
*For correspondence:

jakob.kather@nct-heidelberg.de

(JNK);

niels.halama@nct-heidelberg.de

(NH)

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 14

Received: 27 March 2018

Accepted: 30 August 2018

Published: 04 September 2018

Reviewing editor: Ian Tannock,

Princess Margaret Cancer

Centre, Canada

Copyright Kather et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Topography of cancer-associated immune
cells in human solid tumors
Jakob Nikolas Kather1,2,3,4*, Meggy Suarez-Carmona1,3,
Pornpimol Charoentong1,3, Cleo-Aron Weis5, Daniela Hirsch5, Peter Bankhead6,
Marcel Horning1, Dyke Ferber1,3, Ivan Kel1, Esther Herpel7,8, Sarah Schott9,
Inka Zörnig1,3, Jochen Utikal10,11, Alexander Marx5, Timo Gaiser5,
Herrmann Brenner2,12,13, Jenny Chang-Claude14,15, Michael Hoffmeister12,
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Abstract Lymphoid and myeloid cells are abundant in the tumor microenvironment, can be

quantified by immunohistochemistry and shape the disease course of human solid tumors. Yet,

there is no comprehensive understanding of spatial immune infiltration patterns (‘topography’)

across cancer entities and across various immune cell types. In this study, we systematically

measure the topography of multiple immune cell types in 965 histological tissue slides from N =

177 patients in a pan-cancer cohort. We provide a definition of inflamed (‘hot’), non-inflamed

(‘cold’) and immune excluded patterns and investigate how these patterns differ between immune

cell types and between cancer types. In an independent cohort of N = 287 colorectal cancer

patients, we show that hot, cold and excluded topographies for effector lymphocytes (CD8) and

tumor-associated macrophages (CD163) alone are not prognostic, but that a bivariate classification

system can stratify patients. Our study adds evidence to consider immune topographies as

biomarkers for patients with solid tumors.

DOI: https://doi.org/10.7554/eLife.36967.001
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Introduction
Malignant tumors growing in an immunocompetent host elicit an immune response, evident by the

presence of various inflammatory/immune cell in tumor tissue (Shalapour and Karin, 2015;

Mantovani et al., 2008; Bindea et al., 2013). In order to grow to a clinically relevant size, tumor

cells develop specific escape mechanisms against the immune system by manipulating inflammatory

cells for their benefit (de Visser et al., 2006; Dunn et al., 2002; Fridman et al., 2013). One of the

key strategies is that tumor cells interfere with immune signaling, hijacking immunosuppressive cells

and thereby shaping the immune infiltrate, which allows for tumor cell proliferation (Chen and Mell-

man, 2013; Chen and Mellman, 2017).

These mechanisms have been in the focus of oncology for several years (Kather et al., 2018a).

Currently a number of immunotherapeutic drugs are available which interfere with immune cells in

the tumor microenvironment in order to facilitate tumor control (Becht et al., 2016a; Galluzzi et al.,

2014). However, the complex nature of immune infiltrates impairs the development of more tar-

geted approaches. Specifically, tailored combination treatments are widely proposed as a way to

more effective cancer therapy (Sharma and Allison, 2015a; Sharma and Allison, 2015b;

Zitvogel et al., 2011). Systematically deciphering tumor-immune phenotypes is key to a better

understanding and more effective tailoring of immunotherapies (Greenplate et al., 2016).

Analysis of solid tumor tissue slides by immunohistochemistry (IHC) is the gold standard to assess

tumor immune infiltrate because it allows for exact quantification of type, density and localization of

immune cells (Fridman et al., 2017; Becht et al., 2016b). For more than a decade, digital pathology

has been the method of choice to reliably and reproducibly analyze large cohorts of patient samples

and can provide potential biomarkers for immunotherapy (Becht et al., 2016a; Kather et al., 2016;

Gurcan et al., 2009). Immune cell quantification in digitized tissue has been used to identify robust

and clinically relevant biomarkers in numerous cancer entities, for example in colorectal cancer (CRC)

primary tumors and liver metastases (Galon et al., 2006; Halama et al., 2011; Mlecnik et al.,

