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Abstract 36 

The hepatitis B virus (HBV) is one of the most widespread human pathogens known today, 37 

yet its origin and evolutionary history are still unclear and controversial. Here, we report the 38 

analysis of three ancient HBV genomes recovered from human skeletons found at three 39 

different archaeological sites in Germany. We reconstructed two Neolithic and one medieval 40 

HBV genomes by de novo assembly from shotgun DNA sequencing data. Additionally, we 41 

observed HBV-specific peptides using paleo-proteomics. Our results show that HBV 42 

circulates in the European population for at least 7000 years. The Neolithic HBV genomes 43 

show a high genomic similarity to each other. In a phylogenetic network, they do not group 44 

with any human-associated HBV genome and are most closely related to those infecting 45 

African non-human primates. These ancient virus forms appear to represent distinct lineages 46 

that have no close relatives today and possibly went extinct. Our results reveal the great 47 

potential of ancient DNA from human skeletons in order to study the long-time evolution of 48 

blood borne viruses. 49 

 50 
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Introduction 52 

The hepatitis B virus (HBV) is one of the most widespread human pathogens, with worldwide 53 

over 250 million people being infected, and an annual death toll of about 1 million globally 54 

(WHO, 2017). Infection of liver cells with HBV leads to acute hepatitis B, which is self-55 

limiting in about 90-95% of cases. In about 5-10% of infected individuals virus clearance fails 56 

and patients develop chronic infection of hepatitis B, which puts them at lifelong elevated risk 57 

for liver cirrhosis and liver cancer (hepatocellular carcinoma). HBV is usually transmitted by 58 

contact with infectious blood, in highly endemic countries often during birth (WHO, 2017). 59 

HBV has a circular, partially double-stranded DNA genome of about 3.2kbp that encodes four 60 

overlapping open reading frames (P, pre-S/S, pre-C/C, and X). Based on the genomic 61 

sequence diversity, HBVs are currently classified into 8 genotypes (A-H) and numerous 62 

subgenotypes that show distinct geographic distributions (Castelhano et al., 2017). All 63 

genotypes are hypothesised to be primarily the result of recombination events (Littlejohn et 64 

al., 2016; Simmonds and Midgley, 2005). To a lesser extent, HBV evolution is also driven by 65 

the accumulation of point mutations (Schaefer 2007, Araujo 2015). 66 

Despite being widespread and well-studied, the origin and evolutionary history of HBV is still 67 

unclear and controversial (Littlejohn et al., 2016, Souza et al., 2014). HBVs in non-human 68 

primates (NHP), for instance in chimpanzees and gorillas, are phylogenetically closely related 69 

to, and yet distinct from, human HBV isolates, supporting the notion of an Africa origin of the 70 

virus (Souza et al., 2014). Molecular-clock based analyses dating the origin of HBV have 71 

resulted in conflicting estimates with some as recent as about 400 years ago (Zhou and 72 

Holmes, 2007, Souza et al., 2014). These observations have raised doubts about the suitability 73 

of molecular dating approaches for reconstructing the evolution of HBV (Bouckaer et al., 74 

2103, Souza et al., 2014). Moreover, ancient DNA (aDNA) research on HBV-infected 75 

mummies from the 16th century AD revealed a very close relationship between the ancient 76 

and modern HBV genomes (Kahila Bar-Gal et al., 2012, Patterson Ross et al., 2018), 77 

indicating a surprising lack of temporal genetic changes in the virus during the last 500 years 78 

(Patterson Ross et al., 2018). Therefore, diachronic aDNA HBV studies, in which both the 79 

changes in the viral genome over time as well as the provenance and age of the archaeological 80 

samples, are needed to better understand the origin and evolutionary history of the virus. 81 

