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Abstract Encoding precision in visual working memory decreases with the number of encoded

items. Here, we propose a normative theory for such set size effects: the brain minimizes a

weighted sum of an error-based behavioral cost and a neural encoding cost. We construct a model

from this theory and find that it predicts set size effects. Notably, these effects are mediated by

probing probability, which aligns with previous empirical findings. The model accounts well for

effects of both set size and probing probability on encoding precision in nine delayed-estimation

experiments. Moreover, we find support for the prediction that the total amount of invested

resource can vary non-monotonically with set size. Finally, we show that it is sometimes optimal to

encode only a subset or even none of the relevant items in a task. Our findings raise the possibility

that cognitive "limitations" arise from rational cost minimization rather than from constraints.

DOI: https://doi.org/10.7554/eLife.34963.001

Introduction
A well-established property of visual working memory (VWM) is that the precision with which items

are encoded decreases with the number of encoded items (Ma et al., 2014; Luck and Vogel,

2013). A common way to explain this set size effect has been to assume that there is a fixed amount

of resource available for encoding: the more items, the less resource per item and, therefore, the

lower the precision per item. Different forms have been proposed for this encoding resource, such

as samples (Palmer, 1994; Sewell et al., 2014), Fisher information (van den Berg et al., 2012;

Keshvari et al., 2013), and neural firing rate (Bays, 2014). Models with a fixed amount of resource

generally predict that the encoding precision per item (defined as inverse variance of the encoding

error) is inversely proportional to set size. This prediction is often inconsistent with empirical data,

which is the reason that more recent studies instead use a power law to describe set size effects

(Bays et al., 2009; Bays and Husain, 2008; van den Berg et al., 2012; van den Berg et al., 2014;

Devkar et al., 2015; Elmore et al., 2011; Mazyar et al., 2012; Wilken and Ma, 2004;

Donkin et al., 2016; Keshvari et al., 2013). In these power-law models, the total amount of

resource across all items is no longer fixed, but instead decreases or increases monotonically with

set size. These models tend to provide excellent fits to experimental data, but they have been criti-

cized for lacking a principled motivation (Oberauer et al., 2016; Oberauer and Lin, 2017): they

accurately describe how memory precision depends on set size, but not why these effects are best

described by a power law – or why they exist at all. In the present study, we seek a normative answer

to these fundamental questions.

While previous studies have used normative theories to account for certain aspects of VWM,

none of them has accounted for set size effects in a principled way. Examples include our own previ-

ous work on change detection (Keshvari et al., 2012; Keshvari et al., 2013), change localization

(van den Berg et al., 2012), and visual search (Mazyar et al., 2012). In those studies, we modelled

the decision stage using optimal-observer theory, but assumed an ad hoc power law to model the
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relation between encoding precision and set size. Another example is the work by Sims and col-

leagues, who developed a normative framework in which working memory is conceptualized as an

optimally performing information channel (Sims, 2016; Sims et al., 2012). Their information-theo-

retic framework offers parsimonious explanations for the relation between stimulus variability and

encoding precision (Sims et al., 2012) and the non-Gaussian shape of encoding noise (Sims, 2015).

However, it does not offer a normative explanation of set size effects. In their early work

(Sims et al., 2012), they accounted for these effects by assuming that total information capacity is

fixed, which is similar to other fixed-resource models and predicts an inverse proportionality

between encoding precision and set size. In their later work (Orhan et al., 2014; Sims, 2016), they

add to this the assumption that there is an inefficiency in distributing capacity across items and fit

capacity as a free parameter at each set size. Neither of these assumptions has a normative motiva-

tion. Finally, Nassar and colleagues have proposed a normative model in which a strategic trade-off

is made between the number of encoded items and their precision: when two items are very similar,

they are encoded as a single item, such that there is more resource available per encoded item

(Nassar et al., 2018). They showed that this kind of "chunking" is rational from an information-theo-

retical perspective, because it minimizes the observer’s expected estimation error. However, just as

in much of the work discussed above, this theory assumes a fixed resource budget for item encod-

ing, which is not necessarily optimal when resource usage is costly.

The approach that we take here aligns with the recent proposal that cognitive systems are

"resource-rational," that is, trade off the cost of using resources against expected task performance

(Griffiths et al., 2015). The starting point of our theory is the principle that neural coding is costly

(Attwell and Laughlin, 2001; Lennie, 2003; Sterling and Laughlin, 2015), which may have pres-

sured the brain to trade off the behavioral benefits of high precision against the cost of the resource

invested in stimulus encoding (Pestilli and Carrasco, 2005; Lennie, 2003; Ma and Huang, 2009;

Christie and Schrater, 2015). We hypothesize that set size effects – and limitations in VWM in gen-

eral – may be the result of making this trade-off near-optimally. We next formalize this hypothesis in

a general model that can be applied to a broad range of tasks, analyze the theoretical predictions of

this model, and fit it to data from nine previous delayed-estimation experiments.

eLife digest You can read this sentence from beginning to end without losing track of its

meaning thanks to your working memory. This system temporarily stores information relevant to

whatever task you are currently performing. However, the more items you try to hold in working

memory at once, the poorer the quality of each of the resulting memories.

It has long been argued that this phenomenon – known as the set size effect – occurs because

the brain devotes a fixed amount of neural resources to working memory. But this theory struggles

to account for certain experimental results. It also fails to explain why the brain would not simply

recruit more resources whenever it has more items to remember. After all, your heart does

something similar by beating faster whenever you increase your physical activity.

Van den Berg and Ma break with the idea that working memory resources are fixed. They

propose that resource allocation is flexible and driven by two conflicting goals: maximize memory

performance, but use as few neural resources as necessary. Indeed, a computer simulation that

follows this strategy mimics the set size effects seen in healthy volunteers. In the model, the items

most relevant for a task are stored more accurately than less important ones, a phenomenon also

observed in participants. Lastly, the simulation predicts that the total amount of resources devoted

to working memory will vary with the number of items to be remembered. This too is consistent with

the results of previous experiments.

Working memory thus appears to be more flexible than previously thought. The amount of

resources that the brain allocates to working memory is not fixed but could be the result of

balancing resource cost against cognitive performance. If this is confirmed, it may be possible to

improve working memory by offering rewards, or by increasing the perceived importance of a task.

DOI: https://doi.org/10.7554/eLife.34963.002
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Theory
General theoretical framework: trade-off between behavioral and neural
cost
We define a vector Q={Q1,. . ., QN} that specifies the amount of resource with which each of N task-

relevant items is encoded. We postulate that Q affects two types of cost: an expected behavioral

cost �Cneural Qð Þ induced by task errors and an expected neural cost �Cneural Qð Þ induced by spending

neural resources on encoding. The expected total cost is a weighted combination,

�Ctotal Q;lð Þ ¼ �Cbehavioral Qð Þþl�Cneural Qð Þ; (1)

where the weight l�0 represents the importance of the neural cost relative to the behavioral cost.

Generally, increasing the amount of resource spent on encoding will reduce the expected behavioral

cost, but simultaneously increase the expected neural cost.

The key novelty of our theory is that instead of assuming that there is a fixed resource budget for

stimulus encoding (a hard constraint), we postulate that the brain – possibly on a trial-by-trial basis –

chooses its resource vector Q in a manner that minimizes the expected total cost. We denote the

vector that yields this minimum by Qoptimal:

Qoptimal ¼
Q

argmin�Ctotal Q;lð Þ: (2)

Under this policy, the total amount of invested resource – the sum of the elements of Qoptimal –

does not need to be fixed: when it is "worth it" (i.e. when investing more resource reduces the

expected behavioral cost more than it increases the expected neural cost), more resource may be

invested.

Equations (1) and (2) specify the theory at the most general level. To derive testable predictions,

we next propose specific formalizations of resource and of the two expected cost functions.

Formalization of resource
As in our previous work (Keshvari et al., 2012; Keshvari et al., 2013; Mazyar et al., 2012; van den

Berg et al., 2012; van den Berg et al., 2014), we quantify encoding precision as Fisher information,

J. This measure provides a lower bound on the variance of any unbiased estimator (Cover and

Thomas, 2005; Ly et al., 2017) and is a common tool in the study of theoretical limits on stimulus

coding and discrimination (Abbott and Dayan, 1999). Moreover, we assume that there is item-to-

item and trial-to-trial variation in precision (Fougnie et al., 2012; van den Berg et al., 2012;

van den Berg et al., 2014; Keshvari et al., 2013; van den Berg et al., 2017). Following our previ-

ous work, we model this variability using a gamma distribution with a mean �J and shape parameter

t �0 (larger t means more variability); we denote this distribution by gamma J; �J; tð Þ.

We specify resource vector Q as the vector with mean encoding precisions, �J, such that the gen-

eral theory specified by Equations (1) and (2) modifies to

�Ctotal
�J;l;t
� �

¼ �Cbehavioral
�J;t
� �

þl�Cneural
�J;t
� �

(3)

and

�Joptimal ¼
�J

argmin �Ctotal
�J;l;t
� �

(4)

In this formulation, it is assumed that the brain has control over resource vector �J, but not over

the variability in how much resource is actually assigned to an item. It should be noted, however,

that our choice to incorporate variability in J is empirically motivated and not central to the theory:

parameter t mainly affects the kurtosis of the predicted estimation error distributions, not their vari-

ance or the way that the variance depends on set size (which is the focus of this paper). We will

show that the theory also predicts set size effects when there is no variability in J.

Formalization of expected neural cost
To formalize the neural cost function, we make two general assumptions. First, we assume that the

expected neural cost induced by encoding a set of N items is the sum of the expected neural cost
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associated with each of the individual items. Second, we assume that each of these “local” neural

costs has the same functional dependence on the amount of allocated resource: if two items are

encoded with the same amount of resource, they induce equal amounts of neural cost. Combining

these assumptions, the expected neural cost induced by encoding a set of N items with resource
�J ¼ �J1; . . . ; �JNf g takes the form

�Cneural
�J;t
� �

¼
X

N

i¼1

�cneural �Ji;tð Þ; (5)

where we introduced the convention to denote local costs (associated with a single item) with small

c, to distinguish them from the global costs (associated with the entire set of encoded items), which

we denote with capital C.