2016). Histological analysis of tumor-infiltrating lymphoid cells has been proven to be a reliable and

prognostically relevant marker (Galon et al., 2014; Denkert et al., 2016; International TILs Work-

ing Group 2014 et al., 2015). Antitumor immunity arises in a complex ecosystem of various cell

types that closely interact with one another, such as effector lymphocytes (Li et al., 2016), macro-

phages (Halama et al., 2016; Biswas and Mantovani, 2010), dendritic cells (Gardner and Ruffell,

2016), granulocytes (Coffelt et al., 2016), innate lymphoid cells (Crome et al., 2017), regulatory T

cells (Nishikawa and Sakaguchi, 2010), natural killer cells (Crome et al., 2013; Barrow and

Colonna, 2017), myeloid-derived suppressor cells (Talmadge and Gabrilovich, 2013) and other cell

types (Kather et al., 2017). In tumor tissue, T lymphocytes (T cells) and macrophages are among the

most abundant immune cells and are closely related to clinical outcome (Fridman et al., 2017;

Kather et al., 2017; Fridman et al., 2012; Kather et al., 2018b).

After years of detailed IHC analysis of solid tumor slides, a paradigm for the classification of

tumor-immune phenotypes has emerged and three classes of tumors are generally assumed: ‘cold’

tumors (or ‘immune desert’, showing no immune cell infiltration), ‘immune-excluded’ tumors (with

immune cells aggregating at the tumor boundaries) and ‘hot’ tumors (or ‘inflamed’ tumors, showing

pronounced immune infiltrates in the tumor core (Chen and Mellman, 2017; Lanitis et al., 2017;

Joyce and Fearon, 2015). However, although this classification is generally accepted, it is backed

by surprisingly little quantitative data. Fundamental biological questions regarding this concept are

essentially unanswered, such as: Do these topographies exist in all tumor entities? Is there a differ-

ence between immunotherapy-sensitive and immunotherapy-insensitive tumor types? Does the con-

cept of cold/excluded/hot apply to lymphoid and myeloid cells, or only to one of them? Do all

tumors use the same strategies for immune escape?

In the last years, several large studies have systematically investigated immune-tumor phenotypes

in detail. However, most of these studies were not suitable to distinguish cold, excluded and hot

tumors because they did not look at the tumor core and the invasive margin at the same time. Two

recent studies of immunophenotypes in colorectal cancer (CRC) have shown that the average

immune cell density is higher around the tumor than in the tumor core (Bindea et al., 2013;

Mlecnik et al., 2016). Yet, the concept of cold/excluded/hot tumors was not investigated in these
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studies. Also, other comprehensive studies have not taken spatial patterns of immune cell pheno-

types into account (Becht et al., 2016). Recent large-scale studies have looked at high-dimensional

phenotypes of tumor-infiltrating immune cells, but have not specifically addressed different topogra-

phies (Newell and Davis, 2014; Wong et al., 2016; Newell and Becht, 2018; Kather et al.,

2018c). Another previous study investigated spatial patterns of lymphoid and myeloid cells in human

solid tumors – however, only tissue microarrays (TMA) were included in that study, precluding any

possible differentiation between invasive margin and tumor core (Tsujikawa et al., 2017). Lastly, the

correlation of the tumor immunophenotype to its transcription profile was investigated previously,

but was lacking a spatially resolved approach (Charoentong et al., 2017).

In the present study, we have attempted to close this knowledge gap by a systematic analysis of

a large cohort of various human tumors in a spatially resolved way. In particular, this included a sys-

tematic analysis of the following immune cells: CD3+ T-lymphocytes, CD8+ T-lymphocytes, PD1+ T

lymphocytes, FOXP3+ T lymphocytes (which we assume to be largely ‘regulatory’, although the role

of FOXP3 is more complex (Wang et al., 2007) and CD68+ and CD163+ monocytes/macrophages.

Results

Immune cell densities in major cancer entities
We measured immune cell densities (number of cells per mm2, Figure 1A–B) in 965 immunostained

histological tissue slides (listed in Supplementary file 3) in the pan-cancer cohort in three spatial

compartments per slide (Figure 1C): outer invasive margin (0 – 500 mm outside the tumor invasion

front), inner invasive margin (500 mm to the inside) and in the tumor core. In accordance with previ-

ous studies, colorectal adenocarcinoma primary tumors and liver metastases had a higher cell count

in the outer invasive margin than in the tumor core (Figure 2—figure supplement 2 and Figure 2—

figure supplement 3). Melanoma samples had higher cell counts in the inner tumor than outside of

the tumor for all analyzed cell types. The other tumor types showed less clear-cut patterns, highlight-

ing the need for a more detailed analysis.

