
*For correspondence:

krgm2@cam.ac.uk (KRM);

gellerh@nhlbi.nih.gov (HMG)

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 17

Received: 29 March 2018

Accepted: 14 May 2018

Published: 15 May 2018

Reviewing editor: Joseph G

Gleeson, Howard Hughes

Medical Institute, The Rockefeller

University, United States

This is an open-access article,

free of all copyright, and may be

freely reproduced, distributed,

transmitted, modified, built

upon, or otherwise used by

anyone for any lawful purpose.

The work is made available under

the Creative Commons CC0

public domain dedication.

Identification of a critical sulfation in
chondroitin that inhibits axonal
regeneration
Craig S Pearson1,2, Caitlin P Mencio1, Amanda C Barber2, Keith R Martin2*,
Herbert M Geller1*

1Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood
Institute, National Institutes of Health, Bethesda, United States; 2Department of
Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom

Abstract The failure of mammalian CNS neurons to regenerate their axons derives from a

combination of intrinsic deficits and extrinsic factors. Following injury, chondroitin sulfate

proteoglycans (CSPGs) within the glial scar inhibit axonal regeneration, an action mediated by the

sulfated glycosaminoglycan (GAG) chains of CSPGs, especially those with 4-sulfated (4S) sugars.

Arylsulfatase B (ARSB) selectively cleaves 4S groups from the non-reducing ends of GAG chains

without disrupting other, growth-permissive motifs. We demonstrate that ARSB is effective in

reducing the inhibitory actions of CSPGs both in in vitro models of the glial scar and after optic

nerve crush (ONC) in adult mice. ARSB is clinically approved for replacement therapy in patients

with mucopolysaccharidosis VI and therefore represents an attractive candidate for translation to

the human CNS.

DOI: https://doi.org/10.7554/eLife.37139.001

Introduction
There is an urgent need for therapies to treat CNS injuries. Acute insult often results in axonal

degeneration, and therefore many experimental strategies aim to stimulate regeneration of dam-

aged axons. These efforts have been informed by two insights: (1) the extrinsic environment of the

adult CNS is hostile to axonal growth due to the formation of a glial scar, and (2) adult CNS neurons

have lost their intrinsic ability to express axon-growth-promoting factors. The inhibitory properties

of the glial scar are primarily due to extracellular matrix molecules, particularly chondroitin sulfate

proteoglycans (CSPGs) (Burnside and Bradbury, 2014). Digesting CSPG GAG chains with the bacte-

rial enzyme chondroitinase ABC (ChABC) has been shown to promote axonal extension in several

experimental models (Bradbury and Carter, 2011; Zhao and Fawcett, 2013). In parallel, many

approaches have endeavored to restore the intrinsic growth capability of CNS axons, most promi-

nently through the activation of cell growth programs such as the PTEN/mTOR pathway (Park et al.,

2008). However, such approaches are not directly translatable to human patients: ChABC has failed

to reach clinical trials, and manipulation of tumor suppressor genes is likely to prove clinically ques-

tionable (Barber et al., 2017).

Increasing evidence supports a critical role for GAG chain sulfation in CSPG signaling. Global

removal of sulfate groups from GAG chains eliminates the inhibitory actions of CSPGs in culture

(Smith-Thomas et al., 1995), and specific sulfation motifs dictate whether GAGs inhibit or permit

axon growth. For instance, axons grow readily over surfaces coated with 6-sulfated (6S) CSPGs

(Wang et al., 2008), and deleting the enzyme that adds 6S to CS GAGs impairs axonal regeneration

in mice (Lin et al., 2011). In contrast, axons avoid 4-sulfated (4S) CSPGs, an effect abolished by

treatment with 4-sulfatase (Wang et al., 2008). Sulfation at both positions (4,6S) has been shown to
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inhibit axonal growth in vitro and in vivo (Brown et al., 2012), and an increase in the ratio of 4S to

6S has been linked with age-related declines in plasticity (Foscarin et al., 2017; Miyata et al.,

2012). Collectively, these observations suggest that reducing 4S while preserving 6S on intact GAG

chains may enable growing axons to overcome CSPG-mediated inhibition more effectively than

indiscriminate reductions in sulfation or destruction of GAGs.

We have previously shown that the deposition of CSPGs in the glial scar following brain and spi-

nal cord injury is dominated by 4S GAGs (Wang et al., 2008). Here, we demonstrate the ability of

arylsulfatase B (ARSB), a clinically approved enzyme that selectively removes 4S groups from the

non-reducing ends of CSPGs (Litjens and Hopwood, 2001), to enhance axonal regeneration in vitro

and in vivo. Treating CSPGs with ARSB or adding ARSB to TGF-b-treated astrocytes reverses their

inhibition of neurite outgrowth by modifying CSPG sulfation. We then show that ARSB significantly

enhances axon regeneration in vivo when the enzyme is delivered to the injured optic nerves of adult

mice in combination with intravitreal injection of Zymosan and CPT-cAMP, an intrinsic growth stimu-

lus. Importantly, this treatment is effective when administered several days after ONC, making it rel-

evant for human conditions where interventions are rarely available immediately following injury.

Crucially, ARSB (Naglazyme, Biomarin) is clinically approved for the treatment of mucopolysacchari-

dosis VI, a lysosomal storage disorder (Muñoz-Rojas et al., 2010; Harmatz et al., 2004;

Harmatz et al., 2005); thus, its inclusion in future human therapeutic treatments is plausible. Taken

together, these data establish a critical role for 4S at the non-reducing end of CS GAG chains in

mediating the inhibitory actions of CSPGs. Moreover, they provide evidence for a promising translat-

able therapy that utilizes a highly selective human enzyme to modify chondroitin sulfation and

enhance axon regeneration.

Results

ARSB reverses the inhibition of neurite growth caused by 4-sulfated
CSPGs
The ability of ARSB to alter the inhibitory actions of CSPGs was first assessed in cell culture models

of the glial scar (Wang et al., 2008). To assess whether neurite inhibition by CSPGs could be

reduced through ARSB treatment, cultures of dissociated mouse hippocampal neurons were

exposed to 5 mg/ml CSPGs with and without ARSB treatment for 48 hr. Cultures were stained for

bIII-tubulin, and the lengths of neurites were measured. Neurons grown in the presence of CSPGs

were significantly (p<0.0001) shorter than untreated neurons (neurite length [median]: 55.7 mm and

91.7 mm, respectively) (Figure 1c–d). Growth was not significantly altered by CSPGs that had been

treated with ARSB (neurite length [median]: 93.2 mm), suggesting that ARSB treatment was sufficient

to remove neurite outgrowth inhibiting characteristics of CSPGs (Figure 1c–d).

