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Abstract Auxiliary a2d subunits are important proteins for trafficking of voltage-gated calcium

channels (CaV) at the active zones of synapses. We have previously shown that the post-

translational proteolytic cleavage of a2d is essential for their modulatory effects on the trafficking

of N-type (CaV2.2) calcium channels (Kadurin et al., 2016). We extend these results here by showing

that the probability of presynaptic vesicular release is reduced when an uncleaved a2d is expressed

in rat neurons and that this inhibitory effect is reversed when cleavage of a2d is restored. We also

show that asynchronous release is influenced by the maturation of a2d�1, highlighting the role of

CaV channels in this component of vesicular release. We present additional evidence that CaV2.2

co-immunoprecipitates preferentially with cleaved wild-type a2d. Our data indicate that the

proteolytic maturation increases the association of a2d�1 with CaV channel complex and is

essential for its function on synaptic release.

DOI: https://doi.org/10.7554/eLife.37507.001

Introduction
Among the three families of CaV channels (CaV1, CaV2 and CaV3), the CaV2 family and more specifi-

cally CaV2.1 and CaV2.2 channels (generating P/Q and N-type currents, respectively) are particularly

important for synaptic transmission in central and peripheral nervous systems (Dolphin, 2012).

CaV2.1 and CaV2.2 are targeted to presynaptic terminals where they are responsible for triggering

vesicular release (Catterall and Few, 2008; Zamponi et al., 2015). CaVs are formed of several subu-

nits: the a1 subunit, that constitutes the Ca2+ selective pore and the voltage sensor, and auxiliary

subunits b (cytoplasmic) and a2d (extracellular) (Flockerzi et al., 1986; Liu et al., 1996;

Takahashi and Catterall, 1987; Witcher et al., 1993). Four genes coding for a2d subunits have

been identified (Dolphin, 2012). They are translated into a single pre-protein a2d and post-transla-

tionally cleaved into a2 and d peptides, which remain attached by di-sulfide bonds (Dolphin, 2012).

In a2d�1 and �2, a2 contains a perfect metal ion adhesion site (MIDAS) motif essential for the inter-

action with a1 subunit (Cantı́ et al., 2005; Hendrich et al., 2008) and d which is glycophosphatidyli-

nositol (GPI) anchored to the plasma membrane (Davies et al., 2010). The structure of the CaV1.1

channel complex has been recently determined using cryo-electron microscopy and has identified

binding domains between CaV1.1 and a2d�1 including the interaction of the a2d MIDAS motif with

loop I of the first repeated domain of CaV1.1 (Wu et al., 2016). Site-directed mutagenesis studies

have confirmed a functional interaction between a2d�1 and the first extracellular loop of CaV1.2

(Bourdin et al., 2017) and CaV2.2 channels (unpublished results).

a2d subunits are important for the trafficking of a1 subunits and their function, and they are also

key proteins for synaptic function and synaptogenesis (Dickman et al., 2008; Eroglu et al., 2009;

Hoppa et al., 2012; Saheki and Bargmann, 2009; Zamponi et al., 2015). We have recently shown

that the proteolytic maturation of a2d�1 into disulfide-linked polypeptides a2 and d is an essential

post-translational step enabling its modulatory effect on the activation and trafficking of N-type cal-

cium channels in neurons (Kadurin et al., 2016). Indeed, we show that uncleaved a2d�1 inhibits
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presynaptic calcium transient-triggered action potential (AP) in hippocampal neurons and that this

effect is reversed by the cleavage of a2d�1.

Here, we investigate the impact of the proteolytic maturation of a2d�1 on synaptic release. We

used optical tools to measure vesicular release parameters (Ariel and Ryan, 2010; Hoppa et al.,

2012). Our data show that an uncleaved a2d�1 reduces the probability of release in response to a

single action potential, and also affects asynchronous release. These effects on presynaptic vesicular

release are reversed when the cleavage of a2d�1 is restored. We provide additional evidence that

cleaved a2d�1 interacts more than the uncleaved form with the CaV2.2 channel pore-forming sub-

unit. Our data indicate that the proteolytic maturation of a2d�1 is important for its association

with the CaV channel complex and its function on synaptic release.

