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Abstract Alzheimer’s and Parkinson’s disease are late onset neurodegenerative diseases that

will require therapy over decades to mitigate the effects of disease-driving proteins such tau and a-

synuclein (a-Syn). Previously we found that TRIM28 regulates the levels and toxicity of a-Syn and

tau (Rousseaux et al., 2016). However, it was not clear how TRIM28 regulates a-Syn and it was not

known if its chronic inhibition later in life was safe. Here, we show that TRIM28 may regulate a-Syn

and tau levels via SUMOylation, and that genetic suppression of Trim28 in adult mice is compatible

with life. We were surprised to see that mice lacking Trim28 in adulthood do not exhibit behavioral

or pathological phenotypes, and importantly, adult reduction of TRIM28 results in a decrease of a-

Syn and tau levels. These results suggest that deleterious effects from TRIM28 depletion are

limited to development and that its inhibition adulthood provides a potential path for modulating

a-Syn and tau levels.

DOI: https://doi.org/10.7554/eLife.36768.001

Introduction
Neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) occur in

the later decades of life and have no curative therapy. Therefore, future treatments for these disor-

ders must be administered over decades, which means that safety profiles of therapeutic targets are

of utmost importance. The advent of alternative therapies such as antisense oligonucleotides, gene

therapy and immunotherapy, together with traditional pharmacology have made it such that almost

any molecule can be targeted. More and more, the extent to which a target is druggable hinges on

the safety and specificity of its targeting over time.

We recently demonstrated that TRIM28 regulates the steady state levels of the neurodegenera-

tion-driving proteins a-Synuclein (a-Syn) and tau (Rousseaux et al., 2016). However, given the criti-

cal roles of TRIM28 in mammalian development (Cammas et al., 2000), its tractability as a

therapeutic target remains questionable. For instance, complete loss of Trim28 in mice causes early

embryonic lethality due to pre-implantation defects (Cammas et al., 2000), and specific deletion of

this gene in the developing tissues cause a host of defects (Cheng et al., 2014; Fasching et al.,
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2015; Trono, 2015). Moreover, haploinsufficiency of TRIM28 is expected to have deleterious out-

comes in humans (pLI = 1.00, ExAC; [Lek et al., 2016]). This may be due in part due to the multiple

functions of TRIM28 within the cell including the repression of endogenous retroviral elements, main-

tenance of pluripotency, epigenetics and mitophagy (Barde et al., 2013; Czerwińska et al., 2017;

Oleksiewicz et al., 2017; Singh et al., 2015; Wolf and Goff, 2009). Given the importance of

TRIM28 for development, it remains unclear whether TRIM28 is critical for adult brain function, and

whether it may safely be targeted in adulthood. Specifically, two questions remain related to the tar-

geting of TRIM28 pharmacologically: (1) Is there a pharmacologically tractable domain in TRIM28

that could be targeted by a drug? (2) Is genetic suppression of TRIM28 in the brain and throughout

the body tolerated in adulthood? To test this, we performed studies to pinpoint the mechanism by

which TRIM28 regulates a-Syn and tau and generated two animal models to disrupt Trim28 in vivo,

thus establishing its druggability in adulthood.

Results and discussion
We previously found that TRIM28 regulates the post-translational stability of a-Syn and tau and that

this effect is mediated by two critical cysteines in its RING domain (C65 and C68; [Rousseaux et al.,

2016]). We hypothesized that TRIM28 may act as an E3 SUMO ligase (Liang et al., 2011;

Neo et al., 2015; Yang et al., 2013) toward a-Syn and tau via this domain for three reasons: (1)

TRIM28 interacts only weakly with a-Syn and tau (Rousseaux et al., 2016) and is therefore unlikely

to act solely as a stabilizing factor via these residues; (2) TRIM28 mediates the nuclear localization of

a-Syn and tau and SUMOylation is thought to play a critical role in influencing subcellular localization

(Hay, 2005); and (3) Given the post-translational stabilization effect of TRIM28 on a-Syn and tau

(Rousseaux et al., 2016), we surmised that SUMOylation may help prevent polyubiquitination, thus

increasing their overall bioavailability. To test whether SUMOylation itself regulates the levels of a-

Syn and tau, we inhibited the sole E2 SUMO ligase, UBC9, via RNAi and pharmacological inhibition

(using Viomellein [Hirohama et al., 2013]). We found that both approaches were sufficient to

decrease a-Syn and tau, suggesting that SUMOylation indeed regulates their steady state levels