Unsupervised clustering of lymphocyte densities separates hot and cold
tumors
As previous studies have assumed the existence of ‘hot’, ‘cold’ and ‘immune excluded’ tumors with

regard to lymphocyte infiltration, we assessed our data set for evidence of this clustering. We used

cell densities for CD3+ and CD8+ cells in all three spatial compartments and used multiple methods

to determine the optimal number of clusters. For CD3 and CD8 separately as well as for both

together, the majority of the optimization runs converged on two clusters (Figure 2—figure supple-

ment 4), mostly representing ‘hot’ and ‘cold’ tumors. There was no strong tendency to converge on

three clusters, which means that there is no strong inherent grouping into ‘hot’, ‘cold’ and ‘immune

excluded’ tumors.

Conceptual definition of hot, cold and immune excluded tumors
We asked whether there is a rationale to define ‘immune excluded tumors’ as a separate group

although it does not naturally emerge in unsupervised clustering methods. With three spatial com-

partments, each of them having either high or low cell density, there are in theory eight possible

topographies. We asked whether this number could be reduced and analyzed the statistical correla-

tion between the spatial compartments for each type of staining in all tumor types. We found that in

general, there was a high correlation between ‘tumor core’ and ‘inner invasive margin’, but not

between either compartment and the ‘outer invasive margin’ (Figure 2—figure supplement 5).

‘Tumor core’ and ‘inner invasive margin’ can be collapsed into one compartment because cell counts

in these compartments are highly correlated. This leaves only four possible topographies that are by

equivalent to three previously postulated phenotypes (Chen and Mellman, 2017): high density out-

side of the tumor with a low density inside the tumor can be described as ‘immune excluded’. Low

density inside and outside is ‘cold’ and high density inside the tumor is ‘hot’ regardless of cell den-

sity outside of the tumor (Figure 2A–F).
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Prevalence of immune topographies in different tumor types
Having operationalized these definitions of immune topographies, we next asked how they are dis-

tributed in different tumor types in the pan-cancer cohort. As a cutoff value for high versus low cell

density we used the median cell density for each cell type (median number of cells per mm2 in any

tumor type in any compartment, listed in Supplementary file 4). Based on these definitions, differ-

ent tumor types showed very different distributions of immune topographies (Figure 3A–F). Most

strikingly, tumor types that are to some degree sensitive to approved cancer immunotherapies (such

as melanoma (MEL), lung adeno (LUAD), lung squamous (LUSC) and head and neck squamous

(HNSC) had a large proportion (approximately half) of CD3-hot, CD8-hot and PD1-hot tumors. In

accordance with previous studies (Halama et al., 2011), colorectal primary (COAD-PRI) and colorec-

tal metastatic (COAD-MET) had a very high proportion of CD3-excluded tumors (Figure 3A). Differ-

ences between tumor types were most pronounced for regulatory T-cells (Foxp3+ cells, Figure 3D)

with more than half of lung adeno (LUAD), head and neck squamous (HNSC), stomach adenocarci-

noma (STAD) and esophageal (ESCA) cancer samples having Foxp3-hot topographies. Also, while

close to half of all analyzed COAD-PRI samples were Foxp3-hot, the vast majority of all COAD-MET

samples were Foxp3-cold (Figure 3A).

Bivariate classification of immune topographies
Subsequently, we asked whether the topography for a given immune cell type co-occurs with the

same topography for other immune cell types – or whether tumors can be ‘cold’ for one immune cell

Figure 1. Semiautomatic image analysis defines immune cell topography. (A) Manual delineation of three compartments: outer 500 mm invasive margin,

inner 500 mm invasive margin, tumor core. (B) Example of automatic cell detection in a CD3-stained gastric carcinoma slide. Left: original image, right:

after cell detection and classification. (C) Cell counts in all three compartments can be used to create a ‘target plot’ (visualization resembling a shooting

target) where the color of each compartment corresponds to the percentile-normalized cell density. Here, two examples of CD3-stained gastric

carcinoma tissue slides are shown. The upper sample has an immune-excluded phenotype while the lower sample has an inflamed phenotype. Unit on

the color scale: percentile-normalized cell density. Scale bar in B is 100 mm, scale bars in C are 1 mm.

