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Abstract The rate and temporal pattern of neural spiking each have the potential to influence

computation. In the cerebellum, it has been hypothesized that the irregularity of interspike intervals

in Purkinje cells affects their ability to transmit information to downstream neurons. Accordingly,

during oculomotor behavior in mice and rhesus monkeys, mean irregularity of Purkinje cell spiking

varied with mean eye velocity. However, moment-to-moment variations revealed a tight correlation

between eye velocity and spike rate, with no additional information conveyed by spike irregularity.

Moreover, when spike rate and irregularity were independently controlled using optogenetic

stimulation, the eye movements elicited were well-described by a linear population rate code with

3–5 ms temporal precision. Biophysical and random-walk models identified biologically realistic

parameter ranges that determine whether spike irregularity influences responses downstream. The

results demonstrate cerebellar control of movements through a remarkably rapid rate code, with

no evidence for an additional contribution of spike irregularity.

DOI: https://doi.org/10.7554/eLife.37102.001

Introduction
Action potentials, or spikes, are the primary language used by the nervous system. Throughout the

brain, the rate at which neurons fire spikes encodes information (Adrian, 1928; Kuffler, 1951;

Hubel and Wiesel, 1959; Wright et al., 1967; reviewed in Borst and Theunissen, 1999), affects the

activity of downstream neurons (Tsodyks and Markram, 1997; Bagnall et al., 2008; Turecek et al.,

2016), and drives motor output (Crowell et al., 1968; Evarts, 1968; Evarts, 1969; Henn and

Cohen, 1976; Georgopoulos et al., 1982; Hanes and Schall, 1996; reviewed in Ebbesen and

Brecht, 2017), indicating that a rate code is widely used for neural computation. In addition, the

precise temporal pattern of spikes can encode information beyond that carried by spike rate, sug-

gesting that a temporal code may also contribute to information processing (O’Keefe and Recce,

1993; Theunissen and Miller, 1995; Gawne et al., 1996; de Ruyter van Steveninck et al., 1997;

Stopfer et al., 1997; Victor, 1999; Stopfer and Laurent, 1999; Reich et al., 2000; Panzeri et al.,

2001; Huxter et al., 2003; Butts et al., 2007; Engineer et al., 2008; Gollisch and Meister, 2008;

Huxter et al., 2008). However, it is not clear whether and how information encoded in the temporal

pattern of spikes is transmitted to downstream circuits to influence behavior. Here we leveraged the

experimental advantages of the oculomotor system to analyze whether the temporal pattern of

spikes in cerebellar neurons contributes to their control of behavioral output.
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Temporal coding can take many forms, which fall into two categories: coding based on the pre-

cise timing of spikes within the spike train of an individual neuron, or coding based on the precise

timing of spikes in one neuron relative to spikes in other neurons. In the cerebellum, previous work

has analyzed both types of spike timing in Purkinje cells, which are the sole output neurons of the

cerebellar cortex (Person and Raman, 2012a; Steuber and Jaeger, 2013; Sarnaik and Raman,

2018; reviewed in De Zeeuw et al., 2011; Person and Raman, 2012b). Here, we investigated the

impact of the temporal pattern of spikes within individual Purkinje cells.

It has been hypothesized that the irregularity of Purkinje cell spiking affects the cerebellar control

of movements (reviewed in De Zeeuw et al., 2011). The irregularity of the interspike intervals (ISIs)

is a temporal feature of spike trains that varies along a continuum across brain regions and across

individual neurons (Maimon and Assad, 2009), from highly regular or clock-like (Guinan et al.,

1972) to highly irregular or supra-Poisson (Fernandez and Goldberg, 1971). Further, in a given neu-

ron, the level of spike irregularity can vary as the neuron processes information (Barlow and Levick,

1969; Young et al., 1988; de Ruyter van Steveninck et al., 1997; Fairhall et al., 2001). In Purkinje

cells, spontaneous spiking is more regular than a Poisson process (Häusser and Clark, 1997;

Shin et al., 2007), and spike irregularity can vary during the processing of sensory signals

(Shin et al., 2007). Moreover, pathological alteration of the spike irregularity of Purkinje cells has

been proposed as a potential cause of ataxia and other cerebellum-related disorders such as autism.

In several different mouse models of ataxia (Hoebeek et al., 2005; Walter et al., 2006; Alviña and

Khodakhah, 2010b; Alviña and Khodakhah, 2010a; Stahl and Thumser, 2014; Mark et al., 2015;

Jayabal et al., 2016) and autism (Peter et al., 2016), Purkinje cell spiking is more irregular than in

normal Purkinje cells. Moreover, increases in the regularity of Purkinje cell spiking, caused by reduc-

tions in inhibitory synaptic input (Wulff et al., 2009) or maternal exposure to cannabinoids

(Shabani et al., 2011), have also been associated with motor deficits. Such observations of increased

or decreased spike irregularity in Purkinje cells in mouse models of ataxia have inspired the hypothe-

sis that any perturbation of normal spike irregularity may impair the ability of Purkinje cells to reliably

transmit information for the control of movement (Hoebeek et al., 2005; Walter et al., 2006;

Wulff et al., 2009; Alviña and Khodakhah, 2010b; Alviña and Khodakhah, 2010a; Luthman et al.,

2011; De Zeeuw et al., 2011). Computer modeling has identified short-term synaptic depression as

one potential mechanism that would allow spike irregularity in Purkinje cells to influence their control

of postsynaptic targets. Because irregular presynaptic spike trains contain short ISIs that recruit

more short-term depression, short-term depression has the potential to reduce the mean synaptic

conductance in the postsynaptic target during more irregular spike trains (Luthman et al., 2011).

However, causal evidence for a direct contribution of irregularity to impaired motor control is mixed.

In mouse models of ataxia, treatments that reverse the abnormally high irregularity have reversed

motor deficits in some cases (Alviña and Khodakhah, 2010b; Alviña and Khodakhah, 2010a;

Walter et al., 2006; Jayabal et al., 2016), but not others (Stahl and Thumser, 2013). Moreover,

the severity of motor deficits in different mouse lines does not always correspond to the severity of

the perturbation of Purkinje cell spike irregularity in the relevant region of the cerebellum (Stahl and

Thumser, 2014).

Studies of pathological alterations in Purkinje cell irregularity in mouse models of ataxia raised

the question of whether natural variations in the level of Purkinje cell spike irregularity during normal

behavior might impact motor output, in addition to the influence of spike rate. To analyze whether

spike irregularity is a component of the neural code used by Purkinje cells to control behavior, we

took advantage of the close link between the activity of Purkinje cells in the cerebellar flocculus and

motor output. Located just two synapses from the motor neurons that innervate the eye muscles,

floccular Purkinje cells are a key node in the sensorimotor transformation of visual and vestibular sig-

nals into oculomotor commands. Recording and stimulation studies in a range of species have estab-

lished an influence of Purkinje cell spike rate on eye movement behavior (Lisberger and Fuchs,

1978; Noda and Suzuki, 1979; Stone and Lisberger, 1990; Lisberger et al., 1994; Lis-

berger, 1994; Kahlon and Lisberger, 1999; Nguyen-Vu et al., 2013; Katoh et al., 2015;

Kodama and du Lac, 2016). The possibility that the spike irregularity of floccular Purkinje cells might

also influence eye movements has been suggested by the observation of abnormal oculomotor

behavior or oculomotor learning in mouse models of ataxia with abnormal Purkinje cell spike irregu-

larity (Hoebeek et al., 2005; Katoh et al., 2007; Katoh et al., 2008; Wulff et al., 2009; Stahl and

Thumser, 2014). Here, we used a combination of recording, stimulation, and computational
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approaches to assess whether and how spike irregularity contributes to the control of eye move-

ments by the cerebellum.

Results

Mean spike rate and irregularity both vary with oculomotor behavior
We analyzed spike trains from Purkinje cells recorded in the cerebellar flocculus and ventral parafloc-

culus of rhesus monkeys and the flocculus of mice while they made smooth eye movements in

response to a variety of vestibular and visual stimuli (for full descriptions of the stimuli, see Materials

and methods). It is well established that the spike rate of a majority of Purkinje cells in this region of

the cerebellum encode gaze velocity (Lisberger and Fuchs, 1974; Lisberger et al., 1994;

Pastor et al., 1997; Raymond and Lisberger, 1998; Hirata and Highstein, 2000; Katoh et al.,

2015). We assessed whether spike irregularity in these neurons also correlates with gaze velocity,

and hence might contribute to the control of gaze.

Consistent with previous work (Lisberger and Fuchs, 1978; Lisberger et al., 1994; Pastor et al.,

1997; Raymond and Lisberger, 1998; Hirata and Highstein, 2001; Katoh et al., 2015), the spike

rate of Purkinje cells in our samples was highly correlated with gaze velocity. Gaze velocity is defined

as the angular velocity of the eye in world coordinates, which is equal to the sum of eye velocity in

the head, plus head velocity in the world. When animals tracked a moving visual stimulus with the

head stationary, gaze velocity was equal to eye velocity, and there was a clear correlation between

Purkinje cell spike rate and gaze velocity, in both the population mean (Figure 1A left) and individual

cells (Figure 1B), in both monkeys (Figure 1C top) and mice (Figure 1C bottom, Figure 1—figure

supplement 1). Similarly, when monkeys or mice held their eyes roughly stationary relative to the

head to track a visual stimulus that moved with the head, a behavior known as cancellation of the

vestibulo-ocular reflex, gaze velocity closely tracked head velocity, and spike rate was again corre-

lated with gaze velocity (Figure 1A right, Figure 1C, Figure 1—figure supplement 1). The same,

roughly linear relationship between spike rate and gaze velocity was observed during eye movement

responses to multiple combinations of visual and vestibular stimuli with different velocity profiles,

and when the visual stimulus used to drive eye movements was a large-field visual stimulus (monkeys

and mice) or a small visual target (monkeys only) (Figure 1C; mean correlation coefficient across con-

ditions 0.81 ± 0.02, p=10�69, n = 120 cells, monkey; correlation coefficient 0.71 ± 0.04, p=10�19,

n = 33 cells, mouse).

Like spike rate, spike irregularity was also correlated with gaze velocity across a range of visual

and vestibular stimulus conditions in both monkeys and mice (Figure 1A,B,D). Spike irregularity was

quantified using the coefficient of variation-2 (CV2) of the ISIs, which provides a local measure of the

variation in ISIs. In contrast to the coefficient of variation (CV) of the ISIs, the CV2 is not strongly

influenced by smooth changes in spike rate. Therefore, CV2 provides a useful measure of irregularity

when there are underlying changes in rate (Holt et al., 1996; Shin et al., 2007; Wulff et al., 2009;

Gao et al., 2012; Stahl and Thumser, 2014; Mark et al., 2015; Jayabal et al., 2016; Peter et al.,

2016). The CV2 is calculated by taking the absolute difference between each adjacent pair of ISIs,

divided by their mean:

CV2i ¼ ISIiþ1�ISIij j
ISIiþ1þISIið Þ=2 (1)

where ISIi ¼ ti� ti�1, and ti represents the time of spike i. The CV2 can range from 0 (two identical

ISIs) to a theoretical maximum of 2 (one small ISI adjacent to one infinitely long ISI), with the mean

CV2 of a Poisson process equal to 1 (Holt et al., 1996), and higher values of CV2 reflecting more

irregular spiking. The CV2 was calculated for each pair of ISIs and interpolated to yield an instanta-

neous estimate of spike irregularity (see Materials and methods), thus characterizing the irregularity

of Purkinje cell spiking on a timescale similar to that for estimating instantaneous spike rate. During

visual tracking and VOR cancellation, there was modulation of spike irregularity that mirrored the

modulation of gaze velocity, with CV2 increasing for gaze movements in one direction and decreas-

ing for gaze movements in the other direction (Figure 1A, purple). More generally, across the set of

visual and vestibular stimulus conditions tested, a roughly linear relationship between spike irregular-

ity and gaze velocity was observed in individual Purkinje cells (Figure 1B, bottom; Figure 1—figure
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Figure 1. Spike rate and irregularity during oculomotor behavior. (A) Visual and vestibular stimuli, oculomotor responses, and Purkinje cell spike rate

and local spike irregularity (CV2) during two oculomotor behaviors in rhesus monkeys: visual tracking (smooth pursuit of a small visual target; left) and

VOR cancellation (cancellation of the vestibulo-ocular reflex, achieved by tracking a visual target that moves exactly with the head; right). Upward

deflections represent ipsiversive movements of the visual stimulus, head, eye, or gaze; downward deflections represent contraversive movements

(relative to the side of the brain in which the Purkinje cell was recorded). Data were averaged across stimulus cycles (median 24 cycles, range 10 to 118)

for each neuron, and then averaged across neurons (n = 66 cells from two monkeys, data reanalyzed from Raymond and Lisberger, 1998). For clarity

of illustration, the average cycle is repeated twice. Results are shown for the largest subclass of Purkinje cells in the cerebellar flocculus, the EiHi

Purkinje cells, which increase their firing in response to ipsiversive eye motion during visual tracking and ipsiversive head motion during VOR

cancellation (Raymond and Lisberger, 1997). Results from Purkinje cells with other responses to eye or head motion are shown in Figure 1—figure

supplement 2. (B) The relationship between spike rate and gaze velocity (top) and spike irregularity (CV2) and gaze velocity (bottom) during visual

tracking for individual Purkinje cells included in the averages in panel (A). Spike rate, CV2, and gaze velocity were first averaged across stimulus cycles,

and then binned according to gaze velocity (2˚/s bins). The average spike rate or CV2 was subtracted from each cell to obtain D spike rate or D CV2,

respectively. (C) The relationship between spike rate and gaze velocity during eye movement responses to different combinations of vestibular and

visual stimuli (see Materials and methods for descriptions of each visual-vestibular stimulus listed in the legend). The D spike rate and D irregularity were

calculated as in (B) and then averaged across the population of all EiHi Purkinje cells recorded in monkeys (top; n = 120 cells from four monkeys, data

reanalyzed from Raymond and Lisberger, 1998; Raymond and Lisberger, 1997; Kimpo et al., 2014) and mice (bottom; n = 33 cells from 29 mice,

data reanalyzed from Katoh et al., 2015). (D) The relationship between spike irregularity (CV2) and gaze velocity averaged across the population of

Figure 1 continued on next page
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supplement 1) and in the population means (Figure 1D) recorded in monkeys and mice (mean cor-

relation coefficient across conditions –0.53 ± 0.03, p = 10�38, n = 120 cells, monkey; –0.47 ± 0.05, p

= 10�10, n = 33 cells, mouse).

