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Abstract Many organisms use free running circadian clocks to anticipate the day night cycle.

However, others organisms use simple stimulus-response strategies (‘hourglass clocks’) and it is not

clear when such strategies are sufficient or even preferable to free running clocks. Here, we find

that free running clocks, such as those found in the cyanobacterium Synechococcus elongatus and

humans, can efficiently project out light intensity fluctuations due to weather patterns (‘external

noise’) by exploiting their limit cycle attractor. However, such limit cycles are necessarily vulnerable

to ‘internal noise’. Hence, at sufficiently high internal noise, point attractor-based ‘hourglass’

clocks, such as those found in a smaller cyanobacterium with low protein copy number,

Prochlorococcus marinus, can outperform free running clocks. By interpolating between these two

regimes in a diverse range of oscillators drawn from across biology, we demonstrate biochemical

clock architectures that are best suited to different relative strengths of external and internal noise.

DOI: https://doi.org/10.7554/eLife.37624.001

Introduction
Extracting information from a noisy external signal is fundamental to the survival of organisms in

dynamic environments (Bowsher and Swain, 2014). From yeast anticipating the length of starvation

(Mitchell et al., 2015) and bacteria estimating sugar availability (Tu et al., 2008), to dictyostelium

counting cAMP pulses (Cai et al., 2014), organisms must often infer properties of the environment

that are masked by noisy irregular fluctuations in order to be well-adapted (Siggia and Vergassola,

2013; Mora and Wingreen, 2010).

A striking example of regularity in environmental stimuli is the daily day-night cycle of light on

earth; organisms from all kingdoms of life use circadian clocks to synchronize - or ‘entrain’ - in phase

to these 24-hour periodic signals in order to anticipate and prepare for future changes in light (Win-

free, 2001). The most remarkable and well-studied examples of clocks are free running circadian

clocks, found in organisms ranging from the cyanobacterium S. elongatus to insects, plants and

humans. Such clocks use non-linear dynamics to generate self-sustained 24-hr rhythms of a preferred

amplitude even in the absence of external driving. Many salient properties have been ascribed to

such free running internal rhythms (Troein et al., 2009; Winfree, 2001).

However, several organisms have only damped clocks or ‘hourglass clocks’; their response to

daily changes in light is not a self-sustaining oscillation, but rather a physiological program that

decays to a steady state over a day. For example, some strains of P. marinus, a smaller 0:5�m cyano-

bacterium with an estimated 50� smaller protein copy number than S. elongatus (Bryant, 2003;
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Gutu et al., 2013; Holtzendorff et al., 2008; Dufresne et al., 2003; Kitayama et al., 2003), appear

to have such a damped ‘hourglass’ clock, despite the clock being constituted from Kai proteins simi-

lar to those in S. elgonatus.

The potential benefits and drawbacks of these timing systems are not immediately obvious. In

particular, it is unclear when an ‘hourglass’ clock might be sufficient or even preferred over free run-

ning clocks.

Here, we compare such classes of clocks when driven by the day-night cycle of light in fluctuating

conditions. One source of fluctuations are amplitude fluctuations in the external day-night signal due

to weather patterns (Gu et al., 2001) or other environmental disturbances. Phase entrainment to

such fluctuating environmental signals is a challenge because while amplitude fluctuations are unin-

formative of phase, an entrainment mechanism looking for dawn-dusk transitions might conflate

such amplitude fluctuations with true variations in phase. Biomolecular clocks also face an internal

source of fluctuations (Lestas et al., 2010), due to various causes like finite copy number effects

(Tsimring, 2014), bursty transcription, interactions with the cell cycle and cell division (Teng et al.,

2013). It is clear that the inability to deal with either of these fluctuations will lead to poor phase

entrainment, with a host of associated fitness costs in cyanobacteria (Woelfle et al., 2004), plants,

rodents and humans (Evans and Davidson, 2013). However, it is not clear what kinds of clock archi-

tecture are best at dealing with internal and external fluctuations and whether these demands are

compatible.