Results
a2d subunits play a crucial role in the trafficking of fully functional calcium channels to the plasma

membrane and to presynaptic terminals (Dolphin, 2012). In order to determine the physiological

impact of proteolytic maturation of a2d�1, we used the cleavage site mutant a2(3C)d�1

(Kadurin et al., 2016), which is resistant to endogenous proteolysis between a2 and d, to assess the

effect of controlled cleavage by exogenous 3C-protease on vesicular release from presynaptic termi-

nals, using the optical reporter vGlut-pHluorin. Transfected hippocampal neurons were identified by

mCherry expression (Figure 1a). Neurons were subsequently stimulated (100 AP at 10 Hz), and fluo-

rescence of vGlut-pHluorin was monitored to identify functional boutons (Figure 1a). We first exam-

ined the effect of expression of a2(3C)d�1 on synaptic release properties by measuring single AP-

Figure 1. Effect of proteolytic cleavage of a2(3C)d-1 on vesicular release in presynaptic terminals of hippocampal neurons. (a) Fluorescence changes in

presynaptic terminals of hippocampal neurons expressing vGlut-pHluorin (vG-pHluorin) in response to electrical stimulation. Left panel, mCherry-

positive boutons. Three right panels, vG-pHluorin fluorescence: at rest (left), after 100 AP at 10 Hz (middle) and after a brief application of NH4Cl (right).

Scale bar 5 mm. The pseudocolour scale is shown with the last panel. (b) Representative vG-pHluorin responses to a single AP (10–12 trial average, 25 to

50 boutons) from presynaptic terminals of neurons co-transfected with empty vector (black trace), a2(3C)d-1 (red trace) or a2(3C)d-1 + 3C-protease (blue

trace). Arrow indicates stimulation with one AP. (c) vG-pHluorin fluorescence changes (expressed as % of NH4Cl response) in response to 1 AP from

boutons co-transfected with empty vector (black), a2(3C)d-1 (red) or a2(3C)d-1 + 3C-protease (blue) (n = 28, 41 and 16 independent experiments,

respectively). Box and whiskers plots; *p=0.044 and #p=0.014, one way ANOVA and Bonferroni post-hoc test.

DOI: https://doi.org/10.7554/eLife.37507.002
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evoked exocytosis (Figure 1b). Single AP stimulations were repeated 10 to 12 times with a 45 s rest

between each trial. Signals from each bouton were averaged and normalized to the fluorescence

value obtained by rapid alkalinization of the entire labeled vesicle pool using NH4Cl (Figure 1a and

b). Overexpression of uncleaved a2(3C)d�1 induced a decrease of 29 ± 6% in exocytosis compared

to the control empty vector condition (n = 28 and 41, respectively; p=0.04) (Figure 1c). Conversely,

inducing controlled cleavage of a2(3C)d�1 by co-expressing 3C-protease resulted in an increase of

53 ± 18% in exocytosis compared to a2(3C)d�1 alone (n = 41 and 16, respectively; p=0.014), thus

completely reversing the inhibitory effect of uncleaved a2(3C)d�1 (Figure 1b and c).

Synaptic vesicle exocytosis properties are determined by the number of vesicles available for

rapid release (the readily-releasable pool - RRP) and the probability (Pv) that a vesicle in the RRP will

undergo fusion in response to a single AP stimulus (Schneggenburger et al., 2002). RRP can be

determined using a high frequency stimulation (Ariel and Ryan, 2010; Ariel et al., 2012). During a

20 AP stimulus at 100 Hz, the fluorescence of vGlut-pHluorin in presynaptic terminals rapidly

increases and reaches a plateau phase corresponding to the RRP (Figure 2a). The averaged

response, obtained from 5 to 6 trials with a 5 min rest between each trial, were normalized to the

size of the total presynaptic pool obtained with NH4Cl application (Figure 2a). To examine whether

proteolytic maturation of a2d�1 affects the size of the RRP, we imaged neurons transfected with

either empty vector (Figure 2a) or a2(3C)d�1 (Figure 2b) or a2(3C)d�1 together with 3C-protease

(Figure 2c) and compared the size of the RRP. As summarized in Figure 2d, no difference was

recorded between the three conditions (empty vector, a2(3C)d�1 and a2(3C)d�1 with 3C-protease:

6.9 ± 0.4, 6.2 ± 0.3 and 6.4 ± 0.5% of total pool, n = 22, 16 and 19, respectively, p=0.78), indicating

that proteolytic maturation of a2d�1 affects the Pv, rather than the size of the RRP.