The observation that the mean spike irregularity of floccular Purkinje cells, like the mean spike

rate, was correlated with oculomotor behavior raised the possibility that both features of the spike

train might contribute to the control of eye movement behavior in wild type mice. However, the

respective contributions of spike rate and irregularity could not be dissociated based on the

responses quantified by averaging across trials, since mean spike rate and mean irregularity covar-

ied. Whenever mean spike rate was high, mean CV2 was lower (spike timing was more regular), and

when mean spike rate was low, mean CV2 was high (spike timing was more irregular) (Figure 1E).

The inverse relationship between spike rate and CV2 was observed in the Purkinje cells that encode

ipsiversive gaze velocity, which make up the largest subset of Purkinje cells in the cerebellar flocculus

(plotted in Figure 1), and also in Purkinje cells with different responses to eye velocity or vestibular

input (Figure 1—figure supplement 2). This covariation between spike rate and irregularity may

reflect, in part, a tendency for the refractory period to cause spiking to be more regular at high rates

(Holt et al., 1996); however, simulations of Poisson spiking with an imposed refractory period did

not fully capture the correlation between spike rate and irregularity (Figure 1—figure supplement

3; see Holt et al., 1996), and several additional factors are thought to influence spike irregularity in

Purkinje cells, including voltage-gated conductances (Raman and Bean, 1997; Raman and Bean,

1999; Hoebeek et al., 2005; Alviña and Khodakhah, 2010b; Alviña and Khodakhah, 2010a;

Gao et al., 2012; Stahl and Thumser, 2014) and synaptic input (Häusser and Clark, 1997;

Jaeger and Bower, 1999; Shin et al., 2007; Wulff et al., 2009; Jelitai et al., 2016; Peter et al.,

2016). Indeed, over short timescales within individual trials, spike rate and CV2 did not covary

strongly (Figure 2—figure supplement 1), and we leveraged this dissociation to assess the contribu-

tion of each of these features of the spike trains to the control of eye movements.

Spike rate, but not irregularity, predicts moment-to-moment variations
in eye velocity
Moment-to-moment variations in neural activity and behavior allowed the contribution of spike irreg-

ularity to be distinguished from that of spike rate (Figure 2, Figure 2—figure supplement 1). For

each Purkinje cell, residual spike rate, residual CV2, and residual eye velocity were calculated by sub-

tracting the corresponding trial mean from the response on each individual trial, computed in 50 ms

time bins (Figure 2A,B). The ability of spike rate and spike irregularity (CV2) to predict eye velocity

were then statistically compared using a linear mixed effects model (see Materials and methods).

This analysis found a significant contribution of residual spike rate, but not residual CV2, for predict-

ing residual eye velocity in monkeys (rate: p=0.006; CV2: p=0.56; interaction: p=0.17; likelihood

ratio test) and mice (rate: p=0.035; CV2: p=0.38; interaction: p=0.46) (Supplementary file 1; see

Figure 1 continued

Purkinje cells recorded in monkeys (top) and mice (bottom). (E) The relationship between spike rate and spike irregularity (CV2), averaged across the

population of Purkinje cells recorded in monkeys (top) and mice (bottom) and plotted for each 2 ms time point within the stimulus cycle. Spontaneous

activity is plotted in gray. In this and all figures, error bars represent ± SEM.

DOI: https://doi.org/10.7554/eLife.37102.002

The following source data and figure supplements are available for figure 1:

Source data 1. Electrophysiology data from monkey recorded during oculomotor behavior, including instantaneous firing rate (MATLAB variable name:

FR), local irregularity (CV2), and gaze velocity (GAZE).

DOI: https://doi.org/10.7554/eLife.37102.006

Source data 2. Electrophysiology data from mouse recorded during oculomotor behavior.

DOI: https://doi.org/10.7554/eLife.37102.007

Figure supplement 1. Spike rate and irregularity during oculomotor behavior in mice.

DOI: https://doi.org/10.7554/eLife.37102.003

Figure supplement 2. Relationship between spike rate and irregularity for all Purkinje cells.

DOI: https://doi.org/10.7554/eLife.37102.004

Figure supplement 3. Contribution of a refractory period to the relationship between instantaneous spike rate and irregularity.

DOI: https://doi.org/10.7554/eLife.37102.005

Payne et al. eLife 2019;8:e37102. DOI: https://doi.org/10.7554/eLife.37102 5 of 39

Research article Neuroscience

https://doi.org/10.7554/eLife.37102.002
https://doi.org/10.7554/eLife.37102.006
https://doi.org/10.7554/eLife.37102.007
https://doi.org/10.7554/eLife.37102.003
https://doi.org/10.7554/eLife.37102.004
https://doi.org/10.7554/eLife.37102.005
https://doi.org/10.7554/eLife.37102


Rate high

Rate low

A B

1 s

3
0

°/
s

Irregularity

(CV2)

Spike rate

Eye velocity

3
0

 s
p

/s

ResidualsRaw data

0
.3

5°/s

30 sp/s

0.3

1 s

CV2 high

CV2 low

Residual

irregularity

(CV2)

Residual

spike rate

Residual
eye velocity

-10 0 10

-0.2 -0.1 0 0.1 0.2

R
e

si
d

u
a

l e
ye

 v
e

lo
ci

ty
(°

/s
)

C
R

e
si

d
u

a
l e

ye
 v

e
lo

ci
ty

(°
/s

)
CV2 high

Rate low

D

Residual spike rate (sp/s)

Residual irregularity (CV2)

-20 20 -10 0 10

-0.2 -0.1 0 0.1 0.2

R
e

si
d

u
a

l e
ye

 v
e

lo
ci

ty
(°

/s
)

E

R
e

si
d

u
a

l e
ye

 v
e

lo
ci

ty
( °

/s
)

CV2 low
CV2 high

Rate low

Rate high
F

-0.1

0

0.1

Residual spike rate (sp/s)

Residual irregularity (CV2)

-20 20

-0.2

0.2

-0.1

0

0.1

-0.2

0.2

Monkey Mouse

0

0

0

Rate high

-0.2

-0.1

0

0.1

0.2

CV2 low

-0.2

-0.1

0

0.1

0.2

Figure 2. Residual analysis of spike rate and irregularity during oculomotor behavior. (A) Example traces of raw

eye velocity, instantaneous spike rate, and spike irregularity (thick lines) during two cycles of sinusoidal visual

tracking in monkey, calculated in 50 ms bins, and overlaid on the mean responses across all cycles for this Purkinje

cell (thin black lines). (B) Residuals were calculated by subtracting the mean response from the raw response. For

visualization only (panels C–F) the residual spike rates and CV2 values were divided into the lower and upper

thirds of the distribution for each cell (shading). Statistical analysis was conducted on the full distribution of

residuals (see text). (C,D) The relationship between residual spike rate and residual eye velocity, plotted separately

for time bins with residual CV2 values in the lower (blue) or upper (red) third of the CV2 distribution for each cell,

and then averaged across Purkinje cells for monkeys (C, n = 120 cells from four monkeys) and mice (D, n = 33 cells

from 29 mice). (E,F) The relationship between residual spike irregularity (CV2) and residual eye velocity, plotted

separately for time bins with residual spike rate values in either the lower (light gray) or upper (dark gray) third of

the spike rate distribution for each cell, for monkeys (E) and mice (F).

DOI: https://doi.org/10.7554/eLife.37102.008

The following figure supplement is available for figure 2:

Figure supplement 1. Moment-to-moment spike rate and spike irregularity are only weakly correlated.

DOI: https://doi.org/10.7554/eLife.37102.009

Payne et al. eLife 2019;8:e37102. DOI: https://doi.org/10.7554/eLife.37102 6 of 39

Research article Neuroscience

https://doi.org/10.7554/eLife.37102.008
https://doi.org/10.7554/eLife.37102.009
https://doi.org/10.7554/eLife.37102


Materials and methods). Spike rate was therefore a better predictor of moment-to-moment eye

velocity than spike irregularity.

To visualize this result, the relationship between residual eye velocity and residual spike rate was

plotted separately for time bins in which the CV2 fell into the lower or upper third of the CV2 distri-

bution for each cell (Figure 2B bottom, red vs. blue shading; Figure 2C,D, red vs. blue traces).

There was a consistent correlation between residual spike rate and residual eye velocity (Figure 2C,

D): on trials with higher than average spike rate at a particular time within the trial, eye velocity was

also higher than average at that time within that trial. One extra spike in a 50 ms time bin, corre-

sponding to a 20 sp/s fluctuation in spike rate, was associated with a roughly 0.1˚/s change in eye

velocity, consistent with the correlation between single spikes and visual tracking behavior reported

by Chaisanguanthum et al. (2014). The same relationship between residual spike rate and eye

velocity was observed for time bins with high or low CV2 (Figure 2C,D), consistent with the conclu-

sion of the linear mixed effects model that spike irregularity did not substantially modulate the

effects of spike rate on eye movements (no main effect of CV2 or interaction between spike rate and

CV2, Supplementary file 1). Moreover, when residual eye velocity was plotted against residual CV2,

there was no correlation (Figure 2E,F). Therefore, although on average, both spike rate and irregu-

larity were correlated with each other and with motor output during eye movement behaviors (Fig-

ure 1), moment-to-moment variations in eye velocity could be explained by moment-to-moment

variations in spike rate, but not spike irregularity. Thus, the recording results found no evidence that

spike irregularity influenced motor output during oculomotor behavior.

Optogenetically-driven Purkinje cell spike rate controls motor output
independent of spike irregularity
Stimulation experiments provided a causal test of the relationship between spike irregularity and

oculomotor behavior. Optogenetic stimulation of Purkinje cells made it possible to independently

manipulate spike rate and irregularity by delivering sequences of light pulses with different stimulus

rates and irregularities. Channelrhodopsin-2 (ChR2) was selectively expressed in Purkinje cells by

crossing a conditional ChR2 mouse line (Madisen et al., 2012) with the L7/Pcp2-Cre Jdhu line, which

is highly selective for Purkinje cells (Zhang et al., 2004; Witter et al., 2016). Purkinje cells express-

ing ChR2 were stimulated in vivo using 500 ms trains of 1 ms pulses of light delivered at mean rates

from 20 Hz to 100 Hz. For a given mean rate, the exact same number of pulses were delivered dur-

ing each train, with variations only in the irregularity of the stimulus pulse timing, so that the CV of

each stimulus train was either 0 (perfectly regular), 0.5 (intermediate irregular), or 1 (approximately

Poisson irregular) (see Materials and methods). In these experiments, the more common CV measure

was used to characterize the irregularity of the stimulus trains rather than CV2, since there was no

additional variation in rate. For the irregular stimulus trains, 60 different patterns were randomly

generated for each frequency (‘non-repeated’). In addition to the non-repeated trains, for a subset

of stimulus frequencies (20 Hz, 60 Hz, and 100 Hz) one representative irregular (CV = 1) stimulus pat-

tern was repeated (‘repeated’) to provide a measure of trial-to-trial variability, and to allow visualiza-

tion of the average response to an irregular train. Because Purkinje cells have high rates of

spontaneous spiking, the actual spike irregularity and rate achieved in Purkinje cells differed from

that of the stimulus trains, and thus was measured explicitly (see below). Stimulus trains were deliv-

ered unilaterally to the flocculus of awake, head-restrained mice in a completely dark room, and the

resulting eye movements were measured.