Here, we report the analysis of three complete HBV genomes recovered from human skeletal 82 

remains from the prehistoric Neolithic and Medieval Periods in Central Europe. Our results 83 

show that HBV already circulated in the European population more than 7000 years ago. 84 
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Although the ancient forms show a relationship to modern isolates they appear to represent 85 

distinct lineages that have no close modern relatives and are possibly extinct today. 86 

  87 
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Results and Discussion 88 

We detected evidence for presence of ancient HBV in three human tooth samples as part of a 89 

metagenomic screening for viral pathogens that was performed on shotgun sequencing data 90 

from 45 skeletons using the metagenomic alignment software MALT (Vagene et al., 2018). 91 

The remains of the individuals were excavated from the Neolithic sites of Karsdorf 92 

(Linearbandkeramik [LBK], 5056–4959 cal BC) and Sorsum (Tiefstichkeramik group of the 93 

Funnel Beaker culture, 3335-3107 cal BC), the medieval cemetery of Petersberg/Kleiner 94 

Madron (1020-1116 cal AD), all located in Germany (Fig. A, Supplementary Figure S1-S3). 95 

After the three aDNA extracts had appeared HBV-positive in the initial virus screening, they 96 

were subjected to deep-sequencing without any prior enrichment resulting in 367 to 419 97 

million reads per sample (table 1). Analysis of the human DNA recovered from Karsdorf (3-98 

fold genomic coverage) revealed that the sample clusters tightly with other contemporary 99 

early Neolithic individuals from the LBK (Supplementary Figure S12). The genetic makeup 100 

of the early LBK agriculturalists was previously found quite distinct from the preceding 101 

western hunter gatherers of Europe. The genetic shift between both populations was 102 

interpreted as a result of early farmers migrating from Western-Anatolia into Central Europe 103 

introducing agriculture (Lazaridis et al. 2014, Haak et al. 2015). The almost 2000 years 104 

younger Sorsum individual (1.2-fold genomic coverage) is most closely related with 105 

individuals from the contemporary Funnel Beaker culture that inhabited Northern Germany at 106 

the end of the 4th millenium BCE (Supplementary Figure S12). This population was 107 

previously shown to be quite admixed, as a result of a spatial and temporal overlap of early 108 

Neolithic farmers and remaining western hunter gatherers for almost 2000 years (Bollongino 109 

et al. 2013, Haak et al. 2015). The Petersberg individual (2.9-fold genomic coverage) showed, 110 

genetic affinities with modern day central European populations, typical for individuals from 111 

that time. All three ancient human individuals are therefore in agreement with the 112 

archaeological evidence and radiocarbon dates for their respective time of origin. Together 113 

with typical aDNA damage patterns (Supplementary Figures S4-S5), the human population 114 

genetic investigation supports the ancient origin of the obtained datasets. 115 

For successful HBV genome reconstruction, we mapped all metagenomic sequences to 16 116 

HBV reference genomes (8 human genotypes (A-H) and 8 NHP genotypes from Africa and 117 

Asia) that are representative of the current HBV strain diversity (Supplementary Table S6). 118 

The mapped reads were used for a de novo assembly, resulting in contigs from which one 119 

ancient HBV consensus sequence per sample was constructed. The consensus genomes are 120 

3161 (46-fold coverage), 3182 (47-fold coverage), and 3183 (105-fold coverage) nucleotides 121 
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in length, which falls in the length range of modern HBV genomes and suggests that we 122 

successfully reconstructed the entire ancient HBV genomes (table 1, Supplementary Figure 123 

S6-S8). Further, when we conducted liquid chromatography-mass spectrometry (LC-MS) 124 

based bottom-up proteomics on tooth material from the three individuals, we identified in the 125 

Karsdorf and Petersberg samples a peptide that is part of the very stable HBV core protein, 126 

supporting the presence and active replication of HBV in the individuals’ blood 127 

