 �0.933 0.362

DOI: https://doi.org/10.7554/eLife.34779.011
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off exists at the brain, rather than the behavioural level. Representational distance change in no

region survived as a predictor of sA values in the more robust CV LASSO model.

Although less well-studied compared to the aversive domain, there is evidence that the amygdala

is also involved in the acquisition of information about safety in rodents and non-human primates

(Rogan et al., 2005; Genud-Gabai et al., 2013), and that medial prefrontal entrainment of the

amygdala is associated with learned safety (successful overcoming of generalized conditioned fear)

in mice (Likhtik et al., 2014). This fits with a large literature on the vmPFC playing a role in ‘safety

signalling’ in humans (Fullana et al., 2016). As a further exploratory analysis, we therefore investi-

gated whether there was a relationship between change in GS-CS- similarity over the course of the

task in the amygdala and vmPFC and individual values of the parameter governing width of generali-

zation from neutral (non-pain) feedback, sN. (Nb, due to the arrangement of task stimuli, see

Figure 1b, our design is not optimised to probe GS–CS- value generalization at the stimulus cate-

gory level.)

We found evidence of significant relationships between GS�CS- similarity change in the amyg-

dala and vmPFC and individual sN values – such that individuals where representation of GSs came

to be more similar to CS- in both these regions had greater neutral (‘safety’) generalization parame-

ter values (amygdala: b = �0.043, SE 0.0086, t = �5.02, p=4.43e-5; vmPFC: b = �0.069, SE 0.009,

t = �7.58, p=1.07e-7; precision-weighted multiple linear regression model). Representational

change in the vmPFC (but not amygdala) was retained in the MSE-minimising CV LASSO model

(b = �0.032).

Relationship between individual differences in value-based
generalization and self-reported psychopathology
Hypotheses about the role of generalization in psychological disorders tend to relate to an over-gen-

eralization of aversive information – but it has also been proposed that poor discrimination (e.g.

between CS+ and CS- in anxiety groups) may be due to inadequate learning about safety cues. We

therefore looked first at how psychological symptoms scores related to individual sA values, but also

examined possible relationships with individual sN values, in our online cohort (N = 482).

Following the approach of Gillan et al. (2016), the online group completed a battery of self-

report questionnaires that probed symptoms hypothesized to be related to aversive over-generaliza-

tion (trait anxiety, mood disorder symptoms, obsessive-compulsive traits, and ‘global’ cognitive

style), in addition to some positive control measures (apathy and impulsivity scales). (A summary of

scores on these measures and other demographic information for both samples is available in

Supplementary file 1). To enable comparison with the findings of Gillan et al., self-report informa-

tion was first compared to individual parameter estimates using precision-weighted linear regression

models, controlling for age and gender identity (see Materials and methods). This approach was

then complemented by the implementation of cross-validated regularised regression models (CV

LASSO regression), as in the previous section (these models also included age and gender identity

as regressors of no interest).

First, we sought to identify whether individual values of the parameter governing width of gener-

alization from aversive feedback (sA) were related to symptom scores on any measure. Total scores

Table 2. Changes in representational distance (cross-validated LDC) with conditioning: relationship

to model parameter governing width of generalization from aversive feedback (sA). a. insula,

anterior insula; vmPFC, ventromedial prefrontal cortex; V1, primary visual cortex; SE, standard error.

*p<0.05

Change in GS–CS+ representational distance b SE t p

a. insula �0.357 0.146 �2.448 0.024*

caudate �0.082 0.043 �1.908 0.071

amygdala �0.285 0.103 �2.761 0.012*

V1 0.299 0.064 4.684 <0.001*

vmPFC 0.277 0.217 1.277 0.216

DOI: https://doi.org/10.7554/eLife.34779.012
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across measures exhibited good to excellent internal reliability (mean Cronbach’s a = 0.882, see

Supplementary file 2), and, as might be expected, covaried significantly across participants (mean

absolute r for inter-correlation between scores = 0.479). Regression of total scores against parame-

ter estimates was therefore implemented in separate models for each measure, in order to enable

meaningful partition of variance. The Nyholt-Bonferroni corrected p value for significance across

these separate models of non-independent measures was p<0.010 to maintain an alpha of 0.05

(effective number of independent variables = 5.0, see Materials and methods).

Parameter estimates governing width of generalization from aversive feedback were found to be

significantly positively associated with trait anxiety scores (greater width with greater anxiety), and

significantly negatively associated with trait apathy (smaller width with greater apathy; anxiety,

p=0.009, apathy, p<0.001, individual precision-weighted linear regression models controlling for

age and gender; see Table 3, Figure 5a). These two effects remained significant when trait anxiety

and apathy scores were included in the same model, suggesting they were independent (anxiety:

b = 0.050, SE 0.015, t = 3.34, apathy: b = �0.060, SE 0.014, t = �4.28; both p<0.001). This result

was confirmed under the cross-validated and regularised analysis; when all predictors were entered

in the same model both anxiety and apathy total scores were retained as predictors in the model

that minimised MSE (b = 0.021, b = �0.032, respectively). No questionnaire total scores were signifi-

cantly related to sN values (p>0.05).

As per Gillan et al, we also sought to reduce collinearity in our battery of self-report measures by

entering all recorded items (N = 142) into a factor analysis. Using an identical method to that

described in the previously cited paper (see Materials and methods), we derived a three-factor solu-

tion (for scree plot see Figure 5b). These factors were labelled ‘intrusive anxiety’, ‘low self-worth’,

and ‘low self-control’ on the basis of their top loading items (see Figure 5c).