We denote by cneural(J) the neural cost induced by investing an amount of resource J. The

expected neural cost induced by encoding an item with resource �J is obtained by integrating over J,

�cneural �J;tð Þ ¼

Z

cneural Jð ÞGamma J; �J;tð ÞdJ; (6)

The theory is agnostic about the exact nature of the cost function cneuralðJÞ: it could include spik-

ing and non-spiking components (Lennie, 2003), be associated with activity in both sensory and

non-sensory areas, and include other types of cost that are linked to “mental effort” in general

(Shenhav et al., 2017).

To motivate a specific form of this function, we consider the case that the neural cost is incurred

by spiking activity. For many choices of spike variability, including the common one of Poisson-like

variability (Ma et al., 2006), Fisher information J of a stimulus encoded in a neural population is pro-

portional to the trial-averaged neural spiking rate (Paradiso, 1988; Seung and Sompolinsky, 1993).

If we further assume that each spike has a fixed cost, we find that the local neural cost induced by

each item is proportional to J,

cneural J;að Þ ¼ aJ; (7)

where a is the amount of neural cost incurred by a unit increase in resource. Combining Equa-

tions (5–7) yields

�Cneural
�J;a
� �

¼ a
X

N

i¼1

�Ji: (8)

Hence, the global expected neural cost is proportional to the total amount of invested resource

and independent of the amount of variability in J. Although we use this linear expected neural cost

function throughout the paper, we show in Appendix 1 that the key model prediction – a decrease

of the optimal resource per item with set size – generalizes to a broad range of choices.

Formalization of expected behavioral cost for local tasks
Before we specify the expected behavioral cost function, we introduce a distinction between two

classes of tasks. First, we define a task as "local" if the observer’s response depends on only one of

the encoded items. Examples of local tasks are single-probe delayed-estimation (Blake et al., 1997;

Prinzmetal et al., 1998; Wilken and Ma, 2004), single-probe change detection (Todd and Marois,

2004; Luck and Vogel, 1997), and single-probe change discrimination (Klyszejko et al., 2014). By

contrast, when the task response depends on all memorized items, we define the task as "global."

Examples of global tasks are whole-display change detection (Luck and Vogel, 1997;

Keshvari et al., 2013), change localization (van den Berg et al., 2012), and delayed visual search

(Mazyar et al., 2012). The theory that we developed up to this point – Equations (1–8) – applies to

both global and local tasks. However, from here on, we develop our theory in the context of local

tasks only; we will come back to global tasks at the end of the Results.

As in local tasks only one item gets probed, the expected behavioral cost across all items is a

weighted average,
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�Cbehavioral
�J;t
� �

¼
X

N

i¼1

pi�cbehavioral;i �Ji;tð Þ; (9)

where pi is the experimentally determined probing probability of the ith item and �cbehavioral;i �Ji;tð Þ is

the local expected behavioral cost associated with reporting the ith item. We will refer to the product

pi�cbehavioral;i �Ji;tð Þ as the ’expected behavioral cost per item’. The only remaining step is to specify

�cbehavioral;i �Ji;tð Þ. This function is task-specific and we will specify it after we have described the task to

which we apply the model.

A resource-rational model for local tasks
Combining Equations 3, 8, and 9 yields the following expected total cost function for local tasks:

�Ctotal
�J;a;l;t
� �

¼
X

N

i¼1

pi�cbehavioral �Ji;tð Þþal
X

N

i¼1

�Ji: (10)

As parameters a and l have interchangeable effects on the model predictions, we will fix a = 1

and only treat l as a free parameter.

We recognize that the right-hand side of Equation 10 is a sum of independent terms. Therefore,

each element of �Joptimal, Equation 4, can be computed independently of the other elements, by min-

imizing the expected total cost per item,

�Joptimal;i pi;l;tð Þ ¼
�J

argmin pi�cbehavioral �J;tð Þþl�Jð Þ: (11)

This completes the specification of the general form of our resource-rational model for local tasks.

Its free parameters are l and t.

Set size effects result from cost minimization and are mediated by probing
probability
To obtain an understanding of the model predictions, we analyze how �Joptimal depends on probing

probability and set size. We perform this analysis under two general assumptions about the local

expected behavioral cost function: first, that it monotonically decreases with �J (i.e. increasing

resource reduces the expected behavioral cost) and, second, that it satisfies a law of diminishing

returns (i.e. the reductions per unit increase of resource decrease with the total amount of already

invested resource). It can be proven (see Appendix 1) that under these assumptions, the domain of

probing probability pi consists of three potential regimes, each with a different optimal encoding

strategy (Figure 1A). First, there might exist a regime 0�pi<p0 in which it is optimal to not encode

an item, �Joptimal ¼ 0. In this regime, the probing probability of an item is so low that investing any

amount of resource can never reduce the local expected behavioral cost by more than it increases

the expected neural cost. Second, there might exist a regime p0�pi<p¥ in which it is optimal to

encode an item with a finite amount of resource, �Joptimal 2 0;¥ð Þ. In this regime, �Joptimal increases as a

function of pi. Finally, there may be a regime p
¥
�pi�1 in which the optimal strategy is to encode

the item with an infinite amount of resource, �Joptimal ¼ ¥. This last regime will only exist in extreme

cases, such as when there is no neural cost associated with encoding. The threshold p0 depends on

the importance of the neural cost, l, and on the derivative of the local expected behavioral cost

evaluated at �J ¼ 0; specifically, p0 ¼
l

j�cbehavioral 0 0ð Þj . The threshold p
¥
depends on l and on the derivative

of the local expected behavioral cost evaluated at �J ! ¥; specifically, p¥ ¼ l
j�cbehavioral 0 ¥ð Þj . If p¥>1, then

the third regime does not exist, whereas if p0 >1, only the first regime exists.

We next turn to set size effects. An interesting property of the model is that �Joptimal depends only

on the probing probability, pi, and on the model parameters – it does not explicitly depend on set

size, N. Therefore, the only way in which the model can predict set size effects is through a coupling

between N and pi. Such a coupling exists in most studies that use a local task. For example, in

delayed-estimation tasks, each item is usually equally likely to be probed such that pi = 1/N. For

those experiments, the above partitioning of the domain of pi translates to a similar partitioning of

the domain of N (Figure 1B). Then, a set size N
¥
�0 may exist below which it is optimal to encode
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items with infinite resource, a region N
¥
�N < N0 in which it is optimal to encode items with a finite

amount of resource, and a region N>N0 in which it is optimal to not encode items at all.

Results

Model predictions for delayed-estimation tasks
To test the predictions of the model against empirical data, we apply it to the delayed-estimation

task (Wilken and Ma, 2004; Blake et al., 1997; Prinzmetal et al., 1998), which is currently one of

the most widely used paradigms in VWM research. In this task, the observer briefly holds a set of

items in memory and then reports their estimate of a randomly probed target item (Figure 2A). Set

size effects manifest as a widening of the estimation error distribution as the number of items is

increased (Figure 2B), which suggests a decrease in the amount of resource per item (Figure 2C).

To apply our model to this task, we express the expected local behavioral cost as an expected

value of the behavioral cost with respect to the error distribution,

�cbehavioral;i �Ji;tð Þ ¼

Z

cbehavioral;i "ð Þp "; �Ji;tð Þd"; (12)

where the behavioral cost function cbehavioral,i(") maps an encoding error " to a cost and p "; �Ji;tð Þ is

the predicted distribution of " for an item encoded with resource �Ji. We first specify p "; �Ji;tð Þ and

then turn to cbehavioral,i("). As the task-relevant feature in delayed-estimation experiments is usually a

circular variable (color or orientation), we make the common assumption that " follows a Von Mises

distribution. We denote this distribution by VM(";J), where J is one-to-one related to the distribu-

tion’s concentration parameter k (Appendix 1). The distribution of " for a stimulus encoded with

resource �Ji is found by integrating over J,

p "; �Ji;tð Þ ¼

Z

VM ";Jð ÞGamma J; �Ji;tð ÞdJ (13)

Finally, we specify the behavioral cost function cbehavioral;i "ð Þ in Equation 12, which maps an esti-

mation error " to a behavioral cost. As in most psychophysical experiments, human subjects tend to

perform well on delayed-estimation tasks even when the reward is independent of their perfor-

mance. This suggests that the behavioral cost function is strongly determined by internal incentives.

A recent paper (Sims, 2015) has attempted to measure this mapping and proposed a two-parame-

ter function. We will test that proposal later, but for the moment we assume a simpler, one-parame-

ter power-law function, cbehavioral;i ";bð Þ ¼ j"jb, where power b is a free parameter.

To obtain an intuition for the predictions of this model, we plot in Figure 2D for a specific set of

parameters the two expected costs per item and their sum, Equation 11, as a function of �J. The

Figure 1. Effects of probing probability and set size on �Joptimal in the resource-rational model for local tasks. (A) The model has three different optimal

solutions depending on probing probability pi: invest no resource when pi is smaller than some threshold value p0, invest infinite resource when pi is

larger than p
¥
, and invest a finite amount of resource when p0 <pi < p

¥
. The thresholds p0 and p

¥
depend on weight l (see Equation (1)) and on the

derivative of the local expected behavioral cost function evaluated at 0 and ¥, respectively. If p0 >1, then only the first regime exists; if p0 <1 < p
¥
then

only the first two regimes exist. (B) If, in addition, pi = 1/N, then the domain of N partitions in a similar manner.

DOI: https://doi.org/10.7554/eLife.34963.003
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expected behavioral cost per item depends on pi and decreases with �J (colored curves in left panel),

while the expected neural cost per item is independent of pi and increases (black line in left panel).

The expected total cost per item has a unique minimum (middle panel). The value of �J correspond-

ing to this minimum, �Joptimal, increases with pi (Figure 2D, right). Hence, in this example, the optimal

amount of resource per item is an increasing function of its probing probability.