(Supplementary Figure S18). 128 

Phylogenetic network analysis was carried out with a dataset comprised of 493 modern HBV 129 

strains representing the full genetic diversity. Strikingly, the Neolithic HBV genomes did not 130 

group with any human strain in the phylogeny. Instead, they branched off in two lineages and 131 

were most closely related to the African NHP genomes (Fig. B, 93% similarity). Although the 132 

two Neolithic strains were recovered from humans who had lived about two thousand years 133 

apart, they showed a higher genomic similarity to each other than to any other human or NHP 134 

genotype. Still, their genomes differed by 6% from each other and may therefore be 135 

considered representatives of two separate lineages. They did, however, differ less than 8% 136 

from the African NHP strains and should therefore not be called a separate genotype. The 137 

genome from the 1000-year-old Petersberg individual clustered with modern D4 genotypes. 138 

Owing to continuous recombination over time, different gene segments or modules of the 139 

ancestral genomes can show up in various subsequent virus generations. Such precursors have 140 

been postulated (Simmonds and Midgley, 2005) and their existence is supported by the results 141 

of our recombination analysis (Supplementary Figure S14-S17, source data 1). Some 142 

fragments of the Karsdorf sequences appeared to be very similar to modern human (G, E) and 143 

African NHP genotypes, and the Sorsum genome partially showed a high similarity to the 144 

human genotypes G, E and B. (Supplementary Figure S14-S15, S17, source data 1). Given the 145 

close relationship between the two Neolithic virus genomes, it is also conceivable that the 146 

older HBV from Karsdorf could have been a distant source for the younger Sorsum virus 147 

(Supplementary Figure S14-S15, S17, source data 1). The closer relationship between the 148 

Neolithic and the NHP strains compared to other human strains is noteworthy and may have 149 

involved reciprocal cross-species transmission at one or possibly several times in the past 150 

(Simmonds and Midgley, 2005, Souza et al., 2014, Rasche et al. 2016).  151 

Taken together, our results demonstrate that HBV already existed in Europeans 7000 years 152 

ago and that its genomic structure closely resembled that of modern hepatitis B viruses. Both 153 

Neolithic viruses fall between the present-day modern human and the known NHP diversity. 154 

Therefore, it can be hypothesized that although the two Neolithic HBV strains are no longer 155 
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observed today and thus may reflect two distinct clades that went extinct, they could still be 156 

closely related to the remote ancestors of the present-day genotypes, which is supported by 157 

signs of ancient recombination events. More ancient precursors, intermediates and modern 158 

strains of both humans and NHPs need to be sequenced to disentangle the complex evolution 159 

of HBV. As this evolution is characterized by recombination and point mutations and may 160 

further be complicated by human-ape host barrier crossing (Simmonds and Midgley, 2005, 161 

Souza et al., 2014, Rasche et al. 2016), genetic dating is not expected to yield meaningful 162 

results. This is additionally supported by a TempEst analysis (Rambaut et al., 2016) that 163 

shows very little temporal signal (Supplementary Figure S10).  It should, however, be noted 164 

that the oldest genome (Karsdorf) was found in an individual that belonged to a population of 165 

early farmers that had migrated in the previous few hundred years from the Near East into 166 

central Europe. One might speculate that the close proximity to recently domesticated 167 

animals, changes in subsistence strategy as well as the adopted sedentary lifestyle might have 168 

contributed to the spread of HBV within Neolithic human populations. 169 

Based on our analysis, HBV DNA can reliably be detected in tooth samples that are up to 170 

7000 years old. Ancient HBV has so far only been identified in soft tissue from two 16th-171 

century mummies (Kahila Bar-Gal et al., 2012, Patterson Ross et al., 2018). The aDNA 172 

analysis of HBV from prehistoric skeletons, which facilitates evolutionary studies on a 173 

temporal scale as deep, has not been described up to now. One explanation for the difficulty 174 

of a molecular HBV diagnosis in bones is that the virus infection does not leave lesions on 175 

skeletal remains that would allow researchers to select affected individuals a priori, as it is the 176 

case for instance for leprosy (Schuenemann et al., 2013). The diagnosis of an HBV infection 177 

in skeletal populations is purely a chance finding and is thus more probable in a large-scale 178 

screening. 179 

Overall, HBV biomolecules seem to be well preserved in teeth: Avoiding biases from DNA 180 

capture and reference-based mapping we could reconstruct three HBV genomes by de novo 181 

assembly from shotgun data and even observed HBV-specific peptides. The ratio of HBV 182 

genomes to the human genome in our samples was rather high and similar in all three samples 183 