The ‘intrusive anxiety’ factor was mostly composed of items from the trait scale of State-Trait

Anxiety Inventory (STAI; 20 items, mean loading = 0.457 ± 0.12), Obsessive-Compulsive Index (OCI;

18 items, mainly items probing intrusive thoughts and checking behaviour, mean

loading = 0.602 ± 0.087), Physician’s Health Questionnaire (PHQ9; eight items probing mood disor-

der symptoms, mean loading = 0.531 ± 0.056), and the Barratt Impulsivity Scale (BIS; six items per-

taining to racing/intrusive thoughts and restlessness, mean loading = 0.386 ± 0.15). ‘Low self-worth’

was mostly comprised of items from the Cognitive Style Questionnaire (CSQ; 37 items, mainly from

low self-worth and internal attribution subscales, mean loading = 0.518 ± 0.13) and the STAI (11

items, mainly related to low self-worth/negative self-affect, mean loading = 0.322 ± 0.054). ’Low

self-control’ mostly comprised items from the BIS (23 items, mainly from the non-planning and atten-

tional impulsivity subscales, mean loading = 0.485 ± 0.15), with some loading from the apathy moti-

vation index (AMI; six items from the behavioural amotivation subscale, mean

Table 3. Relationship between width of generalisation from aversive feedback (sA value estimates)

and questionnaire total scores.

Each line represents the results of a separate model, as questionnaire scores were significantly collin-

ear. STAI, Spielberger State-Trait Anxiety Inventory (trait scale); AMI, Apathy Motivation Index; OCI-R,

Obsessive-Compulsive Index (Revised); PHQ9, Physician’s Health Questionnaire 9 (a brief measure of

mood disorder symptoms); BIS-11, Barratt Impulsivity Scale (version 11); CSQ global, Cognitive Style

Questionnaire cognitive globalisation score. SE, standard error. *p<0.010 (Nyholt-Bonferroni cor-

rected p value for multiple tests on non-independent data, alpha = 0.05).

Questionnaire measure b SE t p

STAI total 0.039 0.015 2.626 0.009*

AMI total �0.051 0.014 �3.687 <0.001*

OCI-R total 0.005 0.014 0.373 0.710

PHQ9 total 0.021 0.015 1.476 0.141

BIS-11 total �0.005 0.013 �0.410 0.682

CSQ global �0.014 0.014 �0.978 0.328

DOI: https://doi.org/10.7554/eLife.34779.013
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Figure 5. Associations between individual differences in aversive generalization and psychological symptom scores. (a) Percentage change in the

model parameter governing width of generalization from aversive feedback (sA) with a one standard deviation increase in total score on each individual

questionnaire measure used (individual regression models). (b) Scree plot indicating results of a factor analysis in which all response items from these

measures (N = 142) were entered (inset, first 20 factors). A three-factor solution (lighter shaded bars) was indicated as the most parsimonious structure.

Figure 5 continued on next page
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loading = 0.356 ± 0.093) and STAI (seven items relating to feel uncontent/unrested, mean loading

0.321 ± 0.04). (For full item loadings for each factor, see Supplementary file 3).

The ‘intrusive anxiety’ factor analysis-derived symptom score was significantly and selectively

related to individual differences in aversive generalisation width (sA values) – in both multiple linear

and robust regression models (p=0.008, precision-weighted multiple regression model; see Table 4,

Figure 5c; only factor retained in MSE-minimising CV LASSO model, b = 0.019). None of the factor

analysis-derived symptom scores were related to individual sN values (all p>0.1).

Discussion
The results presented here provide robust evidence for generalization in human avoidance learning.

In particular, we demonstrate that generalization involves a number of distinct processes relating to

different components of avoidance: perceptual uncertainty, aversive value generalization, and neu-

tral (safety) value generalization. These processes each relate to different patterns of neural repre-

sentations in the brain. Finally, we show that aversive value generalization is a specific predictor of

trait anxiety in a large population sample.

Examining instrumental avoidance behaviour allows us to investigate how individuals learn about

and attribute value to the set of actions they can take when faced with a particular stimulus or situa-

tion (as distinct from passively learnt Pavlovian stimulus-value associations). Using reinforcement

learning modelling, we found behavioural evidence for additional value-based contributions to

avoidance generalization (i.e. over and above that which might be expected from perceptual uncer-

tainty alone) in two independent groups of participants (sampling different populations, and using

two different kinds of aversive reinforcer). Notably, choice data from both groups supported an

account of value-generalization that allowed for different widths of generalization from aversive

(pain or monetary loss) vs neutral (no pain or loss) feedback. Consistent with previous evidence from

studies of generalization of Pavlovian conditioning in humans and non-human primates, we observed

larger width generalization functions for aversive compared to neutral feedback (Schechtman et al.,

2010; Resnik and Paz, 2015; Laufer et al., 2016). In both groups, estimates of free parameters

governing widths of these two processes were uncorrelated, suggesting they might relate to at least

partially separable mechanisms.

Taking an explicit model-based approach enabled us to identify brain regions where BOLD signal

was related to variance in modelled quantities specific to value-based generalization (namely,

expected value and prediction error signals). When potential perceptual confusion between visually

similar task stimuli was properly accounted for, we found evidence for encoding of value-related

generalization signals in the anterior insula and dorsal striatum. The anterior insula and striatum

(more ventrally) have previously been implicated in representing expected value and prediction error

signals in higher-order pain conditioning (Seymour et al., 2004), and the dorsal striatum is impli-

cated in prediction error signals in avoidance learning (Palminteri et al., 2012; Seymour et al.,

Figure 5 continued

(c) Percentage change in sA with an increase in 1 SD for each of the factor analysis-derived symptom scores (single regression model). The right hand

panel shows the top three loading items for each factor, which were used to derive factor labels. Error bars represent standard error. **p�0.009.

DOI: https://doi.org/10.7554/eLife.34779.014

Table 4. Relationship between generalization width from aversive feedback (sA value estimates) and

factor analysis-derived symptom scores.

All factor scores were included in the same model. SE, standard error. *p<0.05

Factor analysis-derived symptom score b SE t p

‘Intrusive anxiety’ 0.043 0.016 2.677 0.008*

‘Low self-worth’ �0.019 0.015 �1.255 0.210

‘Lack of self-control’ �0.000 0.014 �0.032 0.975

DOI: https://doi.org/10.7554/eLife.34779.015
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2012; Eldar et al., 2016), suggesting an important role for these structures in aversive learning (see

also Delgado et al., 2009). Dorsal, rather than more ventral striatal control has also been implicated

in the transfer from goal-directed to habit-based avoidance in instrumental paradigms

(LeDoux et al., 2017). Greater understanding of habitual control in excessive avoidance has particu-

lar clinical relevance as it may explain why maladaptive avoidance can persist following extinction

(e.g. contributing to treatment-resistance in exposure therapy for anxiety disorders, [Treanor and

Barry, 2017]), and has been proposed as core mechanism in obsessive-compulsive disorder

(Gillan et al., 2014). We found no evidence of univariate encoding specific to value-based model

quantities in the amygdala, primary visual cortex (V1), or ventromedial prefrontal cortex (vmPFC).