Extracellular recordings confirmed that optogenetic stimulation effectively dissociated spike rate

and irregularity in Purkinje cells in vivo. Purkinje cells in the flocculus were identified based on their

reliable, short-latency responses to 1 ms light pulses (median first-spike latency 1.24 ± 0.07 ms, stan-

dard deviation 1.36 ± 0.17 ms, n = 13, 1 mW light intensity; Figure 3A–C), and their identity was

confirmed by their characteristic spike waveform (Figure 3A), high-frequency spontaneous activity

(62.2 ± 6.9 sp/s, n = 13), and recording location within the layers of the cerebellar cortex. Putative

interneurons were also recorded, which did not have short-latency responses to light pulses

(Figure 3B,C), and which had different spike waveforms, spontaneous rates, and/or recording loca-

tions than the Purkinje cells. Since the interneurons can influence behavior only via their effects on

the output of Purkinje cells, interpretation of the relationship between Purkinje cell spiking and

motor output is not affected by the activity of the interneurons, hence they were not analyzed

further.
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Figure 3. Optogenetic stimulation of Purkinje cells with regular and irregular stimulus trains. (A) Recordings of optogenetically-driven spikes in an

example Purkinje cell. Left, first two principle components of waveforms sorted as noise (gray) or spikes (black). Middle, spontaneous and optogenetic

stimulus-driven spike waveforms. Right, distribution of the latency to the first spike following a single light pulse (1 ms, 1 mW). (B) Histogram of median

first-spike latencies following a single light pulse for the population of identified Purkinje cells and for other cerebellar cell types (1 ms, 1 mW light

pulses). (C) Histogram of the percent of trials for which the first spike following the first light stimulus occurred within 5 ms, for Purkinje cells and other

cell types. (D) Raster of spike times in the example Purkinje cell shown in (A) during 100 Hz trains of regular (CV = 0; left) and irregular (CV = 1,

repeated; right) optogenetic stimulation. Colored triangles above rasters indicate the time of each 1 ms light pulse. Each row represents a single trial,

with 31 trials shown for each stimulus train, spanning 60 min of recording. (E) Peristimulus time histograms (left; 5 ms bin width) and ISI distributions

(right; 1 ms bin width) for the example cell during 20 Hz, 60 Hz, and 100 Hz regular and irregular optogenetic stimulation. (F) Mean spike rate (left) and

CV (right) for the example cell as a function of stimulus rate. The black dashed line represents a 1:1 relationship between stimulus rate and the increase

in Purkinje cell spike rate relative to the spontaneous baseline. Solid lines show the responses to the regular and irregular (non-repeated) stimuli. The

Figure 3 continued on next page
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Purkinje cells responded to individual light pulses within each stimulus train (Figure 3D,E). The

increase in spike rate above baseline, averaged over the 500 ms stimulus period, followed the stimu-

lus rate in a roughly 1:1 manner, even for stimulus rates as high as 100 Hz (Figure 3F,G, left). Irregu-

lar stimulus trains drove slightly lower mean spike rates than regular trains (Figure 3G, left); this is

taken into account in the analysis of the behavioral results below. Importantly, the overall irregularity

of the combined spontaneous and optogenetically-driven Purkinje cell spikes consistently reflected

the irregularity of the stimulus train (Figure 3F,G, right), with substantially more irregular spiking

during the irregular stimulus trains compared to the regular stimulus trains. Thus, optogenetic stimu-

lation provided differential control of spike rate and spike irregularity in cerebellar Purkinje cells.

Optogenetic stimulation of the Purkinje cells elicited robust eye movement responses. Discrete

eye movement responses could be observed in response to each light pulse, even at stimulus fre-

quencies as high as 100 Hz (Figure 4A,B). The sequence of light pulses during a train led to a cumu-

lative deviation of the eye from its initial position, with greater total deviations in eye position for

higher stimulus rates, and correspondingly higher mean eye velocities. The net eye movement

response was quantified and compared across stimulus conditions by calculating the mean eye

velocity during the 500 ms stimulus train. Like Purkinje cell spike rate, mean eye velocity increased

with stimulus rate (Figure 4C,D), consistent with the Purkinje cells controlling eye velocity with a rate

code. A similar correlation between stimulus rate and mean eye velocity was observed during both

regular and irregular stimulus trains. The mean eye velocity evoked by irregular trains was slightly

smaller than that evoked by regular trains; however, the mean Purkinje cell spike rate was also

slightly smaller during irregular trains (Figure 3G). When mean eye velocity was assessed as a func-

tion of the actual mean spike rate recorded in the Purkinje cells rather than the stimulation rate,

there was no significant difference in the net efficacy of the regular and irregular spike trains to drive

eye movements (Figure 4E). Similar results were obtained using regular and irregular stimulus trains

at a higher light intensity (10 mW, Figure 4—figure supplement 1). Thus, our stimulation results do

not support the prediction from previous studies that more irregular Purkinje cell spike trains should

have less impact downstream than more regular spike trains (Luthman et al., 2011; Hoebeek et al.,

2005).

Rapid rate code for eye movements
The net impact of Purkinje cell stimulation, as quantified by averaging eye velocity across the 500 ms

period of optogenetic stimulation, did not depend on the irregularity of Purkinje cell spiking. On a

finer timescale, the eye movement trajectories clearly depended on the exact temporal pattern of

stimulation, with eye movements tracking the occurrence of individual stimuli within the train

(Figure 4A,B). However, additional analysis demonstrated that these moment-to-moment eye move-

ment trajectories could be well accounted for as a rapid, linear response of the eye to changes in

the Purkinje cell population spike rate.

The population spike rate was estimated by combining binned spike histograms across the popu-

lation of recorded Purkinje cells, aligned on the optogenetic stimulus trains. Optogenetic stimulus

pulses drove spikes with similar, precise latencies in all recorded Purkinje cells (Figure 3B,C), causing

rapid fluctuations in the population spike rate during the optogenetic stimulus trains, which

Figure 3 continued

red dashed line shows the response to the irregular (CV = 1, repeated) trains shown in (D,E). (G) Mean increase in spike rate relative to baseline (left)

and mean CV (right) for the population of Purkinje cells (n = 12, 1 mW light intensity). There was a small but significant effect of stimulus irregularity on

Purkinje cell spike rate (main effect of stimulus irregularity F(2,22) = 20.73, p=0.0009; interaction between rate and irregularity, F(10, 110)=5.48,

p<0.0001, two-way repeated measures ANOVA; or F(2,24) = 4.89, p=0.017; F(10, 120)=4.87, p<0.0001 with inclusion of one additional outlier (not

shown, see Materials and methods)). Importantly, there was a significant effect of stimulus irregularity on Purkinje cell spike irregularity (main effect of

stimulus irregularity F(2,22) = 20.73, p<0.0001; interaction between rate and irregularity, F(10, 110)=15.07, p<0.0001, two-way repeated measures

ANOVA; or F(2,24) = 21.0, p<0.0001; F(10, 120)=13.6, p<0.0001 with outlier included).

DOI: https://doi.org/10.7554/eLife.37102.010

The following source data is available for figure 3:

Source data 1. Optogenetic stimulus-driven Purkinje cell spike rate and spike irregularity.

DOI: https://doi.org/10.7554/eLife.37102.011
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paralleled the rapid fluctuations in eye velocity. We quantified the ability of the population spike

rate to predict oculomotor output over these short timescales.

We first determined the decoding time window over which the population rate is decoded (‘read

out’) by the downstream oculomotor circuitry. The decoding window is analogous to the encoding

window used to analyze rate coding and temporal coding in sensory systems (Theunissen and

Miller, 1995). The decoding window was evaluated by calculating mutual information to determine
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Figure 4. Eye movements evoked by regular and irregular Purkinje cell stimulation. (A) Eye position averaged

across trials in one representative mouse, during optogenetic stimulation of Purkinje cells with regular (left) or

irregular (CV = 1, repeated; right) stimulus trains at 20, 60, and 100 Hz. Colored triangles indicate stimulus times.

(B) Eye velocity averaged across trials in the example mouse. (C) Mean eye velocity, averaged across the 500 ms

period of stimulation and plotted as a function of the stimulus rate, for the example mouse. Solid lines represent

the results for regular and non-repeated irregular trains; dashed line represents the results from the repeated

irregular trains. (D) Mean eye velocity as a function of the optogenetic stimulation rate, averaged across

experiments (n = 16 flocculi from 10 mice). Colors indicate the stimulus irregularity, as in (C). There was a small but

significant interaction of stimulus irregularity and stimulus rate on the mean eye movement responses (fixed effect

of irregularity: p=0.34, interaction: p=0.021, likelihood ratio test of linear mixed effects model). (E) Mean eye

velocity as a function of the mean increase in spike rate recorded in the population of Purkinje cells. Colors

indicate the stimulus irregularity, as in (C). There was no significant effect of Purkinje cell irregularity on the mean

eye movement responses (fixed effect of irregularity: p=0.86, interaction: p=0.80, likelihood ratio test of linear

mixed effects model; with the outlier Purkinje cell included in the mean D Purkinje cell rate, fixed effect of

irregularity: p=0.50; interaction: p=0.88).

DOI: https://doi.org/10.7554/eLife.37102.012

The following source data and figure supplement are available for figure 4:

Source data 1. Optogenetic stimulus-driven eye velocity and Purkinje cell spike rates.

DOI: https://doi.org/10.7554/eLife.37102.014

Figure supplement 1. Eye movements evoked by regular and irregular Purkinje cell stimulation at a higher light

intensity.

DOI: https://doi.org/10.7554/eLife.37102.013
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the timescale over which the population spike rate contained information about movements. Mutual

information quantified the amount of information (in bits per second) that the Purkinje cell popula-

tion spike rate conveyed about eye velocity during optogenetic stimulation, as spike rate and eye

velocity were smoothed over successively longer time windows (see Materials and methods). Since

there is a delay between neural activity and motor output, mutual information was initially calculated

for a range of delays, and the delay that yielded the highest mutual information on average, 6 ms,

was used in all subsequent analyses. For both regular and irregular stimulus trains, mutual informa-

tion was maximal when spike rate and eye velocity were smoothed over a temporal window of 3–5

ms (Figure 5A). Mutual information decreased when spike rate was smoothed using windows shorter

than 3 ms, indicating that fluctuations in spike rate and eye velocity at the shortest timescales were

not as strongly related. Mutual information also decreased when the data were smoothed using win-

dows longer than 5 ms, indicating that there is information about eye velocity in the rapid fluctua-

tions of Purkinje cell spike rate that is lost by smoothing over intervals longer than 5 ms. Thus, the

Purkinje cell population transmits a rate code that is decoded by the oculomotor circuitry on a time-

scale of 3–5 ms. Importantly, for rapid timescales encompassing this optimal decoding window of 3–

5 ms, the same amount of information about eye movements was transmitted by the Purkinje cell

rate code during regular and irregular stimulation (Figure 5A). Spike irregularity therefore did not

alter the magnitude of the influence of spike rate on eye movements.

Not only did the instantaneous spike rate carry the same amount of information about eye veloc-

ity irrespective of spike irregularity, but the transformation between population spike rate and eye

velocity could be described by the same linear temporal filter. For each stimulation experiment, a

single linear filter was fit using total least squares regression of the eye velocity responses to the

non-repeated irregular (CV = 1) stimulus trains at all frequencies (20, 40, 60, 80, 100 Hz) against the

Purkinje cell responses to the same set of stimuli (Figure 5B). The linear filter was then used to pre-

dict the eye velocity responses to both the regular and the repeated irregular (CV = 1) stimulus

trains, which had not been used to fit the filter, by convolving the filter with the Purkinje cell popula-

tion spike rate during each stimulus train (Figure 5C). The linear filter model closely predicted eye

velocity (Figure 5C,D) with root mean squared error (RMSE) that did not differ significantly between

the regular and irregular test stimulus trains (Figure 5E). Further, when the model was fit to data

from the regular stimulation at all frequencies (20, 40, 60, 80, 100 Hz), the resulting linear filter was

nearly identical to the filter fit to the irregular data only (Figure 5—figure supplement 1). Thus, the

same linear filter model described the relationship between spike rate and motor output equally

well, regardless of the underlying spike pattern.

The rapid readout of the Purkinje cell rate code could render the circuit sensitive to changes in

spike irregularity that alter the precision of the population spike rate (Walter et al., 2006). In partic-

ular, highly irregular spiking in individual Purkinje cells may degrade the precision of the motor com-

mands carried by the population rate, by increasing its moment-to-moment and trial-to-trial

variability. A simple simulation illustrates how spike irregularity in individual neurons can affect the

accuracy of the population rate (Figure 6). Interspike intervals for a population of 50

simulated Purkinje cells were drawn from Gamma distributions with a given mean rate and level of

irregularity. The instantaneous population rate was then calculated in 5 ms temporal windows (popu-

lation rate = total number of spikes across the population divided by the number of neurons and the

window duration). Higher spike irregularity increased the moment-to-moment variation in the popu-

lation rate from the specified rate, as demonstrated by a broadening of the distribution of instanta-

neous population rates (Figure 6A). This broadening was subtle for variations in spike irregularity in

the normal range observed in our recording and stimulation experiments and in previous studies of

Purkinje cells in wild type mice (Figure 6A, blue and red; Gao et al., 2012; Stahl and Thumser,

2014; Mark et al., 2015), but was more pronounced for the higher levels of irregularity that have

been reported in mouse models of ataxia (Figure 6A, purple; Hoebeek et al., 2005; Walter et al.,

2006; Luthman et al., 2011; Gao et al., 2012; Stahl and Thumser, 2014; Mark et al., 2015). This

variability in the population spike rate could in turn lead to greater behavioral variability, because

the behavior tracks rapid fluctuations in the commands carried by the Purkinje cell population

rate (Figure 5A). The degraded precision of the population rate code is apparent in receiver operat-

ing characteristic (ROC) curves representing the discriminability of two motor commands corre-

sponding to target Purkinje cell population spike rates of 60 sp/s and 100 sp/s. The area under the

ROC curve decreased with higher spike irregularity in the individual Purkinje cells, indicating
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Figure 5. Purkinje cells control eye velocity with a rapid rate code. (A) Mutual information between Purkinje cell

spike rate and eye velocity during regular and irregular (CV = 1, repeated) optogenetic stimulus trains, calculated

with the Purkinje cell spike rate smoothed by taking a moving average over time windows of different lengths

(‘Temporal smoothing’). Purkinje cell spike rate carried the same amount of information about eye velocity during

the regular and irregular stimulus trains for temporal smoothing windows from 1 ms through 8 ms (all p>0.1 for 1

ms – 8 ms, 13 ms, and 20 ms; for other window lengths p ranges from 0.0003 to 0.0361, post hoc test with Sidak

correction; two-way repeated measures ANOVA with significant interaction between smoothing window length

and irregularity (F (19, 285)=11, p<0.0001, n = 16 flocculi from 10 mice; or all p>0.1 for 1 ms – 8 ms, 13 ms, and 20

ms and other p ranging from 0.0002 to 0.0223 with outlier Purkinje cell included). (B) Linear filter describing the

transformation of Purkinje cell rate into eye velocity, fit using data from irregular stimulation (CV = 1, non-

repeated; n = 16 flocculi from 10 mice). (C) Actual eye velocity (black) and predicted eye velocity (colors) in an

example mouse for test stimuli that were not used to fit the linear filter model: regular and irregular (CV = 1,

repeated) stimulation at 20, 60, and 100 Hz. (D) Actual versus predicted eye velocity at each 1 ms time point

during the regular and irregular test stimuli, for the example mouse in (C). (E) Root mean squared error (RMSE)

between actual and predicted eye velocity for each experiment (5.57 ± 0.45˚/s regular, 5.56 ± 0.41˚/s irregular,

n = 16, p=0.92, n.s.: not significant, paired t-test; or p=0.87 with outlier Purkinje cell included). RMSE for the

example mouse in (C,D) is plotted with hollow circles.