Figure 2. A resource-rational model for delayed-estimation tasks. (A) Example of a trial in a delayed-estimation experiment. The subject is briefly

presented with a set of stimuli and, after a short delay, reports the value of the item at a randomly chosen location (here indicated with thick circle). (B)

The distribution of estimation errors in delayed-estimation experiments typically widens with set size (data from Experiment E5 in Table 1). (C) This

suggests that the amount of resource per encoded item decreases with set size. The estimated amount of resource per item was computed using the

same non-parametric model as the one underlying Figure 3C. (D) Expected cost per item as a function of the amount of invested resource (model

parameters: l = 0.01, b = 2, t#0). Left: The expected behavioral cost per item (colored curves) decreases with the amount of invested resource, while

the expected neural cost per item increases (black line). Center: The sum of these two costs has a unique minimum, whose location (arrows) depends

on probing probability pi. Right: The optimal amount of resource per item increases with the probability that the item will be probed. (E) Expected cost

across all items, when each item is probed with a probability pi = 1/N; the model parameters are the same as in D and the set sizes correspond with

the values of pi in D. The predicted set size effect (right panel) is qualitatively similar to set size effects observed in empirical data (cf. panel C). (D) and

(E) are alternative illustrations of the same optimization problem; the right panel of (E) could also be obtained by replotting the right panel of (D) as a

function of N = 1/pi.

DOI: https://doi.org/10.7554/eLife.34963.004

The following figure supplement is available for figure 2:

Figure supplement 1. Fits to the three delayed-estimation benchmark data sets that were excluded from the main analyses.

DOI: https://doi.org/10.7554/eLife.34963.006

van den Berg and Ma. eLife 2018;7:e34963. DOI: https://doi.org/10.7554/eLife.34963 7 of 31

Research article Neuroscience

https://doi.org/10.7554/eLife.34963.004
https://doi.org/10.7554/eLife.34963.006
https://doi.org/10.7554/eLife.34963


We next consider the special case in which each item is equally likely to be probed, that is,

pi = 1/N. The values of pi in Figure 2D then correspond to set sizes 1, 2, 4, and 8. When replotting
�Joptimal as a function of N, we find a set size effect (Figure 2E, right panel) that is qualitatively similar

to the empirical result in Figure 2C. An alternative way to understand this predicted set size effect is

by considering how the three expected costs across all items, Equation 3, depend on �J. Substituting

pi = 1/N in Equation 9, we find that the expected behavioral cost across all items is independent of

set size (Figure 2E, left panel, black curve). Moreover, when all items are encoded with the same

amount of resource (which is necessarily the optimal solution when pi is identical across items), the

expected neural cost across all items equals N�J and therefore scales linearly with set size (Figure 2E,

left panel, colored lines). The sum of these terms has a unique minimum �Joptimal (Figure 2E, center

panel), which monotonically decreases with set size (Figure 2E, right panel). The costs plotted in

Figure 2E can be considered as obtained by multiplying the corresponding costs in Figure 2D by N.

The model thus predicts set size effects in delayed-estimation tasks that are fully mediated by

individual-item probing probability. The latter notion is consistent with empirical observations.

Palmer et al. (1993) reported that "relevant set size" (where irrelevance means pi = 0) acts virtually

identically to actual set size. Emrich et al. (2017) independently varied probing probability and set

size in their experiment, and found that the former was a better predictor of performance than the

latter. Based on this, they hypothesized that set size effects are mediated by probing probability.

The predictions of our model are qualitatively consistent with these findings.

Model fits to data from delayed-estimation experiments with equal
probing probabilities
To examine how well the model accounts for set size effects in empirical data, we fit it to data from

six experiments that are part of a previously published benchmark set (E1-E6 in Table 1). We use a

Bayesian optimization method (Acerbi and Ma, 2017) to estimate the maximum-likelihood parame-

ter values, separately for each individual data set (see Table 2 for a summary of these estimates).

The model accounts well for the subject-level error distributions (Figure 3A) and the two statistics

that summarize these distributions (Figure 3B). The original benchmark set (van den Berg et al.,

2014) contained four more data sets, but three of those were published in papers that were later

retracted and another one contains data at only two set sizes. Although we decided to leave those

four datasets out of our main analyses, the model accounts well for them too (Figure 2—figure sup-

plement 1).

We next compare the goodness of fit of the resource-rational model to that of a descriptive vari-

ant in which the amount of resource per item, �J, is assumed to be a power-law function of set size

(all other aspects of the model are kept the same). This variant is identical to the VP-A model in our

earlier work, which is one of the most accurate descriptive models currently available (van den Berg

et al., 2014). Model comparison based on the Akaike Information Criterion (AIC) (Akaike, 1974)

indicates that the data provide similar support for both models, with a small advantage for the

Table 1. Overview of experimental datasets.

Experiments E5 and E6 differed in the way that subjects provided their responses (E5: color wheel; E6: scroll).

Exp. ID Reference Feature Set size(s) Probing probability Number of subjects

E1 Wilken and Ma (2004) Color 1, 2, 4, 8 Equal 15

E2 Zhang and Luck (2008) Color 1, 2, 3, 6 Equal 8

E3 Bays et al. (2009) Color 1, 2, 4, 6 Equal 12

E4 van den Berg et al. (2012) Orientation 1-8 Equal 6

E5 van den Berg et al. (2012) Color 1-8 Equal 13

E6 van den Berg et al. (2012) Color 1-8 Equal 13

E7 Bays et al. (2009) Orientation 2,4,8 Unequal 7

E8 Emrich et al. (2017) Color 4 Unequal 20

E9 Emrich et al. (2017) Color 6 Unequal 20

DOI: https://doi.org/10.7554/eLife.34963.005
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resource-rational model (DAIC = 5.27 ± 0.70; throughout the paper, X ± Y indicates mean ±s.e.m.

across subjects). Hence, the resource-rational model provides a principled explanation of set size

effects without sacrificing quality of fit compared to one of the best available descriptive models of

VWM. We find that the resource-rational model also fits better than a model in which the total

amount of resource is fixed and divided equally across items (DAIC = 13.9 ± 1.4).

So far, we have assumed that there is random variability in the actual amount of resource

assigned to an item. Next, we test an equal-precision variant of the resource-rational model, by fix-

ing parameter t to a very small value (10�3). Consistent with the results obtained with the variable-

precision model, we find that the rational model has a substantial AIC advantage over a fixed-

resource model (DAIC = 43.0 ± 6.8) and is on equal footing with the power-law model

(DAIC = 2.0 ± 1.7 in favor of the power-law model). However, all three equal-precision models (fixed

resource, power law, rational) are outperformed by their variable-precision equivalents by over 100

AIC points. Therefore, we will only consider variable-precision models in the remainder of the paper.

To get an indication of the absolute goodness of fit of the resource-rational model, we next

examine how much room for improvement there is in the fits. We do this by fitting a non-parametric

model variant in which resource �J is a free parameter at each set size, while keeping all other aspects

of the model the same. We find a marginal AIC difference, suggesting that the fits of the rational

model cannot be improved much further without overfitting the data (DAIC = 3.49 ± 0.93, in favor of

the non-parametric model). An examination of the fitted parameter values corroborates this finding:

the estimated resource values in the non-parametric model closely match the optimal values in the

rational model (Figure 3C).

So far, we have assumed that behavioral cost is a power-law function of the absolute estimation

error, cbehavioral(")=|"|
b. To evaluate the necessity of a free parameter in this function, we also test

three parameter-free choices: |"|, "2, and �cos("). Model comparison favors the original model with

AIC differences of 14.0 ± 2.8, 24.4 ± 4.1, and 19.5 ± 3.5, respectively. While there may be other

parameter-free functions that give better fits, we expect that a free parameter is unavoidable here,

as the error-to-cost mapping may differ across experiments (because of differences in external incen-

tives) and also across subjects within an experiment (because of differences in intrinsic motivation).

Finally, we also test a two-parameter function that was proposed recently (Equation (5) in

Sims [2015]). The main difference with our original choice is that this alternative function allows for

saturation effects in the error-to-cost mapping. However, this extra flexibility does not increase the

goodness of fit sufficiently to justify the additional parameter, as the original model outperforms this

variant with an AIC difference of 5.3 ± 1.8.

Finally, we use five-fold cross validation to verify the AIC-based results reported in this section.

We find that they are all consistent (Table 3).

Table 2. Subject-averaged parameter estimates of the resource-rational model fitted to data from

nine previously published experiments.

See Table 1 for details about the experiments.

Experiment b l t

E1 1.87 ± 0.29 (4.8 ± 1.2)�10�2 17.9±2.5

E2 (1.33 ± 0.30)�10�2 (4.27 ± 0.83)�10�4 14.8±1.1

E3 0.138 ± 0.042 (2.78 ± 0.87) �10�3 19.1±2.6

E4 0.106 ± 0.052 (3.2 ± 1.4)�10�3 8.2±1.8

E5 0.356 ± 0.085 (5.8 ± 1.1)�10�3 18.1±2.8

E6 0.61 ± 0.15 (8.8 ± 1.5)�10�3 7.4±1.3

E7 1.19 ± 0.51 (9.5 ± 6.6)�10�2 5.7±1.5

E8 0.58 ± 0.19 (1.58 ± 0.66)�10�2 27.0±3.7

E9 0.93 ± 0.25 (3.0 ± 1.0)�10�2 23.7±2.3

DOI: https://doi.org/10.7554/eLife.34963.008
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Figure 3. Model fits to data from six delayed-estimation experiments with equal probing probabilities. (A) Maximum-likelihood fits to raw data of the

worst-fitting and best-fitting subjects (subjects S10 in E6 and S4 in E4, respectively). Goodness of fit was measured as R2, computed for each subject by

concatenating histograms across set sizes. (B) Subject-averaged circular variance and kurtosis of the estimation error, as a function of set size and split

by experiment. The maximum-likelihood fits of the model account well for the trends in these statistics. (C) Estimated amounts of resource per item in

the resource-rational model scattered against the estimates in the non-parametric model. Each dot represents estimates from a single subject. (D)

Figure 3 continued on next page

van den Berg and Ma. eLife 2018;7:e34963. DOI: https://doi.org/10.7554/eLife.34963 10 of 31

Research article Neuroscience

https://doi.org/10.7554/eLife.34963


Non-monotonic relation between total resource and set size
One quantitative feature that sets the resource-rational theory apart from previous theories is its pre-

dicted relation between set size and the total amount of invested resource, �Jtotal ¼
PN

i¼1
�Ji. This

quantity is by definition constant in fixed-resource models, and in power-law models it varies mono-

tonically with set size. By contrast, we find that in the fits to several of the experiments, �Jtotal varies

non-monotonically with set size (Figure 3D, gray curves). To examine whether there is evidence for

non-monotonic trends in the subject data, we next compute an "empirical" estimate �Jtotal ¼
PN

i¼1
�J i,

where �̂J i are the best-fitting resource estimates in the non-parametric model. We find that these esti-

mates show evidence of similar non-monotonic relations in some of the experiments (Figure 3D,

black circles). To quantify this evidence, we perform Bayesian paired t-tests in which we compare the

estimates of �Jtotal at set size 3 with the estimates at set sizes 1 and 6 in the experiments that included

these three set sizes (E2 and E4-E6). These tests reveal strong evidence that the total amount of

resource is higher at set size 3 than at set sizes 1 (BF+0=1.05�10
7) and 6 (BF+0=4.02�10

2). We next

compute for each subject the set size at which �Jtotal is largest, which we denote by Npeak, and find a

subject-averaged value of 3.52 ± 0.18. Altogether, these findings suggest that the total amount of

resource that subjects spend on item encoding varies non-monotonically with set size, which is con-

sistent with predictions from the resource-rational model, but not with any of the previously pro-

posed models. To the best of our knowledge, evidence for a possible non-monotonicity in the

relation between set size and total encoding resource has not been reported before.