However, this may be because this kind of analysis is not ideally suited to detect distributed repre-

sentations involved in associative learning.

In previous studies of Pavlovian aversive conditioning, it has been demonstrated that positively

conditioned stimuli come to be more closely represented to the primary aversive outcome in multi-

variate space (e.g. across neural ensemble activity in the basolateral amygdala, [Grewe et al.,

2017]). Here, we used a robust, cross-validated measure of representational distance to analyse

data across all voxels in regions of interest, and found that increased similarity of representation of

GS to CS +stimuli over the course of the task in primary sensory cortex was related to higher overall

behavioural generalization (higher proportionate avoidance on generalization trials). Individuals for

whom GS stimuli came to be more closely represented to CS +s in these brain regions (despite

never having been directly associated with the aversive outcome) chose to avoid more in the face of

GS stimuli � and vice versa. This change in representational geometry, in association with the lack of

opportunity for extinction of inappropriately generalized value in an avoidance context, may have

contributed towards the stability of generalization (in terms of overall GS avoidance) we observed

over the later phases of the task.

Consistent with perceptual accounts of generalization, a post-hoc analysis suggested that repre-

sentational change for GSs relative to CS +stimuli over the course of the task in primary visual cortex

might account for some of the generalisation in avoidance we observed (in addition or parallel to

value-based mechanisms identified above). Individuals who avoided more frequently on generaliza-

tion trials, and who showed associated increases in GS�CS +representational similarity in V1, exhib-

ited decreased perceptual acuity for task stimuli on next day perceptual testing - with the opposite

pattern observed in participants who showed lower GS avoidance. Absolute decreases in discrimina-

bility for task stimuli result in increased generalization ‘for free’ (without having to involve additional

mechanisms), and therefore may contribute to maintenance of generalization in some participants.

However, consistent with accounts that favour the involvement of a wider network of brain

regions in coordinating generalization across stimuli, we also found a role for multivariate anterior

insula and amygdalar representations in individual differences in aversive value generalization. Indi-

viduals who had higher estimates for the model parameter governing value generalization specifi-

cally from aversive feedback showed greater increases in similarity of GS�CS +representation in

these regions. Somewhat surprisingly, the opposite relationship was observed in primary visual cor-

tex, such that increases GS-CS +similarity in this region were associated with lower individual aver-

sive generalization parameter estimates. One potential explanation for this finding is that some kind

of compensatory mechanism exists between perceptual and value-based generalization processes,

acting at the brain rather than behaviour level. Interestingly, changes in discriminative ability follow-

ing aversive conditioning have recently been associated with altered insula and amygdalar process-

ing of visual stimuli in humans (Shalev et al., 2018). However, this result was unexpected and would

therefore benefit considerably from further investigation in future work.

Although less well optimised under our design, we also conducted an analysis to probe whether

changes in GS relative to CS- stimuli might be associated with individual estimates of the model

parameter governing width of generalization specifically from neutral (or ‘safe’) outcomes (in this

case, omission of painful shock). Individuals with higher values of the parameter governing extent of

generalization from neutral feedback exhibited greater increases in GS�CS- similarity over the

course of the task in both the amygdala and vmPFC. This adds to a body of work suggesting that

amygdalar function is not only important for the generalization of fear responses, but that it is also

involved in safety learning (Genud-Gabai et al., 2013; Likhtik et al., 2014). A recent study in

rodents suggests that the lateral amygdala may be particularly important region for understanding

individual differences in fear behaviour towards perceptually ambiguous novel stimuli, with different
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neuronal sub-populations involved in successful discrimination of novel safe stimuli and inappropriate

fear responses – in a way that would be hard to detect by averaging signal across this region as a

whole (Grosso et al., 2018). Although the vmPFC has previously been demonstrated to show

inverse perceptual similarity-derived generalization gradients following aversive conditioning (e.g.

Lissek et al., 2014; Onat and Büchel, 2015), it is not always clear from the experimental design

whether this represents the simple inverse of aversive gradients (stemming from the CS+), or rather

the positive signalling of safety gradients (stemming from the CS-). The evidence presented here

provides tentative support for the latter account, at least in an instrumental context.

Excessive avoidance in response to contexts or stimuli which do not pose a threat to an individu-

al’s health or well-being can significantly impair general functioning and is often associated with high

levels of psychological distress (Arnaudova et al., 2017). Such maladaptive avoidance has been

identified as a core pathological dimension across several psychological disorders, including anxiety

disorders, obsessive-compulsive disorder, chronic pain, and depression (LeDoux et al., 2017). Over-

generalization of aversive feedback to encompass non-threatening but psychologically similar stimuli

or contexts has been proposed as a key mechanism underlying the initiation and maintenance of

excessive avoidance in these conditions (Duits et al., 2015; Dymond et al., 2015; Harvie et al.,

2017; Pearson et al., 2015) – however, the link between generalization of negative value and inap-

propriate avoidance behaviour has been relatively underexplored.

We found selective relationships between psychological symptom scores and individual parame-

ter estimates governing width of value generalization from aversive, but not safe/neutral outcomes.

The largest positive relationship between symptom score and magnitude of aversive generalisation

was for the factor-analysis derived score labelled ‘intrusive anxiety’, which mainly comprised items

probing self-reported trait anxiety, but also reports of intrusive thoughts from the obsessive-compul-

sive inventory (% increase in parameter value with a 1SD increase in symptom score was 11.0% for

intrusive anxiety, and 10.6% for trait anxiety alone). We also found a significant negative relationship

between self-reported apathy and aversive generalization (22.9% decrease in parameter value with a

1SD increase in symptom score) – an effect which appeared to be independent from that relating to

self-reported anxiety. This is an interesting finding, as we often think about apathy as involving a

greater sensitivity to perceived effort, or decreased sensitivity to potential rewards, rather than a

decreased impact of information about punishments (e.g. Bonnelle et al., 2015). As, to our knowl-

edge, there has been no previously reported link between self-reported apathy and aversive gener-

alization, this finding would benefit from future replication.