To test the actions of ARSB in a cellular model, monolayers of confluent mouse astrocytes were

treated with TGF-b to stimulate elevated CSPG production (Wang et al., 2008). Mouse cerebellar

granule neurons (CGNs) were then seeded onto these astrocytes and allowed to grow for 24 hr. Cul-

tures were stained for GFAP and bIII-tubulin, and the lengths of CGN neurites were measured. Neu-

rons growing on TGF-b-treated astrocytes exhibited significantly lower neurite outgrowth than those

plated on untreated control astrocytes (p=0.0059, Mann-Whitney U test) (Figure 1e–f). However,

incubating TGF-b-treated co-cultures with ARSB restored average neurite length to the levels

observed in untreated controls (Figure 1e–f), significantly different from TGF-b-treatment alone

(p<0.0001). This suggests that cleaving 4S from the non-reducing ends of GAG chains is sufficient to

neutralize the inhibitory effects of CSPGs on neurons.

To demonstrate that ARSB acts on extracellular CSPGs, rather than being internalized into astro-

cytes and interfering with CSPG production or secretion, conditioned medium (CM) was collected

from TGF-b-treated astrocytes and left untreated, treated with ARSB, or treated with ChABC. The

isolated and treated CM was added to separately cultured CGNs. Application of CM from TGF-b-

treated astrocytes significantly reduced neurite outgrowth while ARSB treatment reversed this effect

to a degree equivalent to ChABC (Figure 1—figure supplement 1). Together, these findings dem-

onstrate that the presence of CSPGs can inhibit neurite outgrowth, and that this inhibition is over-

come by exposing the CSPGs to either ARSB or ChABC.
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Figure 1. ARSB reverses neurite outgrowth inhibition caused by 4-sulfated CSPGs. (a) Schematic diagram showing actions of ARSB and ChABC on

GAG chains. (b) Western blot showing CS-56 signal in conditioned medium. (c) Micrographs showing hippocampal neurons treated with no treatment,

CSPG (5 mg/ml), or CSPG +ARSB. Scale bar = 25 mm. (d) Plot showing lengths of longest neurite measured from b-III-tubulin stained neurons. Statistical

significance was determined by one-way ANOVA, **p<0.005, ***p<0.001. (e) Micrographs showing co-cultures of CGNs grown on astrocytes and

treated with TGF-b, TGF-b and ARSB, or no treatment. Scale bar = 25 mm. (f) Plot showing lengths of longest neurite measured from b-III-tubulin

stained neurons. Statistical significance was determined by one-way ANOVA, *p<0.05, **p<0.005, ***p<0.001, ****p<0.0001.

DOI: https://doi.org/10.7554/eLife.37139.002

The following figure supplement is available for figure 1:

Figure supplement 1. ARSB reverses neurite outgrowth inhibition caused by 4-sulfated CSPGs.

DOI: https://doi.org/10.7554/eLife.37139.003
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To further validate that ARSB does not interfere with CSPG secretion, the level of CSPGs in CM

was measured by immunoblotting with the antibody CS-56, which reacts with 4S and 6S groups on

GAG chains (Avnur and Geiger, 1984). The increase in CSPGs caused by TGF-b treatment

(Wang et al., 2008) was not altered by treatment with ARSB, even after repeated additions

(Figure 1b), indicating that its enhancement of neurite growth was derived from modifying the sulfa-

tion pattern rather than attenuating CSPG production or secretion. These data also demonstrate

that CS-56 immunoreactivity is not altered by removal of 4S from the non-reducing end of CS GAG

chains.

Optic nerve crush leads to astrogliosis and sustained elevation of
CSPGs
Injury to the CNS is accompanied by astrogliosis, characterized by the accumulation of CSPGs in a

glial scar (Burnside and Bradbury, 2014). Evidence suggests a similar effect in the optic nerve

(Brown et al., 2012; Sellés-Navarro et al., 2001; Sengottuvel et al., 2011; Qu and Jakobs, 2013),

but a comprehensive examination of this phenomenon has not been performed, especially regarding

the production of 4S GAG chains following injury. A cohort of adult mice received optic nerve crush

(ONC) or non-lesioned sham surgery (in which the nerve was exposed but not crushed) and optic

nerves were collected at 1, 3, 5, 7, 14, and 21 days post crush (dpc). Optic nerve sections were

stained with antibodies against GFAP (to identify reactive astrocytes) and Iba1 (to identify microglia

and macrophages). By 7 dpc, GFAP+ reactive astrocytes had retracted from the lesion site to form a

cavity, which was densely populated with Iba1+ microglia and macrophages (Figure 2—figure sup-

plement 1). Astrocytes displayed reactive morphology, with elongated processes defining the lesion

boundary. Some GFAP+ cells were also found within the lesion core. Microglia in and around the

lesion displayed an activated morphology, with enlarged cell bodies and retracted processes, dis-

tinct from the striated morphology of cells found distal to the injury site and in non-lesioned sham

control nerves. By 21 dpc, astrocytes had begun to repopulate the cavity and form a chronic scar.

CSPGs were detected using CS-56 and 2H6, an antibody that reacts predominantly with 4S

(Yamamoto et al., 1995), and to a lesser degree, with 6S (Sugiura et al., 2012) and 2,6S

(Matsushita et al., 2018). In non-lesioned sham control nerves, CSPGs were evenly distributed

within the tissue (Figure 2a). Elevated CS-56 levels at the lesion site were first observed at 5 dpc

and peaked around 7 dpc (Figure 2b). Levels remained high at 21 dpc. An increase in 2H6 staining

was also observed, with levels reaching 2.5-fold those in non-lesioned sham controls (fold change

[mean ± SE]: 2.53 ± 0.15) (Figure 2b). The axons of injured mouse RGCs visualized with fluores-

cently-tagged CTB, injected intravitreally 1 d prior to tissue harvest, failed to traverse the injury site

and instead formed dystrophic endbulbs that appeared to be associated with areas of high CSPG

deposition, which included areas of high 4S immunostaining (Figure 2c). CSPGs and 4S GAGs were

associated with both GFAP+ and Iba1+ cells in nerves examined at 7 dpc (Figure 2—figure supple-

ment 2). Taken together, these results illustrate that ONC in mice leads to astrogliosis and elevated

expression of CSPGs, especially those with 4S GAGs, which is sustained for at least 21 days.

Modifying CSPG sulfation enhances retinal ganglion cell axon
regeneration
Given the in vitro evidence that 4S is critical to CSPG-mediated inhibition of neurite growth, we

investigated whether cleaving 4S from the non-reducing ends of GAG chains at the ONC lesion site

would enhance retinal ganglion cell (RGC) axon regeneration in the optic nerve. To accomplish this,

an intrinsic pro-regenerative stimulus, Zymosan A and CPT-cAMP (Leon et al., 2000; Yin et al.,

2003), was combined with direct application of ARSB to the lesioned nerve. ChABC was used as a

control to evaluate the effects of digesting GAG chains entirely rather than selectively removing 4S

groups.