(Figure 1A). We next asked whether TRIM28 mediates the SUMOylation of a-Syn and tau. We first

tested this in cells and found that knockdown of endogenous TRIM28 decreased native a-Syn and

tau SUMOylation whereas ectopic overexpression of TRIM28 increased their SUMOylation

(Figure 1B). Interestingly, when we mutated a catalytic RING domain of TRIM28 (C65A/C68A), we

could inhibit a-Syn and tau SUMOylation (Figure 1B). This was consistent with our previous findings

that mutating this residue impeded a-Syn and tau stabilization and nuclear localization

(Rousseaux et al., 2016). However, mutant TRIM28 (C65A/C68A) was less stable than its wildtype

form in all assays. Thus, whether these findings are due to decreased SUMOylation or to a change in

TRIM28 protein stability is difficult to discern. To further test whether Trim28 regulates a-Syn and

tau SUMOylation, we performed SUMOylation assays on endogenous a-Syn and tau from brain

lysates (under denaturing conditions) from wild-type and Trim28+/- mice. We found that a-Syn and

tau SUMOylation were significantly reduced in Trim28 haploinsufficient mice (Figure 1C).

TRIM28 has several important functions throughout the cell (Cheng et al., 2014;

Czerwińska et al., 2017; Dalgaard et al., 2016; Fasching et al., 2015; Liang et al., 2011;

Neo et al., 2015; Singh et al., 2015), and its loss of function in mice is embryonic lethal

(Cammas et al., 2000). We asked whether one of its domains can be specifically targeted for future

therapeutic use without disrupting the others. Given that two conserved critical cysteine residues in

its RING domain (Figure 1—figure supplement 1A) regulate TRIM28 function toward a-Syn and

tau, we hypothesized that mutating residues critical for its endogenous catalytic activity would be

the most promising approach. We therefore generated a knockin mouse carrying mutations in its

RING domain (Figure 1—figure supplement 1B). We found that mutating these residues, despite

decreasing a-Syn and tau levels significantly, caused a dramatic destabilization of TRIM28 protein

(Figure 1—figure supplement 1C–D). Moreover, homozygosity for the these E3 mutant allele

caused embryonic lethality, a feature consistent with the effects of a null allele. Thus, mutating the

RING domain of TRIM28 decreases a-Syn and tau levels, but does so by disrupting its structure and

stability (Figure 1—figure supplement 1D).

Rousseaux et al. eLife 2018;7:e36768. DOI: https://doi.org/10.7554/eLife.36768 2 of 16

Research advance Neuroscience

https://doi.org/10.7554/eLife.36768


Figure 1. Trim28 mediates the SUMOylation of a-Syn and tau. (A) Blocking SUMOylation – by either pharmacological inhibition using viomellein or

siRNA-mediated suppression of the sole SUMO E2 ligase, UBC9 – decreases a-Syn and tau levels by western blot. (B) SUMO assay in human cells

reveals that TRIM28 mediates the formation of SUMO2 adducts on a-Syn and tau. This effect is lost upon mutation of the RING domain of TRIM28

Figure 1 continued on next page
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Since TRIM28 has critical roles in development, we next asked whether we could bypass these

defects by knocking down Trim28 in the postnatal mouse brain (Figure 2—figure supplement 1A).

We used an AAV carrying both an shRNA targeting Trim28 and a YFP reporter. We found that the

virus was widely expressed throughout the brain (Kim et al., 2013) and that mice receiving an

shRNA against Trim28 had a 75% depletion of Trim28 in their brain (Figure 2—figure supplement

1B). Importantly, these mice developed normally until at least 10 weeks of age. We evaluated corti-

cal and hippocampal thickness and astrocytosis in these mice and did not note any significant

defects (Figure 2—figure supplement 1C).

Given that synucleinopathies and tauopathies most often occur in the later decades of life, thera-

peutics should therefore accurately mimic this late-stage disruption. To test whether late stage inhi-

bition of Trim28 is therapeutically tractable, we generated Trim28 adult knockout mice. This was

done by crossing a whole body, tamoxifen-inducible Cre (UBC-CreERT2, [Ruzankina et al., 2007])

with mice carrying a floxed Trim28 allele (Cammas et al., 2000). We waited until the animals were

8–12 weeks old before starting a 4 week tamoxifen regimen to ablate Trim28 (Figure 2A). To our

surprise, we found that adult depletion did not result in early lethality nor overt phenotypes. Instead,

adult knockout mice lived for the duration of the study (over 40 weeks post-tamoxifen injection,

Figure 2B). We tested whether Trim28 is effectively ablated in these mice and found that Trim28 lev-

els were reduced by over 75% in each tissue tested (both at the RNA and protein level; Figure 2C,D

and Figure 2—figure supplement 2A–C). Importantly, a-Syn and tau levels were also decreased in

multiple brain regions, corroborating our previous findings using germline haploinsufficient mice

(Rousseaux et al., 2016).