In summary, the findings reported here demonstrate the benefits of parsing complex processes

such as generalization into separate components, and examining individual relationships between

these components and both neural mechanisms and self-reported psychopathology. This approach

may help unify previous apparently contradictory observations, and underlines that both perceptual

and value-based processes are likely at work in generalization phenomena. Identification of patients

across diagnostic categories who may have a primary deficit in excessive aversive generalization may

help target them towards treatments which work more effectively. Further, greater understanding of

the mechanisms of over-generalization of avoidance (including transfer to habit-based control sys-

tems) may help improve understanding of treatment resistance in these disorders.

Materials and methods

Code and data availability
All relevant code for stimulus generation, data collection, and data analysis, in addition to raw

behavioural data, are available at the project’s Open Science Framework page (osf.io/25t3f). Raw

functional imaging data is deposited at openfMRI (openfmri.org/dataset/ds000249) and derived sta-

tistical maps are available at NeuroVault (neurovault.org/collections/3177).

Design
fMRI sample
Protocol
Each participant completed three testing sessions on 3 consecutive days. On the first day, partici-

pants were pre-screened, gave informed consent, and performed initial sensory acuity testing for
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the generalization task stimuli. On the second day, participants completed the generalization of

instrumental avoidance task (performed in fMRI scanner, using individually-generated conditioning

stimuli [CSs] derived from day 1perceptual performance), followed by visual analogue scale (VAS)

ratings of pain expectancy for each CS. On the third day, participants repeated the perceptual acuity

test.

All participants were recruited via online advertisement. Exclusion criteria were left-handedness

and history of neurological or psychological illness, in addition to usual MR safety criteria. The sam-

ple size was chosen on the basis of a power calculation. Previous functional imaging studies in

humans have found effect sizes in the region of r = ~0.5 for generalization-related BOLD signal and

individual difference measures (Greenberg et al., 2013; Lissek et al., 2014; Cha et al., 2014). We

calculated that a sample of N = 26 would allow us to detect r = 0.5 with an alpha of 0.05 and power

of 80%, two-tailed (correlation point biserial model, G*Power version 3.1.9.2). Volunteers were paid

£20/hr in recompense for their time and discomfort arising from the painful electrical stimulation.

The study was approved by the University of Cambridge Psychology Research Ethics Committee.

Delayed-punished perceptual discrimination task
Prior to starting the task, participants were introduced to the shock and electrode and a work-up

procedure was performed (as described below) to set the level of painful stimulation. The delayed-

punished perceptual task was then carried out, as summarized in Figure 1b. Briefly, on each trial,

participants viewed an individual shape (target or comparison stimulus, order randomized on each

trial), followed by a mask (scrambled mean shape image), delay period (blank screen), second shape,

and second mask. At the end of each trial, participants had to indicate whether they thought the

two shapes had been the same, or different. The inter-stimulus delay period of four seconds was

chosen to be long enough such that comparison of stimuli could not be achieved by instantaneous

mechanisms, but required comparison in short-term memory (e.g. primate data suggests discrimina-

tion performance for visual features decreases significantly from <1 s to around 4–5 s inter-stimulus

delay, [Pasternak and Greenlee, 2005]), and roughly matched to the inter-trial interval from the

generalization task. There were 16 trials per absolute value interval per target (160 trials total), and

trials were divided into four equal blocks. At the end of each block, participants received feedback

on how many incorrect judgments they had made, and received a proportionate number of painful

electric shocks as punishment (one painful shock per five incorrect judgments).

Stimuli were five-fold radially symmetric flower-like shapes, as described in van Dam and Ernst,

2015. These were selected on the basis that they can be continuously generated along a single per-

ceptual axis of ‘spikiness’ using the mathematical description provided in the paper, and psycho-

physical evidence demonstrating that they are perceptually linear (i.e., that discrimination thresholds

are constant along this axis). Shape ‘spikiness’ is parameterized by a single value, � (where 0 < � <1),

which relates the inner and outer radii of the shape such that stimuli are of constant surface area.

Target stimuli were shapes with r values of the two CS+ stimuli from the generalization task (0.25

and 0.75). These target stimuli were compared to comparison stimuli of intervals of ±0, 0.05, 0.075,

0.1, and 0.15 �, such that the possible range of different shapes was well tiled. Participants worked

on a pre-defined set of comparison stimuli (opposed to a stair-cased approach) so that pre-exposure

to conditioning task stimuli (and therefore opportunity for perceptual learning) would be matched

across individuals.

Generalization of instrumental avoidance task (pain version)
Participants completed five blocks of 38 trials each. On each trial, participants were presented with

a stimulus in the centre of their screen. This initiated a 3 s decision period, during which they must

decide whether or not to make an ‘escape’ (avoidance) response. Following this, a yellow bounding

box appeared around the shape, indicating the time when an avoidance response could be made

was over and they would receive the outcome for that trial. If an avoidance response was made, no

shock was ever delivered on that trial. If no avoidance was made, and the stimulus was a ‘safe’ shape

(CS-), no shock was delivered. If the stimulus was a ‘dangerous’ shape (CS+), a painful shock was

delivered on 80% of non-avoidance trials at the end of this outcome period (i.e. 6 s from stimulus

onset, Figure 1c).

On a low frequency of trials, shapes were generalization stimuli (GSs; 2 presentations of each GS

per 38 trial block). These stimuli were individually generated to be 75% reliably distinguishable from
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adjacent CS+ s based on day 1 perceptual task performance (see Figure 1b), and were never associ-

ated with painful shock. Trial types were presented in the following ratio: 10 CS-: 10 CS+(*2): 2 GS

(*two per CS+) in a pseudorandom sequence, in order to minimise learning about GS stimuli.

Although previous studies have tended to employ designs with multiple generalization stimuli, use

of a single GS around each CS+ in perceptual space is the most efficient design if the perceptual dis-

criminability of probe stimuli is accurately known, and you are agnostic as to the precise identity of

the generalization function (e.g. exponential vs Gaussian, assuming this constant across individuals).