DOI: https://doi.org/10.7554/eLife.37102.015

Figure 5 continued on next page
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decreased ability to discriminate distinct motor commands conveyed by the population spike rate

(Figure 6B). This provides a potential reconciliation of our current finding of a rapid rate code for

motor control with previous reports in ataxic mice suggesting that abnormally high irregularity of

Purkinje cell spike trains disrupts normal downstream signaling and motor output (Hoebeek et al.,

2005; Walter et al., 2006; Wulff et al., 2009; Alviña and Khodakhah, 2010b; Alviña and Khoda-

khah, 2010a; Luthman et al., 2011). Pathological levels of spike irregularity may cause ataxia, not

through a direct effect of the irregularity itself, but by degrading the accuracy of the rapid rate code

carried by Purkinje cells.

Biophysical model of Purkinje cell synaptic transmission
We used a conductance-based model of the synapses between Purkinje cells and their postsynaptic

targets to analyze the cellular properties governing how the temporal properties of Purkinje cell

spike trains influence spiking in their target neurons (Luthman et al., 2011; Steuber et al., 2011). A

previous study using this model indicated that more irregular Purkinje cell spike trains should be less

effective, on average, than regular spike trains at inhibiting postsynaptic targets (Luthman et al.,

2011). We analyzed the sensitivity of this finding to the choice of specific model parameters.

The model consisted of a multi-compartmental reconstruction of a Purkinje cell target neuron in

the deep cerebellar nucleus (Luthman et al., 2011; Steuber et al., 2011). The target neuron

received inhibition from 50 Purkinje cells (Person and Raman, 2012a), each firing spontaneously at

60 sp/s (CV = 0.5), and excitation from 150 mossy fibers, each firing spontaneously at 20 sp/s

(CV = 1) (Figure 7A), with the inhibitory synapses exhibiting short-term depression as modeled by

Shin et al. (2007). The model target neuron also contained Hodgkin-Huxley style ion channel con-

ductances based on experimental measurements, as in the original model (see Materials and

methods).

To simulate the optogenetically-driven Purkinje cell activity recorded in vivo, stimulus-driven Pur-

kinje cell spikes following the same regular and irregular stimulus patterns used in the stimulation

experiments were superimposed on a background of spontaneous spiking at 60 sp/s (Figure 7B).

Each stimulus-driven Purkinje cell spike was delayed by a random amount (1.24 ms ± 1.36 ms,

mean ± STD for a Gaussian distribution truncated at 0 ms) relative to the common stimulus time to

mimic the variability in spike latencies observed in vivo (median: 1.24 ± 0.07 ms, standard deviation:

1.36 ± 0.17 ms, n = 13, Figure 3B). The net impact of Purkinje cell stimulation was quantified by

computing the spike rate of the model target neuron, averaged over the 500 ms stimulus window,

for each stimulus train. The impact of stimulus trains with different rates and irregularity on target

neuron output were compared with the empirical effects of the same stimulus trains on eye

movements.

When model parameters were identical to those previously published (Luthman et al., 2011), the

model predicted that irregular stimulus trains (CV = 1) would have substantially smaller net impact

on mean target neuron output than regular stimulus trains (CV = 0) (Figure 7C1), as previously

reported for simulations of spontaneous Purkinje cell spiking with different levels of irregularity. This

prediction was inconsistent with our experimental observation of similar net impact of regular and

irregular spike trains on eye movements (Figure 4); thus the in vivo observations could not be

explained by the previously chosen model parameters. Those parameters had been selected, wher-

ever possible, to match biophysical parameters reported in the experimental literature. However,

the values reported for some biophysical parameters differ across experimental studies or cerebellar

regions, or are otherwise not well constrained. We found that changes to specific model parameters

within a biologically realistic range allowed the model to reproduce the experimental results.

Figure 5 continued

The following source data and figure supplement are available for figure 5:

Source data 1. Mutual information and linear filter fits for Figure 5.

DOI: https://doi.org/10.7554/eLife.37102.017

Figure supplement 1. Linear filter models fit to regular or irregular training data.

DOI: https://doi.org/10.7554/eLife.37102.016
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One parameter for which different values have

been reported in the experimental literature is

the amount of short-term plasticity at the synap-

ses from Purkinje cells to their target neurons,

which was previously identified as a potential

mechanism by which Purkinje cell spike irregular-

ity might influence the activity of the target neu-

rons. Studies in young rodents reported strong

(Pedroarena and Schwarz, 2003) or moderate

(Telgkamp and Raman, 2002; Telgkamp et al.,

2004) short-term depression at these synapses.

Such short-term plasticity was previously pre-

dicted to cause more irregular spike trains to

have reduced net impact on their targets

(Luthman et al., 2011), contrary to our experi-

mental observations. However, it was recently

discovered that short-term plasticity at these syn-

apses is developmentally regulated, such that

synaptic transmission in adult mice is remarkably

independent of spike rate (Turecek et al., 2016;

Turecek et al., 2017). Our experiments were per-

formed in adult mice; therefore, we eliminated

short-term depression in the model. However,

elimination of short-term depression was not suf-

ficient to allow the model to reproduce the

experimentally observed responses to optoge-

netic stimulus trains (Figure 7C2). Even without

short-term depression, the model predicted

smaller net impact of irregular than regular stimu-

lus trains, contrary to the experimental

observations.

A second mechanism through which the irreg-

ularity of Purkinje cell stimulation could influence

target neuron spiking is through the creation of

synchronous gaps in inhibitory synaptic transmis-

sion (Person and Raman, 2012a). At high stimu-

lus rates, the regular interstimulus intervals were

too short to permit the model postsynaptic neu-

ron to reliably reach threshold and fire

a spike before the next synchronous inhibitory

input arrived (Figure 7C, top right). In contrast,

highly irregular stimulus trains at the same mean

frequency contained a wide range of interstimu-

lus intervals, including some that were sufficiently

long to permit postsynaptic firing (Figure 7C,

bottom right). This observation suggested that

the irregularity of Purkinje cell stimulation might

influence the mean output of the target neurons

whenever the strength of Purkinje cell synaptic

inhibition was large enough, relative to the

strength of excitation, so that one stimulus pulse

to the Purkinje cells could suppress spiking in the

target neuron for the duration of the mean inter-

stimulus interval. In contrast, floccular Purkinje cell target neurons in the vestibular nuclei are able to

sustain high spontaneous firing rates of ~50–120 sp/s despite incessant Purkinje cell inhibition

(Lisberger et al., 1994a; Zhang et al., 1995b; Zhang et al., 1995a; Lisberger et al., 1994b;
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Figure 6. Effect of spike irregularity on the variability of

the population spike rate. (A) The probability density of

the population spike rate, computed in 5 ms bins, for a

population of 50 simulated Purkinje cells, each firing

asynchronously at a given mean rate with the level of

irregularity indicated in the legend. The two lower

levels of irregularity (CV = 0.55 and CV = 0.82)

correspond to the mean CV measured in Purkinje cells

during 100 Hz regular or irregular optogenetic

stimulation (Figure 3G). The high level of irregularity

(CV = 1.7) is near the high end of the range reported in

mouse models of ataxia (Hoebeek et al., 2005;

Gao et al., 2012; Stahl and Thumser, 2014;

Mark et al., 2015) and was used in the simulations of

Luthman et al. (2011). (B) Receiver operator

characteristic (ROC) curve (Fawcett, 2006) for the

distributions in (A), with the true positive fraction

(sensitivity) plotted as a function of the false positive

fraction (1 – specificity). Chance performance (no

discrimination) is represented by the dashed diagonal

line; perfect discrimination is represented by a step

function beginning at the origin. Increasing the CV

from 0.55 to 0.82 has a minor effect on the ability to

discriminate the two frequencies, whereas

discrimination is more impaired for a pathological level

of irregularity (CV = 1.7).
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Beraneck and Cullen, 2007; Bagnall et al., 2008). Therefore, we systematically varied the excitatory

and inhibitory conductances in the model target neuron, while holding other parameters constant,

to test how the relative strength of excitation and inhibition (the E/I balance) received by the target

neuron influenced the effects of Purkinje cell irregularity.

To summarize the net impact of stimulus irregularity on target neuron output across different

model parameters, we introduce a metric, Iirreg, that captures the normalized difference between the

mean target neuron response to regular and irregular stimulation at different frequencies:

Iirreg ¼ 1

Nfreqs

P

Nfreqs

i¼1

r
irreg

i
�r

reg

i

rrange

where r
reg
i is the mean target neuron rate in response to regular stimulation (CV = 0) at frequency i,

r
irreg
i is the mean response to irregular stimulation (CV = 1) at the same frequency, and rrange is the

range of mean target neuron rates observed across the entire set of stimulus trains plus spontaneous

activity (max – min). Iirreg provides a measure of the effect of irregularity on the overall efficacy of

spike trains. Identical mean target neuron responses to regular and irregular stimulation at each fre-

quency would produce an Iirreg value of 0, whereas larger positive values of Iirreg represent less effec-

tive inhibition of target neuron activity by irregular than regular stimulation ðrirregi >rregi Þ. Therefore,
larger values of Iirreg indicate that stimulus irregularity has a greater impact on the control of motor

output.

During simulated optogenetic stimulation, the balance of excitatory and inhibitory conductances

was a key determinant of whether the net impact of regular and irregular stimulus trains on down-

stream activity was different, as quantified by Iirreg . In models with higher E/I ratios, the efficacy of

the Purkinje cell spike trains had little dependence on spike irregularity, reflected by small values

of Iirreg (Figure 7D, small symbols). Moreover, there were models with small Iirreg that closely

matched the dynamics of the eye movements observed experimentally in response to the optoge-

netic stimulus trains (Figure 7E). Thus, although previous work with the same biophysical model con-

tended that spike irregularity should affect downstream processing of the Purkinje cells’ output

(Luthman et al., 2011), the biophysics of the Purkinje cell-target neuron synapses are also consistent

with a negligible effect of Purkinje cell spike irregularity. Indeed, the original model parameters

seem to lie in a small region of E/I parameter space where the effects of irregularity are near maxi-

mal (Figure 7, Figure 8).

The biophysical model was also used to examine how the effects of spike irregularity in individual

Purkinje cells might be influenced by spike synchrony across Purkinje cells. Optogenetic stimulation

had the advantage of allowing independent experimental manipulation of spike rate and irregularity,

but it had the disadvantage of driving spiking that was almost certainly more synchronous across the

Purkinje cell population than present during natural sensorimotor signal processing (Bell and Grimm,

Figure 7 continued

Target neuron output in response to simulated optogenetic stimulation, for the model with all original parameters including short-term synaptic

depression (STD) at the Purkinje cell-to-target neuron synapses (C1) and for the same model but without STD (C2). Note different scales of vertical axes

in C1 and C2. Gray traces show STD of the inhibitory conductance in the model during 50 Hz stimulation. Mean target neuron spike rate during the 500

ms stimulus train is plotted for a range of different stimulation rates and levels of irregularity (left). In this and subsequent panels, the firing rate of the

model target neuron is plotted with the y-axis inverted (lower firing rate plotted higher on the y-axis) since Purkinje activation drives a decrease in

target neuron activity below the spontaneous rate (Lisberger et al., 1994b), which in turn drives eye movements (Dufossé et al., 1977). Voltage traces

(right) show the membrane potential of the model target neuron during 100 Hz regular (top) or irregular (bottom) stimulation. (D) Irregularity impact

index (Iirreg, see text) for models with different strengths of excitatory (E) and inhibitory (I) conductance (relative to the original model, indicated by solid

box), with short-term depression (D1) or without short-term depression (D2) of the Purkinje cell-to-target neuron synapses. The size and color of the

circle reflects the value of Iirreg for each set of model E/I parameters, with larger circles representing a larger difference in the impact of regular versus

irregular Purkinje cell stimulus trains on the mean target neuron output (positive values reflect a bigger impact of regular trains). Gray shading indicates

model parameters for which Iirreg < 0.05 (compare with gray shading in Figure 8A). Dashed boxes indicate parameters that yielded a close fit to

experimental results, shown in (E). (E) Mean target neuron output averaged across the 500 ms stimulus trains (left); the moment-to-moment trajectory of

the model output (right, gray) and actual eye velocity from an example mouse (right, black) during 60 Hz stimulus trains, for models with new E/I

parameters (indicated by dashed boxes in panel D), either with short-term depression (E1) or without short-term depression (E2).
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1969; Bell and Kawasaki, 1972; Ebner and

Bloedel, 1981; Shin and De Schutter, 2006;

Heck et al., 2007; de Solages et al., 2008;

Wise et al., 2010). The biophysical model was

used to predict the impact of Purkinje cell spike

irregularity under more natural conditions of less

Purkinje cell synchrony than present during opto-

genetic stimulation. Asynchronous spike trains

were generated with the same statistics as the

‘synchronous’ simulated optogenetic stimulus-

driven spike trains by shifting the stimulus-driven

spikes in each model Purkinje cell by a random,

fixed amount between 0 and 500 ms, with a dif-

ferent random shift for each Purkinje cell in the

model (Figure 8). For every combination of

model parameters, the net impact of irregularity,

Iirreg, was smaller for asynchronous Purkinje cell

activity than for the more synchronous activity

present during simulated optogenetic stimulation

(Figure 8B). These smaller values of Iirreg for asyn-

chronous rather than synchronous conditions indi-

cate that any effect of spike irregularity on the

mean target neuron output under more natural,

asynchronous conditions should be less than that

observed experimentally during more synchro-

nous stimulation. Since the measured impact of

Purkinje cell irregularity on mean eye velocity was

not significant during synchronous optogenetic

stimulation, the model suggests that such irregu-

larity would have a similarly negligible impact

under more natural, asynchronous conditions.