An important aspect of measurable safety margins in the depletion of a gene is its impact on neu-

ronal function. To assess whether loss of Trim28 in adult mice impacts brain structure and function,

we performed a battery of behavioral and histological tests. We found that Trim28 adult knockout

mice behaved similarly to their control littermate counterparts in every test assayed. Specifically, no

defects were observed in motor behavior, anxiety, perseverative movements and memory

(Figure 3A–H). Consistent with this, we could not discern any gross histological defects nor signs of

inflammation (as measured by GFAP immunoreactivity) in the brain (Figure 4A–C). We further tested

Trim28 levels via immunostaining and found that, while Trim28 was highly expressed in the brain

(confirming our western and qPCR results), it was depleted in the adult knockout (Figure 4—figure

supplement 1A). A previous study highlighted several gene expression changes in mice lacking

Trim28 in forebrain excitatory neurons starting from postnatal day 14 (Jakobsson et al., 2008). We

tested the expression of these genes in the hippocampus using qPCR and found that, while the

directionality of changes was consistent with the previous study, there was a broad dampening of

this effect in the adult knockout mice (Figure 4—figure supplement 1B). This may be due to the

later stage depletion of Trim28 or the incomplete deletion of Trim28 (there is 15–20% remaining in

most adult knockouts) and may account for the slight behavioral abnormalities observed in the

reported juvenile forebrain-specific Trim28 knockouts (Jakobsson et al., 2008) versus the whole-

body adult Trim28 knockouts.

Given that the adult knockout affects the whole body, we examined regions of the body that

could be vulnerable to Trim28 loss-of-function-induced toxicity. We assessed general morphology of

the heart, liver and spleen and found no discernable defects in the adult knockout mice compared

to littermate controls (Figure 4—figure supplement 2). Moreover, blood chemistry in these mice

appeared normal (Figure 4—figure supplement 3).

Taken together, our study suggests that adult depletion of more than 75% of total Trim28 from

the mouse body does not result in overt neurobehavioral phenotypes nor does it cause gross

Figure 1 continued

(TRIM28-Mut). (C) In vivo SUMO assay from denatured mouse brain lysates of WT and Trim28+/- mice. Snca-/- and Mapt-/- mice and IP: IgG serve as

negative controls. *, **, *** and ns denote p<0.05, p<0.01, p<0.001 and p>0.05, respectively.

DOI: https://doi.org/10.7554/eLife.36768.002

The following figure supplement is available for figure 1:

Figure supplement 1. Ablating endogenous Trim28 catalytic activity dramatically reduces its stability, concomitantly decreasing a-Syn and tau levels.

DOI: https://doi.org/10.7554/eLife.36768.003
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histological or biochemical defects. This is consistent with reports that deletion of TRIM28 in termi-

nally differentiated muscle does not cause obesity (Dalgaard et al., 2016). These findings hold

important implications for therapeutic targeting of Trim28 in diseases such as AD and PD where an

Figure 2. Trim28 adult knockout mice are viable and demonstrate reduced a-Syn and tau levels. (A) Experimental approach to delete Trim28 from the

adult body. (B) Kaplan-Meier survival curve of Adult knockout mice (UBC-CREERT2; Trim28flox/flox + TAM vs littermate controls). No significant differences

in survival are observed. (C) qPCR analysis for Trim28 expression in midbrain (MB), cortex (CTX) and hippocampus (HIP) of Trim28 adult knockout mice

and control littermates. (D) Western blot analysis of a-Syn, tau and Trim28 levels in hippocampi from Trim28 adult knockout mice and control

littermates. In (B), n = 14–33 per group. In (C and D), n = 12–13 per group.

DOI: https://doi.org/10.7554/eLife.36768.004

The following figure supplements are available for figure 2:

Figure supplement 1. Perinatal suppression of Trim28 in the brain is safe and decreases a-Syn and tau levels.