Predicted effects of probing probability
As we noted before, the model predictions do not explicitly depend on set size, N. Yet, we found

that the model accounts well for set size effects in the experiments that we considered so far (E1-

E6). This happens because in all those experiments, N was directly coupled with probing probability

pi, through pi = 1/N. This coupling makes it impossible to determine whether changes in subjects’

encoding precision are the result of changes in N or changes in pi. Therefore, we will next consider

experiments in which individual probing probabilities and set size were varied independently of each

other (E7-E9 in Table 1). According to our model, the effects of N that we found in E1-E6 were really

effects of pi. Therefore, we should be able to make predictions about effects of pi in E7-E9 by

Figure 3 continued

Estimated amount of resource per item (red) and total resource (black) plotted against set size. Here and in subsequent figures, error bars and shaded

areas represent 1 s.e.m. of the mean across subjects.

DOI: https://doi.org/10.7554/eLife.34963.007

Table 3. Comparing two metrics for model comparison: AIC and five-fold cross-validated log likelihood.

Each comparison is between the main version of the resource-rational model, Equation (11), and the model listed in the first column

of the table. Negative AIC differences and positive cross-validated log likelihood differences indicate an advantage of the resource-

rational model over the alternative model. In all comparisons, these differences have opposite signs, which means that the AIC-based

results are consistent with the cross-validation results.

Model with which the main model is compared AIC difference Cross-validation log likelihood difference

Descriptive power-law model �5.27±0.70 2.59±0.39

Descriptive fixed-resource model �13.9±1.4 8.4±1.0

Descriptive unconstrained model 3.49±0.93 �1.26±0.49

Rational model variant: equal precision �110±10 56±4.7

Rational model variant: cbehavioral=|"| �14±2.8 7.1±1.4

Rational model variant: cbehavioral="
2 �24.4±4.1 12.2±2.0

Rational model variant: cbehavioral=�cos(e) �19.5±3.5 9.8±1.8

Rational model variant: cbehavioral as in Sims (2015) �5.3±1.8 4.7±0.74

DOI: https://doi.org/10.7554/eLife.34963.009
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recasting the effects of N in E1-E6 as effects of pi = 1/N. Given that the amount of resource per item

in E1-E6 decreases with N, a first prediction is that it should increase as a function of pi in E7-E9. A

second and particularly interesting prediction is that the estimated total amount of invested resource

should vary non-monotonically with pi and peak at a value ppeak that is close to 1/Npeak found in E1-

E6 (see previous section). Based on the values of Npeak in experiments E1-E6, we find a prediction

ppeak = 0.358 ± 0.026.

Model fits to data from delayed-estimation experiments with unequal
probing probabilities
To test the predictions presented in the previous section and, more generally, to evaluate how well

our model accounts for effects of pi on encoding precision, we fit it to data from three experiments

in which probing probability was varied independently of set size (E7-E9 in Table 1).

In the first of these experiments (E7), seven subjects performed a delayed-estimation task at set

sizes 2, 4, and 8. On each trial, one of the items – indicated with a cue – was three times more likely

to be probed than any of the other items. Hence, the probing probabilities for the cued and uncued

items were 3/4 and 1/4 at N = 2, respectively, 1/2 and 1/6 at N = 4, and 3/10 and 1/10 at N = 8.

The subject data show a clear effect of pi: the higher the probing probability of an item, the more

precise the subject responses (Figure 4A, top row, black circles). We find that the resource-rational

model, Equation (11), accounts well for this effect (Figure 4A, top row, curves) and does so by

increasing the amount of resource as a function of probing probability pi (Figure 4B, left panel, red

curves).

In the other two experiments (E8 and E9), the number of cued items and cue validity were varied

between conditions, while set size was kept constant at 4 or 6. For example, in one of the conditions

of E8, three of the four items were cued with 100% validity, such that pi was 1/3 for each cued item

and 0 for the uncued item; in another condition of the same experiment, two of the four items were

cued with 66.7% validity, meaning that pi was 1/3 for each cued item and 1/6 for each uncued item.

The unique values of pi across all conditions were {0, 1/6, 2/9, 1/4, 1/3, 1/2, 1} in E8 and {0, 1/12, 1/

10, 2/15, 1/6, 1/3, 1/2, and 1} in E9. As in E7, responses become more precise with increasing pi and

the model accounts well for this (Figure 4A), again by increasing the amount of resource assigned

to an item with pi (Figure 4B).

We next examine how our model compares to the models proposed in the papers that originally

published these three data sets. In contrast to our model, both Bays (2014) and Emrich et al.

(2017) proposed that the total amount of invested resource is fixed. However, while Bays proposed

that the distribution of this resource is in accordance with minimization of a behavioral cost function

(as in our model), Emrich et al. postulated that the resource is distributed in proportion to each

item’s probing probability. Hence, while our model optimizes both the amount of invested resource

and its distribution, Bays’ model only optimizes the distribution, and Emrich et al.’s model does not

explicitly optimize anything. To examine how the three proposals compare in terms of how well they

account for the data, we fit two variants of our model that encapsulate the main assumptions of

these two earlier proposals. In the first variant, we compute �Joptimal as
bf �J

argmin
P

N

i¼1

pi�cbehavioral �Ji;b; tð Þ

� �

under the constraint
P

N

i¼1

�Ji ¼ �Jtotal, which is consistent with Bays’ proposal. Hence, in this variant, the

neural cost function is removed and parameter l is replaced by a parameter �Jtotal – otherwise, all

aspects of the model are the same as in our main model. In the variant that we use to test Emrich

et al.’s proposal, we compute �Ji for each item as pi�Jtotal, where pi is the probing probability and �Jtotal

is again a free parameter that represents the total amount of resource. Fitting the models to the

data from all 47 subjects in E7-E9, we find a substantial advantage of our model over the proposal

by Emrich et al., with an AIC difference of 18.0 ± 3.9. However, our model cannot reliably be distin-

guished from the proposal by Bays: either model is preferred in about half of the subjects (our

model: 27; Bays: 20) and the subject-averaged AIC difference is negligible (1.8 ± 2.5 in favor of our

model). Hence, the model comparison suggests quite convincingly that subjects distribute their

resource near-optimally across items with unequal probing probabilities, but it is inconclusive

regarding the question of whether the total amount of invested resource is fixed or optimized.
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Figure 4. Model fits to data from three delayed-estimation experiments with unequal probing probabilities. (A) Fits of the resource-rational model

(curves) to the data (black circles) of experiments E7-E9. (B) Estimated amount of resource per item as a function of probing probability (red) and the

corresponding estimated total amount of resource that the subject would spend on encoding a display filled with items with equal probing

probabilities (black). (C) Error histograms and a plot of �Joptimal as a function of pi for a single subject (S4 in E9). The estimated value of p0 was 0.18 for

this subject, which was larger than the smallest probing probability in the experiment. The error histograms for items with the four lowest probing

probabilities appear to be uniform for this subject, which is indicative of guessing (p>0.23 in Kolgomorov-Smirnov tests for uniformity on these four

distributions).

DOI: https://doi.org/10.7554/eLife.34963.010
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As an alternative way to address the question of whether the total amount of resource is fixed,

we again fit a non-parametric model to obtain “empirical” estimates of the total amount of invested

resource. To this end, we define �̂Jtotal ¼ �̂J i=pi, where �̂J i are the best-fitting values in a non-parametric

model, such that �̂Jtotal represents the estimated total amount of resource that a subject would invest

to encode a display filled with items that all have probing probability pi. We find that these esti-

mates show signs of a non-monotonicity as a function of pi (Figure 4B, black points), which are cap-

tured reasonably well by the resource-rational model (Figure 4B, black curves). Averaged across all

subjects in E7-E9, the value of pi at which �̂Jtotal is largest is 0.384 ± 0.037, which is close to the pre-

dicted value of 0.358 ± 0.026 (see previous section). Indeed, a Bayesian independent-samples t-test

supports the null hypothesis that there is no difference (BF01 = 4.27). Hence, while the model com-

parison results in the previous paragraph were inconclusive regarding the question of whether the

total amount of invested resource is fixed or optimized, the present analysis provides evidence

against fixed-resource models and confirms a prediction made by our own model.

In summary, the results in this section show that effects of probing probability in E7-E9 are well

accounted for by the same model as we used to explain effects of set size in E1-E6. Regardless of

whether total resource is fixed or optimized, this finding provides further support for the suggestion

that set size effects are mediated by probing probability (Emrich et al., 2017) or, more generally, by

item relevance (Palmer et al., 1993).