Taken together, the recording, stimulation, and

modeling results make a strong case that floccu-

lar Purkinje cells control eye movements with a

rapid population rate code, with no evidence for

an additional effect of spike irregularity.

Random walk model of the effect
of input variance on target neuron
spiking
The biophysical model described above has many

parameters, making it impractical to assess how

and why each parameter may affect the sensitiv-

ity of the model to Purkinje cell spike irregularity.

A much simpler, random walk model

(Gerstein and Mandelbrot, 1964; Shadlen and Newsome, 1998; Salinas and Sejnowski, 2000)

reveals that a range of relationships between spike irregularity and mean target neuron output can

arise from even the most basic features of a neuron: a spike threshold, a post-spike reset membrane

potential, and a minimum membrane potential, combined with stochastic inputs. In this model, the

membrane potential of a neuron is driven by a stochastic input, which represents the sum of all excit-

atory, inhibitory, and intrinsic currents. The input at each time step is perfectly integrated by the

membrane potential until it reaches a threshold, at which point it fires a spike and the membrane

potential is reset to a predetermined value (Figure 9). A key parameter in the model is the moment-

to-moment variability of the stochastic input around its mean value. The irregularity and synchrony

of excitatory and inhibitory synaptic inputs are not explicitly modeled, but each can be considered
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Figure 8. Biophysical model: Reduced impact of

irregularity during asynchronous activity. (A) Impact of

irregularity (Iirreg) during asynchronous Purkinje cell

activity for biophysical models without STD. The color

scale for Iirreg is the same as in Figure 7, while the size

of the corresponding circles is expanded two-fold to

improve visibility of the much smaller differences

between models. Gray shading indicates Iirreg < 0.05,

for comparison with Figure 7D. (B) The impact of

irregularity during the more synchronous Purkinje cell

activity of simulated optogenetic stimulation (‘Opto

synchronous’), compared with the impact of irregularity

when the same spike trains were shuffled to provide

asynchronous Purkinje cell activation in the same model

(‘Asynchronous’). Note that even in the Opto

synchronous condition, there was considerable spike

asynchrony due to the independent, spontaneous

activity in each Purkinje cell and variation in the

latencies of the spikes driven by each simulated light

pulse.

DOI: https://doi.org/10.7554/eLife.37102.020

Payne et al. eLife 2019;8:e37102. DOI: https://doi.org/10.7554/eLife.37102 17 of 39

Research article Neuroscience

https://doi.org/10.7554/eLife.37102.020
https://doi.org/10.7554/eLife.37102


as increasing the variance of the stochastic input representing the net membrane current (Figure 6,

Figure 10).

Even in the extremely simple random walk model, the effect of increased input variance on the

target neuron spike rate depended on the location in parameter space (Figure 9). A well-known

prior result (Salinas and Sejnowski, 2000) is that an increase in input variance can drive a higher

spike rate in the target neuron (Figure 9B, positive slopes). This would correspond, for example, to

an increase in Purkinje cell irregularity or synchrony creating more gaps in inhibition that provide a

‘window of opportunity’ for spiking, thereby making the Purkinje cells less effective at inhibiting spik-

ing in their target neurons. A less recognized finding from the random walk model is that it can also

exhibit the opposite behavior, whereby an increase in input variance can decrease spike rate in the

target neuron (Figure 9B, negative slopes; see also Salinas and Sejnowski, 2000). Indeed, with

other model parameters held constant, as input variance increases from zero, the spike rate can first

decrease and then increase (Figure 9B, black and red). In the transition between these two regimes,

changes in input variance within a certain, intermediate range have minimal effect on spike rate in

the target neuron (Figure 9B, flat portion of the curves).

The ability of increased input variance to either increase or decrease firing in the target neuron

can be understood by considering two extreme cases. In the case where excitation and inhibition

are perfectly balanced (mean input is zero), the target neuron will never reach threshold if there is

no input variance. Thus, when excitation and inhibition are balanced, increasing the input variance

around the mean of zero increases the target neuron rate (Figure 9, dark blue; monotonically

increasing). A second extreme case is where the mean input is excitatory, but there is no limit to the

hyperpolarization of the membrane potential. In the random walk model, this limit is implemented

as a ‘floor’ (Vmin) below which additional inhibitory input has no effect, and which serves to keep the

membrane potential relatively close to the threshold. If this floor is removed, then a variable input

can cause the membrane potential to wander far from threshold, hence increasing input variance

under these conditions decreases the target neuron output on average (Figure 9, light blue;
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not present for ‘No reflecting barrier’). (B) Numerical simulations (dots) and approximate analytic predictions (lines) of the firing rate output of model

neurons receiving stochastic inputs with mean m and standard deviation s. In both the original and ‘Higher E/I’ simulations, there is a range of s where

small changes in variability have little effect on mean output rates (the range where the curves are approximately flat). Increasing the E/I balance shifts

this flat region to the right.
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monotonically decreasing). Spontaneously active neurons, such as the targets of floccular Purkinje

cells, operate in a regime between these two extreme cases, because all neurons have biophysical

limits on their membrane potential, and spontaneously active neurons also have net positive mean

excitatory drive. In this regime, increasing the input variance can decrease, increase, or have minimal

effect on the mean target neuron spike rate, as illustrated by the non-monotonic curves describing

target neuron spike rate as a function of input variance (Figure 9, red and black). Notably, a change

in the mean input (e.g. E/I ratio) can alter the sensitivity of spike rate to input variance (Figure 9B,

steepness of red vs. black curve), and shift the absolute level of input variance at which there is a

transition from a negative to positive dependence of spike rate on input variance.

This simple simulation demonstrates that biophysical complexity is not necessary to create differ-

ent relationships between input variance and output spike rate. Instead, the statistics of the random

walk itself can yield either an increase or a decrease in output spike rate with an increase in input

variance. Our experiments appear to have uncovered a biological example of an overlooked region

of parameter space, where changes in synaptic input variability within the range experienced during

normal behavior have little impact and hence do not interfere with the rate code for motor output.

Discussion
The analytical power of the oculomotor system provided an opportunity to test the idea that cere-

bellar Purkinje cells employ a multiplexed rate code and temporal code to control motor behavior.

Previous experimental and modeling studies of ataxia have suggested that pathological changes in
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cells to motor output. A population of Purkinje cells (and excitatory neurons, not shown) converges on each target neuron. A population of target

neurons drive eye movements. (B) The rate, irregularity, and synchrony of spike trains in individual Purkinje cells can each influence the population spike

rate. The mean and variability of the Purkinje cell population rate both affect motor output through a rapid rate code. (C) Effects of Purkinje cell spike

irregularity and synchrony on the Purkinje cell population spike rate (top), and target neuron spike rate, representing the eye velocity motor command

(bottom). The mean population spike rate in a given time interval—either a few milliseconds or hundreds of milliseconds—can predict the mean eye

velocity in that same time interval. At short timescales of a few milliseconds, the irregularity and synchrony of spiking in individual Purkinje cells can

affect the population spike rate and hence the moment-to-moment motor output. At longer timescales of a few hundred milliseconds, the same mean

spike rate elicits the same mean eye velocity (gray lines), regardless of the level of irregularity or synchrony.
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the irregularity of spiking in Purkinje cells influence the responses of downstream neurons and thus

behavior (reviewed in De Zeeuw et al., 2011). Inspired by these studies, the current research used

complementary recording, stimulation, and computational modeling approaches to analyze whether

spike irregularity is a component of the neural code used by Purkinje cells to control downstream

neurons during normal sensorimotor signal processing and behavior.

The results suggest that the transformation of Purkinje cell activity into motor output is closely

approximated by a rapid population rate code (Figure 10). Recordings of natural spike trains in Pur-

kinje cells of the cerebellar flocculus during normal oculomotor behavior revealed an intriguing cor-

relation between mean spike irregularity and mean gaze velocity, as also observed for mean spike

rate. However, natural, trial-to-trial variations in the eye movement responses to repetitions of the

same stimuli could be predicted from fluctuations in spike rate, but not from fluctuations in spike

irregularity (Figure 2). The ability to predict fluctuations in behavior from the spike rate recorded in

a single Purkinje cell suggests that the fluctuations in spike rate are shared across a large fraction of

the population of Purkinje cells that control eye movements (see also Chaisanguanthum et al.,

2014). In contrast, the lack of correlation between fluctuations in CV2 and eye velocity could indicate

that 1) the effect of spike irregularity in a single neuron is too small to detect, and fluctuations in

spike irregularity are not shared across the population of Purkinje cells, or 2) spike irregularity does

not influence eye velocity. The results from the optogenetic stimulation experiments favor the latter

interpretation, since the optogenetic stimulus trains drove robust changes in spike irregularity across

a large population of stimulated Purkinje cells, yet there was no difference in the mean eye velocity

during regular and irregular spike trains after controlling for spike rate. The levels of synchrony

across the Purkinje cell population during optogenetic stimulation were almost certainly higher than

during natural behavior, however, the biophysical model predicts even smaller effects of spike irreg-

ularity under conditions of lower synchrony, consistent with the recordings made under conditions of

natural levels of synchrony (Figure 2), which also yielded no evidence for an impact of spike irregu-

larity. Taken together, the convergent evidence from the complementary recording, stimulation, and

modeling approaches indicates that the irregularity of spiking in Purkinje cells is not a significant

component of the code used by the cerebellar flocculus to control normal eye movements. The

recording and stimulation results can be fully accounted for by the Purkinje cells controlling eye

movements primarily or exclusively via a rate code.

A remarkably rapid rate code for motor control
Linear rate coding
Previous studies have demonstrated that electrical or optogenetic manipulation of Purkinje cell activ-

ity can drive motor responses, with bigger behavioral responses for higher intensity stimulation

(Ron and Robinson, 1973; Belknap and Noda, 1987; Lisberger, 1994; Wada et al., 2014;

Nguyen-Vu et al., 2013; Heiney et al., 2014; Lee et al., 2015; Stahl et al., 2015; Sarnaik and

Raman, 2018). We extended this work by showing a roughly linear relationship between Purkinje

cell spike rate and behavior for optogenetic stimulation-driven spike rates from 0 to 100 sp/s above

the spontaneous rate (Figure 4E), consistent with the linear coding described in recordings of neural

activity during oculomotor behavior (Figure 1C; Shidara and Kawano, 1993; Lisberger, 1994;

Kahlon and Lisberger, 1999; Medina and Lisberger, 2007; Medina and Lisberger, 2009;

Katoh et al., 2015; Hong et al., 2016; Herzfeld et al., 2015; Sun et al., 2017; reviewed

in Raymond and Medina, 2018).

Rapid rate coding
The speed of the rate code conveyed by Purkinje cells for controlling eye movements is remarkable.

Previous work has shown that inhibitory synaptic transmission between Purkinje cells and their post-

synaptic targets is fast, with a synaptic time constant of 2 ms (Najac and Raman, 2015). We found

that this speed is largely maintained in the downstream oculomotor circuitry, which includes signal-

ing from the flocculus target neurons in the vestibular nuclei to their interneuron and motor neuron

targets in the abducens nucleus, and the effects of the latter on the oculomotor plant (reviewed in

Highstein et al., 2004). Discrete eye movement responses could be observed in response to each 1

ms optogenetic stimulus pulse, for stimulus frequencies at least as high as 100 Hz (Figure 4). The

mutual information between Purkinje cell rate and eye velocity peaked for a temporal smoothing
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window of 3–5 ms (Figure 5A). Likewise, the linear temporal filter describing the transformation of

Purkinje cell rate into eye velocity had a width of ~5 ms (width at half-amplitude of the initial tran-

sient; Figure 5B). Thus, the population spike rate in the floccular Purkinje cells appears to be read

out by the downstream oculomotor circuitry on a timescale of 3–5 ms. This is less than the typical ISI

in an individual Purkinje cell, but is a reasonable timescale for considering the population spike rate

in the ~50 Purkinje cells converging on a given target, which will collectively emit 10 or more spikes,

on average, per 5 ms interval; likewise, 3–5 ms is a reasonable timescale for considering spike rate in

the full population of Purkinje cells controlling eye movements. Such rapid rate coding is likely not

unique to the oculomotor system; there is evidence that other motor circuits can transmit informa-

tion on a similar timescale (Tang et al., 2014; Srivastava et al., 2017; Brown and Raman, 2018).