DOI: https://doi.org/10.7554/eLife.36768.005

Figure supplement 2. a-Syn and tau levels are reduced in multiple brain regions from Trim28 adult knockout mice.

DOI: https://doi.org/10.7554/eLife.36768.006
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Figure 3. Adult depletion of Trim28 does not cause behavioral abnormalities. Adult knockout mice and littermate controls were subjected to: (A) Open

field assay where total distance, speed, vertical activity and time in center were measured over a period of 30 min. (B) Parallel rod footslip analysis

where number of footslips and time spent immobile were measured on a grid over a period of 10 min. (C) Pole test where the time to turn and descend

were measured to a mouse on top (facing upward) of a 18’ pole. (D) Elevated plus maze measured the time spent in open vs. closed arms during a

period of 10 min. (E) Pavlovian conditioned fear analysis in both context and cued settings (day 2). (F) Novel object recognition assay showing the

discrimination index for identifying the novel vs. familiar object. (G) Hole poke analysis of repetitive behavior measuring the number of sequential nose

Figure 3 continued on next page
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Figure 4. Adult depletion of Trim28 does not cause pathological abnormalities in the adult brain. Representative photomicrographs of the cortex,

hippocampus and cerebellum stained with (A) H and E and (B) GFAP. (C) Quantification of cortical and hippocampal width as well as normalized GFAP

intensity. For each test, n = 3; ns denotes p>0.05.

DOI: https://doi.org/10.7554/eLife.36768.008

The following figure supplements are available for figure 4:

Figure supplement 1. Trim28 is expressed in the adult brain and can be effectively excised from adult mice.

DOI: https://doi.org/10.7554/eLife.36768.009

Figure supplement 2. Adult depletion of Trim28 does not cause peripheral pathological abnormalities.

DOI: https://doi.org/10.7554/eLife.36768.010

Figure supplement 3. Loss of Trim28 in adult mice does not disrupt global blood chemistry or iron homeostasis.

DOI: https://doi.org/10.7554/eLife.36768.011
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inhibitor targeting TRIM28 may hold promise in the future with minimal side effects. Given the high

expression of Trim28 in the adult mouse brain, additional characterization of these adult knockout

animals will provide important insights into the potential of Trim28 downregulation in the context of

disease; any physiological tradeoffs that may be incurred will thus be elucidated.

An important point of consideration moving forward into therapeutics is the mechanism by which

TRIM28 regulates the steady state levels of a-Syn and tau. While our data suggest that TRIM28

forms a complex with a-Syn and tau (Rousseaux et al., 2016) and mediates their SUMOylation, we

were not able to reconstitute this complex in a cell-free system, suggesting that other factors may

be at play. Furthermore, while disruption of TRIM28 E3 ligase activity in vivo reduced a-Syn and tau

levels, it likely did so by destabilization of TRIM28 itself. Thus, it is still unclear whether this inhibition

represents a loss of enzymatic function or simply a structural loss. Further studies looking at the

effect of this inhibition in adulthood or targeting other domains that may mediate TRIM28 SUMOyla-

tion may hold promise. For instance, the bromodomain of TRIM28 could be an alternative target

given that a mutation in cysteine 651 to an alanine (C651A) reduces its SUMOylation activity on

another target, VPS34 (Yang et al., 2013). Alternatively, SUMOylation of a-Syn and tau via Trim28

may only be a partial or bystander effect. Additional studies in cell-free systems and in organisms

will thus be crucial to look for factors that mediate this relationship to yield global mechanistic

insight on regulation. Most importantly, this study highlights the importance of testing the loss of

function of lethal variants in the adult. While databases such as ExAC and GnomAD (Lek et al.,

2016) offer a window into the pathogenicity of variants in development, it should not be the only

factor guiding target selection; especially for neurodegenerative conditions where treatment will

often only occur in the later decades of life.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Strain, strain background
(M. musculus)

Trim28E3MT (C66A, C69A, R72G) This study Pure C57Bl/6J background

Strain, strain background
(M. musculus)

Trim28flox B6.129S2(SJL)-
Trim28tm1.1Ipc/J

Jackson laboratory Stock #018552 Pure C57Bl/6J background

Strain, strain background
(M. musculus)

UBC-CreERT2 B6.Cg-Ndor1
Tg(UBC-cre/ERT2)1Ejb/1J

Jackson laboratory Stock #007001 Pure C57Bl/6J background

Strain, strain background
(M. musculus)

FVB/NCrl Charles River Code #207 Pure C57Bl/6J background

Strain, strain background
(M. musculus)

Trim28+/- Rousseaux et al. (2016);
this study

Crossing Jax stock #018552
to #006054

Strain, strain background
(M. musculus)

Snca-/- B6;129 � 1-Sncatm1
Rosl/J

Jackson laboratory Stock #003692

Strain, strain background
(M. musculus)

Mapt-/- B6.129 � 1-Mapttm1
Hnd/J

Jackson laboratory Stock #007251

Cell line (H. sapiens) 293T ATCC CRL-3216

Cell line (H. sapiens) 293T-shScram This study; shScram
from
Rousseaux et al. (2016).