We find that free running clocks, based on limit cycle attractors, are a double-edged sword when

subject to such internally and externally fluctuating conditions. The flat direction along such continu-

ous limit cycle attractors can selectively project out external amplitude fluctuations while retaining

phase information. However, the flat direction along the attractor makes these continuous attractor-

based clocks susceptible to internal fluctuations (e.g. low protein copy number [Potoyan and

Wolynes, 2014]). In contrast, point attractor-based damped clocks are relatively resistant to internal

eLife digest The daily rising and setting of the sun is perhaps the most predictable pattern on

Earth. Many organisms, from ancient bacteria to animals and plants, have evolved internal biological

clocks to anticipate specific events such as dusk and dawn. However, biological clocks also need to

continue working when faced with irregularities – both arising from within the organism and from

external factors, such as a passing cloud that darkens the sky.

Some organisms, including humans, have a so-called ‘free-running’ clock that generates a 24-hour

rhythm, and keeps ticking even in the absence of any time triggers. Others, such as certain

cyanobacteria, have an ‘hourglass’ clock that is not self-sustained – rather, these clocks show a

simple response to the sunrise (or sunset) that would gradually perish without another sunset (or

sunrise).

So far, it has been unclear why organisms have different kinds of clocks and if one type of clock is

better suited for some conditions than others. Here, Pittayakanchit, Lu et al. analyzed and compared

mathematical models of clocks in a variety of organisms, from cyanobacteria and fungi to plants and

animals.

The results revealed that internal and external irregularities put opposing pressures on biological

clocks. Free-running clocks are more precise and more robust to external fluctuations, but more

susceptible to internal ones. In contrast, hourglass clocks can remain accurate when internal

irregularities are high but can be disturbed by external ones.

Biological clocks affect the health of the entire organism and faulty clocks are implicated in

numerous diseases. The study of Pittayakanchit, Lu et al. showed that the optimal architecture of a

biological clock depends on the balance of irregularities in the external and internal environment of

an organism. A next step will be to understand whether an organism can change its clock

architecture while the environment changes. A better understanding of how biological clocks are

regulated may help us find ways to tune faulty clocks to account for both the external environment

and the internal state of an organism.

DOI: https://doi.org/10.7554/eLife.37624.002
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fluctuations because they have no flat directions. Hence such ‘hourglass’ clocks out-perform free run-

ning clocks at sufficiently high internal noise.

We first demonstrate our results in diverse biochemical oscillators, drawn from the literature

(Leloup et al., 1999; Schmal et al., 2014; Locke et al., 2005; Leloup and Goldbeter, 2003; Goldb-

eter, 1991; Goodwin, 1965; Gonze and Abou-Jaoudé, 2013; Kondepudi and Prigogine, 2014;

Elowitz and Leibler, 2000; Buşe et al., 2009; Potvin-Trottier et al., 2016) on clocks in cyanobacte-

ria, plants and mammals to cell cycle and synthetic oscillators. We complement this detailed net-

work-based study with dynamical systems theory that explains the same trade-off in terms of the

broad features common to the diverse models studied here. In all cases, our approach involves sys-

tematically deforming the dynamics to interpolate between free running and ‘hourglass’ clocks and

using information theoretic measures to quantify clock performance in the presence of fluctuations.

By continuously interpolating between these clock architectures, our work predicts that a survey

of clock systems in different environmental niches will reveal that clock architecture vary systemati-

cally with the relative strength of external and internal fluctuations (Laughlin, 1981). Further, our

work suggests intriguing forward evolution experiments in the lab where the same structured exter-

nal environment can nevertheless result in distinct regulatory systems, depending on the size of

internal fluctuations. Finally, the existence of ‘hourglass’ clocks are easier to overlook experimentally

than free running oscillations. Hence our theoretical demonstration that ‘hourglass’ clocks have func-

tional benefits in specific conditions highlights the importance of experiments that specifically look

for such damped clocks. More broadly, our work highlights the need to experimentally probe regula-

tory strategies by varying different kinds of noise independently when possible, since the strategies

to deal with different kinds of noise are not equivalent and can be in conflict.