Frequency of individual GS presentation (10 per GS) was comparable to recent functional imaging

studies of Pavlovian generalization (e.g. 7 and 34 presentations per GS during generalization test

phases, respectively: [Laufer et al, 2016; Onat and Büchel, 2015]).

The stimulus array was asymmetric in perceptual space (see Figure 1b), with two CS+ (and four

associated GS) stimuli – one nearer and further from an intermediary CS-. This array was chosen in

order to probe the presence of characteristic asymmetries in conditioned responses that are hypoth-

esised to arise from the interaction of oppositely signed generalization gradients (e.g. peak shift,

[Hanson, 1959]), and on the basis of previous observations that change in perceptual discriminability

of aversively conditioned stimuli (CS+ s) may depend on the relative ‘nearness’ of safety stimuli (CS-

s) in perceptual space (Aizenberg and Geffen, 2013). Axis direction (in terms of increasing or

decreasing ‘spikiness’) was counterbalanced across participants.

Online sample
Protocol
In order to test relationship with real-world psychological symptoms in an appropriately powered

sample, an online version of the study was also carried out, following the approach of Gillan et al.

(Gillan and Daw, 2016; Gillan et al., 2016). Participants were Amazon Mechanical Turk (AMT) work-

ers based in the USA (in practice, had an AMT account linked to US bank with provision of an US

social security number). Participants were required to be over 18 years of age, but otherwise

remained anonymous.

Participants completed an online consent procedure, and provided limited demographic informa-

tion (age and gender identity). They then read several screens of detailed task instructions (including

visual examples of sample trials), based on the standardized instructions given to lab study partici-

pants. Participants were required to pass a 10 item true/false quiz on task structure before continu-

ing (scoring less than 10/10 returned participants to the instruction screens). They then performed a

monetary loss-based version of the generalization of instrumental avoidance task (see below), fol-

lowed by a battery of questionnaires probing psychological symptoms and cognitive style.

We calculated that a final sample size >459 should be powered to detect a small effect size of

0.13 or greater (association between behavioural and self-report parameters), at alpha = 0.05 and

80% power (two-tailed point biserial model). As expected attrition following quality control

was ~15% (Gillan et al., 2016), we collected N = 550 complete datasets, yielding a final expected

sample size of ~468.

Payment rates were based on UK ethical standards for online experiments (equivalent to a mini-

mum of £5 ph). Participants were paid a flat rate of $2.50 for taking part, plus up to around $3.00

additional bonus payment depending on task performance. The average bonus payment was $2.21

(±0.82) and the average time between accepting and submitting the task was 42 min (equivalent to

$6.72 mean hourly payment rate). The study was approved by the University of Cambridge Psychol-

ogy Research Ethics Committee.

Generalization of instrumental avoidance task (loss version)
The generalization task was identical in structure to that performed by the lab-based participants,

but used monetary loss instead of painful shock as the aversive reinforcer (Figure 1c). Prior to start-

ing the task, participants were endowed with a $6.00 stake, and instructed that, although a certain

amount of loss was inevitable, whatever total remained at the end of the task would be paid directly

to them as a bonus (the loss therefore had real-world value). As BOLD data was not being collected,

trials were slightly shorter than for the fMRI group (second set of timing figures, Figure 1c) –

although the length of the decision period was kept the same.
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Perceptual testing was not performed in the online sample due to time constraints, and the inabil-

ity to control the testing environment (e.g. participant distance from screen, window size, etc.) over

the course of testing. Generalization stimuli were therefore the same for all participants, and gener-

ated on the basis of mean perceptual performance on the perceptual task in a pilot sample. This

pilot testing was carried out under the same conditions and timing parameters as described for the

MRI sample, with the exception that no punishment shocks were administered (and no pain-delivery

apparatus was attached to participants).

Questionnaire battery
Following completion of the generalization task, participants completed several self-report measures

(questionnaire order was randomized across participants). These measures were chosen to probe

psychological constructs hypothesized to be related to over-generalization of aversive outcomes

(anxiety, depression, and obsessive-compulsive symptomatology), as well as positive controls that

might suggest a more general effect of psychopathology on task performance (impulsivity, apathy).

Questionnaires consisted of the trait scale of the State-Trait Anxiety Inventory (STAI;

[Spielberger et al., 1970]); the Physician’s Healthy Questionnaire 9 (PHQ9; [Martin et al., 2006]), a

brief measure of mood disorder symptoms; the revised (short-form) Obsessive-Compulsive Index

(OCI-R; [Foa et al., 2002]); the Barratt Impulsiveness Scale v11 (BIS-11; [Patton et al., 1995]); and

the Apathy Motivation Index (AMI; [Ang et al., 2017]). All chosen measures have previously been

shown to be suitable for use in the general population.

A short version of the Cognitive Style Questionnaire (CSQ-SF; [Meins et al., 2012]) was also

administered. This self-report measure asks participants to imagine themselves in various scenarios

(e.g. ‘Imagine you go to a party and people are not interested in you’), and then probes the imag-

ined causes of this scenario along dimensions of ‘internal’, ‘global’, and ‘stable’ attributions, plus low

self-worth. On this measure, a more ‘global’ cognitive style reflects a tendency to attribute negative

events to causes which are general, rather than specific (a cognitive form of over-generalization),

and has been found to be a predictor of future depressed mood (Pearson et al., 2015). The CSQ-

SF was administered at the end of the battery of questionnaires for all participants in order to avoid

possible mood-induction effects.

Quality control procedure
Following previous studies utilizing AMT (Crump et al., 2013; Gillan et al., 2016), a number of

exclusion criteria were applied sequentially to the dataset to attempt to exclude poor quality

responses. Firstly, we excluded participants who made avoidance responses on less than 50% of

total CS+ trials (indicating lack of learning/random responding on these trials), N = 62. Secondly, we

further excluded participants who selected the wrong answer to a catch item inserted into the ques-

tionnaire battery (‘Please select the answer ‘a little’ if you are reading this question’), N = 6. 68 data-

sets were excluded in total (12.3% of those collected), yielding a final sample size of 482.

Questionnaire data quality was further assessed via calculation of internal reliability coefficients for

each measure (Cronbach’s a).