Rapid rate coding can endow sensitivity to spike irregularity and synchrony
The rapid speed at which the population spike rate is read out could endow the circuit with sensitiv-

ity to any spiking statistics that alter the population rate over short timescales, including spiking sta-

tistics that are typically associated with temporal coding, such as spike irregularity and synchrony

(Figure 10). The convergence of ~50 Purkinje cells onto each target neuron can average out the

‘noisiness’ of signals carried by the spike trains of individual neurons. Our results indicate that this

averaging out needs to occur on a timescale of 3–5 ms, because variations in the population rate

get faithfully transmitted all the way to the behavior with this temporal resolution (Figure 5,

Figure 10C). This provides a mechanism by which the high level of Purkinje cell spike irregularity in

ataxia (CV of 0.7–2.3 in ataxic mice compared to 0.4–0.6 in control mice; Hoebeek et al., 2005;

Gao et al., 2012; Stahl and Thumser, 2014; Mark et al., 2015) could degrade the accuracy of

movements: by degrading the accuracy and precision of the motor commands carried by the popu-

lation spike rate (Figure 6). In contrast, smaller variations in spike irregularity within the normal phys-

iological range may be well tolerated because they have minimal impact on the population spike

rate. Similarly, Purkinje cell synchrony (Bell and Grimm, 1969; Bell and Kawasaki, 1972; Ebner and

Bloedel, 1981; Shin and De Schutter, 2006; Heck et al., 2007; de Solages et al., 2008;

Wise et al., 2010; Person and Raman, 2012a; Sarnaik and Raman, 2018; Brown and Raman,

2018; Tang et al., 2019) can be reframed as rapid changes in the Purkinje cell population firing rate

on a timescale of a few milliseconds, which could be transmitted downstream via the rapid popula-

tion rate code for eye velocity. Thus, rapid fluctuations in the population rate, which can be gener-

ated by spike irregularity or synchrony, can be read out as rapid fluctuations in the intended motor

command (Figure 10), allowing spike irregularity and synchrony to influence behavior via the rate

code.

No evidence for additional influence of spike irregularity
Extremely rapid rate coding might seem to blur the line between rate coding and temporal coding,

but it is important to distinguish rapid rate coding from true temporal coding. Although the term

‘temporal code’ is sometimes used to describe changes in spike rate co-occurring with changes in a

dynamic stimulus or behavior (e.g. Gooler and Feng, 1992), we would reserve the term ‘temporal

coding’ to refer to an influence of the temporal statistics of spiking that cannot be accounted for by

the population spike rate computed over a biologically relevant timescale (Theunissen and Miller,

1995). We found no evidence for temporal coding in the latter, more rigorous sense of the term.

Temporal coding could potentially take many forms, and we evaluated just one form based on spike

irregularity, hence our results do not rule out other forms of temporal coding in the cerebellar circuit.

Our experiments were designed specifically to detect effects of spike irregularity above and beyond

what could be accounted for by a population rate code for eye velocity, and we found no evidence

for such effects.

Previous work had suggested that more irregular spiking in Purkinje cells would be less effective

in influencing downstream neurons than more regular spiking (Hoebeek et al., 2005;

Luthman et al., 2011). Therefore, we initially expected that a more irregular spike train in a floccular

Purkinje cell would drive a smaller eye movement than a more regular spike train at the same mean

rate. Contrary to this prediction, mean eye velocity, averaged across the 500 ms optogenetic stimu-

lation interval, was indistinguishable during the regular and irregular stimulus trains, after controlling

for mean spike rate. Within the 500 ms stimulation interval, the regular and irregular stimulus trains
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elicited different eye movement trajectories on a moment-to-moment basis; however, these differen-

ces were well explained by the different trajectories of the instantaneous Purkinje cell population fir-

ing rate during the regular versus irregular trains (Figure 10). The mean spike rate in a given time

interval—either a few milliseconds or the entire 500 ms train—could predict the mean eye velocity in

that same time interval, with no additional effect of irregularity within that interval. Thus the irregu-

larity of Purkinje cell spiking in the flocculus can affect the fine temporal structure of movement

through a rapid rate code, without the need to invoke a separate temporal code.

Potential for different coding strategies in different regions of the
cerebellum
It is possible that the impact of spike irregularity in Purkinje cells could vary across different zones or

microzones of the cerebellum. There is substantial variation in the gene expression, firing rates, and

properties of synaptic plasticity in the Purkinje cells in different areas of the cerebellar cortex

(Suvrathan et al., 2016; Cerminara et al., 2015; Wadiche and Jahr, 2005; Kim et al., 2012;

Witter and De Zeeuw, 2015), and in the Purkinje cells’ target neurons in different deep cerebellar

and vestibular nuclei (Chan-Palay, 1977; Sugihara and Shinoda, 2004; Sugihara, 2011;

Sekirnjak and du Lac, 2006; Pugh and Raman, 2006; Bagnall et al., 2007; McElvain et al., 2010;

Shin et al., 2011; Low et al., 2018). Our biophysical modeling indicates that variations in model

parameters within a biologically plausible range could determine whether spike irregularity either

does or does not influence the transmission of information by the Purkinje cells. Although recording

and stimulation results indicate that the cerebellar flocculus operates in a region of parameter space

where the impact of spike irregularity is negligible, even during highly synchronous population activ-

ity, the model demonstrates that changing a single parameter, such as the ratio of excitation to inhi-

bition, could create sensitivity to spike irregularity. Thus, other parts of the cerebellum may operate

in regions of parameter space where spike irregularity has an impact beyond what can be accounted

for by the rapid rate code. Some support for this possibility is provided by a recent report that regu-

lar, synchronous optogenetic stimulus trains delivered to Purkinje cells of the cerebellar lobulus sim-

plex were less likely to perturb ongoing locomotion than continuous optogenetic stimulation, which

elicits less regular, less synchronous spiking (Sarnaik and Raman, 2018). However, the interpretation

of such results will require careful consideration of the effects on the Purkinje cell population spike

rate in the behaviorally relevant, causal time window. Our finding that the population spike rate can

influence behavior with high temporal precision demonstrates that a clear understanding of how the

rate code influences behavior on a moment-to-moment basis is critical for evaluating the possibility

that additional, temporal coding might also influence behavior. Such analyses are more challenging

for complex behaviors such as locomotion, hence additional research is required to determine what,

if any, role spike irregularity or other forms of temporal coding play in the cerebellar control of such

behaviors.

Implications for understanding the neural code
The ability of the brain to encode sensory information, process it, and generate motor responses

depends on the neural code(s) used to transmit information. Thus, understanding how information is

transmitted through the rate and timing of spikes is central to understanding neural computation,

and can also guide the development of more effective interventions to treat brain disorders

(Birdno et al., 2008; Birdno et al., 2012; Summerson et al., 2015; McConnell et al., 2016;

Karamintziou et al., 2016). There has been extensive analysis of how temporal patterns of neural

activity encode information in different brain areas (reviewed in Singer, 1993; Borst and Theunis-

sen, 1999; Wang et al., 2008; Ainsworth et al., 2012; Gire et al., 2013; Uchida et al., 2014). How-

ever, in most mammalian circuits, it has been difficult to determine whether and how information

encoded in the precise timing of spikes is read out, because the link between neural activity and

behavior is typically too complex or remote. We leveraged the close link between floccular Purkinje

cell activity and eye movements to analyze the contribution of spike rate and irregularity to the

behavioral output, and found evidence only for rapid rate coding. Nevertheless, our modeling results

indicate that biologically realistic variations in parameters could allow the precise temporal pattern

of presynaptic activity to influence the downstream response. Thus, the extent to which information
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encoded in spike timing gets transmitted to the downstream circuitry may vary across synapses, and

might even vary dynamically at the same synapses depending on the behavioral state.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers

Strain, strain
background
(Mus musculus)

ChR2(H134R)-EYFP Jackson Laboratory RRID:
IMSR_JAX:024109

Strain, strain
background
(Mus musculus)

(Pcp2-cre)3555 Jdhu/J Jackson Laboratory RRID:
IMSR_JAX:010536

Software,
algorithm

NEURON biophysical
model by
Luthman et al., 2011.

ModelDB 144523

Electrophysiology in monkeys and mice during oculomotor behavior
Recording procedure in monkeys and mice during oculomotor behavior
Extracellular recordings were made from Purkinje cells in the cerebellar flocculus and ventral paraf-

locculus of four adult male rhesus monkeys (data previously published in Raymond and Lisberger,

1997; Raymond and Lisberger, 1998; Kimpo et al., 2014 and Ke et al., 2009) and the flocculus of

63 adult C57BL/6 mice (data previously published in Katoh et al., 2015) during eye movement

responses to a range of different combinations of vestibular and visual stimuli. Eye movements were

recorded with the eye coil method at 500 Hz. Vestibular stimuli were provided by using a turntable

to passively rotate the head-fixed animal about an earth-vertical axis. For monkeys, visual stimuli

were provided by horizontal motion of a small bright spot (target, T, subtending 0.5˚ of visual angle)

and/or high-contrast background (BG, a 20˚�30˚ grid of 1.5˚�1.5˚ black and white squares) projected

onto a tangent screen that was 114 cm in front of the eyes. For mice, the visual stimulus was pro-

vided by a striped hemispherical dome with vertical black and white stripes, each subtending 7.5˚ of

visual angle, which surrounded the animal.

All four monkeys were tested with the following set of visual-vestibular stimuli: (1) sinusoidal

motion of the visual target alone at 0.5 Hz, ±10˚/s to ±31.4˚/s to evoke visual tracking (smooth pur-

suit) eye movements; (2) sinusoidal motion of the head and visual target together at 0.5 Hz, ±10˚/s

to ±31.4˚/s to evoke VOR cancellation (attenuation of the normal VOR eye movements). In addition,

two of the monkeys (monkeys D and E) were tested with the following set of visual-vestibular stimuli:

(3) steps of constant head velocity at 15˚/s for 500 ms, with the visual target and background moving

together with the head (‘�0 step’) or (4) opposite to the head (‘�2 step’) (Raymond and Lisberger,

1998; Raymond and Lisberger, 1997; Kimpo et al., 2014). The other two monkeys (monkeys C

and L) were tested with the following visual-vestibular stimuli in addition to smooth pursuit and VOR

cancellation: sinusoidal vestibular stimulation at 0.5 Hz, ±10˚/s in combination with motion of the

visual target and background, where the target and the background moved together with each

other and with the vestibular stimulus (5, ‘�0T/�0BG’) or opposite to the vestibular stimulus (6,

‘�2T/�2BG’); or where the target and the background moved opposite to each other with either

the target (7, ‘�0T/�2BG’) or the background (8, ‘�2T/�0BG’) moving together with the head; or

where the background was stationary but the target moved either together with the head (9, ‘�0T/

�1BG’) or opposite to the head (10, ‘�2T/�1BG’) (Ke et al., 2009). Data from monkeys D and E are

plotted in Figure 1A,B. Data from all four monkeys were plotted in Figure 1C–E (top graphs), where

each color represents a single condition as described above. In total, the following number of EiHi

cells were recorded and plotted in Figure 1C–E for each condition listed above: (1) n = 120; (2) 120;

(3) 26; (4) 27; (5) 50; (6) 38; (7) 47; (8) 47; (9) 49; (10) 38; spontaneous: 33. Data from smooth pursuit

and VOR cancellation in all four monkeys were used in the residual analysis (Figure 2).

Mice were tested with (1) sinusoidal motion of the striped dome alone (1 Hz, ±10˚/s) to evoke the

optokinetic reflex (‘visual tracking’) and (2) sinusoidal motion of the striped dome together with the
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animal (1 Hz, ±10˚/s) to evoke VOR cancellation (n = 33 EiHi cells). Spontaneous activity was recorded

in a subset of these cells (n = 8).

Trial-averaged analysis of neural activity in monkeys and mice during
oculomotor behavior
The relationship between Purkinje cell simple spike activity and eye movements during oculomotor

behavior was analyzed using MATLAB (The MathWorks, Inc). Instantaneous spike rate was computed

by convolving each spike with a Gaussian kernel with 10 ms standard deviation. Instantaneous local

irregularity was computed by first calculating the CV2 for each pair of ISIs according to Equation 1,

where CV2i is calculated from the three spike times ti-1, ti, and ti+1. For each pair of ISIs, the instanta-

neous local irregularity, CV2(t), was then set to the value of CV2i from time

ti � ti � ti�1ð Þ=2 to ti þ tiþ1 � tið Þ=2.
Purkinje cells in the flocculus display a range of responses during horizontal eye movements. We

focused on Purkinje cells with the most common directional preference in the flocculus across spe-

cies: cells that increase their firing during both ipsiversive eye motion (Ei; peak firing within ±90˚ of

peak ipsiversive eye velocity during visual tracking), and ipsiversive head motion (Hi; peak firing

within ±90˚ of peak ipsiversive head velocity during VOR cancellation), and which therefore encode

ipsiversive gaze velocity (EiHi cells; Miles et al., 1980; Lisberger, 1994; Raymond and Lisberger,

1997; Katoh et al., 2015). Purkinje cells in the flocculus that exhibited other preferences for head or

eye motion (increased firing for contraversive eye or head motion, or no sensitivity to one of the

two; non-EiHi cells) were tested for antiphasic modulation of spike rate and irregularity during oculo-

motor behaviors (Figure 1—figure supplement 2), however, all other analyses were performed only

on the EiHi Purkinje cells, for which the largest number of cells were recorded.