(Karsdorf 35:1, Sorsum 40.2:1 and Petersberg 16:1). As there is no evidence that HBV DNA 184 

is more resistant to postmortem degradation than human DNA, the high rate of HBV 185 

compared to human DNA may reflect the disease state in the infected individuals at the time 186 

of death. High copy numbers of viral DNA in the blood of infected individuals are associated 187 

with acute HBV infection, or reactivation of chronic HBV. Thus, it seems likely that the death 188 

of the ancient individuals is related to the HBV infection, but might not be the direct cause of 189 
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death as fulminant liver failure is rather rare in modern day patients. The HBV infection 190 

might have instead contributed to other forms of lethal liver failure such as cirrhosis or liver 191 

cancer. 192 

 193 

In view of the unexpected complexity of our findings, we envisage future diachronic HBV 194 

studies that go beyond the temporal and geographic scope of our current work. 195 

  196 
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Materials and Methods 197 

 198 

Human remains 199 

The LBK settlement of Karsdorf, Saxony-Anhalt, Germany, is located in the valley of the 200 

river Unstrut. Between 1996-2010 systematic excavations were conducted at Karsdorf that led 201 

to the discovery of settlements and graves from the Neolithic to the Iron Age (Behnke, 2007, 202 

2011, 2012). The LBK is represented by 24 longhouses in north-west to south-east orientation 203 

that were associated with settlement burials (Veit, 1996). The investigated individual 537 is a 204 

male with an age at death of around 25-30 years (Supplementary Figure S1), dated to 5056–205 

4959 cal BC (KIA 40357 – 6116 ± 32 BP) (Brandt et al., 2014, Nicklisch, 2017). 206 

The gallery grave of Sorsum, Lower-Saxony, Germany, is typologically dated to the 207 

Tiefstichkeramik (group of the Funnelbeaker culture). Sorsum is exceptional as it was built 208 

into the bedrock. During the excavations (1956-1960) of the grave chamber around 105 209 

individuals were recovered (Claus, 1983, Czarnetzki, 1966). Individual XLVII 11 analyzed in 210 

this study is a male (Supplementary Figure S2) and dates to 3335-3107 cal BC (MAMS 211 

33641 – 4501 ± 19 BP). 212 

The medieval cemetery on the Petersberg/Kleiner Madron, Bavaria, Germany, lies on a hill 213 

top at 850 meters asl and 400 meters above the floor of the Inn Valley. On the eastern part of 214 

the cemetery, which is under discussion here, members of a priory were buried that was most 215 

likely established in the late 10th century. Written sources document its existence from 1132 216 

onwards (Meier, 1998). During systematic excavations (1997-2004) in the southeastern part 217 

of the churchyard 99 graves with a higher, but hardly determinable number of individuals 218 

were uncovered. The examined individual in grave 820 is a male with an age at death of 219 

around 65-70 years (Lösch, 2009 – Supplementary Figure S3) dating to 1020-1116 cal AD 220 

(MAMS 33642 – 982 ± 17 BP). 221 

 222 

DNA extraction and sequencing 223 

The DNA extractions and pre-PCR steps were carried out in clean room facilities dedicated to 224 

aDNA research. Teeth were used for the analyses. The samples from Petersberg and Sorsum 225 

were processed in the Ancient DNA Laboratory at Kiel University and the sample from 226 

Karsdorf in the Ancient DNA Laboratory of the Max Planck Institute for the Science of 227 