Data collection
fMRI sample
Stimulus presentation and response collection was coded using Cogent2000 v1.30, run in Matlab

R2015b (Mathworks). Perceptual testing on day one and three took place in a laboratory, and gener-

alization testing in an fMRI scanner. Size of stimuli in terms of visual angle subtended were matched

between lab and scanner environments in order to ensure ~constant discriminability.

For the painful stimulation, electric current was generated using DS7A constant current stimulator

(Digitimer), delivered to a custom fMRI-compatible annular electrode (which delivers a highly

unpleasant, pin-prick like sensation), worn on the back of the participant’s dominant (right) hand. All

participants underwent a standardized intensity work-up procedure at the start of each testing day,

in order to match subjective pain levels across sessions to a level that was reported to be painful,

but bearable (8 out of 10 on a VAS ranging from 0 [‘no pain’] to 10 [‘worst imaginable pain’]). The

pain delivery setup was identical for lab-based and MR sessions.

Functional imaging data were collected on a 3T Siemens Magnetom Skyra (Siemens Healthcare),

equipped with a 32-channel head coil. Respiration data were collected during functional scanning
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using a pneumatic breathing belt (BrainProducts), and choice (avoidance) data were recorded using

an MR-compatible button box.

Field maps were acquired in order to correct for inhomogeneities in the static magnetic field

(short TE = 5.19 ms, long TE = 7.56 ms, 32 � 3 mm slices). Five functional sessions of 212 volumes

were collected using a gradient echo planar imaging (EPI) sequence (TR = 2000 ms, TE = 30 ms, flip

angle = 90˚, tilt=-30˚, slices per volume = 25, voxel size 3 � 3 � 3 mm; this included three dummy

volumes, in addition to the three pre-discarded by the scanner). Limited field of view (constrained by

equipment used for additional physiological data collection) was aligned to the base of brain and

angled away from the orbits, such that there was full coverage of the occipital and temporal lobes,

plus prefrontal cortex. A T1-weighted MPRAGE structural scan (voxel size 1 � 1 � 1 mm) was also

collected. Full sequence metadata are available at openfMRI (openfmri.org/dataset/ds000249).

Online sample
The experiment was coded in javascript using jsPsych ([de Leeuw, 2015]; available at github.com/

jspsych/jsPsych), and was deployed to Amazon Mechanical Turk via the psiTurk engine

([Gureckis et al., 2016]; available at github.com/NYUCCL/psiTurk). The experiment was hosted in

the cloud using an Amazon Web Services EC2 instance. A more detailed description of this setup is

available at osf.io/mjgtr. The task was not made available on mobile devices (phones or tablets) in

an attempt to ensure minimum screen size.

Analysis
Perceptual acuity
For fMRI sample participants, psychometric functions (a logistic function with free parameters gov-

erning slope, bias, and lapse, or stimulus-independent error, rate) were fitted to response data from

the perceptual task using the psignifit toolbox v2.5.6 (available at bootstrap-software.org/psignifit),

run in Matlab. Formally,

PðdiffÞ ¼ 1=ð1þ expðða�D�Þ=bÞÞ

where P(diff) is the probability of reporting the comparison shape as different (restricted between

the bounds of 0 and 1�lapse rate), D� is the difference in shape parameter � between target and

comparison stimuli, and a determines the bias, and b governs slope, of the logistic function. This

toolbox implements the constrained maximum-likelihood method of psychometric function fitting

described in Wichmann and Hill (2001).

Individual psychometric functions were then used to calculate the different in � value necessary

for the comparison stimulus to be distinguishable from the target on 75% of trials (henceforth, �).

Instrumental avoidance behaviour
Avoidance behaviour was modelled using a set of modified Q-learning algorithms (Sutton and

Barto, 1998). Each stimulus was modelled as a different state, with the value of executing each

action (avoid or notAvoid) in each state (Vs,a) updated after each trial (t) on the basis of a simple

Rescorla-Wagner rule – that is, on the basis of difference between the predicted value of that state-

action pair, and the actual outcome of each trial (Rt; coded as 0 for no shock/no loss and �1 for

shock/monetary loss). Formally,

Vs,a,t+1 = Vs,a,t + k*at*(Rt – Vs,a,t)

Learning rate (at) was updated on each trial, according to the empirically well-supported Pearce-

Hall associability rule (Le Pelley, 2004):

at+1 = h*|(Rt – Vs,a,t)| + (1 – h)* at

According to this rule, the learning rate on each trial is determined by the absolute magnitude of

past prediction errors, such that state-action value estimates are updated by more when previous

outcomes have been more surprising, and by less when they were less surprising. This allows for

learning in terms of modelled value adjustment to be greater when outcomes are more surprising

(e.g. at the start of the task), but to be lesser (leading to more stable values) when outcomes are

better predicted. A non-constant learning rate also ensures that parameters governing width of

value-based generalization, which are assumed to be constant over the course of the task, are identi-

fiable during parameter estimation (see below equations). Individual differences in degree of
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dependence on prediction error history and overall scaling of learning rate are governed by the free

parameters k and h.

To model perceptual ‘generalization’ (possibility of identity confusion between GSs and adjacent

CS+ s), the value of not avoiding for GSs on any given trial was defined as:

VGS,notAvoid = 0.75*VGS,notAvoid,t + 0.25*Vadjacent CS+,notAvoid,t

For the models with additional value-based generalization, on each trial the values of all states

were updated in proportion to their perceptual similarity to the current state, i, using a rule similar

to those employed in previous studies (Kahnt et al., 2012; van Dam and Ernst, 2015) – that is

according to a variable-width Gaussian function across perceptual space. For each state, j:

Gj = 1/exp((ri – rj)
2 / (2*s2))

Vj,a,t+1 = Vj,a,t + k*at*(Rt – Vi,a,t)*Gj

where � is the parameter governing shape ‘spikiness’, and the width of Gaussian function govern-

ing generalization is determined by the free parameter s. For the fMRI sample, average � values

were used during model fitting for all subjects, as stimuli had been matched in subjective perceptual

space. For the 2-width model, different s values were fit depending on whether the outcome for

that trial was aversive or neutral (sA and sN, respectively).