After the plateau phase corresponding to the RRP, an additional increase in fluorescence takes

place during the stimulation, and continues for more than 500 ms after the end of the stimulus

before reaching a stationary phase (Figure 3a). It was proposed that this secondary increase in fluo-

rescence results from a combination of RRP refilling and slow decay of the elevated intracellular

Ca2+ concentration (Ariel and Ryan, 2010). This late increase in fluorescence occurs at lower rate

than the initial increase and represents post-stimulus exocytosis. Overexpression of uncleaved

a2(3C)d�1 induced a decrease of about 30% in this phase of exocytosis compared to control empty

vector condition (n = 22 and 31, respectively; p<0.001) (Figure 3b–c). This reduction of delayed exo-

cytosis is completely prevented by the co-expression of a2(3C)d�1 with 3C-protease (Figure 3a–b).

We then wished to determine whether the results obtained on presynaptic release were due to

differential interaction of cleaved and uncleaved a2d with the a1 subunit. We have previously shown

that transient expression of a2d�1 in cell lines results in only a partial cleavage of wild type a2d�1,

such that a mixture of cleaved and uncleaved a2d protein appears in the whole cell lysate (WCL)

(Kadurin et al., 2012, 2016). We performed co-immunoprecipitation of wild type a2d�1 with

CaV2.2 from tsA-201 cell WCL and found that the percentage of cleaved a2d�1 in the co-immuno-

precipitated fractions is ~4 fold higher than the percentage of cleaved a2d�1 in the input WCL (from

10.0 ± 0.6% to 39.2 ± 1.6% in WCL and co-immunoprecipitated fractions, respectively, n = 3) (Fig-

ure 4), suggesting stronger association of mature cleaved a2d�1 with the CaV pore-forming subunit.

Discussion
CaV2 channels are important for synaptic transmission and their targeting to the active zone is tightly

regulated (Catterall and Few, 2008; Simms and Zamponi, 2014). a2d subunits have been shown to

control the trafficking of CaV2 to presynaptic terminals (Hoppa et al., 2012). a2d subunits are post-

translationally proteolysed, and this process is key for their regulatory action on CaV2 channels

(Kadurin et al., 2016). Here, we show that the post-translational proteolytic maturation of a2d�1 is

also essential for these proteins to fulfil their regulatory function on vesicular release in presynaptic

terminals of hippocampal neurons in culture. Interestingly, we show that both synchronous and asyn-

chronous releases are affected, both release mechanisms being highly dependent on Ca2+ influx

through CaV2 channels.

Vesicular release is characterized by two key presynaptic parameters: the RRP and Pv (Ariel and

Ryan, 2012; Schneggenburger et al., 2002). A previous study has shown that over-expression of

a2d subunits and knock-down of endogenous a2d increased and decreased Pv, respectively

(Hoppa et al., 2012). In good agreement with this, our data show that uncleaved a2d�1 (a2(3C)d�1)
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reduces Pv, and co-expression of the 3C-protease restores the control Pv. Interestingly, Pv is modu-

lated by the number of CaV2 channels in each active zone (Ermolyuk et al., 2012) and we have pre-

viously shown that uncleaved a2d subunits reduced the amplitude of calcium transients triggered by

a single AP stimulation, by interfering with the trafficking of CaV2 channels (Kadurin et al., 2016).