DOI: https://doi.org/10.7554/eLife.36967.002

The following figure supplement is available for figure 1:

Figure supplement 1. Example images for cell count in all six immunostains.

DOI: https://doi.org/10.7554/eLife.36967.003
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Figure 2. Cell densities in the tumor core and in the outer invasive margin in the pan-cancer cohort. Raw cell densities are plotted for each cell type

and both major compartments. Gray lines indicate the median density for this cell type. Split at the median, tumors can be classified as cold, hot or

immune excluded for all immune cell types. However, the scatter plot shows that for all immune cell types, there is no natural clustering into these

phenotypes – the phenotypes blend into each other.

Figure 2 continued on next page
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type and ‘hot’ or ‘excluded’ for another cell type at the same time. This question is important

because in the clinic, immune topographies are often used as stratifying biomarkers for immunother-

apy trials (Kather et al., 2018c) but it is unclear how many spatial compartments and which histolog-

ical markers should be looked at.

Indeed, we saw that tumors often had different topographies for a pair of immune cell markers

(Figure 4). Especially, regarding lymphocytic and myeloid markers, there was a discordance in a sub-

stantial number of cases that were lymphoid-hot and myeloid-cold (Figure 4). We further stratified

this by different tumor entities (Figure 5A–E) and found pronounced differences between the tumor

types. CD3 and CD8 topographies were mostly concordant (Figure 5A) as can be expected because

CD8+ lymphocytes are a subset of CD3+ lymphocytes. Regarding CD8 vs. Tregs (Figure 5B), there

was a notable discordance. For example, most colorectal primary tumors (COAD-PRI) that were

Foxp3-excluded were CD8-cold. Analyzing tumor-associated macrophages (TAMs) labeled with

CD68 (Figure 5D), we found that several melanomas (MEL) that were CD68-hot were CD8-cold

which was rarely observed in other tumor types. Colorectal cancer liver metastases (COAD-MET)

were mostly CD8-excluded, corresponding to a CD68-excluded or CD68-hot phenotype. This was

similarly observed for CD163+ macrophages (Figure 5E). These findings suggest that tumors of dif-

ferent immunophenotypes require different ways of immune escape and that these mechanisms can

only be distinguished when considering a two-dimensional myeloid-lymphoid classification system.

Pan-cancer similarity based on spatial immune phenotype
Using a full panel of immune cell markers (CD3, CD8, PD1, Foxp3, CD68 and CD163), we asked how

similar different tumor types were in terms of immune cell spatial layout. For all 144 tumors that

were stained for this full panel (Figure 6A–G, six immunostains, three compartments, 144 patients,

after percentile normalization for each cell type), we used unsupervised hierarchical clustering to

define similarity. We found that ovarian cancer (OV) was an outlier (Figure 6H) due to its low infiltra-

tion with almost all immune cell subsets (Figure 2—figure supplement 3). Highly immunogenic

tumor types such as melanoma (MEL), stomach cancer (STAD) and non-small cell lung cancer

(NSCLC: LUAD and LUSC) were close in hierarchical clustering.

Clinical utility of immune topography
Having shown that hot, cold and excluded immune patterns exist, and that these patterns vary

between tumor types and immune cell types, we investigated the clinical utility of this classification

system in an independent patient cohort (DACHS cohort). We analyzed the topography of CD8+ lym-

mphocytes and CD163+ macrophages in colorectal cancer (CRC) primary tumors because these cell

types have previously been linked to prognosis (Fridman et al., 2012) and showed discordant top-

ographies in the pan-cancer cohort (COAD_PRI in Figure 5E).

We derived immune topographies for CD8 and CD163 from cell counts in the outer invasive mar-

gin and the tumor core for N = 287 patients using the median cell densities from the pan-cancer

cohort as cutoff values (Figure 7A and B). As in the pan-cancer cohort, most patients were cold or

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.36967.004

The following figure supplements are available for figure 2:

Figure supplement 1. Replication experiment for the full tissue analysis pipeline.