As participants were explicitly instructed that they would never receive the aversive outcome if

they made an avoidance response, the value of avoiding in any state (Vs,Avoid,t) was held constant at

0. Value estimates were fit to binary choice data via a softmax observation function, taking into

account the cost of making an avoidance response (additional shock or unit monetary loss to be

received at the end of that block for every five button presses made, or 0.2 per avoidance decision):

P(avoid)=1/(1 + exp(-b*(Vs,avoid,t – Vs,notAvoid,t – 0.2 – bias)))

where the free parameter b determines how driven P(avoid) is by the difference in value between

the two possible actions (Vs,avoid,t – Vs,notAvoid,t), and the bias parameter determines overall bias

towards choosing a particular action (avoiding or not avoiding).

For both samples, models were fit to choice (avoidance) data using the variational Bayes

approach to model inversion implemented in the VBA toolbox ([Daunizeau et al., 2014]; available at

mbb-team.github.io/VBA-toolbox), run in Matlab. Model fit was performed in a mixed-effects frame-

work. Simply, after the first round of model inversion, the individual posterior free parameter value

estimates are used to approximate the population distribution these values were drawn from, which

is then used as prior for the next round of inference, until convergence (no further group-level reduc-

tion free energy). This approach reduces the likelihood of outliers in any individual parameter

estimates.

Model comparison was by random-effects Bayesian model comparison (Rigoux et al., 2014). This

method of model comparison assumes that the population is composed of subjects that differ in

terms of the model that describes them best, then induces a hierarchical probabilistic model that

can be inverted to derive the posterior density over model frequencies, given participants’ data.

Under this approach, the critical metric for any given model is its exceedance probability, or the like-

lihood that that particular model is more frequent than all other models in the comparison set.

Functional imaging data
Pre-processing
Functional imaging data were pre-processed using SPM12 (Wellcome Trust Centre for Neuroimag-

ing, www.fil.ion.ucl.ac.uk/spm) in Matlab. Briefly, functional images were realigned to the first func-

tional image in each sequence, unwarped, corrected for time of acquisition, and normalized to MNI

space via tissue probability maps derived from the co-registered structural image. The full pre-proc-

essing pipeline available is available at osf.io/f9drs as a BIDS-compatible Matlab script

(Gorgolewski et al., 2016). Finally, images were smoothed via convolution with an 8 mm full-width

at half-maximum Gaussian kernel for the univariate (but not multivariate) analysis.

Breathing belt data were processed using the PhysIO toolbox ([Kasper et al., 2017]; available at

translationalneuromodeling.org/tapas), which provides physiological noise correction for functional

imaging data using the Fourier expansion of respiratory phase implemented in the RETROICOR

algorithm (Glover et al., 2000).
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Univariate analysis
Functional imaging data were first analysed according to a mass univariate approach based on the

general linear model for time series data in each voxel, as implemented in SPM12. This enables

detection of whether variance in BOLD in each voxel is significantly related to modelled internal

quantities (i.e. if particular model terms are encoded in BOLD signal time course), with relative spa-

tial specificity. Several models were fit to individual BOLD time series data using restricted maximum

likelihood estimation to produce individual statistical maps at the first level, which were used to

determine significance at the second level using one-sample t-tests in a random-effects framework.

All first level models included the following regressors of no interest: 8 respiration and 6 move-

ment regressors (with translation >1.5 mm or rotation >1˚ on any trial resulting in the inclusion of an

additional outlier regressor), plus delta functions at the time of avoidance responses and shock

receipt (avoidance response onsets included a parametric modulator representing reaction time, as

overall we observed different mean RTs for GS and CS+ stimuli). In addition:

Model 1: Expected value analysis. We investigated encoding of modelled internal signals repre-

senting initial stimulus evaluation (i.e. the outcome that would be expected if no avoidance response

was made), rather than values associated with chosen action on each trial (i.e. expected value of the

outcome on that trial, following choice). For ease of interpretation, modelled internal value of not

avoiding on a given trial (Vs,notAvoid,t) was multiplied by �1 to effectively represent predicted P

(shock) for that particular stimulus. The imaging model consisted of delta functions for CS onset (all

trials), with parametric modulators of (i) estimated P(shock) according to the perceptual only model

(ii) estimated P(shock) according to the perceptual +value based generalization model.

Model 2: Prediction error analysis. Prediction error (PE) was defined as the difference between

predicted and actual outcome on a given trial, or (Rt – Vs,a,t). NB by definition this is equal to 0 on all

trials where an avoidance response was made. The imaging model consisted of delta functions at

the time of expected outcome delivery (all trials), with parametric modulators of (i) trial PE according

to the perceptual only model (ii) trial PE according to the perceptual +value-based generalization

model. Again, for ease of interpretability, PE terms were multiplied by �1 – such that positive PEs

represented shock receipt (where predicted P(shock) was <1), and negative PEs represented shock

omission (where predicted P(shock) was >0).

All regressors were convolved with a canonical haemodynamic response function, with correction

for low-frequency drift using high-pass filtering (1/128 s) and correction for serially correlated errors

by fitting of a first-order autoregressive process (AR(1)).

Computational model-based regressors were derived using individual subject free parameter val-

ues, and all regressors were orthogonalised during model estimation. SPM assigns variance to

parametric modulators in a successive fashion, such that in an orthogonalised framework, a signifi-

cant finding from a second parametric modulator represents that due to variance over and above

that which has been assigned to the first modulator (Mumford et al., 2015). Due to the nature of

our task design (i.e. that participants are only required to make motor responses on trials on which

they wish to avoid that outcome of the presented stimulus), it is possible that expected value (pre-

dicted P(shock)) responses are partially contaminated by motor preparation responses (despite inclu-

sion of appropriate nuisance regressors), due to the relative timing of these events. This should not

be the case for the outcome prediction error analysis, as this focuses on trials where an avoidance

response was not made (see Results). Additionally, there is greater variability in prediction error

compared with expected value signals over the course of the task, making the former easier to dis-

cern statistically. However, changes in categorical stimulus representation associated with value are

well evaluated using a multivariate approach (see below).