293 T cells infected with
retrovirus (pMSCV) harboring
shScramble. Selected with
1 mg/mL of puromycin for at
least 1 week before
commencing experimentation

Cell line (H. sapiens) 293T-shTRIM28 This study; shTRIM28 from
Rousseaux et al. (2016).

293 T cells infected with
retrovirus (pMSCV) harboring
shTRIM28. Selected with
1 mg/mL of puromycin for at
least 1 week before
commencing experimentation

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Transfected construct
(H. sapiens)

Flag-SUMO2 This study

Transfected construct
(H. sapiens)

pKH3-HA-TRIM28 Addgene #45569

Transfected construct
(H. sapiens)

pKH3-HA-TRIM28-C65A/
C68A

Rousseaux et al.
(2016); Addgene

#92199

Transfected construct
(H. sapiens)

pKH3 Addgene #12555

Transfected construct
(M. musculus)

AAV8-YFP-shScramble This study accgcctgaagtctctgattaa

Transfected construct
(M. musculus)

AAV8-YFP-shTrim28 This study ttgttgaactgtttgaacatgc

Antibody alpha-synuclein (C-20),
Rabbit polyclonal

Santa Cruz
Biotechnology

sc-7011-R This antibody has been
discontinued.

Antibody alpha-synuclein (Clone 42),
Mouse monoclonal

BD Biosciences 610786

Antibody Tau, Rabbit polyclonal Dako A0024

Antibody Tau (Tau-5), Mouse
monoclonal

Abcam ab80579

Antibody Trim28 (20C1), Mouse
monoclonal

Abcam ab22553

Antibody SUMO2/3, Rabbit
polyclonal

Abcam ab3742

Antibody Flag (M2), Mouse
monoclonal

Sigma Aldrich F1804

Antibody UBC9, Goat polyclonal Novus Biologicals NB300-812

Antibody Vinculin (hVIN-1), Mouse
monoclonal

Sigma Aldrich V9131

Antibody GFAP (G-A-5), Mouse
monoclonal

Sigma Aldrich G3893

Sequence-based reagent
(M. musculus), qPCR

Mkrn3-f ccatggagaaatatgcgaca

Sequence-based reagent
(M. musculus), qPCR

Mkrn3-r ctgagctgcatcccaagg

Sequence-based reagent
(M. musculus), qPCR

Tcf5-f tgatgcaatccggatcaa

Sequence-based reagent
(M. musculus), qPCR

Tcf5-r cacgtgtgttgcgtcagtc

Sequence-based reagent
(M. musculus), qPCR

Pcdhb6-f gccactagaagggctcgaat

Sequence-based reagent
(M. musculus), qPCR

Pcdhb6-r tgtctccacatctagctgcaa

Sequence-based reagent
(M. musculus), qPCR

Klhdc4-f cctggacaaaagttgacatcc

Sequence-based reagent
(M. musculus), qPCR

Klhdc4-r caaactccccaccgaagac

Sequence-based reagent
(M. musculus), qPCR

Stac2-f tgtctactagaaatcggtagccaag

Sequence-based reagent
(M. musculus), qPCR

Stac2-r agcgtcttgttctccacctg

Sequence-based reagent
(M. musculus), qPCR

Smad3-f ctcttggagcacatcctggt

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Sequence-based reagent
(M. musculus), qPCR