The active zone proteins Rab-3 interacting molecules (RIMs) and Munc-13, critical in the orchestra-

tion of synaptic vesicular release, have been shown to control the targeting of CaV2 channels within

presynaptic terminals (de Jong et al., 2018; Südhof, 2012). These active zone proteins have also

been shown to control the size of the RRP (Augustin et al., 1999; Calloway et al., 2015;

Deng et al., 2011; Kaeser et al., 2011). The RRP is defined as a small fraction of vesicles in a pre-

synaptic terminal that is available for immediate release with a brief stimulus train, and thus likely to

equate to docked vesicles identified by electron microscopy (Ariel and Ryan, 2012; Rizzoli and

Figure 2. The proteolytic cleavage of a2(3C)d-1 does not affect the readily releasable pool (RRP) in presynaptic terminals of hippocampal neurons. (a–c)

vG-pHluorin responses (mean ± SEM) to 20 AP at 100 Hz (5–6 trial average, 25 to 50 boutons) from presynaptic terminals of neurons co-transfected with

empty vector (a), a2(3C)d-1 (b) or a2(3C)d-1 + 3C-protease (c). Horizontal red lines identify RRPs. (d) Average RRP (expressed as % of NH4Cl response)

from boutons co-transfected with empty vector (black), a2(3C)d-1 (red) or a2(3C)d-1 + 3C-protease (blue) (n = 22, 16 and 19 independent experiments,

respectively, p=0.78). Box and whiskers plots; one way ANOVA and Bonferroni post-hoc test.

DOI: https://doi.org/10.7554/eLife.37507.003
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Betz, 2005; Schneggenburger et al., 2002). Experimental methods used to estimate the size of the

RRP have been recently reviewed and consist of two electrophysiological methods (post synaptic

current recordings and presynaptic membrane capacitance measurements) and one optical method

(Kaeser and Regehr, 2017). Here, we used the optical technique that was developed by Ariel and

Ryan, (2010). This high-time resolution optical method measures exocytosis by detecting fluores-

cence from pHluorin tagged vGlut-1 (Voglmaier et al., 2006) associated with vesicle fusion. The

high frequency stimulation protocol (20 APs at 100 Hz) induces a rapid rise in fluorescence followed

by a plateau corresponding to a state during which all the vesicles in the RRP have fused with the

membrane. The size of the RRP we describe here, which is determined by the amplitude of the fluo-

rescence of the plateau (6–7% of the total pool of vesicles) is in good agreement with previously

described values of RRP in neonatal rodent hippocampal neuron synapses (Ariel and Ryan, 2010;

Fernández-Alfonso and Ryan, 2006; Rizzoli and Betz, 2005). A previous study has shown that

wild-type a2d subunits have no effect on the size of the RRP (Hoppa et al., 2012). Consistent with

that study, our data show that uncleaved a2d�1 does not affect the size of the RRP indicating that,

unlike RIMs and Munc13, a2d�1 does not have the same dual function on synaptic vesicular release.

There are two potential mechanisms to account for the reduction in Pv by a2(3C)d�1. It is likely

that a2(3C)d�1 reduces the trafficking of endogenous CaV2 channels into active zones, as we

showed for exogenously expressed CaV2.2 (Kadurin et al., 2016). However, a2(3C)d�1 can also traf-

fic alone into presynaptic terminals (Kadurin et al., 2016), where it could then displace the endoge-

nous a2d interacting with channels in active zones, thus forming non-functional channels. The finding

here that uncleaved a2d interacts less than cleaved a2d with CaV2.2 may indicate that the former

mechanism is more likely.

Several reports have also described a role for a2d subunits in synaptogenesis, independently from

their role as a CaV auxiliary subunit (Dickman et al., 2008; Eroglu et al., 2009; Kurshan et al.,

2009). a2d subunits are extracellular proteins anchored to the plasma membrane via a GPI moiety

(Davies et al., 2010) which makes them potentially good candidates to interact with extracellular

ligands such as thrombospondins, low density lipoprotein receptor-related protein and a-neurexin

(Eroglu et al., 2009; Kadurin et al., 2017; Tong et al., 2017). Although a direct interaction between

Figure 3. Effect of the proteolytic cleavage of a2(3C)d-1 on delayed vesicular release in presynaptic terminals of hippocampal neurons. (a) Average vG-

pHluorin responses (mean ± SEM) to 20 APs at 100 Hz (5–6 trial average, 25 to 50 boutons) from presynaptic terminals of neurons co-transfected with

empty vector (black), a2(3C)d-1 (red) or a2(3C)d-1 + 3C-protease (blue). The black bar indicates the stimulation period (20 AP at 100 Hz). (b) Average

delayed vesicular release (expressed as % of NH4Cl response) measured 1 s after the beginning of the stimulation from boutons co-transfected with

empty vector (black), a2(3C)d-1 (red) or a2(3C)d-1 + 3C-protease (blue) (n = 22, 31 and 15 independent experiments, respectively). Box and whiskers

plots with superimposed individual experiments; ***p<0.001 and # p=0.021, one way ANOVA and Bonferroni post-hoc test.