Mice received ONC, followed 3 days later by an intravitreal injection of Zymosan A (12.5 mg/mL)

supplemented with CPT-cAMP (50 mM), followed immediately by implantation of a gelfoam scaffold

loaded with 5 mL of ARSB (1 mg/mL), ChABC (455 mg/mL), or control buffer. At 14 dpc, optic nerves

were dissected, sectioned, and stained for GAP-43 to detect regenerating axons. In accordance with

previous reports (Leaver et al., 2006), we found that GAP-43 selectively labels regenerating axons,

as GAP-43 signal is absent from intact, non-lesioned optic nerves (data not shown). On its own,
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injection of Zymosan/CPT-cAMP induced significantly (p=0.0226) higher RGC axon regeneration

than PBS controls at 14 dpc (axons at 0.25 mm distal to the lesion [mean ±SE]: 282 ± 83.4 and

42.3 ± 11.1, respectively) (Figure 3—figure supplement 1). Zymosan did not alter CSPG expression

at the lesion site (Figure 3—figure supplement 1). When Zymosan was combined with enzyme

delivery, both ARSB and ChABC significantly (p=0.0006 and p<0.0001, respectively) enhanced RGC

axon regeneration compared with the buffer control (axons at 0.25 mm distal to the lesion

[mean ±SE]: 472 ± 62, 535 ± 123, and 217 ± 53, respectively) (Figure 3). Interestingly, delivering

ARSB or ChABC in the absence of Zymosan injection did not enhance basal RGC axon regeneration

(Figure 3—figure supplement 2).

The products of the reaction catalyzed by ARSB are not readily detectable by immunohistochem-

istry or Western blot; therefore, to specifically validate the penetration of ARSB into the optic nerve

fibers, mice received ONC surgery, and gelfoam scaffolds soaked in 200 mg/mL His-Tagged ARSB or

control buffer were implanted behind the eyes at the ONC lesion site (Figure 3—figure supplement

3). Tissue collected at 1 dpc was analyzed by immunohistochemistry using anti-His antibody, and

recovered scaffolds were tested for the presence of active ARSB. His-Tagged ARSB was detected in

Figure 2. Optic nerve crush stimulates glial scar formation and sustained elevation of chondroitin sulfate proteoglycans. (a) Micrographs show lesioned

optic nerve tissue collected at 1, 3, 5, 7, 14 and 21 dpc and stained for CSPGs (CS-56), 4S GAGs (2H6), reactive astrocytes (GFAP), and microglia and

macrophages (Iba1). Scale bar = 50 mm. (b) Fluorescence intensity of CS-56 and 2H6 immunostaining expressed as fold change vs. non-lesioned sham

controls. Statistical significance versus sham was determined by Student’s t-test. *p<0.05, **p<0.005. Colored asterisks indicate significance for different

groups (CS-56 = green, 2H6 = magenta). (c) Micrographs showing lesioned mouse optic nerve tissue at 7 dpc. Axons are visualized with CTB and form

dystrophic endbulbs in areas of high CSPG and 4S GAG immunoreactivity. Scale bar = 100 mm, inset = 10 mm.

DOI: https://doi.org/10.7554/eLife.37139.004

The following figure supplements are available for figure 2:

Figure supplement 1. Reactive astrocytes and activated microglia form glial scar after optic nerve crush.

DOI: https://doi.org/10.7554/eLife.37139.005

Figure supplement 2. Optic nerve CSPGs associate with glial cells.

DOI: https://doi.org/10.7554/eLife.37139.006
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Figure 3. Selectively targeting inhibitory CSPGs enhances retinal ganglion cell axon regeneration. (a) Experiment timeline and schematic diagram

showing intravitreal injection of Zymosan/CPT-cAMP and implantation of gelfoam scaffolds containing ARSB, ChABC, or control buffer. (b) Micrographs

showing GAP-43-labeled optic nerves from mice treated with Zymosan/CPT-cAMP and gelfoam scaffolds loaded with ARSB, ChABC, or control buffer.

Arrows indicate lesion site. Scale bar = 200 mm. (c) Graph showing the number of regenerating axons at distances distal to the lesion site, displayed as

mean ± SEM. Statistical significance was determined by two-way ANOVA with Bonferroni post-hoc test for multiple comparisons. *p<0.05, **p<0.005,

***p<0.001, ****p<0.0001. Colored asterisks indicate statistical significance for different groups (ARSB = magenta, ChABC = green). (d) Graph showing

average length of longest GAP-43+ regenerating axon. Statistical significance was determined by Student’s t-test. *p<0.05.

DOI: https://doi.org/10.7554/eLife.37139.007

The following figure supplements are available for figure 3:

Figure supplement 1. Zymosan and CPT-cAMP stimulate axon regeneration.

DOI: https://doi.org/10.7554/eLife.37139.008

Figure supplement 2. CSPG-targeting enzymes alone do not induce axon regeneration.

Figure 3 continued on next page
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lesioned tissue using immunohistochemistry, and active enzyme was detected from recovered scaf-

folds (Figure 3—figure supplement 3). To further validate that the enzymes had successfully pene-

trated the optic nerve and modified CSPGs, we stained ChABC-treated samples with the antibody

BE-123, which recognizes the ‘stubs’ produced on proteoglycans by ChABC digestion of the GAG

chains. Western blot analysis of non-lesioned sham control tissue treated with ChABC revealed BE-

123 signal exclusively in nerve segments exposed to ChABC-loaded scaffolds (Figure 3—figure sup-

plement 4). ARSB treatment did not significantly alter immunoreactivity of CS-56 or 2H6 (Figure 3—

figure supplement 5). Together, these observations establish that the enzymes released from the

scaffold penetrate the tissue and digest GAG chains.

ARSB promotes axon regeneration with an extended therapeutic
window
The duration of the regeneration enhancing effects of ARSB was assessed by measuring axon regen-

eration at early and late time points. At 7 dpc, only 4 days after implantation of the gelfoam scaf-

folds, a small but significant (p=0.0149) increase in the number of axons navigating through the

lesion site was already detectable in the ARSB-treated group compared with the buffer control

(axons at 0.50 mm distal to the lesion [mean ± SE]: 69.2 ± 12.3 and 16.0 ± 8.9, respectively)

(Figure 4a–d). By 28 dpc, regenerating axons were found extending as far as 4.0 mm beyond the

lesion site, to the optic chiasm entry point (Figure 4e–g). There was a significant (p=0.0002) increase

in the number of axons in ARSB-treated animals versus buffer-treated controls (axons at 0.25 mm

distal to the lesion [mean ± SE]: 568 ± 96.3 and 273 ± 63.0, respectively). The enhancing effect of

ARSB treatment appeared to be concentrated at distances proximal to the lesion site (0.25–1.50

mm). At distances beyond 1.50 mm, there was relatively little difference between the ARSB-treated

and buffer-treated groups (Figure 4—figure supplement 1). We isolated this effect by subtracting

the number of regenerating axons in the Zymosan/buffer groups from those in the Zymosan/ARSB

groups (Figure 4—figure supplement 1). ARSB strongly increased the number of axons regenerat-

ing through the lesion site but did not appear to substantially extend the distances of axons that

were already regenerating.