Smad3-r gcccagctggaaatatgc

Sequence-based reagent
(M. musculus), qPCR

Cdkn1c-f caggacgagaatcaagagca

Sequence-based reagent
(M. musculus), qPCR

Cdkn1c-r gcttggcgaagaagtcgt

Sequence-based reagent
(M. musculus), qPCR

C1ql2-f tcacgtaccacattctcatgc

Sequence-based reagent
(M. musculus), qPCR

C1ql2-r tgttgctggcgtagtcgta

Sequence-based reagent
(M. musculus), qPCR

Snca-f gaagacagtggagggagctg

Sequence-based reagent
(M. musculus), qPCR

Snca-r caggcatgtcttccaggatt

Sequence-based reagent
(M. musculus), qPCR

Mapt-f gagaatgccaaagccaagac

Sequence-based reagent
(M. musculus), qPCR

Mapt-r gtgagtccaccatgtcgatg

Sequence-based reagent
(M. musculus), qPCR

Trim28-f gctgctgccctgtctacatt

Sequence-based reagent
(M. musculus), qPCR

Trim28-r cacactggacaatccaccat

Sequence-based reagent
(M. musculus), qPCR

S16-f aggagcgatttgctggtgtgg

Sequence-based reagent
(M. musculus), qPCR

S16-r gctaccagggcctttgagatg

Sequence-based reagent
(H. sapiens), siRNA

siScramble ThermoFisher
Scientific

AM4611

Sequence-based reagent
(H. sapiens), siRNA

siUBC9 ThermoFisher
Scientific

AM16708-120322

Chemical compound,
drug

Viomeillin BioViotica BVT-0359-C500

Chemical compound,
drug

N-ethylmaleimide (NEM) Sigma Aldrich E3876-5G

Chemical compound,
drug

Tamoxifen Sigma Aldrich T5648-5G

Cell culture
Cell culture was performed as previously described (Rousseaux et al., 2016). Briefly, HEK293T cells

(ATCC CRL-3216; RRID:CVCL_0063, authenticated by manufacturer but not by researcher) devoid of

mycoplasma were cultured in complete DMEM (DMEM +10% FBS+1 x antibiotic/antimycotic). Cells

were plated in 6-well or 24-well plates for SUMOylation assays (see below) or siRNA and drug treat-

ment, respectively. For the latter, cells were treated with 20 nM of indicated siRNAs or 10 mm Vio-

mellein (or DMSO control) for 72 hr prior to lysis and western blot.

SUMOylation assays
a-Syn and tau SUMOylation were assayed in cells as follows. Briefly, HEK293T cells were transfected

with 3 mg Flag-SUMO2 and TRIM28 variants for 48 hr. Cells were harvested in cold PBS and spun

down at 5,000 RPM for five minutes at 4˚C. Cells were then lysed in SUMO lysis buffer (1% Triton

X-100, 150 mM NaCl, 10 mM Tris pH 8.0, 10% glycerol, 20 mM N-ethyl maleimide and protease

inhibitors [Roche]) for 40 min on ice with occasional vortexing. Cell debris were spun down at 15,000

RPM for 20 min at 4˚C. Lysates were applied to Dynabeads (Protein G, 15 mL slurry) that were previ-

ously washed and then conjugated to 1 mg of antibody (a-Syn, C-20 Santa Cruz Biotechnology;
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discontinued; tau, tau-5 Abcam; RRID:AB_304171) and incubated with rotation for 2 hr at 4˚C. This
sub-threshold pull-down allowed us to bypass the regulatory effect of TRIM28 on a-Syn and tau.

Bound proteins were vigorously washed (to remove any interactors which themselves may be

SUMOylated) four times in 500 mL of SUMO lysis buffer and eluted for 10 min at 95˚C for down-

stream western blot analysis. For each condition, either cell lines stably knocking down TRIM28

(shTRIM28) or non-silencing (shScramble) were used. In addition, TRIM28, TRIM28-Mut and control

constructs were co-transfected at 300 ng per well (1:10 ratio to SUMO concentration). Alternatively,

Flag-SUMO2 was pulled down using Flag-M2 magnetic beads (20 ml slurry, Sigma; RRID:AB_

2637089) under denaturing conditions (first boiling the sample prior to the IP). Each SUMOylation

assay was performed three independent times.

For the in vivo SUMOylation assay, mouse brains were harvested in RIPA buffer containing prote-

ase and phosphatase inhibitors (GenDepot). Samples were boiled for 5 min at 95˚C, following which

antibodies (2.5 mg) targeting a-Syn (C-20, SCBT) or Tau (Tau-5, Abcam) were incubated overnight

with rotation at 4˚C. Antibody-lysate complexes were bound to Dynabeads (25 ml, Protein G) for 2 hr

at 4˚C with rotation and then washed vigorously 5 � 1 mL in wash buffer (50 mM Tris pH 7.3, 170

mM NaCl, 1 mM EDTA, 0.5 % NP-40). Bound protein was eluted in Laemlli buffer at 85˚C for 10 min.