Trial-averaged neural and behavioral responses were calculated by averaging eye velocity, gaze

velocity, spike rate, and instantaneous CV2 across trials for each cell, and then across cells

(Figure 1A, Figure 1—figure supplement 1), where a ‘trial’ consisted of one cycle of a sinusoidal

stimulus, or, for ‘step’ stimuli, a set of one ipsiversive and one contraversive stimulus. To examine

the relationship between gaze velocity and spike rate, gaze velocity was divided into evenly spaced

bins (bin width 2˚/s), and the average spike rate was calculated in each bin by first averaging within a

cell (Figure 1B, top), then across the population of EiHi Purkinje cells (Figure 1C). Similarly, the rela-

tionship between gaze velocity and spike irregularity was analyzed by binning gaze velocity, then

computing the average CV2 for each gaze velocity bin, first in each cell (Figure 1B, bottom), and

then across the population (Figure 1D). The correlation coefficient was calculated on the binned

data for each cell individually, and then averaged across cells. The hypothesis that each correlation

coefficient was significantly different than zero was assessed using a one sample t-test. Finally, the

relationship between spike irregularity and spike rate was summarized by calculating the instanta-

neous CV2 and spike rate at each time within a trial, averaged across trials for each cell, then aver-

aged across cells, and finally comparing plotting spike rate versus CV2 for each time within the trial

(Figure 1E).

Simulated inhomogeneous Poisson process
To determine whether the observed inverse relationship between spike rate and irregularity could

be generated by a inhomogeneous Poisson process modified by a refractory period (Holt et al.,

1996), the average rate of Purkinje cell activity recorded in monkeys during smooth pursuit was cal-

culated by averaging across all trials and all cells. An artificial spike train was then generated to

match this average firing rate using an inhomogeneous Poisson process with an absolute refractory

period. Artificial interspike intervals were drawn from an exponential distribution offset by the dura-

tion of the refractory period. The method of thinning was then used to match firing rates: artificial

spikes were removed with probability inversely proportional to the firing rate (Lewis and Shedler,

1979). The artificial spike trains and real spike trains were then analyzed identically. To calculate

mean firing rate, spikes were convolved with a 10 ms sigma Gaussian filter and averaged across tri-

als. To calculate mean CV2, the instantaneous CV2 was calculated as above and averaged across tri-

als. The instantaneous relationship between firing rate and CV2 was compared by binning all pairs of

ISIs based on their mean firing rate, Ratei ¼ 2= ISIi þ ISIiþ1ð Þ, and calculating the mean CV2 for all ISI

pairs in each firing rate bin according to Equation 1 (Holt et al., 1996).
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Moment-to-moment analysis of neural activity in monkeys and mice during
oculomotor behavior
The moment-to-moment fluctuations in neural activity and eye movements during oculomotor

behavior were analyzed by first binning the raw spike rate, spike irregularity (CV2), and eye velocity

in 50 ms time bins. This bin width was chosen to be short enough to capture fluctuations in eye

velocity, and long enough to allow any measured fluctuations in Purkinje cell activity to impact eye

velocity, given delays arising from the downstream neural circuitry and the oculomotor plant. Resid-

ual spike rate, CV2, and eye velocity were calculated by subtracting the corresponding cycle-aver-

aged spike rate, CV2, and eye velocity from the binned response on each cycle of the stimulus.

Residuals were calculated for all EiHi cells during the visual tracking and VOR cancellation conditions,

which were recorded for all cells in both monkeys and mice. Since there was negligible variation in

the vestibular stimulus (head velocity) from trial-to-trial, the residual eye velocity was equivalent to

residual gaze velocity.

The ability of residual spike rate and residual spike irregularity to predict residual eye velocity was

assessed using a linear mixed effects model, which is well-suited for data with repeated measures

(here, measurements within individual cells and across trials for a given visual-vestibular stimulus)

with potential correlations between observations within each cell or stimulus condition (Oberg and

Mahoney, 2007). The model contained residual rate, residual CV2, and the interaction term as fixed

effects, and full random effects for each cell and stimulus condition:

Eijk ~ boRateijk þb1CV2ijk þb2RateijkCV2ijk þ b0jkRateijk þ b1jkCV2ijk
þ b2jkRateijkCV2ijk þ �ijk

where Eijk is the residual eye velocity in the ith time bin in Purkinje cell j for stimulus condition k,

b0 represents the fixed effect of spike rate on eye velocity, b1 is the coefficient for the fixed effect of

CV2 on eye velocity, b2 is the coefficient for the fixed effect of the interaction term, b0jk, b1jk, and b2jk

are the random effect coefficients for rate, CV2, and their interaction, respectively. Intercept terms

were not included because the calculation of residuals removes the intercept. The model was fit

using the fitlme function in MATLAB using the default maximum likelihood method. The resulting

coefficients and confidence intervals are reported in Supplementary file 1. Significance was deter-

mined by computing the log-likelihood ratio between the full model (above) and a reduced model

with either the fixed effect of spike rate (bo), the fixed effect of CV2 (b1), or the fixed interaction

effect (b2) removed. An alternate full model without the interaction term was also assessed with no

change in the conclusion. The outcomes of the log-likelihood test reported in the Results agreed

with the outcome of tests for significance of the individual fixed effects parameters in the full model,

as assessed by a Wald test comparing the coefficient’s estimated value with its estimated standard

error.

To visualize the relationship between oculomotor output and spike rate and irregularity, the resid-

uals were graphically summarized in two ways (Figure 2). First, each individual time bin was classified

into low or high CV2, according to whether the CV2 residual fell into the lowest or highest third of

the distribution for that cell. Data within each group (low or high CV2 bins) were then further binned

according to the spike rate residual, and average eye velocity was computed for each bin, first for all

data points within each cell, and then averaged across cells. Second, a complementary visualization

was created with spike rate rather than CV2 as the categorical variable: each time bin was classified

into low or high spike rate, according to whether the rate residual fell into the lowest or highest third

of the distribution for that cell. Data were then binned according to their CV2 residual and average

eye velocity was computed for each bin, first for each cell, and then averaged across cells.

Optogenetic stimulation in mice
Surgical procedures
All experimental procedures were approved by the Administrative Panel on Laboratory Animal Care

at Stanford University. Experiments were performed on male and female adult (�8 weeks old) mice.

All mice were housed on a reversed 12 hr light/12 hr dark cycle, and experiments were conducted

during the dark cycle. ChR2 was selectively expressed in Purkinje cells by crossing Ai32 mice condi-

tionally expressing ChR2(H134R)-EYFP (Madisen et al., 2012; Jackson Laboratory #024109) with
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mice expressing Cre under the control of the L7 promotor ((Pcp2-cre)3555 Jdhu/J; Jackson Labora-

tory #010536; Barski et al., 2000; Witter et al., 2016).

A head post was secured to the skull with three screws and dental cement to allow head restraint.

Guide cannulas (C312G, Plastics One) were implanted bilaterally to target the flocculus, as previously

described (Nguyen-Vu et al., 2013). Eye movements were recorded using magnetic eye tracking

(Payne and Raymond, 2017). Briefly, a 0.75 mm x 2 mm (diameter x height) cylindrical neodymium

magnet was implanted beneath the conjunctiva of the left eye and secured with VetBond. An angu-

lar magnetic field sensor (HMC1512, Honeywell Inc) was attached via dental cement to the head

implant and used to detect the angle of the magnet, and thus the angle of the eye as it rotated in

its socket. After surgery, mice were individually housed and were allowed to recover for at least 5 d

before behavioral experiments.

Optogenetic stimulation of Purkinje cells
Optogenetic stimulus trains were delivered unilaterally to the cerebellar flocculus of awake, head-

restrained mice in a dark room, and the resulting eye movements were measured. Optical stimula-

tion was delivered via a 250 mm, 0.66 NA optical fiber (Prismatix). The shaft of the optical fiber was

covered with black heat shrink tubing (Vention Medical) and the dental cement head implant was

painted black to prevent light leakage. Blue light at 450 nm was provided by a high-powered LED

light source (Prismatix, Israel), and the current was adjusted to produce either 1 mW or 10 mW at

the tip of the optical fiber. The tip of the optical fiber was acutely inserted through the surgically

implanted cannula and gradually advanced using a micromanipulator until eye movement responses

to light pulses were first detected.

Optogenetic stimulus trains consisted of brief, 1 ms pulses of light delivered in either regular or

irregular temporal patterns. Stimulus trains were 500 ms in duration, with 3 s between the start of

one train and the start of the next. For each stimulus train, the CV of the interstimulus intervals was

either 0 (perfectly regular), 0.5, or 1. Irregular stimulus trains were generated in MATLAB by using a

Gamma distribution to generate sequences of interstimulus intervals. For each stimulus train, inter-

stimulus intervals were drawn randomly from a Gamma distribution with parameters adjusted to

generate the target stimulus rate and CV. Interstimulus intervals less than a refractory period of 3 ms

were discarded. The resulting stimulus train was checked for three criteria: 1) the total number of

stimuli in the irregular train was exactly the same as in the regular train of the same rate; 2) the

mean stimulus rate, calculated by taking the reciprocal of the mean interstimulus interval, was within

5% of the target rate; and 3) the CV was within 5% of the target CV of 0, 0.5, or 1. If any of these

conditions were violated, the stimulus train was discarded, and a new train was drawn, until 60 differ-

ent irregular trains were obtained that satisfied the conditions for each stimulus frequency and CV.

In addition to the 60 non-repeated irregular trains, for CV = 1 (20, 60, and 100 Hz), one irregular

stimulus train was repeated to provide a measure of trial-to-trial variability, and to allow visualization

of the average Purkinje cell (Figure 3D,E) and eye movement responses (Figure 4A,B) to irregular

trains. Thus, each block of an experiment consisted of 18 different types of stimulus trains: regular

stimulus trains (CV = 0) at 20, 40, 60, 80, and 100 Hz, irregular non-repeated trains (CV = 0.5) at 20,

40, 60, 80, and 100 Hz, irregular non-repeated trains (CV = 1) at 20, 40, 60, 80, and 100 Hz, and

irregular repeated trains (CV = 1) at 20, 60, and 100 Hz. The order of the stimulus trains was random-

ized within each block. For the irregular trains, summary statistics (Figure 3F,G; Figure 4C–E) were

calculated on the non-repeated trains, for which each trial was a unique temporal stimulus pattern.

Mutual information (Figure 5A) was calculated from the regular trains and the repeated irregular

trains (20 Hz, 60 Hz, and 100 Hz). The linear temporal filter model (Figure 5B–E) was trained on the

non-repeated irregular trains, and tested on the repeated regular and irregular trains.

In vivo recordings from Purkinje cells during optogenetic stimulation
Extracellular electrophysiological recordings were performed to characterize the simple spike

responses of Purkinje cells to optogenetic stimulation. A tungsten microelectrode (Microprobes for

Life Sciences, MD) was inserted directly alongside an optical fiber, and advanced past the tip of the

optical fiber until a Purkinje cell layer was encountered. Signals were digitized in Spike2 at a sample

rate of 50,000 Hz and stored offline. Spike sorting was conducted offline using Plexon Offline Sorter

(Plexon Inc) to implement template matching in combination with principle component visualization.
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Spike sorting using the MountainSort algorithm (Chung et al., 2017) yielded similar results (not

shown). Any cell that exhibited signs of damage, such as bistable firing, inconsistent spike ampli-

tudes, or a prolonged or abnormal spike waveform, or that was insufficiently isolated, as assessed

from the first two principle components, were excluded. Only cells that were well isolated for at least

5 repeats of each stimulus condition were included in the analysis. Recordings were made from a

total of 41 neurons, including 15 well-isolated Purkinje cells (13 cells recorded during 1 mW stimula-

tion and 7 cells recorded during 10 mW stimulation, including 5 cells recorded for both light intensi-

ties), 12 putative cerebellar interneurons (8 cells during 1 mW stimulation and 4 cells during 10 mW

stimulation), and 16 cells that were excluded for insufficient isolation, in a total of six mice.

Measurement of eye movements responses to optogenetic stimulation
Eye movement responses to optogenetic stimulation of Purkinje cells were recorded in 13 mice,

including five mice whose eye movements were recorded during the electrophysiological recordings.

Eye movements were evoked by unilateral stimulation of the flocculus while the mouse was head-

fixed in a dark room. Stimulation experiments were performed on the left and right flocculus on sep-

arate days, with at least two days between experiments. Each flocculus was first tested using a

higher light intensity (10 mW). An experiment was excluded from the analysis if no evoked eye

movements could be detected, or if the initial and steady state eye movement responses to optoge-

netic stimulus trains were in opposite directions (7/26 flocculi excluded for 10 mW stimulation). The

remaining 19 flocculi were tested using a lower light intensity (1 mW), with the same exclusion crite-

ria (3/19 flocculi excluded during 1 mW stimulation). For two mice with multiple repetitions of the

experiment on the same flocculus (2 and 3 days, respectively), data were combined across days

before averaging.