An initial cluster-forming threshold of p<0.001 (uncorrected), cluster size �10, was applied to 2nd

level statistical maps, followed by cluster-level family wise error (FWE) rate correction at the whole-

brain level (pWB). Small-volume correction (pSVC) was applied in a priori regions of interest (ROIs):

namely the insula, amygdala, striatum, primary visual cortex (V1) and ventromedial prefrontal cortex

(vmPFC) (see main text). ROIs were defined anatomically using the automatic anatomical labelling

(aal) atlas (Tzourio-Mazoyer et al., 2002) in SPM (‘striatum’=caudate + putamen+pallidum;

‘V1’=Brodmann Area 17; ‘vmPFC’=medial orbitofrontal cortices).

Only voxels present in all subjects were included in the analysis. For display purposes, statistical

maps were thresholded at p<0.001 (uncorrected), and overlain on a high-quality mean MNI-space
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structural image available as part of the MRIcroGL package. All quoted voxel coordinates refer to

MNI space, in mm.

Multivariate analysis
Representational similarity analysis (RSA) was carried out using materials from the RSA toolbox

([Nili et al., 2014]; available at github.com/rsagroup/rsatoolbox), run in Matlab.

For this analysis, time series data extracted from all voxels of each ROI were first multivariately

noise normalized (data were beta images drawn from a simple categorical general linear model that

consisted of stimulus onset by type and the same nuisance regressors as the univariate analyses). We

calculated linear discriminant contrast values between pairs of stimulus categories (CS-, GS, CS+) as

a robust estimate of representational dissimilarity (Walther et al., 2016). This approach involves con-

struction of an optimal decision boundary (hyperplane) between pairs of multivariate representations

(i.e. BOLD signal in all voxels, see Figure 4a). LDC values are a continuous measure of representa-

tional distance (dissimilarity) drawn by sampling of a dimension orthogonal to this decision boundary

(Fisher’s linear discriminant). To ensure distances were unbiased by noise (and therefore had a mean-

ingful zero point), LDC values were estimated using a leave-one-out cross-validation approach across

functional imaging runs (this constitutes a cross-validated estimate of the Mahlanobis distance;

[Walther et al., 2016]).

A priori regions of interest were the same as for the univariate analysis. However, per our analysis

plan, where possible anatomical ROIs were replaced by functional ROIs defined from the group-level

univariate analysis. Specifically, the anterior insula and caudate clusters identified in Figure 3b were

substituted for whole structure anatomical ROIs. This was done on the basis that (1) the univariate

analysis indicated involvement of these voxels in specific value-related generalisation processes, and

(2) previous analysis has shown that reliability of LDC RDMs falls off sharply for larger ROIs (>~250

voxels, [Walther et al., 2016]; anatomical ROIs for whole insula = 1019 voxels, for whole stria-

tum = 3482 voxels; functional anterior insula ROI = 71 voxels, functional caudate ROI = 20 voxels,

masks available at osf.io/25t3f).

Questionnaire data
Questionnaire total and individual item scores were feature scaled (z-scored across participants)

prior to further analysis.

Factor analysis was carried out as described in Gillan et al (2016): implemented in R v3.4.0 (R

Foundation for Statistical Computing), using the factanal function (psych package) with oblique (obli-

min) rotation. The number of factors to extract was determined using the Cattell-Nelson-Gorsuch

(Gorsuch and Nelson, 1981) method (nFactors package), whereby successive scree plot gradients

are analysed to determine the ‘elbow’ point after which there is little gain in retaining additional fac-

tors. Factor names were chosen on the basis of the highest-loading items for each factor.

Individual differences
Normality of distribution of individual variables (or within-subject differences in variables) was

assessed using the Shapiro-Wilk test, and, where appropriate, non-parametric statistics were

employed for pairwise tests.

In the fMRI sample, multivariate representational similarity estimates from all ROIs were com-

pared to overall GS avoidance using an ordinary least squares multiple linear regression model.

Mean avoidance across different trial types was z-scored within-participants, in order to gain a mea-

sure of relative GS avoidance (i.e. taking into individual variation in tendency to avoid on CS- and

CS +trials).

Individual model parameters governing value-based generalization (sA/sN) were related to varia-

bles of interest (multivariate representational similarity in the fMRI sample, self-reported psychopa-

thology in online sample) using weighted least squares multiple linear regression models. This

method produces the maximum likelihood regression estimate when noise is not constant across

measurements (i.e. data are heteroscedatic; [Carroll and Ruppert, 1988]). As the VBA toolbox yields

the variance of posterior parameter estimates as well as the mean, weights were defined as the pre-

cision of individual parameter estimates (i.e. 1/posterior variance). Regression analyses were imple-

mented in R using the function lm (psych package). Age (z-scored) and gender (binary scored as
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male vs female/other) information were also included in all questionnaire data regression models as

predictors of no interest. In R syntax: fit.wls = lm(sA ~ predictor(s)+ageZ + gender, weights = sA

precision)

Where candidate predictors were significantly collinear (as was the case for the questionnaire

total scores data), they were implemented in separate regression models. Multiple comparisons cor-

rection for these models was achieved via the Nyholt-Bonferroni correction (Li and Ji, 2005), which

yields a modified Bonferroni correction for non-independent (related) variables by estimating the

‘effective number of independent variables’ from the eigenvalues of their correlation matrix.

Although we collected trait anxiety data in the MRI group (in order to characterise general anxiety

levels in the sample, and screen out any individuals with undiagnosed pathologically significant anxi-

ety), we did not plan to compare individual differences in behaviour to trait anxiety in this sample, as

effect sizes from previous studies relating decision-making model parameters to psychological symp-

toms suggest this would be significantly underpowered (e.g. [Gillan et al., 2016]).

As a more robust test, we complemented our linear regression analyses with cross-validated regu-

larized regression models, where all predictors were included in a single model. Specifically, we

used least absolute shrinkage and selection operator (LASSO) regression (Tibshirani, 1996) with

leave-one-out cross-validation. This approach effectively shrinks non-significant predictors to zero,

and provides a more robust estimate of regression coefficients. This was implemented using the

glmnet package in R. In R syntax: fit.cv = cv.glmnet(y= sA, x = all predictors, alpha = 1, nfolds = N,

weights = sA precision)
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