DOI: https://doi.org/10.7554/eLife.37507.004
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a2d and thrombospondin and its role in the mediation of synaptogenesis remains controversial

(Lana et al., 2016; Xu et al., 2010), altogether these reports suggest that a2d subunits could play a

role as an extracellular coordinator of synaptic function. Furthermore, the modulation of presynaptic

CaV channels by proteolytic cleavage of a2d subunits could serve as an additional regulatory mecha-

nism for their complex synaptic functions at the post-translational level.
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Figure 4. Quantified co-immunoprecipitation of CaV2.2 with cleaved and uncleaved fractions of wild-type a2d-1 from WCL of tsA-201 cells. (a) Left

panels show WCL input from tsA-201 cells transfected with GFP-CaV2.2 (lanes 1 and 2) or GFP (lane 3), plus b1b and HA-tagged a2d-1: upper panel,

HA-a2d-1 input; lower panel, CaV2.2-GFP input. Right panels show immunoprecipitation (IP) of GFP-CaV2.2 with anti-GFP Ab; immunoblots with CaV2.2

II-III loop Ab (lower panels, lanes 4 and 5) produced co-immunoprecipitation (co-IP) of HA-a2d-1 (corresponding upper panels lanes 4 and 5), revealed

by anti-HA mAb. All samples deglycosylated. (b) Proteolytic cleavage of a2d-1 expressed as percentage of cleaved a2-1 moiety to total a2d-1 calculated

for input WCL fractions (squares) and for fractions co-immunoprecipitated with GFP- CaV2.2 (triangles). The cleaved a2-1 moiety in the co-IP fractions is

increased by 29.2 ± 1.7% compared with the WCL fractions (average of 3 independent experiments). ***p=0.0032, paired t-test.
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CaV2 channels and BK potassium channels are known to be part of multi-molecular complexes in

neurons (Berkefeld et al., 2006; Müller et al., 2010). a2d�1 has very recently been shown to inter-

act with BK channels, and this interaction was found to reduce the stability of CaV2.2 channels at the

plasma membrane by preventing a2d�1 interacting with CaV2.2 channels (Zhang et al., 2018). Func-

tionally, BK channels were shown to control neurotransmitter release by shortening the AP duration

and reducing Ca2+ influx into presynaptic elements at neuro-muscular junctions (Protti and Uchitel,

1997; Yazejian et al., 1997). Although their presence in presynaptic boutons has been disputed

(Hoppa et al., 2014), BK channels are also expressed in axons from central neurons (Debanne et al.,

2011; Johnston et al., 2010). Furthermore, a2d�1 has also recently been shown to interact with

NMDA glutamate receptors (NMDARs) (Chen et al., 2018), albeit via a C-terminal domain of a2d�1

that is beyond the GPI-anchor attachment site and would therefore not be present in a mature GPI-

anchored form (Davies et al., 2010; Kadurin et al., 2012; Wu et al., 2016). This interaction was

found to promote the trafficking of the NMDARs to synaptic sites between peripheral dorsal root

ganglion neurons and dorsal horn neurons in the spinal cord and is involved in the development of

neuropathic pain (Chen et al., 2018). Therefore, it will be of great interest to determine whether

fully mature a2d�1 is required for the interaction with BK potassium channels and with NMDARs.