Lysates were run on SDS-PAGE followed by Western blot and SUMOylated species were detected

by probing for SUMO2/3 (Abcam; RRID:AB_304041).

Generation of Trim28E3MT mice.
Trim28E3MT mice on a pure C57Bl/6J background were generated via CRISPR/Cas9-mediated gene

editing (Wang et al., 2013). Briefly, an sgRNA targeting the 5’ of Trim28 was synthesized by direct

PCR from pX330 (gift from Zhang lab, Addgene #42230) and in vitro transcribed with the MEGA-

shortscript T7 Transcription kit (Invitrogen) using the following two primers (forward: 5’-TTAATAC-

GACTCACTATAGGGCGTGTGTCGCGAGCGCCTGGTTTTAGAGCTAGAAATAGC-3’; reverse: 5’-

AAAAGCACCGACTCGGTGCC-3’). A single stranded oligodeoxynucleotide (ssODN) was purchased

from IDT for homologous-directed recombination introducing the C66A, C69A and R72G mutations

in Trim28 (5’-CTGCAGCCGCGTCGTCCCCTGCGGGGGGCGGTGGCGAGGCGCAGGAGCTTTTA-

GAACATGCCGGTGTCGCCAGGGAAGGACTCAGACCAGAACGGGATCCTCGGCTGCTGCCCTG

TCTACATTCGGCCTGCAGTGCCTGCCTGGGCCCCGCTACACCCGCCGCAGCGAATAA

TTCGGGGGATGGCGGCTCGG-3’). The PAM (protospacer adjacent motif) and additional adjacent

synonymous mutations were introduced to increase editing efficiency and allow for simple genotyp-

ing by differential primer hybridization. On the day of injection, Cas9 protein (PNA Bio), sgRNA and

repair template (ssODN) were injected (pronuclear) into ova from C57Bl/6 female mice and trans-

ferred into oviducts of pseudopregnant females. The following primers were used to distinguish the

E3 mutant allele (forward: 5’-TTGGCGGCGAGCGCACTTGC-3’; reverse: 5’-CCCTGGCGA-

CACCGGCATG-3’ or forward: 5’-CATGCCGGTGTCGCCAGGGA-3’; reverse: 5’-TCCCACAGGACA

TACCTGGTTAGCATCCTGG-3’) from the wildtype allele (forward: 5’-TTGGCGGCGAGCGCAC

TTGC-3’; reverse: 5’-TCGCGACACACGCCGCAGTG-3’ or 5’-CACTGCGGCGTGTGTCGCGA-3’;

reverse: 5’-TCCCACAGGACATACCTGGTTAGCATCCTGG-3’). Founder mice were backcrossed at

least three times prior to experimentation to get rid of potential off-target mutations.

Tamoxifen injections
Tamoxifen injections were performed as previously described (Sztainberg et al., 2015). Briefly, start-

ing at 8–12 weeks of age, tamoxifen or vehicle (peanut oil) was injected intraperitoneally at a dose

of 100 mg/kg, three times a week for four weeks. Mice were left to recover for at least two weeks

before proceeding with behavioral, biochemical and histological assessment.

AAV generation and P0 injections
An AAV8 vector containing both YFP and a miRE cassette-containing shRNA (Fellmann et al., 2013)

under the control of the chicken beta actin (CBA) promoter was generated using Gibson cloning.

Individual shRNA sequences were generating using the splaSH algorithm (Pelossof et al., 2017).

Each shRNA vector was tested for efficiency in Neuro2A cells prior to virus generation.

AAV delivery was carried out in neonatal (P0) FVB mouse pups as previously described

(Kim et al., 2013). Briefly, neonatal pups (<8 hr from birth) were separated from lactating dams and
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anesthetized on ice. 1 � 1011 viral genomes were injected per ventricle (total of 2 � 1011 genomes

per mouse) and mice were left to recover on a heated pad before returning them to their mother.

Tissue from the caudal region of the cerebrum (cortex + hippocampus) was harvested ten weeks

post injection as this region had the maximal viral expression (YFP positive signal) and offered opti-

mal Trim28 knockdown by qPCR. RNA extraction was performed using the RNeasy mini kit (Qiagen).