Results

Free running clocks and damped ‘hourglass’ clocks
Many organisms like humans and rodents have free running clocks that show self-sustained 24 hr

rhythms even in constant dark or light conditions. A particularly simple and well-characterized free

running clock is that found in S. elongatus where the clock dynamics can be reproduced by the post-

translational dynamics of Kai ABC in vivo as well. Measuring the phosphorylation state at any one of

several sites on KaiC reveals an orderly phosphorylation reaction with a period of 24 hr. As shown in

Figure 1a, oscillations of a characteristic amplitude are sustained even in constant darkness or con-

stant light, that is, in the absence of a periodic external drive.

Not all organisms have a free-running clock; for example, many insects (Saunders, 2002) have

damped ‘hourglass’ clocks that decay to a fixed point under constant light or constant dark condi-

tions but show oscillatory dynamics under day-night cycling (see Figure 1b). In fact, a sister cyano-

bacterial species P. marinus has a KaiBC-protein based clock. While the details of this clock are not

fully characterized, the clock lacks the KaiA-mediated negative feedback (Dufresne et al., 2003;

Holtzendorff et al., 2008) loop that enables free running oscillations in S. elongatus. Consequently,

in constant light or dark conditions, the clock’s state decays to a distinct day or a night state respec-

tively (Holtzendorff et al., 2008).

Thus, both classes of clock show regular oscillations when externally driven. With cloudless day-

night cycling, both systems can synchronize in phase with the external signal (i.e., ‘entrain’) and

show distinct clock states at distinct times of the day. In this way, the clock state provides the rest of

the cell with an estimate of the time of the day. However, while the free running clock has a natural

amplitude relatively independent of the external drive, the damped clock’s amplitude is directly set

by the external drive.

External fluctuations
The day-night pattern of light on earth does not resemble the clean square wave shown in

Figure 1a but is rather subject to large amplitude fluctuations during the day due to weather pat-

terns. Such amplitude fluctuations and their spectrum have been quantified (Gu et al., 2001) and

also identified as playing a critical role in several studies on the evolution and performance of circa-

dian clocks (Domijan and Rand, 2011; Troein et al., 2009). The biological impact of such changes
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in light intensity in cyanobacteria have been quantified recently (Teng et al., 2013). The clock must

entrain in phase to the external signal while ignoring such amplitude fluctuations.

Internal fluctuations
In addition to external fluctuations, circadian clocks also deal with the intrinsically noisy nature of bio-

chemical reactions (Swain et al., 2002). Sources of internal noise for clocks include finite copy num-

ber effects, bursty transcription, cell division and other sources (Tsimring, 2014). In particular, based

on their relative sizes (Dufresne et al., 2003; Holtzendorff et al., 2008; Bryant, 2003), P. marinus

is thought to have far fewer copies of the Kai clock proteins (e.g., ~ 500 of KaiC ) than S. elongatus

( ~Oð10000Þ copies of KaiC [Gutu et al., 2013; Kitayama et al., 2003]). Such finite numbers of mole-

cules is known to create significant stochasticity in oscillators in the absence of an external signal

(Potoyan and Wolynes, 2014).