ARSB does not alter the astrocytic scar or perineuronal nets
To determine whether treatment with ARSB alters glial cells at the lesion site, tissue from enzyme-

treated nerves was stained with GFAP and Iba1. Neither ARSB nor ChABC disrupted formation of

the astrocytic scar. The area delineated by GFAP+ astrocytes decreased over time but was not signif-

icantly different between treatment groups at any time point (Figure 5c–d). Correspondingly, the

total GFAP immunoreactivity increased from 7 to 28 dpc as astrocytes repopulated the glial scar

region, but no differences were observed between treatment groups (Figure 5e). Both ChABC and

ARSB increased Iba1 immunoreactivity relative to the buffer control (fluorescence intensity

[mean ± SE]: 21.7 ± 2.95, 12.9 ± 1.71, and 6.96 ± 1.79, respectively), but ChABC elicited significantly

(p<0.05) higher Iba1 immunoreactivity than ARSB (Figure 5a–b).

In addition to their deposition in the glial scar, CSPGs are a major component of perineuronal

nets (PNNs), structures that limit synaptic plasticity in the brain and spinal cord but are not present

in the optic nerve. ChABC is known to disturb PNNs and alter plasticity in the visual cortex

(Pizzorusso et al., 2002). To evaluate whether ARSB alters CSPG structure beyond the selective

cleavage of 4S groups, we incubated post-fixed mouse brain tissue sections with ARSB (1 mg/mL),

ChABC (�20 mg/mL), and buffer control, and detected perineuronal nets (PNNs) with Wisteria flori-

bunda agglutinin (WFA). ChABC completely eliminated WFA-stained PNNs (Figure 5—figure

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.37139.009

Figure supplement 3. Tagged ARSB penetrates the optic nerve.

DOI: https://doi.org/10.7554/eLife.37139.010

Figure supplement 4. Implanted enzymes penetrate the optic nerve and modify GAG chains.

DOI: https://doi.org/10.7554/eLife.37139.011

Figure supplement 5. ARSB does not alter CS-56 or 2H6 immunoreactivity.

DOI: https://doi.org/10.7554/eLife.37139.012
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Figure 4. ARSB enhances axon regeneration over an extended therapeutic window. (a) Experiment timeline and schematic diagram showing intravitreal

injection of Zymosan and CPT-cAMP and delivery of ARSB and control buffer to the lesioned optic nerve via implanted gelfoam scaffold. (b)

Micrographs showing GAP-43-labeled optic nerves from mice treated with Zymosan/CPT-cAMP and gelfoam scaffolds loaded with ARSB or a control

buffer. Arrows indicate lesion site. Scale bar = 200 mm. (c) Graph showing the number of regenerating axons at distances distal to the lesion site,

displayed as mean ± SEM. Statistical significance was determined by two-way ANOVA with Bonferroni post-hoc test for multiple comparisons. *p<0.05.

(d) Graph showing length of the longest regenerating axon, displayed as mean ± SEM. Statistical significance was determined by Student’s t-test. (e)

Micrographs showing GAP-43-labeled optic nerves from mice treated with intravitreal injections of Zymosan and gelfoam scaffold loaded with ARSB or

Figure 4 continued on next page
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supplement 1). However, incubation with ARSB left PNNs intact, with no observable differences

from PNNs in buffer-treated brain tissue (Figure 5—figure supplement 1).

Discussion
The glial scar is considered a major impediment to axonal regeneration. We show that the injured

optic nerve develops a glial scar rich in CSPGs, including the axon-inhibiting 4S motif. The human

enzyme ARSB selectively cleaves 4S groups from the non-reducing ends of GAG chains, reducing

CSPG-mediated inhibition of neurite growth in vitro. We demonstrate that ARSB promotes neurite

growth in culture without altering production or secretion of GAG chains. Furthermore, ARSB enhan-

ces the regeneration of RGC axons following optic nerve injury. The treatment is robustly effective

even when administered 3 days after injury, an important consideration for translational therapies.

Enhanced regeneration was evident as early as 7 days post ONC and remained significant at 28

days, illustrating an extended therapeutic window from a single treatment. ARSB is active in vivo,

provokes less Iba1 immunoreactivity than ChABC, and preserves perineuronal structures that

depend on intact GAG chains. Taken together, these findings demonstrate that the 4S motif at the

non-reducing end of CS GAG chains plays a major role in mediating the inhibitory actions of CSPGs.

Given the approval for ARSB as an enzyme replacement therapy in human patients, our evidence

that ARSB enhances axon regeneration in the optic nerve means that future treatments could readily

combine ARSB with clinically viable intrinsic approaches to achieve robust regeneration of damaged

or degenerated axons in the CNS.

Sulfation dictates the effects of CSPGs on axon growth
Studies that link CSPGs to the failure of axon regeneration overwhelmingly fail to distinguish

between differentially sulfated GAG chains, often showing instead that digestion of GAG chains with

ChABC enhances neurite growth in vitro and axon regeneration in vivo (Bradbury and Carter,

2011). The importance of sulfation in governing CSPG function has been demonstrated using

sodium chlorate, which broadly eliminates GAG sulfation (Smith-Thomas et al., 1995). Recent stud-

ies have characterized the behaviors of specific sulfation motifs, showing that both 4S and 4,6S

inhibit neurite growth while 6S is growth-permissive (Wang et al., 2008; Brown et al., 2012). An

age-related increase in the ratio of 4S to 6S was linked to declines in plasticity and memory

(Foscarin et al., 2017; Miyata et al., 2012), and removal of 4S with ARSB improved motor function

following spinal cord injury (Yoo et al., 2013). Blocking 4,6S with a custom antibody enhanced

regeneration of RGC axons after ONC (Brown et al., 2012), which raises the question of whether 4S

and 4,6S function similarly to inhibit axonal growth, and whether ARSB might convert 4,6S motifs to

6S.

The precise mechanism of how ARSB modifies the inhibitory actions of GAG chains is unknown.

ARSB did not reduce the total amount of sulfated GAG in the culture medium as detected by the

anti-CS antibodies, suggesting that its effects are mediated by altering GAG chain sulfation. ARSB, a

lysosomal enzyme, maintains its highest activity at acidic pH, raising the question of whether it can

cleave sulfate groups from secreted CSPGs, or whether lysosomal uptake is required. We observed

that ARSB cleaves 4S from extracellular GAG chains in culture medium, suggesting that its activity at

neutral pH is sufficient to perform its sulfatase function. This was validated by our discovery that

ARSB promotes regeneration of optic nerve axons when administered exogenously. The prominent

actions of ARSB are more remarkable considering that the average length of neuronal GAG chains is

Figure 4 continued

a control buffer. Arrows indicate lesion site. Scale bar = 200 mm. (f) Graph showing the number of regenerating axons at distances distal to the lesion

site, displayed as mean ± SEM. Statistical significance was determined by two-way ANOVA with Bonferroni post-hoc test for multiple comparisons.