Is it ever optimal to not encode an item?
There is an ongoing debate about the question of whether a task-relevant item is sometimes

completely left out of working memory (Adam et al., 2017; Luck and Vogel, 2013; Ma et al., 2014;

Rouder et al., 2008). Specifically, slot models predict that this happens when set size exceeds the

number of slots (Zhang and Luck, 2008). In resource models, the possibility of complete forgetting

has so far been an added ingredient separate from the core of the model (van den Berg et al.,

2014). Our normative theory allows for a reinterpretation of this question: are there situations in

which it is optimal to assign zero resource to the encoding of an item? We already established that

this could happen in delayed-estimation tasks: whenever the probing probability is lower than a

threshold value p0 ¼
l

j�cbehavioral 0ð Þj, the optimal amount of resource to invest on encoding the item is

zero (see Theory). But what values does p0 take in practice? Considering the expected behavioral

cost function of a fixed-precision model (a variable-precision model with t # 0), we can prove that

p0 = 0, that is, it is never optimal to invest no resource (Appendix 1). For the expected behavioral

cost function of the variable-precision model, however, simulations indicate that p0 can be greater

than 0 (we were not able to derive this result analytically). We next examine whether this ever hap-

pens under parameter values that are representative for human subjects. Using the maximum-likeli-

hood parameters obtained from the data in E7-E9, we estimate that p0 (expressed as a percentage)

equals 8.86 ± 0.54%. Moreover, we find that for 8 of the 47 subjects, p0 is larger than the lowest

probing probability in the experiment, which suggests that these subjects sometimes entirely

ignored one or more of the items. For these subjects, the error distributions on items with pi<p0

look uniform (see Figure 4C for an example) and Kolmogorov-Smirnov tests for uniformity did not

reject the null hypothesis in any of these cases (p>0.05 in all tests).

These results suggest that there might be a principled reason why people sometimes leave task-

relevant items out of visual working memory in delayed-estimation experiments. However, our

model cannot explain all previously reported evidence for this. In particular, when probing probabili-

ties are equal for all items, the model makes an "all or none" prediction: all items are encoded when

pi>p0 and none are encoded otherwise. Hence, the model cannot explain why subjects in tasks with

equal probing probabilities sometimes seem to encode a subset of task-relevant items. For example,

a recent study reported that in a whole-report delayed-estimation experiment (pi = 1 for all items),

subjects encoded about half of the six presented items on each trial (Adam et al., 2017). Unless

additional assumptions are made, our model cannot account for this finding.

Predictions for a global task: whole-display change detection
The results so far show that the resource-rational model accounts well for data in a variety of

delayed-estimation experiments. To examine how its predictions generalize to other tasks, we next

consider a change detection task, which is another widely used paradigm in research on VWM. In
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this task, the observer is sequentially presented with two sets of items and reports if any one of

them changed (Figure 5A). In the variant that we consider here, a change is present on exactly half

of the trials and is equally likely to occur in any of the items. We construct a model for this task by

combining Equations 3, 4, and 8 with an expected behavioral cost function based on the Bayesian

decision rule for this task (see Appendix 1), which yields

�Joptimal ¼
�J

argmin p errorj�J
� �

þl
X

N

i¼1

�Ji

" #

; (14)

where p errorj�J
� �

is the expected behavioral cost function, which in this case specifies the probability

of an error response when a set of items is encoded with resource �J.

In contrast to local tasks, the expected total cost in global tasks cannot be written as a sum of

expected costs per item, because the expected behavioral cost – such as p errorj�J
� �

in Equation (14)

– can only be computed globally, not per item. Consequently, the elements of �Joptimal in global tasks
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Figure 5. A resource-rational model for change detection tasks. (A) Example of a trial in a change detection task with a set size of 2. The subject is

sequentially presented with two sets of stimuli and reports whether there was a change at any of the item locations. (B) Simulated expected total cost in

the resource-rational cost function applied to a task with a set size of 2 and a reward of 0.05 (left), 0.20 (center), or 0.35 (right) units per correct trial. The

red dot indicates the location of minimum cost, that is the resource-optimal combination of �J1 and �J2 (note that the expected cost function in the

central panel has a minimum at two distinct locations). When reward is low (left), the optimal strategy is to encode neither of the two stimuli. When

reward is high (right), the optimal strategy is to encode both stimuli with equal amounts of resource. For intermediate reward (center), the optimal

strategy is to encode one of the two items, but not the other one. (C) Model predictions as a function of trial rewards at N = 2. Left: The amount of

resource assigned to the two items for a range of reward values. Right: the corresponding optimal number of encoded items (top) and optimal amount

of resource per encoded item (bottom) as a function of reward. (D) Model predictions as a function of set size (trial reward = 1.5). The model predicts

set size effects in both the number of encoded items (left, top) and the amount of resource with which these items are encoded (left, bottom).

Moreover, the model produces response data (right) that are qualitatively similar to human data (see, for example, Figure 2C in Keshvari et al., 2013).

The parameter values used in all simulations were l = 0.01 and t#0.

DOI: https://doi.org/10.7554/eLife.34963.011
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cannot be computed separately for each item. This makes resource optimization computationally

much more demanding, because it requires solving an N-dimensional minimization problem instead

of N one-dimensional problems.

We perform a simulation at N = 2 (which is still tractable) to get an intuition of the predictions

that follow from Equation (14). For practical convenience, we assume in this simulation that there is

no variability in precision, t#0, such that l is the only model parameter. The results (Figure 5B) show

that the cost-minimizing strategy is to encode neither of the items when the amount of reward per

correct trial is very low (left panel) and encode them both when reward is high (right panel). How-

ever, interestingly, there is also an intermediate regime in which the optimal strategy is to encode

one of the two items, but not the other one (Figure 5B, central panel). Hence, just as in the delayed-

estimation task, there are conditions in which it is optimal to encode only a subset of items. An

important difference, however, is that in the delayed-estimation task this only happens when items

have unequal probing probabilities, while in this change detection task it even happens when all

items are equally likely to change.

Simulations at larger set sizes quickly become computationally intractable, because of the reason

mentioned above. However, the results at N = 2 suggest that if two items are encoded, the optimal

solution is to encode them with the same amount of resource (Figure 5C). Therefore, we conjecture

that all non-zero values in �Joptimal are identical, which would mean that the entire vector can be sum-

marized by two values: the number of encoded items, which we denote by Koptimal, and the amount

of resource assigned to each encoded item, which we denote by �Joptimal. Using this conjecture (which

we have not yet been able to prove), we are able to efficiently compute predictions at an arbitrary

set size. Simulation results show that the model then predicts that both Koptimal and �Joptimal depend

on set size (Figure 5D, left) and produces response data that are qualitatively similar to human data

(Figure 5D, right).

Discussion

Summary
Descriptive models of visual working memory (VWM) have evolved to a point where there is little

room for improvement in how well they account for experimental data. Nevertheless, the basic find-

ing that VWM precision depends on set size still lacks a principled explanation. Here, we examined a

normative proposal in which expected task performance is traded off against the cost of spending

neural resource on encoding. We used this principle to construct a resource-rational model for

"local" VWM tasks and found that set size effects in this model are fully mediated by the probing

probabilities of the individual items; this is consistent with suggestions from earlier empirical work

(Emrich et al., 2017; Palmer et al., 1993). From the perspective of our model, the interpretation is

that as more items are added to a task, the relevance of each individual item decreases, which

makes it less cost-efficient to spend resource on its encoding. We also found that in this model it is

sometimes optimal to encode only a subset of task-relevant items, which implies that resource ratio-

nality could serve as a principled bridge between resource and slot-based models of VWM. We

tested the model on data from nine previous delayed-estimation experiments and found that it

accounts well for effects of both set size and probing probability, despite having relatively few

parameters. Moreover, it accounts for a non-monotonicity that appears to exist between set size

and the total amount of resource that subjects invest in item encoding. The broader implication of

our findings is that VWM limitations – and cognitive limitations in general – may be driven by a

mechanism that minimizes a cost, instead of by a fixed constraint on available encoding resource.

Limitations
Our theory makes a number of assumptions that need further investigation. First, we have assumed

that the expected behavioral cost decreases indefinitely with the amount of invested resource, such

that in the limit of infinite resource there is no encoding error and no behavioral cost. However,

encoding precision in VWM is fundamentally limited by the precision of the sensory input, which is

itself limited by irreducible sources of neural noise – such as Johnson noise and Poisson shot noise

(Faisal et al., 2008; Smith, 2015) – and suboptimalities in early sensory processing (Beck et al.,

2012). One way to incorporate this limitation is by assuming that there is a resource value �Jinput
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beyond which the expected behavioral cost no longer decreases as a function of �J. In this variant,
�Jinput represents the quality of the input and �Joptimal will never exceed this value, because any addi-

tional resource would increase the expected neural cost without decreasing the expected behavioral

cost.

Moreover, our theory assumes that there is no upper limit on the total amount of resource avail-

able for encoding: cost is the only factor that matters. However, as the brain is a finite entity, the

total amount of resource must obviously have an upper limit. This limit can be incorporated by opti-

mizing Joptimal under the constraint
PN

i¼1
�Joptimal;i � �Jmax, where �Jmax represents the maximum amount

of resource that can be invested. While an upper limit certainly exists, it may be much higher than

the average amount of resource needed to encode information with the same fidelity as the sensory

input. If that is the case, then �Jinput would be the constraining factor and �Jmax would have no effect.

Similarly, our theory assumes that there is no lower limit on the amount of resource available for

encoding. However, there is evidence that task-irrelevant stimuli are sometimes automatically

encoded (Yi et al., 2004; Shin and Ma, 2016), perhaps because in natural environments few stimuli

are ever completely irrelevant. This would mean that there is a lower limit to the amount of resource

spent on encoding. In contradiction to the predictions of our model, such a lower limit would pre-

vent subjects from sometimes encoding nothing at all. For local tasks, such a lower limit can be

incorporated by assuming that probing probability pi is never zero.

We have fitted our model only to data from delayed-estimation experiments. However, it applies

without modification to other local tasks, such as single-probe change detection (Luck and Vogel,

1997; Todd and Marois, 2004) and single-probe change discrimination (Klyszejko et al., 2014).

Further work is needed to examine how well the model accounts for empirical data of such tasks.

Moreover, it should further examine how the theory generalizes to global tasks. One such task could

be whole-report change detection; we presented simulation results for this task but the theory

remains to be further worked out and fitted to the data.

A final limitation is that our theory assumes that items are uniformly distributed and uncorrelated.