DOI: https://doi.org/10.7554/eLife.36967.005

Figure supplement 2. Normalized immune cell counts for cytotoxic T lymphocytes (CD8) and pro-tumor macrophages (CD163).

DOI: https://doi.org/10.7554/eLife.36967.006

Figure supplement 3. Average cell density percentile score for all compartments in ten tumor entities and six immunostains.

DOI: https://doi.org/10.7554/eLife.36967.007

Figure supplement 4. Optimal number of lymphocyte topography clusters arising in repeated optimization runs with different methods.

DOI: https://doi.org/10.7554/eLife.36967.008

Figure supplement 5. Correlations between cell densities in different spatial compartments.

DOI: https://doi.org/10.7554/eLife.36967.009
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immune excluded for these two cell types. The bivariate analysis showed that ‘CD8-cold, CD163-

cold’ was the most prevalent category (Figure 7D).

We then used multivariable Cox proportional hazard models (including tumor stage, age and sex

as potential confounders) to analyze the association between cell counts and cell topographies with

survival. Cell densities of CD8 and CD163 in the tumor core and the outer invasive margin were not

significantly correlated to overall survival (hazard ratios [HR] for death from any cause were 1.00 for

both cell types in both compartments, Supplementary file 5). However, bivariate immune topogra-

phies showed significant association to overall survival: With ‘CD8-cold, CD163-cold’ as a reference

Figure 3. Distribution of immune topography phenotypes among different tumor types in the pan-cancer cohort. Analysis for all six immune cell types

(A–F) and for all analyzed tumor types (MEL = melanoma, LUAD = lung adeno, LUSC = lung squamous, BLCA = bladder, HNSC = head and neck

squamous, STAD = stomach adeno, ESCA = esophageal squamous, COAD-PRI = colorectal primary, COAD-MET = colorectal liver metastasis,

OV = ovarian). These data comprise all N = 965 tissue slides from N = 177 patients. MEL through HNSC are to some degree sensitive to approved

immunotherapies and predominantly have ‘hot’ phenotypes for most immune cells. However, among these tumor types, different phenotypes for

immunosuppressive immune cells (Foxp3+ regulatory T-cells [Tregs]) and CD163+ macrophages prevail.

DOI: https://doi.org/10.7554/eLife.36967.010
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Figure 4. Pairwise analysis of immune phenotypes for all immune cell types in the pan-cancer cohort. For all tissue samples in all tumor types, a

pairwise classification into cold-excluded-hot was done for all immune cell types. This analysis was based on the median cutoff for high and low cell

densities. Absolute numbers of tumor are given, black marks the most abundant and white the least abundant group. For some pairwise comparisons

such as CD3 and CD8 cells (top left corner), there is a high concordance between the phenotypes. For other comparisons such as Foxp3 and CD163

cells, phenotypes are mostly discordant.

DOI: https://doi.org/10.7554/eLife.36967.011
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cohort, the HR was 1.75 for ‘CD8-excluded, CD163 excluded’ (p=0.041) and the HR was 2.71 for

‘CD8-excluded, CD163-hot’ (p=0.025, Supplementary file 6 and Figure 7D).

Discussion
The tumor microenvironment is a highly complex, heterocellular ecosystem (Bindea et al., 2013;

Tape, 2016). Multiple immune cell types are involved in this system and ultimately shift it towards a

tumor-promoting or tumor-rejecting environment (Chen and Mellman, 2017; Fridman et al., 2017).

Also, these immune cells determine whether a tumor will be responsive to immunotherapy

(Becht et al., 2016a). However, immunotherapy outcomes vary pronouncedly between different

tumor entities and also between different patients within a given entity. The biological basis for

these differences has been the subject of various studies but is still not entirely clear. Most impor-

tantly, we currently lack a comprehensive classification system for multiple effector parts of the

immune system.