Human History (MPI SHH) in Jena. All procedures followed the guidelines on contamination 228 

control in aDNA studies (Warinner et al., 2017, Key et al., 2017). The teeth were cleaned in 229 

pure bleach solution to remove potential contaminations prior to powdering. Fifty milligrams 230 
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of powder were used for extraction following a silica-based protocol (Dabney et al., 2013). 231 

Negative controls were included in all steps. 232 

From each sample, double-stranded DNA sequencing libraries (UDGhalf) were prepared 233 

according to an established protocol for multiplex high-throughput sequencing (Meyer and 234 

Kircher, 2010). Sample-specific indices were added to both library adapters via amplification 235 

with two index primers. Extraction and library blanks were treated in the same manner. For 236 

the initial screening, the library of the individual from Karsdorf was sequenced on 1/50 of a 237 

lane on the HiSeq 3000 (2x75 bp) at the MPI SHH in Jena and the libraries from Petersberg 238 

and Sorsum were sequenced on the Illumina HiSeq 4000 (2x75 bp) platform at the Institute of 239 

Clinical Molecular Biology, Kiel University, using the HiSeq v4 chemistry and the 240 

manufacturer’s protocol for multiplex sequencing. Deep-sequencing for each of the three 241 

samples was carried out on 2 lanes on the Illumina HiSeq 4000 platform at the Institute of 242 

Clinical Molecular Biology, Kiel University. 243 

 244 

Metagenomics data processing, screening, and analyses  245 

The datasets for the three ancient samples comprised paired-end reads. The adapter sequences 246 

were removed and overlapping paired-end reads were merged with ClipAndMerge which is a 247 

module of the EAGER pipeline (Peltzer et al., 2016). The metagenomic viral screening was 248 

carried out using MALT (Vagene et al., 2018) and the NCBI viral RefSeq database. All three 249 

samples showed HBV-specific reads. In order to obtain all HBV related sequencing reads we 250 

mapped against a multi-fasta reference containing one representative of each genotype (A-H) 251 

and eight ape strains using BWA (Li and Durbin, 2010) (Supplementary Table S6). Mapped 252 

reads were extracted from the BAM file, converted to FASTQ and a de novo assembly using 253 

SPAdes (Bankevich et al., 2012) was carried out. Resulting contigs for each K-value where 254 

checked and the k-value that spawned the longest contigs was selected as criteria for further 255 

analysis. The contigs were re-mapped with BWA against the multi-fasta reference. The 256 

resulting alignment was visually inspected in IGV v 2.3.92 (Thorvaldsdóttir et al., 2013) to 257 

archive information about contig order and direction. Based on that information, a consensus 258 

sequence was constructed from the contigs. 259 

We assembled a comprehensive set of reference genomes using 5497 non-recombinant 260 

genomes available at hpvdb (https://hbvdb.ibcp.fr/HBVdb/HBVdbDataset?seqtype=0) and a 261 

previously defined set of 74 ape-infecting HBV genomes. In order to reduce the actual 262 

number of genomes used for subsequent inferences but retain the full range of known HBV 263 

diversity, we clustered all sequences using UClust v 1.1.579 (Edgar et al., 2010). We 264 
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extracted the centroid sequences based on a sequence identity of at least 97%, which resulted 265 

in 493 representative genomes. Those genomes together with all available ancient genomes 266 

were aligned using Geneious version 10.1.2 (Kearse et al., 2012) with a 65% similarity cost 267 

matrix, a gap open penalty of 12 and a gap extension penalty of 3. The multiple sequence 268 

alignment was stripped of any sites (columns) that had gaps in more than 95% of sequences. 269 

The complete alignment including all modern and ancient genomes is available as multi-fasta 270 

in source data 2. The alignment was used to construct a network with the software SplitsTree 271 

v4 (Huson and Bryant, 2006), creating a NeighborNet (Bryant and Moulton, 2004) with 272 

uncorrected P distances. 273 

 274 

Recombination analysis 275 

We performed recombination analysis using all modern full reference genomes (n=493) and 276 

five ancient genomes used for the network analysis (see above). The methods RDP, 277 