Although this is correct for most experimental settings, items in more naturalistic settings are often

correlated and can take non-uniform distributions. In such environments, the expected total cost can

probably be further minimized by taking into account statistical regularities (Orhan et al., 2014).

Moreover, recent work has suggested that even when items are uncorrelated and uniformly distrib-

uted, the expected estimation error can sometimes be reduced by using a "chunking" strategy,

that is, encoding similar items as one (Nassar et al., 2018). However, as Nassar et al. assumed a

fixed total resource and did not take neural encoding cost into account in their optimization, it

remains to be seen whether chunking is also optimal in the kind of model that we proposed. We

speculate that this is likely to be the case, because encoding multiple items as one will reduce the

expected neural cost (fewer items to encode), while the increase in expected behavioral cost will be

negligible if the items are very similar. Hence, it seems worthwhile to examine models that combine

resource rationality with chunking.

Variability in resource assignment
Throughout the paper, we have assumed that there is variability in resource assignment. Part of this

variability is possibly a result of stochastic factors, but part of it may also be systematic – for exam-

ple, particular colors and orientations may be encoded with higher precision than others (Bae et al.,

2014; Girshick et al., 2011). Whereas the systematic component could have a rational basis (e.g.

higher precision for colors and orientations that occur more frequently in natural scenes

[Ganguli and Simoncelli, 2010; Wei and Stocker, 2015]), this is unlikely to be true for the random

component. Indeed, when we jointly optimize �Jand t in Equation 11, we find estimates of t that

consistently approach 0, meaning that any variability in encoding precision is suboptimal under our

proposed cost function. One way to reconcile this apparent suboptimality with the otherwise norma-

tive theory is to postulate that maintaining exactly equal resource assignment across cortical regions

may itself be a costly process; under such a cost, it could be optimal to allow for some variability in

resource assignment. Another possibility is that there are unavoidable imperfections in mental infer-

ence (Drugowitsch et al., 2016) that make it impossible to compute �Joptimal without error, such that

the outcome of the computation will vary from trial to trial even when the stimuli are identical.
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Experimental predictions of incentive manipulations
In the present study, we have focused on effects of set size and probing probability on encoding

precision. However, our theory also makes predictions about effects of incentive manipulations on

encoding precision, because such manipulations affect the expected behavioral cost function.

Incentives can be experimentally manipulated in a variety of ways. One method used in at least

two previously published delayed-estimation experiments is to make the feedback binary ("correct,"

"error") and vary the value of the maximum error allowed to receive positive feedback (Zhang and

Luck, 2011; Nassar et al., 2018). In both studies, subjects in a "low precision" condition received

positive feedback whenever their estimation error was smaller than a threshold value of p/3. Subjects

in the "high precision" condition, however, received positive feedback only when the error was

smaller than p/12 (Zhang and Luck, 2011) or p/8 (Nassar et al., 2018). Neither of the two studies

found evidence for a difference in encoding precision between the low- and high-precision condi-

tions. At first, this may seem to be at odds with the predictions of our model, as one may expect

that it should assign more resource to items in the high-precision condition. To test whether this is

the case, we simulated this experimental manipulation using a behavioral cost function cbehavioral,i(")

that maps values of |"| smaller than the feedback threshold to 0 and larger values to 1. The results

reveal that the model predictions are not straightforward and that it can actually account for the

absence of an effect (Figure 6). In particular, the

simulation results suggest that the experimental

manipulations in the studies by Zhang and Luck

and Nassar et al. may not have been strong

enough to measure an effect. Indeed, another

study has criticized the study by Zhang and Luck

on exactly this point and did find an effect when

using an experimental design with stronger

incentives (Fougnie et al., 2016).

Another method to manipulate incentives is

to vary the amount of potential reward across

items within a display. For example, Klyszejko

and colleagues performed a local change dis-

crimination experiment in which the monetary

reward for a correct response depended on

which item was probed (Klyszejko et al., 2014).

They found a positive relation between the

amount of reward associated with an item and

response accuracy, which indicates that subjects

spent more resource on encoding items with

larger potential reward. This incentive manipula-

tion can be implemented by multiplying the

behavioral cost function with an item-dependent

factor ui, which modifies Equation (11) to
�Joptimal; i ri; l; tð Þ ¼

�J

argmin uipi�cbehavioralð�J; tÞ þ l�Jð Þ.

The coefficients ui and pi can be combined into

a single "item relevance" coefficient ri = uipi,

and all theoretical results and predictions that

we derived for pi now apply to ri.

A difference between the two discussed

methods is that the former varied incentives

within a trial and the latter across trials. How-

ever, both methods can be applied in both ways.

A within-trial variant of the experiments by

Zhang and Luck (2011) and Nassar et al.

(2018) would be a N = 2 task in which one of

the items always has a low positive feedback

threshold and the other a high one. Similarly, a
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Figure 6. Model predictions for a delayed-estimation

task with binary feedback (N = 5). In this experiment,

the observer receives positive feedback (e.g. "correct")

when their estimation error is smaller than the positive

feedback threshold and negative feedback (e.g.

"error") otherwise. We modelled this using a

behavioral cost function that maps errors below the

feedback threshold to a cost of 0 and errors larger than

this threshold to a cost equal to 1. The model predicts

that subjects do not invest any resource when the

feedback threshold is very small (extremely difficult

tasks) or very large (extremely easy tasks), such that the

expected absolute estimation error is p/2 (guessing). In

an intermediate regime, the prediction is U-shaped

and contains a region in which the predicted

estimation error barely changes as a function of

feedback threshold. In this region, any performance

benefit from increasing the amount of invested

resource is almost exactly outdone by the added neural

cost. The dashed lines show the feedback thresholds

corresponding to the "high precision" and "low

precision" conditions in the experiment by

Nassar et al. (2018). Under the chosen parameter

settings (l = 0.08, t = 30), the model predicts that the

average absolute estimation errors in these two

conditions (black circles) are very similar to each other.
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between-trial variant of the experiment by Klyszejko et al. (2014) would be to scale the behavioral

cost function of items with a factor that varies across trials or blocks, but is constant within a trial.

Our model can be used to derive predictions for these task variants, which to our knowledge have

not been previously reported in the published literature.

Neural mechanisms and timescale of optimization
Our results raise the question of what neural mechanism could implement the optimal allocation pol-

icy that forms the core of our theory. Some form of divisive normalization (Bays, 2014;

Carandini and Heeger, 2012) would be a likely candidate, which is already a key operation in neural

models of attention (Reynolds and Heeger, 2009) and visual working memory (Bays, 2014;

Wei et al., 2012). The essence of this mechanism is that it lowers the gain when set size is larger,

without requiring explicit knowledge of the set size prior to the presentation of the stimuli. Consis-

tent with the predictions of this theory, empirical work has found that the neural activity associated

with the encoding of an item decreases with set size, as observed in for example the lateral intrapar-

ietal cortex (Churchland et al., 2008; Balan et al., 2008) and superior colliculus (Basso and Wurtz,

1998). Moreover, the work by Bays (2014) has shown that a modified version of divisive normaliza-

tion can account for the near-optimal distribution of resources across items with unequal probing

probabilities. As set size effects in our model are mediated by probing probability, its predicted set

size effects can probably be accounted for by a similar mechanism.

Another question concerns the timescale at which the optimization takes place. In all experimen-

tal data that we considered here, the only factors that changed from trial to trial were set size (E1-

E7) and probing probability (E7-E9). When we fitted the model, we assumed that the expected total

cost in these experiments was minimized on a trial-by-trial basis: whenever set size or probing prob-

ability changed from one trial to the next, the computation of Joptimal followed this change. This

assumption accounted well for the data and, as discussed above, previous work has shown that divi-

sive normalization can accommodate trial-by-trial changes in set size and probing probability. How-

ever, can the same mechanism also accommodate changes in the optimal resource policy changes

driven by other factors, such as the behavioral cost function, cbehavioral(")? From a computational

standpoint, divisive normalization is a mapping from an input vector of neural activities to an output

vector, and the shape of this mapping depends on the parameters of the mechanism (such as gain,

weighting factors, and a power on the input). As the mapping is quite flexible, we expect that it can

accommodate a near-optimal allocation policy for most experimental conditions. However, top-

down control and some form of learning (e.g. reinforcement learning) are likely required to adjust

the parameters of the normalization mechanism, which would prohibit instantaneous optimality after

a change in the experimental conditions.

Neural prediction
The total amount of resource that subjects spend on item encoding may vary non-monotonically

with set size in our model. At the neural level, this translates to a prediction of a non-monotonic rela-

tion between population-level spiking activity and set size. We are not aware of any studies that

have specifically addressed this prediction, but it can be tested using neuroimaging experiments

similar to previously conducted experiments. For example, Balan et al. used single-neuron recording

to estimate neural activity per item for set sizes 2, 4, and 6 in a visual search task (Balan et al.,

2008). To test for the existence of the predicted non-monotonicity, the same recoding techniques

can be used in a VWM task with a more fine-grained range of set sizes. Even though it is practically

impossible to directly measure population-level activity, reasonable estimates may be obtained by

multiplying single-neuron recordings with set size (under the assumption that an increase in resource

translates to an increase in firing rate and not an increase of neurons used to encode an item). A sim-

ilar method can also assess the relation between an item’s probing probability and the spiking activ-

ity related to its neural encoding.

Extensions to other domains
Our theory might apply beyond working memory tasks. In particular, it has been speculated that the

selectivity of attention arises from a need to balance performance against the costs associated with

spiking (Pestilli and Carrasco, 2005; Lennie, 2003). Our theory provides a normative formalism to
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test this speculation and may thus explain set size effects in attention tasks (Lindsay et al., 1968;

Shaw, 1980; Ma and Huang, 2009).

Furthermore, developmental studies have found that that working memory capacity estimates

change with age (Simmering and Perone, 2012; Simmering, 2012). Viewed from the perspective of

our proposed theory, this raises the question of why the optimal trade-off between behavioral and

neural cost would change with age. A speculative answer is that a subject’s coding efficiency – for-

malized by the reciprocal of parameter a in Equation 7 – may improve during childhood: an increase

in coding efficiency reduces the neural cost per unit of precision, which shifts the optimal amount of

resource to use for encoding to larger values. Neuroimaging studies might provide insight into

whether and how coding efficiency changes with age, for example by estimating the amount of neu-

ral activity required per unit of precision in memory representations.