In the present study, we have performed a large-scale systematic analysis of lymphoid and mye-

loid phenotypes of human solid tumors. We provide evidence for a classification of tumor-immune

Figure 5. Bivariate immune phenotypes for each tumor type in the pan-cancer cohort. We analyzed the concordance between hot-cold-excluded

topographies for CD8+ lymphocytes and all other cell types for each tumor type separately. Absolute numbers of patients assigned to each of nine

phenotypes are overlaid on the heat map. For some cell types and some tumor types, immune topographies are concordant. This suggests that in

these settings, a detailed analysis of multiple immune cell types in biomarker studies is not necessary. On the other hand, some cell types in other

tumor entities (such as CD8+ lymphocytes and CD68+ macrophages in panel (D) show a high discordance in multiple tumor types. This suggests that

measuring one of these cell types only may not be informative enough for biomarker studies.

DOI: https://doi.org/10.7554/eLife.36967.012
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phenotypes into hot, cold and immune excluded spatial patterns. These patterns can be detected

not only in lymphocyte infiltrates (lymphoid classification, as previously assumed by most studies)

but also in macrophage infiltrates (myeloid classification). Interestingly, lymphoid and myeloid pat-

terns are not always identical and a two-dimensional classification is needed to accommodate all

possible lymphoid-myeloid phenotypes.

Addressing the biological differences and the different responses to immunotherapy across tumor

entities, we systematically compared different tumor types. We analyzed ten tumor entities in the

framework of this classification and showed pronounced differences, but also unexpected cross-

entity similarities: We found that lymphoid-hot tumors are more prevalent in immunotherapy-respon-

sive tumor entities such as melanoma and lung adenocarcinoma than in other entities such as colo-

rectal cancer. Immune-excluded tumors, such as lymphoid-excluded and myeloid-excluded tumors

are common in head and neck tumors (HNSC). Lastly, we show that characteristic patterns of

Figure 6. Overall similarity between tumor entities based on full immune topography. Hierarchical clustering based on all normalized cell densities of

(A) PD1+exhausted lymphocytes; (B) Foxp3+regulatory T cells; (C) CD8+cytotoxic T lymphocytes; (D) CD68+monocytes/macrophages; (E) CD3

+lymphocytes and (F) CD163+pro tumor macrophages. Unit on the color scale: percentile-normalized cell density. (G) corresponding H & E image

of the colorectal cancer sample used in this figure. (H) Hierarchical clustering of tumor types (N = 144 total patient samples).

DOI: https://doi.org/10.7554/eLife.36967.013
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Figure 7. Prognostic value of the myeloid-lymphoid topography in primary colorectal cancer (CRC) in the DACHS cohort. In a validation cohort of

N = 287 colorectal cancer patients (N = 286 with follow-up data) from the DACHS study, CD8 and CD163 staining of the primary surgical sample was

correlated to clinical outcome (overall survival) using the cutoffs from the pan-cancer cohort. (A) As in the CRC subgroup in the pan-cancer cohort, CD8-

cold was the most prevalent phenotype, followed by CD8-excluded. (B) A similar distribution of phenotypes was observed for CD163+ macrophages.

Figure 7 continued on next page
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immune evasion (via T cell exhaustion or infiltration by Tregs) are not exclusive to specific tumor-

immune phenotypes but can be detected across the defined categories.

As part of this study, we present a clinical validation of the proposed classification system in the

context of colorectal cancer (COAD). It has been previously shown that high density of CD8+ cells in

COAD is associated with long survival (Galon et al., 2006) while high density of CD163+ cells is

associated with poor survival (Fridman et al., 2012). However, some large studies have shown only

a very modest impact of CD8+cell density on overall survival (Glaire et al., 2018). Likewise, in the

DACHS cohort which we analyzed as part of this study, CD8+ cell density alone and CD163+ cell

density alone were not clearly associated with differences in overall survival. Also, for both cell types,

the immune topographies (cold, excluded, hot) were not associated with such differences. However,

classifying patients according to bivariate (CD8 combined with CD163) immune topographies identi-

fied statistically significant associations to survival in a multivariable statistical model (Figure 7D).

This was particularly clear for CD8-excluded tumors: in this case, CD163-cold, excluded and hot

tumors had a significantly (log rank p-value 0.019) different prognosis (Figure 7E). These findings

suggest that a multivariate analysis of spatial distributions of multiple immune cell types may be

superior to merely quantifying a particular type of immune cells in COAD and possibly other human

solid tumors.