Synchronous stimulated release is often followed by a delayed release occurring after the end of

the stimulus, also called asynchronous release (Atluri and Regehr, 1998; Goda and Stevens, 1994;

Kaeser and Regehr, 2014). Asynchronous release is thought to be activated by residual Ca2+

remaining in the presynaptic terminal after the stimulation (Atluri and Regehr, 1998;

Cummings et al., 1996). Although the source of Ca2+ responsible for the initiation of synchronous

release is indisputably identified from many studies as voltage-gated calcium channels within the

active zone (Catterall and Few, 2008; Dolphin, 2012; Nakamura et al., 2015; Zamponi et al.,

2015), the source of Ca2+ involved in asynchronous release remains uncertain. To study asynchro-

nous release in this work, we took advantage of the optical method developed previously (Ariel and

Ryan, 2010) to monitor the slow increase of fluorescence of pHluorin tagged to vGlut-1 after the

end of the high frequency stimulation (20 AP at 100 Hz). We show that asynchronous release is

reduced in hippocampal presynaptic terminals when uncleaved a2d�1 (a2(3C)d�1) is expressed, and

this inhibitory effect is abolished when 3C-protease is co-expressed. Together with our previous

report showing that the proteolytic cleavage of a2d is critical for the functional trafficking of CaV2.2

channels to the presynaptic terminals (Kadurin et al., 2016), our data demonstrate that asynchro-

nous release is mediated by Ca2+ influx generated by CaV localized at the presynaptic terminals. Rel-

evant to our data, a study has characterized an asynchronous Ca2+ current, recorded after the end

of the stimulation pulse, conducted by both CaV2.1 and CaV2.2 channels and activated by the

increase of intracellular Ca2+ generated by the activity of these channels (Few et al., 2012). This

asynchronous current was also identified in mouse hippocampal neurons and this led the authors to

suggest that the asynchronous current could contribute to asynchronous release (Few et al., 2012).

Other Ca2+ sources for asynchronous release have been proposed (Kaeser and Regehr, 2014).

Ca2+-permeable P2X2 ATP receptors have been involved in asynchronous release in excitatory syn-

apses between CA3 neurons and interneurons in the CA1 region in the hippocampus (Khakh, 2009).

At these synapses, P2X2 receptors would be activated by ATP released from vesicles in presynaptic

terminals. Further pharmacological characterization would be needed to ascertain the involvement

of P2X2 receptors in the asynchronous release we are monitoring in our experimental model. Addi-

tionally, in the nucleus of the solitary tract, TRPV1 channels had been suggested to be a source of

Ca2+ for asynchronous release at excitatory synapses from unmyelinated cranial visceral primary

afferent neurons (Peters et al., 2010). However, recent data from the same group have suggested

instead that the Ca2+ source for asynchronous release would originate from spill-over of intracellular

Ca2+ from Ca2+ nanodomains created by CaV2 channels (Fawley et al., 2016). This latter hypothesis

would fit well with our data showing that mature a2d�1 is needed to traffic CaV to the presynaptic

terminals to modulate asynchronous release.

Building on our previous report, we show here that the maturation of a2d is crucial for CaV chan-

nels to fulfil their functional role on synaptic transmission. As a2d�1 expression is upregulated during

chronic pain and increases presynaptic CaV2 trafficking (Bauer et al., 2009; Kadurin et al., 2016;

Patel et al., 2013; Zamponi et al., 2015), a2d�1 represents a therapeutic target (Zamponi, 2016),

and an important question to address for future studies will be to identify endogenous protease(s)

involved in the proteolytic maturation of a2d proteins.
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Materials and methods

Neuronal culture and transfection
All experiments were performed in accordance with the Home Office Animals (Scientific procedures)

Act 1986, UK, using a Schedule one method. Hippocampal neurons were obtained from male P0

Sprague Dawley rat pups as previously described (Hoppa et al., 2012). Approximately 75 � 103 cells

in 200 ml of plating medium (MEM (Thermo Fisher Scientific) supplemented with B27 (Thermo Fisher

Scientific, 2%), glucose (Sigma, 5 mg/ml), transferrin (Millipore, 100 mg/ml), insulin (Sigma, 24 mg/ml),

fetal bovine serum (Thermo Fisher Scientific, 10%), GlutaMax (Thermo Fisher Scientific,1%)) were

seeded onto sterile poly-L-ornithine-coated glass coverslips. After 24 hr, the plating medium was

replaced with feeding medium (MEM supplemented with B27 (2%), glucose (5 mg/ml), transferrin

(100 mg/ml), insulin (24 mg/ml), Fetal bovine serum (5%), GlutaMax (1%) and cytosine arabinose

(Sigma, 0.4 mM)) half of which was replaced every 7 days. At 7 days in vitro (DIV) and 2 hr before

transfection, half of the medium was removed, and kept as ‘conditioned’ medium, and fresh medium

was added. The hippocampal cell cultures were then transfected with mCherry, vGlut-pHluorin and

either empty vector or a2(3C)d�1 or a2(3C)d�1 + 3C-protease (all cloned in pCAGGs) using Lipo-

fectamine 2000 (Thermo Fisher scientific). After 2 hr, the transfection mixes were replaced with feed-

ing medium consisting of 50% ‘conditioned’ and 50% fresh medium.