Broader context
Our work fits into a broader tradition of normative theories in psychology and neuroscience

(Table 4). The main motivation for such theories is to reach a deeper level of understanding by ana-

lyzing a system in the context of the ecological needs and constraints under which it evolved.

Besides work on ideal-observer decision rules (Green and Swets, 1966; KordingKörding, 2007;

Geisler, 2011; Shen and Ma, 2016) and on resource-limited approximations to optimal inference

(Gershman et al., 2015; Griffiths et al., 2015; Vul and Pashler, 2008; Vul, 2009), normative

approaches have also been used at the level of neural coding. For example, properties of receptive

fields (Vincent et al., 2005; Liu et al., 2009; Olshausen and Field, 1996), tuning curves (Att-

neave, 1954; Barlow, 1961; Ganguli and Simoncelli, 2010), neural architecture (Cherniak, 1994;

Chklovskii et al., 2002), receptor performance (Laughlin, 2001), and neural network modularity

(Clune et al., 2013) have been explained as outcomes of optimization under either a cost or a hard

constraint (on total neural firing, sparsity, or wiring length), and are thus mathematically closely

related to the theory presented here. However, a difference concerns the timescale at which the

optimization takes place: while optimization in the context of neural coding is typically thought to

take place at the timescale over which the statistics of the environment change or a developmental

timescale, the theory that we presented here could optimize on a trial-by-trial basis to follow

changes in task properties.

We already mentioned the information-theory models of working memory developed by Chris R.

Sims et al. A very similar framework has been proposed by Chris A. Sims in behavioral economics,

who used information theory to formalize his hypothesis of "rational inattention," that is, the hypoth-

esis that consumers make optimal decisions under a fixed budget of attentional resources that can

be allocated to process economic data (Sims, 2003). The model presented here differs from these

two approaches in two important ways. First, similar to early models of visual working memory limi-

tations, they postulate a fixed total amount of resources (formalized as channel capacity), which is a

constraint rather than a cost. Second, even if it had been a cost, it would have been the expected

value of a log probability ratio. Unlike neural spike count, a log probability ratio does not obviously

map to a biologically meaningful cost on a single-trial level. Nevertheless, recent work has

Table 4. Examples of resource-rationality concepts in neuroscience, psychology, and economics.

Study Optimized quantity Performance term Resource cost/constraint

Efficient coding in neural populations

Ganguli and Simoncelli (2010) Tuning curve spacing and width Fisher information or discriminability Neural activity (constraint)

Olshausen and Field (1996) Receptive field specificity Information Sparsity

Capacity “limitations” in attention and memory

Sims et al. (2012) Information channel bit allocation Channel distortion (e.g. squared error) Channel capacity (constraint)

Van den Berg and Ma (present study) Mean encoding precision Behavioral task accuracy Neural activity (cost)

Rational inattention in consumer choice

Sims (2003) Distribution of attention Channel distortion (e.g. squared error) Channel capacity (constraint)
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attempted to bridge rational inattention and attention in a psychophysical setting (Caplin et al.,

2018).

Materials and methods

Data and code sharing
Data from experiments E1-E7 (Table 1) and Matlab code for model fitting and simulations are avail-

able at http://dx.doi.org/10.5061/dryad.nf5dr6c.

Statistical analyses
Bayesian t-tests were performed using the JASP software package (JASP Team, 2017) with the scale

parameter of the Cauchy prior set to its default value of 0.707.

Model fitting
We used a Bayesian optimization method (Acerbi and Ma, 2017) to find the parameter vector � ¼

b; l; tf g that maximizes the log likelihood function,
Pn

i¼1
logp "i; pi; �ð Þ, where n is the number of trials

in the subject’s data set, "i the estimation error on the ith trial, and pi the probing probability of the

probed item on that trial. To reduce the risk of converging into a local maximum, initial parameter

estimates were chosen based on a coarse grid search over a large range of parameter values. The

predicted estimation error distribution for a given parameter vector � and probing probability pi was

computed as follows. First, �Joptimal was computed by applying Matlab’s fminsearch function to Equa-

tion 11. Thereafter, the gamma distribution over J (with mean �Joptimal and shape parameter t) was

discretized into 50 equal-probability bins. The predicted (Von Mises) estimation error distribution

was then computed under the central value of each bin. Finally, these 50 predicted distributions

were averaged. We verified that increasing the number of bins used in the numerical approximation

of the integral over J did not substantially affect the results.

Model comparison using cross-validation
In the cross-validation analysis, we fitted the models in the same way as described above, but using

only 80% of the data. We did this five times, each time leaving out a different subset of 20% of the

data (in the first run we left out trials 1, 6, 11; in the second run we left out trials 2, 7, 12, etc.). At

the end of each run, we used the maximum-likelihood parameter estimates to compute the log likeli-

hood of the 20% of trials that were left out. These log likelihood values were then combined across

the five runs to give an overall cross-validated log likelihood value for each model.
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Relation between Fisher information J and concentration
parameter k
As we are only considering stimuli with circular domains, we assume that memory encoding

errors follow a Von Mises distribution with a concentration parameter k,

p "jkð Þ ¼
1

2pI0 kð Þ
ekcos "ð Þ; (15)

where I0 is the modified Bessel function of the first kind of order 0. We measure encoding

precision as Fisher information, J, which measures the performance of the best possible

unbiased decoder. Substituting Equation 15 into the definition of Fisher information, we find

that J and k are one-to-one related through

J ¼ k
I1 kð Þ

I0 kð Þ
(16)

Encoding precision J is a monotonically increasing function of k and therefore invertible.

However, the inverse is not analytic, so we use numerical inversion to compute the mapping

from J to k when fitting models.

Mathematical proofs of some properties of the resource-
rational model for local tasks
In this section, we prove three properties of the general model that we presented for "local"

tasks, that is, tasks in which responses depend on a single item. This model is characterized by

Equation 11,

�Joptimal;i pi;lð Þ ¼
�J

argmin pi�cbehavioral �Jð Þþl�Jð Þ; (17)

where �J � 0, pi 2 0; 1½ �, and l � 0, and we left out the dependence on the parameter t for

notational convenience. We will also use the derivative of the local expected total cost,

�ctotal �Jð Þ ¼ pi�cbehavioral
0 �Jð Þþl; (18)

where �cbehavioral is the derivative of the expected behavioral cost.

We will now prove that the following three claims hold under rather general assumptions

about the shape of the expected behavioral cost function in this model:

Claim 1. When neural coding is costly (l >0), it is optimal to encode items with a finite

amount of resource;

Claim 2. It is sometimes optimal not to encode a task-relevant item;

Claim 3. When each item is equally likely to be probed, pi = 1/N, the optimal amount of

resource per item decreases with set size.

Assumptions about the expected behavioral cost
We construct our proofs under two intuitive and general assumptions about the expected

behavioral cost function �cbehavioral �Jð Þ:

Assumption 1. Expected behavioral cost is a monotonically decreasing function of resource:

whenever more resource is invested, the expected behavioral cost is lower. This means that

�cbehavioral �Jð Þ � 0 for all �J.

Assumption 2. A law of diminishing returns: when adding a bit of extra resource, the

resulting decrease in �cbehavioral �Jð Þ is lower in magnitude when �J is higher. This means that
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�cbehavioral
0 �Jð Þ is monotonically increasing, that is, �cbehavioral

00 �Jð Þ for all �J. As a consequence,

�cbehavioral
0 �Jð Þ takes its lowest value at �J ¼ 0 and its largest as �J ! ¥.

Both assumptions are satisfied by the behavioral cost function that we used for fitting

human data, namely cbehavioral(";b)=|"|
b. Examples of the expected behavioral cost function

under this choice and its first and second derivative are presented in Appendix 1—figure 1.

Appendix 1—figure 1. Examples of the expected behavioral cost function and its first and sec-

ond derivative under a behavioral cost function cbehavioral(")=|"|
b. Different colors represent

different choices of parameters b and t (randomly drawn).

DOI: https://doi.org/10.7554/eLife.34963.016

Three scenarios
We now return to the problem of calculating �Joptimal, Equation 17. We are interested in the

value �J 2 0;¥½ Þ that minimizes the expected total cost, �ctotal �Jð Þ. We separately consider the

following three scenarios: the minimum lies on the left boundary (0), on the right boundary (¥),

or in between.

Scenario 1: �ctotal �Jð Þ is monotonically decreasing across the domain
of �J, so �Joptimal ! ¥.
When does this happen? The monotonic decrease means that �ctotal

0 �Jð Þ � 0 for all �J, or

equivalently, pi�cbehavioral
0 �Jð Þ � �l for all �J. As we assume �cbehavioral

0 �Jð Þ to be monotonically

increasing (Assumption 2), its largest value is attained at �J ! ¥. Therefore, pi�cbehavioral
0 �Jð Þ � �l

is equivalent to pi�cbehavioral ¥ð Þ � �l, or (using Assumption 1) pij�cbehavioral
0
¥ð Þj � l: This means

that it is optimal to invest infinite resource when pi exceeds a critical value p
¥
:

�Joptimal ¼¥ when pi � p¥ �
l

j�cbehavioral 0 ¥ð Þj
:

The condition pi �p¥ is satisfied when l = 0. This makes sense: when neural cost plays no

role, there is no reason not to invest more. Other than that, the condition will rarely if ever be

satisfied, as every expected behavioral cost function that we can think of has the property

j�cbehavioral
0
¥ð Þj ¼ 0: as the amount of invested resource approaches infinity, there is no

behavioral benefit in investing more resource (note that p
¥
has a domain [0,¥), not [0,1]).

Therefore, unless neural cost plays no role, we do not expect it to be optimal to invest an

infinite amount of resource in an item.