Our study adds a systematic approach to a hitherto subjective classification of tumor-immune

phenotypes. This new classification could constitute a novel framework to investigate immunother-

apy responsiveness in clinical trials. Also, this classification sheds light on common immunological

aspects by describing a shared immune topography across human solid tumors.

Materials and methods

Key resources table

Reagent type (species) or resource Designation Source/Reference Identifier Additional information

Software,
algorithm

QuPath v0.1.2 Bankhead
et al.

DOI: 10.1038/
s41598-017-17204-5

-

Antibody Anti-human
CD3

Leica
Novocastra

RRID:AB_563544 Dilution 1:100

Antibody Anti-human
CD8

Leica
Novocastra

RRID:AB_442068 Dilution 1:50

Antibody Anti-human
Foxp3

eBioscience RRID:AB_467555 Dilution 1:100

Antibody Anti-human
CD163

BioRad RRID:AB_2074540 Dilution 1:500

Antibody Anti-human
CD68

Thermo Fisher
Scientific

RRID:AB_720547 Dilution 1:2000

Antibody Anti-human
PD1

Abcam RRID:AB_881954 Dilution 1:50

Ethics statement and tissue samples
All experiments were conducted in accordance with the Declaration of Helsinki, the International

Ethical Guidelines for Biomedical Research Involving Human Subjects (CIOMS), the Belmont Report

Figure 7 continued

(C) In the bivariate analysis for CD8 and CD163, most patients had cold and excluded phenotypes for both antigens. (D) For each of these nine

phenotypes, the hazard ratio (HR) for death of any cause (inverse overall survival, OS) was derived from a multivariable Cox proportional hazard model

(covariates UICC stage, age and sex). Bold HR indicates statistically significant findings with p<0.05. Bivariate analysis of both antigens is essential for

risk stratification as CD8 and CD163 phenotypes show non-trivial interaction. Raw data for panel D are shown in Supplementary file 5. (E) The Kaplan-

Meier plots for the reference groups (CD8-cold CD163 cold) and the two significant groups (‘CD8-excl., CD163 excl’ and ‘CD8 excl., CD163 hot’) show

significant differences in overall survival. These differences are not captured by univariate, but only by this bivariate stratification system. Log rank

p-value=0.019.

DOI: https://doi.org/10.7554/eLife.36967.014
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and the U.S. Common Rule. Anonymized archival tissue samples were retrieved from the tissue bank

of the National Center for Tumor diseases (NCT, Heidelberg, Germany) in accordance with the regu-

lations of the tissue bank and the approval of the ethics committee of Heidelberg University (tissue

bank decision numbers 2152 and 2154, granted to NH and JNK, ovarian cancer tissues granted to

SS; informed consent was obtained from all patients as part of the NCT tissue bank protocol, ethics

board approval S-207/2005, renewed on 20 Dec 2017). Another set of tissue samples was provided

by the pathology archive at UMM (University Medical Center Mannheim, Heidelberg University,

Mannheim, Germany) after approval by the institutional ethics board (Ethics Board II at University

Medical Center Mannheim, decision number 2017 – 806R-MA, granted to AM and waiving the need

for informed consent for this retrospective and fully anonymized analysis of archival samples). Also, a

set of melanoma samples was provided by the pathology archive at UMM after approval by the insti-

tutional ethics board (Ethics Board II at University Medical Center Mannheim, decision number

2014 – 835R-MA, granted to JU and waiving the need for informed consent for this retrospective

and fully anonymized analysis of archival samples).

We analyzed tissue samples of primary esophageal carcinoma (ESCA), primary gastric cancer

(STAD), primary colorectal cancer (COAD-PRI), primary lung adenocarcinoma (LUAD), primary lung

squamous cell carcinoma (LUSC), primary head and neck squamous cell carcinoma (HNSC), primary

bladder cancer (BLAC), ovarian cancer primary tumors (OV) as well as melanoma primary tumors

(MEL) and colorectal cancer liver metastases (COAD-MET).

In addition to this pan-cancer cohort, we acquired a set of N = 287 primary surgical specimen of

colorectal adenocarcinoma from the DACHS study (Hoffmeister et al., 2015; Brenner et al., 2011)

which were provided by the NCT biobank under the same ethics board approval as stated above

and including informed consent by all patients. Clinical data for this cohort are listed in

Supplementary file 1.