Behavioral analysis
Behavioral analysis was performed by an experimenter blind to the treatment and genotype of the

animals. Animal behavior was conducted between 10 am and four pm for each test and was carried

out when the animals were 14–22 weeks old (6–10 weeks post tamoxifen injection). The open-field

analysis (Lu et al., 2017), parallel rod footslip (Ure et al., 2016), pole test (Rousseaux et al., 2012),

elevated plus maze (Lu et al., 2017), conditioned fear (Lu et al., 2017), novel object recognition

(Antunes and Biala, 2012), hole poke (Ito-Ishida et al., 2015) and rotarod (Lasagna-Reeves et al.,

2015) were performed as previously described. For each test, mice were left to habituate in the test-

ing room with ambient white noise for 30–60 min prior to testing.

Histological analysis
For frozen sections: Free floating sections (25 mm) were mounted and dried on polarized slides (>48

hr). Slides were then stained for Cresyl violet and GFAP (RRID:AB_2314539) as previously described

(Rousseaux et al., 2016). For GFAP quantification, photomicrographs were taken using the 10x

objective on a Leica DM4000 LED. The percentage of immunoreactive area for GFAP was calculated

using ImageJ. Briefly, each DAB-stained image was converted to 8-bit greyscale and made into a

binary image using a threshold cutoff of 10% for a representative WT section (after which, the same

settings were used for all of the sections in question). Area of interest (Hippocampus or Cortex) was

outlined and total area was measured. Within this area, the ‘Analyze particles’ function was used to

determine the area of each outlined immunoreactive entity. The sum of these entities was set at the

GFAP positive area and the percentage immunoreactive area was presented as GFAP positive area

compared to total area (in %). For cresyl violet staining, the relative width of either the caudal cortex

or the CA1 region of the hippocampus was measured in four independent sections.

For paraffin-embedded sections: Formalin-fixed tissues were embedded in paraffin and sectioned

on a microtome at 5 mm thickness. Sections were deparaffinized in a series of xylene and ethanol

washes before being subjected to antigen retrieval for 10 min at 95˚C in a buffer containing 10 mM

sodium citrate and 0.02% Tween (pH 6.0). Sections were then blocked for one hour at room temper-

ature in PBS + 0.3% Triton X-100 and 5% FBS and stained in blocking buffer containing either 1:400

anti-GFAP (GA5, Sigma) or 1:500 anti-Trim28 (20C1, Abcam) and corresponding secondary antibod-

ies (Vectastain mouse elite ABC kit or Donkey anti-mouse Alexa 488 secondary; RRID:AB_2341099).

Fluorescent sections were counterstained using DAPI. Gross morphology was assessed by perform-

ing hematoxylin and eosin (H and E) staining using standard protocols.

Mouse blood collection
Mice were anaesthetized with isoflurane and blood was collected from the retro-orbital sinus. A cap-

illary was inserted into the medial canthus of the eye of the anaesthetized mouse. Applying a slight

pressure to the capillary allows the blood flow to be directed to a collection tube. After letting the

blood coagulate for 30 min, the serum is collected post centrifugation 4 min at 14,000 r.p.m. for ana-

lyte analysis with Charles River Laboratories. qPCR analysis qPCR was performed as previously

described (Rousseaux et al., 2016). Briefly, 1 mg of RNA isolated from mouse tissue (cortex, hippo-

campus, midbrain, heart, liver and spleen) was reverse transcribed into cDNA. qPCR primers were

designed to span exons to prevent gDNA contamination and can be found in the Key Resources

Table. We used the ddCT method as well as S16 as a loading control to calculate relative transcript

abundance. Due to the multiple transcript measurements, we used multiple t-tests with an FDR cor-

rection of 10% to avoid false discoveries.

Statistical analysis
Experimental analysis was performed in a blinded manner when possible. Statistical tests were per-

formed in accordance with the experimental design. For instance, for simple comparisons we used

Rousseaux et al. eLife 2018;7:e36768. DOI: https://doi.org/10.7554/eLife.36768 12 of 16

Research advance Neuroscience

https://scicrunch.org/resolver/AB_2314539
https://scicrunch.org/resolver/AB_2341099
https://doi.org/10.7554/eLife.36768


Student’s t-test whereas multi-group analyses we used one- or two-way ANOVA followed by a post-

hoc test. For comprehensive statistical coverage of each experiment throughout this manuscript,

please see Supplemental file 1. In each case, *, **, ***, **** and ns denote p<0.05, p<0.01,

p<0.001, p<0.0001 and p>0.05, respectively.
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