**p<0.005, ***p<0.001, ****p<0.0001. (g) Graph showing length of the longest regenerating axon, displayed as mean ± SEM. Statistical significance was

determined by Student’s t-test.

DOI: https://doi.org/10.7554/eLife.37139.013

The following figure supplement is available for figure 4:

Figure supplement 1. ARSB strongly enhances axon regeneration proximal to the lesion site.

DOI: https://doi.org/10.7554/eLife.37139.014
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Figure 5. ARSB provokes muted immune response but does not alter astrocyte reactivity, glial scar size, or association of regenerating axons with

astrocyte processes. (a) Micrographs showing Iba1 immunostaining at the optic nerve crush site for samples treated with Zymosan/CPT-cAMP and

ChABC, Zymosan/CPT-cAMP and ARSB, Zymosan/CPT-cAMP and a control buffer, no treatment, and non-lesioned controls. Scale bar = 50 mm. (b)

Graph showing quantification of Iba1 fluorescence intensity measured as % area of thresholded insets centered at the lesion site. Statistical significance

Figure 5 continued on next page
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about 50 disaccharide units (Rauch et al., 1991). Removal of just the 4S at the non-reducing end

leaves virtually the entire GAG chain intact, as demonstrated by the preservation of the immunoreac-

tivity to CS-56, while the inhibitory activity is significantly diminished.

CSPG deposition is a key source of axon growth inhibition in the glial
scar
The formation of a glial scar, including deposition of sulfated proteoglycans, is well documented in

the brain and spinal cord (Bradbury et al., 2002; Bradbury and Carter, 2011; Yi et al., 2012;

Burnside and Bradbury, 2014; Galtrey and Fawcett, 2007). Glial activation and macrophage

recruitment have been observed in optic nerve lesions (Qu and Jakobs, 2013), and some studies

have suggested that CSPGs are upregulated after ONC, but have not quantified this phenomenon

or explored its time course (Brown et al., 2012; Sengottuvel et al., 2011; Sellés-Navarro et al.,

2001). We found that CSPGs, and 4S GAGs in particular, were significantly elevated after ONC,

reaching peak levels at 7 dpc. The sustained elevation of CSPGs at 21 dpc suggests that the optic

nerve environment remains hostile to axon growth for extended periods after injury.

Cleaving 4S from the non-reducing ends of GAG chains with ARSB, or digesting GAG chains with

ChABC, both enhanced axon regeneration without disrupting formation of the astrocytic scar. This

supports a critical role for CSPG deposition, rather than scar formation per se, as the primary cause

of axon growth inhibition. This is consistent with findings that ablating astrocytic scar formation with-

out reducing CSPG levels does not lead to spontaneous regeneration of axons (Anderson et al.,

2016; Silver, 2016). Intriguingly, blocking the transformation of reactive astrocytes into scar-forming

astrocytes, which express elevated levels of CSPG-related transcripts, was found to significantly

enhance axon regeneration (Hara et al., 2017).

Delayed application of ARSB promotes regeneration and preserves
perineuronal structures
Most experimental therapies that stimulate RGC axon regeneration involve interventions at the time

of injury or, in the case of many gene therapies, prior to injury (Buch et al., 2008). While such studies

are valuable for identifying therapeutic targets and elucidating mechanisms of RGC axon regenera-

tion, they are not readily translatable to human patients. We found that delivery of ARSB in conjunc-

tion with Zymosan/CPT-cAMP significantly enhanced RGC axon regeneration when administered 3

days after ONC, making a strong case for its clinical viability.

Delaying ARSB treatment may confer additional advantages: previous studies have argued that

CSPG synthesis in the acute phase (0–2 dpi) may, in fact, promote recovery. Rolls et al., 2008

blocked CSPG synthesis immediately after spinal cord injury in mice and found that axon regenera-

tion and functional recovery were impaired, whereas blocking synthesis in the subacute phase (2–7

dpi) enhanced regeneration and recovery. Other studies suggest that intact CSPGs recruit blood-

borne monocytes and bias macrophages toward a resolving phenotype (Shechter et al., 2011), and

that CSPGs regulate the spatial organization of microglia and macrophages and promote neurotro-

phic factor production by resident microglia (Rolls et al., 2008; Shechter et al., 2009). Stripping

CSPGs of their GAG chains may impede these repair functions, whereas selectively modifying sulfa-

tion with ARSB could reduce GAG-mediated inhibition of neurons without disrupting their interac-

tions with other cells. To demonstrate that ARSB preserves perineuronal structures composed of

Figure 5 continued

was determined by Student’s t-test. *p<0.05, ***p<0.001. (c) Micrographs showing GFAP and GAP-43 immunostaining at the optic nerve crush site for

samples treated with Zymosan/CPT-cAMP and either ARSB, ChABC, or a control buffer and analyzed at 7, 14, and 28 dpc. Arrows indicate lesion site.

Scale bar = 100 mm. (d) Graph showing quantification of glial scar size measured as the area delineated by GFAP+ astrocytes at the optic nerve crush

site. Statistical significance was determined by Student’s t-test. (e) Graph showing quantification of GFAP immunoreactivity at the optic nerve crush site.

Statistical significance was determined by Student’s t-test.

DOI: https://doi.org/10.7554/eLife.37139.015

The following figure supplement is available for figure 5:

Figure supplement 1. ARSB preserves CSPG-rich perineuronal net structure.

DOI: https://doi.org/10.7554/eLife.37139.016
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CSPGs, we treated mouse cortical tissue with ARSB and ChABC and showed that while ChABC elim-

inated perineuronal nets (PNNs), ARSB left PNNs intact.

ARSB is superior to ChABC in several other respects. ARSB has relatively lower immunogenicity

and maintains its activity longer than ChABC in vitro (Yoo et al., 2013). In vivo studies indicate that

ChABC injected into rat brains maintains activity for at least 10 days (Lin et al., 2008), and that low

levels of ChABC activity suppress CSPG levels for weeks (Chau et al., 2004; Hyatt et al., 2010).

While the durability of ARSB in vivo has not been characterized, ARSB is stable at physiological tem-

perature and pH, meaning it should retain robust levels of activity for extended periods (Yoo et al.,

2013). Crucially, ARSB is a human enzyme with preexisting approval for clinical use (Muñoz-

Rojas et al., 2010; Harmatz et al., 2004; Harmatz et al., 2005).