Immunohistochemistry
We performed histological staining for CD3 (dilution 1:100 with Leica antigen retrieval ER1 solution),

CD8 (1:50 with ER1), Foxp3 (1:100 with Leica antigen retrieval ER2 solution), CD163 (1:500 with

ER2), CD68 (1:2000 with Leica Fast Enzyme digestion) and PD1 (1:50 with ER1) on a Leica Bond

automatic staining device using a hematoxylin-diaminobenzidine (DAB) staining protocol as

described previously (Halama et al., 2016). For melanoma, FastRed (Leica #DS9390) was used as a

chromogen. Stained whole slide tissue sections were digitized as described previously

(Halama et al., 2016). Almost all samples were stained for these six immune cell markers. In cases of

insufficient tissue availability, only CD3, CD8 and CD163 staining was performed.

Image analysis
Our image analysis pipeline was composed of several steps: First, manual annotation of three

regions of interest (ROI) in each histological whole slide image (Figure 1A). The ROIs were ‘tumor

core’ (TU_CORE), ‘inner invasive margin’ (MARG_500_IN) and ‘outer invasive margin’ (MARG_500_-

OUT). Invasive margins were 500 mm wide. Second, we automatically counted all positively stained

cells using the open source software QuPath (Figure 1B) (Bankhead et al., 2017). Intensity thresh-

olds and other parameters for cell detection and classification were set manually for each staining

type and were identical for all samples in the pan-cancer cohort. All parameters are listed in

Supplementary file 2. All cell detection scripts were manually checked for plausibility in all tumor

entities. Examples for cell detection are shown in Figure 1—figure supplement 1. For all further

analyses, cell density values were normalized by percentile within each staining type and were visual-

ized as ‘target plots’ (Figure 1C). Staining intensity thresholds were slightly adapted for the DACHS

cohort as listed in Supplementary file 2.

Reproducibility
To ensure reproducibility of our digital pathology pipeline, we randomly selected 60 tissue specimen

and repeated all analysis steps. We used new tissue slides with a distance between 4 mm and 40 mm

from the original slice. We stained 30 of these slides for a macrophage marker (CD163) and 30 slides

for a lymphocyte marker (CD3) and a blinded observer delineated ROIs for cell quantification as
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before. There was a high correlation (Pearson’s correlation coefficient was >0.74, p-value<0.001)

between these replicates (Figure 2—figure supplement 1).

Furthermore, two slides that served as negative controls for CD3 and CD163 staining, 231/86516

(<<0.1%) and 1/38311 (<<0.1%) cells were false positive.

Automatic determination of optimal cluster number
Analysis of all six immunostains for 177 patients in our collective yielded 965 sets of cell density

counts in three spatial compartments each (2895 data points in total, missing values due to tissue

availability or quality). For visualization, cell densities were subjected to percentile normalization

(quantile normalization with 100 quantiles) for each staining type, across all tumor entities. For clus-

tering and all other analyses, we used absolute cell density (cell number per mm2).

To determine the optimal number of clusters in this data set, we used three different methods for

clustering: a gaussian mixture model, k-means and hierarchical clustering. For 1 up to 12 clusters, we

computed three loss functions for each approach, using the Davies-Bouldin (Davies and Bouldin,

1979), the Calinski-Harabasz (CalińskiCalinski and Harabasz, 1974) or the silhouette (Rous-

seeuw, 1987) criteria for quality of clustering. For all optimization methods, we performed 10 tech-

nical replicates.

Implementation and data availability
All image analysis steps were implemented in QuPath (see key resources) and all downstream analy-

ses were implemented in MATLAB (Mathworks, Natick, MA, USA) R2017a. All experiments were run

on a standard workstation (Intel i7 Processor, 8 cores, 32 GB RAM, Microsoft Windows 10.1). We

release all source codes under an open access license (Kather, 2018; copy archived at https://

github.com/elifesciences-publications/immuneTopography). Also, we release all raw data from our

experiments (Supplementary file 3). All survival analyses were performed in R version 3.5.1 (R-proj-

ect.org) using the packages survminer, survival, ggfortify and ggplot2.
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