GENECOV, Chimera, MaxChi, BootScan, SiScan, 3Seq within RDP v4 (Martin et al., 2015) 278 

with a window size of 100 nt and the parameter set to circular genome with and without 279 

outgroup reference (results are provided in source data 1) and SimPlot v 3.5.1 (Lole et al. 280 

1999, Supplementary Figure S14-S17) were applied to the data set. 281 

 282 

Human population genetic analyses 283 

Mapping of the adapter-clipped and merged FASTQ files to the human reference genome 284 

hg19 was done using BWA (Li and Durbin, 2010) using a reduced mapping stringency of “-n 285 

0.01” and the mapping quality parameter “q 30”. The mapped sequencing data was 286 

transformed into the Eigenstrat format (Price et al., 2006) and merged with a dataset of 287 

1.233.013 SNPs (Haak et al., 2015, Mathieson et al., 2015). Using the software Smartpca 288 

(Patterson et al., 2006) the three samples and previously published ancient populations were 289 

projected onto a base map of genetic variation calculated from 32 West Eurasian populations 290 

(Supplementaryt Figure S11-S13). 291 

 292 

Sex determination 293 

Sex determination was assessed based on the ratio of sequences aligning to the X and Y 294 

chromosomes compared to the autosomes (Skoglund et al., 2013). 295 

 296 

LC-MS based bottom-up proteomics 297 
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Proteins were extracted from powdered tooth samples (50 mg) using a modified filter-aided 298 

sample preparation (FASP) protocol as previously described (Cappellini et al., 2013, 299 

Warinner et al., 2014). Samples were digested using trypsin and analyzed by LC-MS/MS. 300 

Protein identification was performed using the SequestHT (Thermo Scientific) search engine 301 

in a combined database comprising the full Swiss protein database (468,716 entries), a 302 

hepatitis B data base (7 entries) and a common contaminant list. Further details regarding the 303 

LC-MS/MS analysis and database search parameters are given in the supplementary 304 

information and Supplementary Figure S19. 305 

  306 
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Figure Legends 543 

 544 

 545 

Fig A. Origin of samples 546 

Geographic location of the samples from which ancient HBV genomes where isolated. 547 

Radiocarbon dates of the specimens is given in 2 sigma range. Icon indicate the sample 548 

material (tooth or mummy). HBV genomes obtained in this study indicated by black frame. 549 
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 550 

Fig B Network  551 

Network of 495 modern, two published ancient genomes (light yellow box), and three ancient 552 

hepatitis B virus (HBV) obtained in this study (grey box). Colors indicating the 8 human 553 

HBV Genotypes (A-H), two monkey genotypes (Monkeys I, African apes and Monkeys II, 554 

Asian monkeys) and ancient genomes (red).  555 

 556 

  557 
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Tables 558 
 559 
Table 1. Results of the genome reconstruction. 560 
 561 
 # Merged 

reads 

Length of 

HBV 

consensus 

sequence 

mean HBV 

coverage 

Gaps in the 

consensus 

sequence at 

nt position 

# mapped 

reads HBV 

# mapped 

reads human 

mean 

human 

coverage 

human 

genomes/ 

HBVgenomes 

Karsdorf 386,780,892 3183 104X 2157-2175; 
3107-3128; 
3133-3183 

10,718 122,568,310 2.96X 1 : 35.1 

Sorsum 367,574,767 3182 47X - 3,249 9,856,001 1.17X 1 : 40.2 

Petersberg 419,413,082 3161 46X 880-1000; 
1232-1329; 
1331-1415; 
1420-1581; 
1585-1598 

2,125 105,476,677 2.88X 1 : 16 

# - number 562 
nt - nucleotide 563 
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