Combining extrinsic and intrinsic stimuli enhances axon regeneration
Treating lesioned optic nerves with ARSB or ChABC alone failed to enhance regeneration, but com-

bining them with Zymosan/CPT-cAMP promoted significantly greater regeneration than the intrinsic

treatment alone. Most studies demonstrating long distance regeneration of RGC axons achieve their

effects by modifying the intrinsic state of RGCs: knocking out the tumor suppressor PTEN

(Park et al., 2008), delivering growth factors (Sieving et al., 2006), stimulating inflammatory path-

ways (Yin et al., 2003), enhancing the endogenous activity of RGCs (Lim et al., 2016), chelating

neurotoxic ions in the retina (Li et al., 2017), and various combinations thereof. However, knowl-

edge of how these regenerating axons traverse the glial scar and navigate the growth-inhibitory

microenvironment is incomplete. Studies that have examined the three-dimensional growth patterns

of regenerating RGC axons consistently find that axons induced to regenerate via intrinsic manipula-

tions display highly irregular and aberrant growth patterns (Luo et al., 2013; Bray et al., 2017;

Fischer et al., 2017). Understanding how axons respond to their extrinsic microenvironment, partic-

ularly GAG chains within the glial scar, will be vital to future efforts to stimulate robust long-distance

regeneration of retinal neurons and successful innervation of visual targets in the brain.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Antibody DAPI ThermoFisher
Scientific

D3751;
RRID: AB_2307445

1/10,000

Antibody anti-GAP-43 (Sheep) Benowitz et al., 1988;
PMID: 3339416

1/50,000;
Gift from Benowitz lab

Antibody anti-GAP43
(Rabbit, polyclonal)

Abcam ab7462;
RRID: AB_305932

1/500

Antibody CS-56
(Mouse, monoclonal)

Millipore Sigma C8035;
RRID: AB_476879

1/500

Antibody 2H6
(Mouse, monoclonal)

Amsbio 370710-IEC 1/500

Antibody BE-123
(Mouse, monoclonal)

Millipore Sigma MAB2030;
RRID: AB_94510

1/500

Antibody Iba1
(Rabbit, polyclonal)

FUJIFILM Wako
Chemicals USA

019–19741;
RRID: AB_839504

1/500

Antibody GFAP
(Rabbit, polyclonal)

Agilent (Dako) Z0334;
RRID: AB_10013382

1/500

Antibody GFAP
(Chicken, polyclonal)

Abcam ab74674;
RRID: AB_304558

1/500

Antibody b-III-tubulin
(Mouse, monoclonal)

Millipore Sigma T8660;
RRID: AB_477590

1/1000

Antibody 6x His tag Abcam ab137839 1/500

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Antibody WFA Millipore Sigma L1516;
RRID: AB_2620171

1/500

Antibody Donkey anti-sheep,
Alexa 488 (secondary)

ThermoFisher
Scientific

A-11015;
RRID: AB_2534082

1/1000

Antibody Donkey anti-sheep,
Alexa 568 (secondary)

ThermoFisher
Scientific

A-21099;
RRID: AB_2535753

1/1000

Antibody Goat anti-rabbit,
Oregon Green
488 (secondary)

ThermoFisher
Scientific

O-6381;
RRID: AB_2539800

1/1000

Antibody Goat anti-rabbit,
Alexa 633 (secondary)

ThermoFisher
Scientific

A-21070;
RRID: AB_2535731

1/1000

Antibody Goat anti-chicken,
Alexa 488 (secondary)

ThermoFisher
Scientific

A-11039;
RRID: AB_2534096

1/1000

Antibody Goat anti-mouse,
Alexa 568 (secondary)

ThermoFisher
Scientific

A-11004;
RRID: AB_2534072

1/1000

Antibody Goat anti-mouse
IgM mu chain,
Dylight 650
(secondary)

Abcam ab98749;
RRID: AB_10672799

1/500

Antibody TRITC-conjugated
streptavidin
(secondary)

Jackson
ImmunoResearch

016-020-08 1/1000

Recombinant
Protein

TGF-b (human) PeproTech 100–21C

Recombinant
Protein

ARSB (human) BioMarin
Pharmaceuticals

Naglazyme, Provided
by BioMarin

Recombinant
Protein

ARSB (human) R and D Systems 4415-SU-010

Recombinant
Protein

Cholera Toxin
Subunit B, Alexa 555

ThermoFisher
Scientific

CC22843

Protein ChABC Millipore Sigma C3667

Protein CSPG (Chicken
Extracellular Chondroitin
Sulfate Proteoglycans)

Millipore Sigma CC117

Chemical
compound, drug

Zymosan A Millipore Sigma Z4250

Chemical
compound, drug

CPT-cAMP Millipore Sigma C3912

Chemical
compound, drug

PNCS Alfa Aesar B23325

Chemical
compound, other

Can Get Signal
(Immunoenhancer)

CosmoBio TYB-NKB-101

Software,
algorithm

GraphPad Prism 7 RRID:SCR_002798

Software,
algorithm

Adobe Illustrator
CC 2017

RRID:SCR_010279

Software,
algorithm

Fiji RRID:SCR_002285

Other Gelfoam Ethicon- Johnson
and Johnson

1972

Animals
All experiments and procedures were performed in accordance with protocols approved by the Insti-

tutional Animal Care and Use Committee (IACUC) at the National Institutes of Health. Female
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C57Bl/6 mice aged 6–8 weeks (Charles River) were housed in a pathogen free facility with free

access to food and a standard 12 hr light/dark cycle. Sample sizes were determined by statistical

power calculations from pilot experiments and the results of previous studies, as described below.

Animals were randomly allocated into experimental groups. Animals were removed from the study if

bleeding occurred during the optic nerve crush or scaffold implantation surgery.

Cell culture
Primary hippocampal neuron cultures were prepared from embryonic (e17-18) C57Bl/6 mouse

brains. Hippocampi were dissected and dissociated into single cell suspensions. Dissociated cells

were seeded onto coverslips coated with poly-L-lysine and cultured in 500 mL Neurobasal medium

containing B27 supplement (Thermo Fisher) and 24 mM KCl. After allowing 2 hr for neuronal attach-

ment, 500 mL of Neurobasal medium containing B27 supplement and 24 mM KCl that had been incu-

bated for 4 hr with no treatment, 10 mg/ml CSPG (for final concentration of 5 mg/ml), or CSPG (10

mg/ml)+ARSB (2 mg/ml) (final concentrations 5 mg/ml and 1 mg/ml, respectively) was added. Cells

were incubated for 48 hr at 37˚C and 5% CO2 atmosphere and then fixed and stained for DAPI and

bIII-tubulin.

Primary cortical astrocyte cultures were prepared from neonatal (1–3 days) C57Bl/6 mouse brains

as described previously (Wang et al., 2008). Cerebral cortices were dissected and dissociated into

single cell suspension. Dissociated cells were seeded into T-75 flasks and grown in Dulbecco’s Modi-

fied Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) at 37˚C and 5% CO2

atmosphere until cells grew to confluence (10–14 days). Flasks were shaken for 20 hr (120 rpm, 37˚C)
to detach microglia, oligodendrocytes, and neurons from the more adherent astrocytes. After shak-

ing, the medium was replaced. Media replacement was repeated 24 hr after the shaking period.