Eye movements were recorded using a previously published magnetic eye tracking method

(Payne and Raymond, 2017). A small magnet was implanted beneath the conjunctiva of one eye as

described above, and a skull-mounted magnetic field sensor (Honeywell International, Inc) was used

to detect changes in the magnetic field as the magnetic moved with the eye. Eye movement-related

signals from the magnetic sensor were recorded in Spike 2 (Cambridge Electronic Design) at a sam-

ple rate of 1000 Hz. The magnetic eye tracking system was calibrated by simultaneously recording

eye position with a dual-angle video-oculography system during 1–2 min of sinusoidal vestibular

stimulation in the light (1 Hz, ±20˚/s). Eye position obtained from video-oculography and voltages

from the two channels of the magnetic sensor were each differentiated and smoothed with a 100 Hz

low pass filter and then fit with sine waves. The channel of the magnetic sensor whose differentiated

voltage signal was best fit by a sine wave was selected. A scale factor for this channel was calculated

by dividing the amplitude of the sine wave fit for the eye velocity signal recorded using video-ocu-

lography by the amplitude of the sine wave fit for the magnetic sensor. After the 1–2 min calibration

session, the video-oculography system was removed from the mouse’s field of view and experiments

were conducted using magnetic eye tracking alone.

Eye position signals were digitally differentiated to yield eye velocity. Saccades and movement

artifacts were detected using an automatic velocity threshold, and trials or sinusoidal stimulus cycles

with saccades or movement artifacts were excluded from the analysis. For plotting example traces,

eye position and velocity data were smoothed with a 5 ms moving average.

Optogenetic stimulation: data analysis
Neural activity and eye movements evoked by optogenetic stimulation were analyzed in MATLAB to

obtain the means across trials for each time point within a trial, or averaged across the entire 500 ms

stimulus train. Eye velocity data were normalized to the maximum mean velocity for each experiment

to allow comparison across experiments.

Mutual information
Mutual information between the Purkinje cell spike rate and eye velocity was calculated for different

temporal smoothing windows. For each Purkinje cell recorded during 1 mW optogenetic stimulation,

spike counts were binned in 1 ms intervals, and averaged across trials to yield trial-averaged spike

rates with 1 ms resolution. The population spike rate was computed by averaging spike rates across

Purkinje cells. Mutual information between the population spike rate and eye velocity was calculated
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separately for the eye velocity responses in each behavioral stimulation experiment, and then aver-

aged across experiments. Mutual information was calculated separately on data from regular stimu-

lus trains (CV = 0; 20, 60, and 100 Hz) and repeated irregular stimulus trains (CV = 1; 20, 60, and 100

Hz).

Because spike rate and eye velocity are continuous variables, rather than discrete variables, the

mutual information between spike rate and eye velocity was calculated using a kernel estimate,

which allows each individual observation to inform the probability distribution over the width of the

kernel (Moon et al., 1995). The kernel estimate was computed using the MATLAB Central File

Exchange function kernelmi with a default kernel width determined by the number of data points, N:

H ¼ N þ 1ð Þ=
ffiffiffiffiffi

12
p

� N1þ0:25
� �

.

To account for the delay between Purkinje cell activity and eye velocity, a time delay was added

to the Purkinje cell activity before calculating mutual information. The calculation of mutual informa-

tion was repeated with time delays of 0–10 ms, in 1 ms increments, and the delay that maximized

the average total mutual information, 6 ms (for the unsmoothed data), was used for all subsequent

calculations of mutual information.

To estimate the temporal decoding window, spike rate was smoothed by taking a moving aver-

age over progressively longer time windows, from 1 ms (no smoothing) to 20 ms, before calculating

mutual information between smoothed spike rate and unsmoothed eye velocity. Similar results were

obtained if eye velocity was also smoothed at the same window length (not shown).

Linear temporal filter fits
A linear temporal filter was used to predict eye velocity on rapid timescales from Purkinje cell spike

rates. For each experiment, a linear temporal filter, F, was calculated according to the following:

_̂Ei½t� ¼
X

M

m¼0

F½m�Pi½t�m�

where _̂Ei½t� is the predicted eye velocity at time point t within stimulus train with pattern i, Pi½t� is the
Purkinje cell spike rate averaged across the population of recorded cells for stimulus train i, and m is

the index over the duration of the filter. For each experiment, the training set for fitting the linear fil-

ter consisted of the single-trial eye velocity responses to non-repeated irregular stimulus trains

(CV = 1; 20, 40, 60, 80, 100 Hz), excluding the single pattern that was repeated. The filter was calcu-

lated using total least squares linear regression, since the uncertainty in both eye velocity and neural

activity would bias ordinary least squares linear regression towards small filter weights. The test set

consisted of the trial-averaged eye velocity responses to regular (CV = 0; 20, 60, 100 Hz) and irregu-

lar (CV = 1; 20, 60, 100 Hz) repeated stimulus trains. For each stimulus train in the test set, eye veloc-

ity was predicted by convolving the linear filter with the population mean spike rate using the

equation above. The RMSE of the eye velocity prediction from the model was then compared for

regular and irregular stimulus trains from a given experiment. The relationship between predicted

and actual eye velocity was linear (correlation coefficient 0.777 ± 0.038, n = 16; see example in

Figure 5D); therefore a nonlinearity was deemed unnecessary. Likewise, no regularization was

necessary.

The linear filters were fit using unsmoothed spike histograms and behavior, both with 1 ms tem-

poral resolution. To compare the model predictions, spike rate and eye velocity in the test set were

smoothed with a sliding window of 5 ms, based on the estimated temporal decoding window

derived from the mutual information calculations. This smoothing window was chosen to aid visuali-

zation and was not critical; similar results were obtained without any smoothing of the test data (1

ms time bins; RMSE 16.9˚±1.8˚ regular, 16.5˚±1.7˚ irregular, p=0.23, n = 16, paired t-test; compare

with results in Figure 5E obtained using the 5 ms smoothing window).

Biophysical model
Simulations were performed in the NEURON simulation environment (Hines and Carnevale, 1997)

and analyses were conducted in MATLAB. A biophysically realistic model of a Purkinje cell target

neuron in the deep cerebellar nuclei was adapted from Luthman et al. (2011). Other than altering

the rate and temporal pattern of input spikes, the only parameters we changed in the model are
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those described in the text: the presence or absence of short-term depression, and the strength of

excitatory and inhibitory conductances. The model target neuron received inhibitory synaptic input

from 50 Purkinje cells (Person and Raman, 2012a) through a total of 450 inhibitory synapses (nine

synapses per Purkinje cell) and excitatory synaptic input from 150 mossy fibers. The 50 Purkinje cells

each fired spontaneously at a rate of 60 sp/s (to approximately match the mean spontaneous firing

rate of 62 sp/s in the population of Purkinje cells recorded during optogenetic stimulation), with a

CV of 0.5 for the ISIs between spontaneous spikes (to approximately match the irregularity of spon-

taneous firing recorded in vivo; Figure 1E). The mossy fibers each fired spontaneously at a mean

rate of 20 sp/s with a CV of 1. Spontaneous activity on each trial was generated by drawing a

sequence of ISIs from a Gamma distribution, removing spikes within a refractory period, and accept-

ing only ISI sequences meeting the following criteria: (1) the total number of spikes was equal to the

target value defined by 60 sp/s for Purkinje cells, or 20 sp/s for mossy fibers, (2) the mean spike rate,

calculated by taking the reciprocal of the mean ISI, was within 10% of the target rate of 60 sp/s (Pur-

kinje cells) or 20 sp/s (mossy fibers), and (3) the actual CV was within 10% of the target value of 0.5

(Purkinje cells) or 1 (mossy fiber). The target neuron contained eight Hodgkin-Huxley style ion chan-

nel conductances: a fast sodium current, a persistent sodium current, mixed fast Kv3 and slow Kv2

delayed rectifying current, a high-voltage-activated calcium current, a low-voltage-activated calcium

current, a calcium-gated potassium (Sk) current, a hyperpolarization-activated cyclic-nucleotide

gated (HCN) current, and a tonic non-specific cation current promoting spontaneous spiking.

To simulate optogenetic stimulation, ‘stimulus-driven’ spikes were added to the spontaneous

spikes in each model Purkinje cell. Stimulus trains identical to those used in vivo triggered a spike in

each model Purkinje cell at a variable latency described by a Gaussian distribution with mean 1.24

ms and standard deviation 1.36 ms (truncated at 0 ms) mimicking the latency jitter observed in vivo

(Figure 3B,C). Optogenetic stimulus-driven spikes were not allowed to occur within an absolute

refractory period of 1 ms after a spontaneous spike, in accordance with the short ISIs observed dur-

ing optogenetic stimulation in vivo, whereas spontaneous spikes were restricted by an absolute

refractory period of 3 ms after any other spike. For the small number of cases where a stimulus-

driven spike was supposed to occur within the refractory period, that spike was skipped and spiking

resumed with the next spontaneous or stimulus-driven spike scheduled to occur outside the refrac-

tory period. Since the optogenetic stimulation (0–100 Hz) was added on top of spontaneous activity

(60 sp/s), the total spike rate of the model Purkinje cells ranged from 60 sp/s to 160 sp/s. A mini-

mum of 10 trials were run for each rate, irregularity, and parameter set.

Model parameters describing the strength of excitation and inhibition were systematically varied:

the excitatory conductance (gE) was scaled from 0.5 to 2 times the original values of 200 pS for

AMPA and 172 pS for NMDA peak conductance (fast + slow), and the baseline inhibitory conduc-

tance (gI0) was varied from 0.5 to 1.5 times the original value of 1.6 nS (Steuber et al., 2011). The

models were run either with short-term synaptic depression at the synapses from Purkinje cells to

the target neuron (Luthman et al., 2011; Shin et al., 2007), or with no short-term depression. The

inhibitory conductance in the model without short-term depression was adjusted to equal the steady

state conductance at the maximum spike rate in the corresponding model with short-term

depression.

To test the effects of irregularity during asynchronous Purkinje cell spiking, asynchronous model

Purkinje cell activity was generated by driving each individual Purkinje cell with the same stimulus

train as during the corresponding synchronous optogenetic simulation, but with the stimulus-driven

spike train for each cell independently shifted circularly by a random delay between 0 and 500 ms

(Figure 8).

Random walk model
The random walk simulations (Figure 9) were conducted using an extremely simple model neuron

that perfectly integrates its inputs. On each time step, the membrane potential of the model neuron

changes by an amount drawn from the random variable ~N �;sð Þ, which represents the mean (�)

and standard deviation (s) of the net contribution of all excitatory and inhibitory synaptic and intrin-

sic conductances (arbitrary units). The analytic approximations for the random walk model with � � 0

are taken from Salinas and Sejnowski (2000):
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r2outDt
2 Vthresh þsð Þ2�V2

reset

� �

� routDt 2�Vreset þs2
� �

��2 ¼ 0

where rout is the output rate, Dt is the time step, Vthresh is the threshold ’voltage’ (in arbitrary units),

Vreset is the reset voltage, and � and s are given above. Vmin, the minimum voltage permitted during

the random walk, is not explicit in the equation above but is assumed to be 0, and can be effectively

lowered by increasing both Vthresh and Vreset in parallel. Parameters were chosen to either match the

previously published simulations (Salinas and Sejnowski, 2000; Figure 9); black: Dt = 1 ms, Vthresh =

40, Vreset = 20, Vmin = 0, � = 1.5, s varied) or changed to either increase the E/I ratio (� = 2.5, red),

decrease the E/I ratio (� = 0, blue), or eliminate the reflecting floor (Vmin = –inf, cyan).

Statistical analysis
Statistical tests were conducted using MATLAB and GraphPad Prism. All tests were two-tailed, and

the significance level was set at p<0.05. Data are summarized as mean ± SEM. The D’Agostino-Pear-

son omnibus test (Prism) was used to assess normality of the data for ANOVAs and t-tests. Data

were normally distributed in the recordings of the Purkinje cell response to optogenetic stimulation

(Figure 3), with the exception of one extreme outlier. The outlier was detected using both the modi-

fied z-score of Iglewicz and Hoaglin (1993) (z-score averaged across conditions at 100 Hz stimula-

tion: 10.3, recommended threshold: 3.5) and Grubbs’ extreme studentize deviate test

(Grubbs, 1969; t11 = 8.9, p=10�6). Because parametric statistics such as means are highly sensitive

to such outliers, all statistics were repeated both with and without the outlier, and the outlier was

not included in the summary figures provided in the main text.

Two-way repeated measures ANOVA were conducted in Prism to assess the impact of optoge-

netic stimulus rate and irregularity (independent variables) on Purkinje cell spike rate and irregularity

(Figure 3G). If the interaction term was significant, post-hoc comparisons were performed using the

Tukey correction for multiple comparisons. A linear mixed effects model was conducted in MATLAB

to assess the relationship between either Purkinje cell spike rate or stimulus rate and irregularity on

eye velocity, since slightly different Purkinje cell spike rates were evoked by regular v. irregular stim-

ulation at each frequency (Figure 4). The linear mixed effects model predicted eye velocity from

fixed effects of Purkinje cell rate or stimulus rate, stimulus irregularity condition, and their interac-

tion, with random intercepts by subject. Statistical significance was assessed using a likelihood ratio

test with either stimulus irregularity condition removed or the interaction term removed. Paired t-

tests were conducted in MATLAB to compare RMSE of the linear temporal filter predictions for the

regular and irregular trains (Figure 5).

A linear mixed effects model was implemented in MATLAB for analyzing the correlation between

Purkinje cell spike rate, CV2, and eye velocity, and statistical significance was assessed using a likeli-

hood ratio test (see above). The residual data were not normally distributed, however, comparisons

of means using linear models are robust to deviations of normality when the sample size is suffi-

ciently large (Lumley et al., 2002; Gelman and Hill, 2007).
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