Co-Immunoprecipitation
The protocol was adapted from a procedure described previously (Gurnett et al., 1997).

Briefly, a tsA-201 cell pellet derived from one confluent 75 cm2 flask was resuspended in co-IP

buffer (20 mM HEPES (pH 7.4), 300 mM NaCl, 1% Digitonin and PI), sonicated for 8 s at 20 kHz and

rotated for 1 hr at 4˚C. The samples were then diluted with an equal volume of 20 mM HEPES (pH

7.4), 300 mM NaCl with PI (to 0.5% final concentration of Digitonin), mixed by pipetting and centri-

fuged at 20,000 x g for 20 min. The supernatants were collected and assayed for total protein (Brad-

ford assay; Biorad). 1 mg of total protein was adjusted to 2 mg/ml with co-IP buffer and incubated

overnight at 4˚C with anti-GFP polyclonal antibody (1:200; BD Biosciences). 30 ml A/G PLUS Agarose

slurry (Santa Cruz) was added to each tube and further rotated for 2 hr at 4˚C. The beads were then

washed three times with co-IP buffer containing 0.2% Digitonin and deglycosylated as previously

described alongside with aliquots of the initial WCL prior to co-IP. Laemmli buffer with 100 mM DTT

was added to 1 x final concentration and samples were analysed by SDS-PAGE and western blotting

with the indicated antibodies as described previously (Kadurin et al., 2016).

The human embryonic kidney tsA-201 cells were obtained from the European Collection of

Authenticated Cell Cultures (# 96121229) and tested to be mycoplasma-free.

Live cell imaging
Coverslips were mounted in a rapid-switching, laminar-flow perfusion and stimulation chamber (RC-

21BRFS, Warner Instruments) on the stage of an epifluorescence microscope (Axiovert 200M, Zeiss).

Live cell images were acquired with an Andor iXon+ (model DU-897U-CS0-BV) back-illuminated

EMCCD camera using OptoMorph software (Cairn Research, UK). White and 470 nm LEDs served as

light sources (Cairn Research, UK). Fluorescence excitation and collection was done through a Zeiss

40 � 1.3 NA Fluar objective using 450/50 nm excitation and 510/50 nm emission and 480 nm

dichroic filters (for pHluorin) and a 572/35 nm excitation and low-pass 590 nm emission and 580 nm

dichroic filters (for mCherry). Action potentials were evoked by passing 1 ms current pulses via plati-

num electrodes. Cells were perfused (0.5 ml min�1) in a saline solution at 32˚C containing (in mM)

119 NaCl, 2.5 KCl, 4 CaCl2, 25 HEPES (buffered to pH 7.4), 30 glucose, 10 mM 6-cyano-7-nitroqui-

noxaline-2,3-dione (CNQX) and 50 mM D,L-2-amino-5-phosphonovaleric acid (AP5, Sigma). NH4Cl

application was done with this solution in which 50 mM NH4Cl was substituted for 50 mM NaCl (buff-

ered to pH 7.4). Images were acquired at 100 Hz over a 512 � 266 pixel area in frame transfer mode

(exposure time 7 ms) and analyzed in ImageJ (http://rsb.info.nih.gov/ij) using a custom-written plugin

(http://rsb.info.nih.gov/ij/plugins/time-series.html). Regions of interest (ROI, 2 mm diameter circles)

were placed around synaptic boutons responding to an electrical stimulation of 100 AP at 10 Hz.
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Analysis
Data are given as mean ± SEM or as box (25–75%) and whiskers (10–90%) plots with mean and

median (open squares and solid lines). Statistical comparisons were performed using unpaired Stu-

dent’s t test or one-way ANOVA with Bonferroni post-hoc test, using OriginPro 2016.
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