To harvest conditioned media from reactive astrocytes, purified astrocytes were plated into T-75

flasks in serum-containing medium. After reaching confluence, astrocytes were incubated with

serum-free media overnight and treated with TGF-b (10 ng/mL), ARSB (1 mg/mL), TGF-b and ARSB,

or neither (untreated controls), for 7 days. After harvesting, conditioned media was centrifuged at

800 rpm for 5 min to remove debris before being split into three aliquots of 2 mL each. Aliquots

were treated with no enzyme, ARSB (1 mg/mL), or ChABC (1 mL/mL) for 4 hr prior to addition to neu-

ronal cultures.

Cerebellar granule neurons (CGNs) were isolated at previously described (Wang et al., 2008).

Dissociated cells were cultured in 500 mL Neurobasal medium containing B27 supplement and 24

mM KCl and plated on poly-L-lysine-coated coverslips in 24-well plates. After allowing 2 hr for neu-

ronal attachment, 500 mL of treated conditioned medium was applied to each well in triplicate. Cells

were incubated for 24 hr and then fixed and stained for DAPI and bIII-tubulin. In co-culture experi-

ments, dissociated CGNs were plated at a density of 5 � 104 cells/well onto a confluent monolayer

of astrocytes in 24-well plates that had been treated for 7 d with ARSB (1 mg/mL), TGF-b (10 ng/mL)

or TGF-b and ARSB.

Neurite outgrowth analysis
After fixation and staining, at least 60 images were taken across two coverslips per condition. Files

were analyzed by an experimenter blinded to the experimental conditions. Neurons were measured

if they were isolated from other neurons and had distinct nuclei and at least one neurite longer than

the diameter of the cell body. The longest neurite was measured for each neuron and at least 60

neurons were measured for each condition. Each experiment was performed in triplicate.

Preparation of zymosan/CPT-cAMP and enzyme delivery scaffolds
In accordance with established protocols (Yin et al., 2003; de Lima et al., 2012), Zymosan A (Sigma

Z4250) was suspended in sterile PBS at a concentration of 12.5 mg/mL, incubated at 37˚C for 10 min,

and vortexed. CPT-cAMP (Sigma C3912) was added to achieve a final concentration of 50 mM CPT-

cAMP. Aliquots were stored at 4˚C for up to two weeks. ChABC (Amsbio 100332-1A) was reconsti-

tuted at 455 mg/mL in a buffer solution containing 100 mM Tris(hydroxymethyl)aminomethane hydro-

chloride (Tris-HCl) and 0.1% BSA in 1X phosphate buffered saline (PBS). ARSB (Naglazyme) was

obtained in acidic PBS (pH 5.5) from Biomarin (San Rafael, CA). ARSB with His Tag was obtained

from R and D Systems (4415-SU). Sterile gelfoam sponges were cut to roughly 2 mm3 and placed to
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soak in a sterile tube containing 5 mL of either ChABC, ARSB, or the control buffer. Tubes were

stored on ice for up to 4 hr before surgical implantation.

Optic nerve crush and implantation of enzyme scaffolds
Optic nerve crush was performed as described previously (Park et al., 2008). Mice were anesthe-

tized using 1–2% isoflurane; the depth of anesthesia was confirmed by lack of response to a toe

pinch. The optic nerve was exposed intraorbitally, and curved forceps were inserted beneath the

external ocular muscle, avoiding the ophthalmic artery and retrobulbar sinus. The nerve was crushed

approximately 1 mm behind the eye for 10 s. Immediately after the crush, eyes were monitored fun-

doscopically for signs of ischemia, and mice were observed for bleeding in the hours following sur-

gery. Mice received a subcutaneous injection of 1 mg/kg buprenorphrine as an analgesic and topical

application of ophthalmic ointment to prevent corneal drying.

For implantation of enzyme scaffolds, the optic nerve was exposed by gently reopening the con-

junctiva and inserting curved forceps behind the eye. Carefully avoiding the ophthalmic artery and

retrobulbar sinus, the enzyme- or buffer-soaked gelfoam scaffold was placed in direct contact with

the optic nerve at the site of the crush lesion, approximately 1 mm behind the eye. Retinal blood

flow was assessed fundoscopically, and mice received a subcutaneous injection of 1 mg/kg bupre-

norphrine and topical application of ophthalmic ointment.

Intravitreal injection
Intravitreal injections of Zymosan or a PBS control were administered immediately following implan-

tation of the gelfoam scaffold, and injections of CTB were administered 1 d prior to tissue harvest. 2

mL of the injecting solution was drawn into a sterile 5 mL Hamilton syringe with a 33-gauge remov-

able needle. In the case of Zymosan injections, the syringe was inspected to ensure that the needle

was not blocked by Zymosan particles. The solution was then slowly injected through the superior

nasal sclera at a 45˚ angle, avoiding the lens, external ocular muscle, and blood vessels. A sterile 33-

gauge needle was used to puncture the cornea and drain the anterior chamber before removing the

injecting needle, to reduce intraocular pressure and prevent reflux of the injected solution. Different

needles were used for Zymosan and PBS injections to prevent contamination, and the syringe was

rinsed thoroughly with ethanol followed by sterile PBS between injections.

Western blot
Tissue preparation
Mice were anesthetized using 1–2% isoflurane and exsanguinated, followed by cervical dislocation.

Optic nerves were severed between the globe and the optic and cut into four equally sized seg-

ments of approximately 1.0–1.5 mm each. Nerve segments were immediately placed in sterile 1.5

mL Eppendorf tubes containing cold 40 mL lysis buffer (cOmplete Lysis-M, EDTA-free, Roche). Tissue

was mechanically homogenized using a sterile pestle and centrifuged to separate un-homogenized

tissue. Protein concentration in the supernatant was determined using the BCA assay (Thermo-

Fisher). Samples were frozen and stored at �80˚C.

Immunoblotting
Proteins were separated by SDS-PAGE under reducing conditions and transferred to a 0.45 mm

PVDF membrane. Membranes were blocked with PBS containing 0.2% Tween-20% and 5% skim milk

for 1 hr at room temperature. To detect ChABC-digested CSPGs, membranes were incubated with

the primary mouse monoclonal antibody BE-123 (Millipore MAB2030) diluted in an immunoenhanc-

ing reagent (Can Get Signal, Toyobo) and 5% skim milk for 2 hr at 4˚C, then washed and incubated

with an HRP-conjugated anti-mouse IgG secondary antibody for 30 min at room temperature. Sig-

nals were visualized with myECLTH Imager (ThermoFisher, Waltham, MA, USA).