In tasks where pi is one-to-one related to set size, the above result can be reformulated in

terms of set size. In particular, when probing probabilities are equal, pi ¼
1

N
, the above result

implies that there exists a set size N
¥
(in general not an integer) below which it is optimal to

invest infinite resource in each item:

�Joptimal ¼¥ when N �N¥ �
1

p¥
¼
j�cbehavioral

0
¥ð Þj

l
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Scenario 2: �ctotal �Jð Þ is monotonically increasing across the domain of
�J, so �Joptimal ¼ 0.
The monotonic increase means that �ctotal

0 �Jð Þ � 0 for all �J, or equivalently, pi�cbehavioral
0 �Jð Þ � �l

for all �J. As we assume �cbehavioral
0 �Jð Þ to be monotonically increasing (Assumption 2), its smallest

value is attained at �J ! ¥. Therefore, pi�cbehavioral
0 �Jð Þ � �l is equivalent to pi�cbehavioral

0
0ð Þ � �l,

or (using Assumption 1) pij�cbehavioral
0
0ð Þj � l. This means that it is optimal to invest no resource

when pi is smaller than or equal to a critical value p0:

�Joptimal ¼ 0 when pi � p0 �
l

j�cbehavioral 0 0ð Þj

A similar condition was derived in our earlier work (de Silva and Ma, 2018) for the case of

a fixed total amount of resource (hard constraint).

The condition pi� p0 is satisfied when pi = 0. This makes sense: when an item never gets

probed, one should not invest any resource. More generally, when probing probability is

sufficiently low, the behavioral cost function is sufficiently shallow at 0, and neural cost is

sufficiently important, it is not worth investing any resource on encoding. The expression for

p0 also makes clear that the optimal amount of resource is never 0 when the slope of the

behavioral cost function at 0 approaches �¥.

In tasks where pi is one-to-one related to set size, the above result can be reformulated in

terms of set size. In particular, when probing probabilities are equal, pi ¼
1

N
, the above result

implies that there exists a set size N0 (in general not an integer) beyond which it is optimal to

not invest any resource in any item:

�Joptimal ¼ 0 when N �N0 �
1

p0
¼
j�cbehavioral

0
0ð Þj

l
:

Intuitively, this means that when set size is too large, the chances of success are too low

and one should not even try.

Scenario 3: �ctotal �Jð Þ has a stationary point, so �Joptimal is finite and
nonzero.
We will now consider the remaining scenario, which is the complement of Scenarios 1 and 2; in

particular, we can take l >0 and pi >0. The stationary point of �ctotal �Jð Þ will always be a

minimum, as the second derivative �ctotal
00 �Jð Þ is equal to �cbehavioral

00 �Jð Þ, which is always positive

(Assumption 2). At the minimum, we have �ctotal �Jð Þ ¼ 0, from which it follows that

�cbehavioral
0 �Jð Þ ¼ � a

pi
at the minimum. As the left-hand side is monotonically increasing as a

function of �J (Assumption 2), the minimum is either a single point or a single interval, but there

cannot be multiple disjoint minima. Graphically, this equation describes the intersection

between �cbehavioral
0 �Jð Þ, which is a monotonically increasing function, and a flat line at a value

� l
pi
(Appendix 1—figure 2). The value of at which this intersection occurs necessarily

increases with pi.
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Appendix 1–figure 2. Graphical illustration of the solution to the cost-minimization problem

that determines the value of �Joptimal. The cost-minimizing value of solution of �J lies at the

intersection between the derivative of the expected behavioral cost function (black curve) and

a flat line at a value –l/pi (colored lines). This value (indicated with arrows) necessarily

increases with pi. The parameter values used in this simulation were the same as those used to

generate Figure 2D and E (l = 0.01, b = 2, t#0).

DOI: https://doi.org/10.7554/eLife.34963.017

Three regimes for probing probability
So far, we have assumed a given probing probability pi. Now suppose that for a given

�cbehavioral �Jð Þ and a given l, we increase pi from 0 to 1:

. The first regime is pi� p0. There, Scenario 2 applies and �Joptimal ¼ 0: the item does not get

encoded at all.
. The second regime is p0 <pi < p

¥
; there, Scenario 3 applies and �Joptimal monotonically

increases with pi.
. The third regime is pi �p

¥
. There, Scenario 1 applies and �Joptimal ¼ ¥: the item gets encoded

with infinite resource.

Even though not all regimes might exist for every parameter combination, the model

generally predicts that there is a regime in which �Joptimal increases monotonically with pi

(Figure 1D).

Three regimes for set size
We can similarly examine the experimentally important special case of equal probing

probabilities, pi ¼
1

N
:

The first regime is N � N
¥
. There, Scenario 1 applies and �Joptimal ¼ ¥: all items are encoded

with infinite resource.

The second regime is N
¥
<N <N0. There, Scenario 3 applies and �Joptimal monotonically

decreases with N.

The third regime is N� N0. There, Scenario 2 applies and �Joptimal ¼ 0: no items are encoded

at all.

Even though not all regimes might exist for every parameter combination, the model

generally predicts that there is a regime in which �Joptimal decreases monotonically with N

(Figure 1E).

Conclusion
In conclusion, given Equation (17) and two additional assumptions, we have proven the

following:

. Investing infinite resource in an item is only optimal when pij�cbehavioral
0
¥ð Þj � l. In practice,

this might only happen when neural cost is unimportant (l = 0). This proves Claim 1.
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. Investing no resource in an item is optimal when pij�cbehavioral
0
0ð Þj � l. This can happen even

when the probing probability pi is nonzero. This proves Claim 2.
. �Joptimal is a monotonically increasing function of pi. In particular, if pi ¼

1

N
, then �Joptimal is a

monotonically decreasing function of N. This proves Claim 3.

All three results hold more generally than we have shown here: we can replace the neural

cost term l�J in Equation (17) by any function cneural �Jð Þ whose derivative is positive and

monotonically increasing. The proofs proceed along the same lines (see below).

Special case: fixed-precision model
For the fixed-precision model (variable-precision model with t # 0), Equation (12) in the main

text takes the form

�cbehavioral Jð Þ ¼

Z

p

�p

cbehavioralð"ÞVMð";JÞd":

We wish to evaluate p0 �
l

j�cbehavioral 0ð Þj. First, we evaluate the derivative of �cbehavioral Jð Þ using the

chain rule:

d�cbehavioral

dJ
¼
d�cbehavioral

dk

dk

dJ
: (19)

Using Equation (15), the first factor is

d�cbehavioral
dk

¼ d
dk

R

p

�p

cbehavioralð"Þ
1

2pI0ðkÞ
ekcosð"Þd"

¼ 1

2p

R

p

�p

cbehavioralð"Þ
d
dk

1

I0ðkÞ
ekcosð"Þ

� �

d"

¼ 1

2p

R

p

�p

cbehavioralð"Þ
d
dk

� I0
0ðkÞ

I0ðkÞ
2 e

kcosð"Þþ cosð"Þ
I0ðkÞ

ek
� �

d"

¼ 1

2p

R

p

�p

cbehavioralð"Þ
d
dk

� I1ðkÞ

I0ðkÞ
2 e

kcosð"Þþ cosð"Þ
I0ðkÞ

ek
� �

d"

(20)

where in the last line we used I0 kð Þ ¼ I1 kð Þ (see Eq. 9.6.27 in Abramowitz and Stegun [1972]).

We next evaluate the second factor in Equation (19) using Equation (16):

dk
dJ
¼ dJ

dk

� ��1
¼ d

dk

kI1 kð Þ
I0 kð Þ

� �� ��1

¼ �ppaI0 kð Þ2�kI1 kð ÞI0 kð Þ

I0 kð Þ2

� ��1

¼ k 1� I1 kð Þ2

I0 að Þ2

� �� ��1

;

(21)

where in the third equality, we used d
dk
ðkI1ðkÞÞ ¼ kI0ðkÞ (see Eq. 9.6.28 in [Abramowitz &

Stegun, 1972]). We now combine Equation (20) and Equation (21) into Equation (19) and the

result in turn in the expression for p0. We also realize that the limit J # 0 is, using

Equation (16), equivalent to the limit 0. Putting everything together, we find

p0 ¼ l
k#0
lim j

k 1�
I1 kð Þ2

I0 kð Þ2

� �

1

2p

R

p

�p

cbehavioral "ð Þ �
I1 kð Þ

I0 kð Þ2
ekcos"þ cos"

I0 kð Þ
ek

� �

d"

j ¼ 0.

We conclude that in our theory for delayed-estimation, assuming the expected behavioral

cost function from the fixed-precision model, it is only optimal to invest no resource at all into

an item when that item has zero probability of being probed.

Generalization to other neural cost functions
So far, we have assumed that the expected neural cost is linear in resource, Equation (8).

Relaxing this assumption, Equation (17) for local tasks becomes
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�Joptimal;i pi;lð Þ ¼
�J

argmin pi�cbehavioral �Jð Þþl�cneural �Jð Þð Þ:

The derivative of the local expected total cost becomes

�ctotal �Jð Þ ¼ pi�cbehavioral
0 �Jð Þþl�cneural

0 �Jð Þ:

The three claims above still hold if we modify the two assumptions to

Assumption 1’. �cbehavioral
0 �Jð Þ

�cneural 0 �Jð Þ
� 0 for all �J.

Assumption 2’. �cbehavioral
0 �Jð Þ

�cneural 0 �Jð Þ
is monotonically increasing for all �J.

The proofs are completely analogous, with �cbehavioral �Jð Þ replaced by �cbehavioral
0 �Jð Þ

�cneural 0 �Jð Þ
.

Optimal decision rule for the change detection task
In our simulation of the change detection task, we assume that observers use a Bayesian

decision rule. This rule is to report "change" whenever the posterior ratio of change presence

over change absence exceeds 1,

p changepresentjx;yð Þ

p changeabsentjx;yð Þ
>1;

where x and y denote the vectors of noisy measurements of the items in the first and

second displays, respectively. Under the Von Mises noise assumption, and assuming a flat

prior on change presence, this decision rule evaluates to (Keshvari et al., 2013)

1

N

X

N

i¼1

I0 kx;i
� �

I0 ky;i
� �

I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x;iþk2x;i þ 2kx;iky;icos yi� xið Þ
q� �>1;

where kx,i and ky,i denote the concentration parameters of the Von Mises distributions

associated with the observations of the items at the ith location in the first and second

displays, respectively. The predicted probability of a correct response for a given resource

vector, p errorj�J
� �

, is not analytic, but can easily be computed using Monte Carlo simulations.
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