Enzyme activity
Activity of ChABC and ARSB was assessed immediately before surgery. ChABC activity was mea-

sured by spectrophotometrically detecting the production of disaccharides cleaved from the glycos-

aminoglycan chains of CSPGs, as has been previously described (Suzuki et al., 1968).
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ARSB activity was measured by detecting the cleavage of a sulfate group from p-nitrocatechol

sulfate (PNCS), which yields a product with an absorbance peak at 510 nm (Porter et al., 1969;

Knaust et al., 1998). To measure enzyme activity after in vivo implantation, scaffolds were recovered

from freshly dissected optic nerves, placed in 1.5 mL Eppendorf tubes, and stored on ice. 250 mL of

50 mM 2-(N-morpholino)ethanesulfonic acid (MES) at pH 6.5 was added to the tube containing the

recovered scaffold. After approximately 1 hr, three aliquots of 75 mL were removed from this solu-

tion and combined with 75 mL 4-PNCS in a 96-well microplate. Samples were incubated at 37˚C for

24 hr, after which the reaction was quenched by adding 150 mL of 0.2 N NaOH. Absorbance was

measured at 510 nm. Recovered scaffolds loaded with enzyme buffer served as controls.

Enzyme treatment of brain sections
Free-floating 30 mm sections of mouse brain were incubated with either ChABC (Sigma C3667,�20

mg/mL), ARSB (Naglazyme, Biomarin, 1 mg/mL), or control buffer (50 mM Tris, 60 mM sodium ace-

tate, and 0.02% BSA, pH 8.0) in a 24-well plate. ChABC and ARSB were assayed to confirm activity

before being added to the wells. Brain sections were incubated with enzyme and control solutions at

37˚C for 8 hr.

Immunohistochemistry
Tissue preparation
Mice were anesthetized using 1–2% isoflurane and transcardially perfused with PBS followed by 4%

paraformaldehyde (PFA). Optic nerves were dissected, laid flat on 13 mm filter paper (Millipore

AABG01300), and immersed in 4% PFA. The tissue was post-fixed overnight, then immersed in 30%

sucrose for at least 24 hr for cryoprotection. Nerves were embedded in Tissue-Tek OCT and snap-

frozen for cryosectioning. 14 mm longitudinal sections were obtained on charged Superfrost micro-

scope slides using a Leica CM3050 cryostat. Slides were dried and stored at �80˚C.
For analysis of perineuronal nets, fresh brain tissue was dissected from a C57Bl/6 mouse and

immediately immersed in 4% PFA. Tissue was post-fixed for 24 hr, cryoprotected in 30% sucrose for

24 hr, embedded in Tissue-Tek OCT, and snap-frozen for sectioning.

Immunostaining
For antibodies detecting CSPGs and glial cell activation, slides with optic nerve sections were incu-

bated for 1 hr in blocking solution (PBS containing 3% goat serum and 0.2% Triton X-100), then incu-

bated overnight at 4˚C in primary antibodies diluted in the blocking solution. Slides were washed

three times for 5 min with PBS, incubated for 2 hr with secondary antibodies, washed, and mounted

onto glass coverslips with Fluoromount medium (Sigma).

The GAP-43 antibody (Benowitz et al., 1988) was incubated as previously described (Leon et al.,

2000). Briefly, slides were rinsed in TBS (50 mM Tris buffer containing 8.766 g/L NaCl) and then

washed with methanol for 10 min. Slides were blocked in TBS containing 10% donkey serum for 1

hr. The GAP-43 antibody was diluted 1:50,000 in a solution of TBS2T (50 mM Tris buffer, 17.532 g/L

NaCl, and 0.1% Tween) containing 5% donkey serum and 2% BSA. Slides were incubated with pri-

mary antibody overnight on a rocking platform. Slides were then washed with TBS2T for 1 hr, with

TBS2T plus 5% donkey serum and 2% BSA for 1 hr, and with TBS2T for 1 hr, all on a rocking platform.

The secondary antibody was diluted 1:1000 in TBS2T plus 5% donkey serum and 2% BSA. Slides

were incubated with the secondary antibody solution for 2 hr, followed by 30 min washes with

TBS2T, TBS2T, and TBS. Slides were mounted using Fluormount and glass cover slips, and stored at

4˚C for imaging.

For detection of perineuronal nets, immediately after incubation with enzymes, free-floating brain

sections were washed with 1 mL of PBS containing 0.02% Triton-X100 three times for 30 min. Sec-

tions were incubated with 250 mL biotinylated Wisteria floribunda agglutinin (WFA) overnight at 4˚C
on a rocking platform. Sections were then washed with 1 mL PBS/0.02% Triton three times for 5 min,

incubated with 250 mL TRITC-conjugated streptavidin for 1 hr at room temperature, washed with 1

mL PBS three times for 5 min, stained with DAPI, and mounted using Fluoromount and glass cover

slips. Slides were stored at 4˚C prior to imaging.
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Microscopy and Image Processing
Tissue was imaged using a Zeiss 780 confocal microscope with 40X and 63X objectives. Z-stacks

were maximally projected onto a single plane using Zeiss image processing software. For images

used in fluorescence quantification, image capture settings were held constant, and samples from

within each group were imaged at the same time. Fluorescence intensity was measured using

ImageJ, with identical settings for all samples within each analysis.

Quantification of regenerating axons
In ImageJ, vertical lines were drawn through each nerve section at 0.25 mm intervals starting from

the lesion site, and the number of GAP-43+ axons crossing each line was manually counted. Four

sections were counted for each nerve. The number of regenerating axons per nerve was then calcu-

lated at each distance using a previously developed formula (Lim et al., 2016; Bei et al., 2016), with

the total number of axons equal to pr2 (r being the maximum recorded radius of the optic nerve sec-

tion) times the average number of counted axons, divided by the thickness of the section (14 mm).

Axon counting was verified by a separate observer blind to the experimental conditions. For quanti-

fication of longest axon, the same images were used. GAP-43+ axons were identified, and the length

of the longest detectable axon was measured from the lesion site using ImageJ.

Statistics
Sample size for axon regeneration experiments was determined based on preliminary data from a

pilot experiment. The number of regenerating axons counted at 0.50 mm distal from the lesion site

was obtained from groups of mice treated with either Zymosan + ARSB (n = 4) or Zymosan + Buffer

(n = 5). The control group had a mean of 104 ± 53 axons at 0.50 mm, while the ARSB-treated group

had a mean of 260 ± 84 axons. Based on these numbers, we assumed a standard deviation of 75, to

be equal for each group, and estimated using a two-sided two sample t-test that n = 9 mice per

group would be required to achieve 80% power (at the 0.025 level) to compare ARSB treatment to a

buffer control.

All statistical tests were performed using GraphPad Prism 7.0 (GraphPad Software, La Jolla, CA).

Neurite lengths in culture were compared using Kruskal-Wallis Analysis of Variance and Mann-Whit-

ney U tests. Axon regeneration was assessed using two-way ANOVA and Bonferroni post-hoc analy-

sis. Asterisks indicate significance levels as specified in the corresponding figure legends.
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