Noise resistance of Kai-based clocks
We tested the impact of such external and internal fluctuations on the contrasting clock architectures

in S. elongatus and P. marinus through simulations. We set up explicit Gillespie

simulations (Gillespie, 2007) of explicit biomolecular models of the post-translational Kai clock that

captures the known biochemistry (Rust et al., 2007) of S. elongatus’s clock and the putative KaiBC

clock (Bryant, 2003; Holtzendorff et al., 2008) in P. marinus (Figure 1). We do not include tran-

scriptional coupling (Zwicker et al., 2010) of the clock here and focus on the core post-translational

oscillator. See Appendix 1 for details. The ATP levels in these models (Pattanayak et al., 2014)

were coupled to an external square wave input of period 24 hr, representing the day-night cycle of

light. To model external fluctuations, we modulated the amplitude of the input square wave over a

Figure 1. Free running clocks and damped ‘hourglass’ clocks are equally good time-keepers in noiseless conditions but internal and external

fluctuations reveal significant differences. (a) Free running circadian clocks, such as the KaiABC protein clock in S. elongatus, show rhythms in both

oscillating and constant light (top) or dark (bottom) conditions. (b) In contrast, damped circadian clocks, such as that in P. marinus which lacks Kai A,

show rhythms only in changing light conditions and decay to a fixed state in constant conditions. (c) When subject to external noise (i.e., weather-

related amplitude fluctuations in light), simulations of the free running clock show low population variance while the damped clock shows high variance.

In contrast, Gillespie simulations with high internal noise due to low copy number of Kai molecule reveals that damped clocks are much more robust

than free running clocks. (d) A systematic study of clock precision (i.e., mutual information between clock state and time) at fixed external noise but

decreasing Kai protein copy number N reveals that free running clocks are preferred at low internal noise but damped clocks are preferable at

sufficiently high internal noise.

DOI: https://doi.org/10.7554/eLife.37624.003
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broad range of frequencies, reflecting the broad frequency spectrum quantified by the Harvard For-

est database (Moore et al., 1996). To model internal fluctuations, we varied the copy number in

these Gillespie simulations.

With only external fluctuations but suppressing internal fluctuations using high copy numbers, we

find that the damped oscillator develops a much larger population variance than the free running

clock. In contrast, at low copy number (i.e., high internal noise) but with a noiseless external signal,

we find the situation is reversed; the free running clock has significantly higher population variance.

See Figure 1c.

To study this effect quantitatively, we fixed the strength of amplitude fluctuations and increased

the internal noise by decreasing the copy number of all Kai proteins in the Gillespie simulation. We

measured the resulting mutual information between clock state and objective time of day. (Mutual

information is intuitively a measure of population variance along the most informative directions; see

Appendix 4 for more.)

We see that the free running clock has higher precision than the damped clock at low internal

noise (high copy number). However, as the internal noise is increased, the precision of the free run-

ning clock drops earlier and consequently, the damped oscillator has higher precision at sufficiently

high internal noise (low copy number). This is shown in Figure 1d, where the precision measures the

mutual information between the clock state and the time. For a fair comparison, in undriven condi-

tions, different clocks are assumed to lose information at the same rate.

Noise resistance in other biochemical clocks
While our study here was motivated by the contrasting Kai protein-based clocks in the two cyano-

bacterial species S. elongatus and P. marinus, we sought to test the broader validity of our results.

Hence we analyzed the internal and external noise resistance in a range of eight well-studied bio-

chemical oscillators in the literature.

These models range from circadian clocks in numerous organisms - Neurospora (Leloup et al.,

1999), Arabidopsis (Schmal et al., 2014; Locke et al., 2005), mammalian cells (Leloup and Goldb-

eter, 2003) - to other oscillators such as cell cycle models (Goldbeter, 1991), the Goodwin (Good-

win, 1965; Gonze and Abou-Jaoudé, 2013) oscillator, the Brusselator (Kondepudi and Prigogine,

2014) and the synthetic repressilator (Elowitz and Leibler, 2000; Buşe et al., 2009) - see Figure 2.

While the internal noise properties of these oscillators in undriven conditions have been studied

before (Gonze et al., 2002), here we analyzed the contrasting internal and external noise properties

of these oscillators under externally driven conditions. The results are shown in Figure 2.

In each case, we set all kinetic parameters to values specified in the original publications and cou-

pled the external driving signal in the way specified in those original publications. As in the Kai clock

simulations, the external signal was a square wave with amplitude fluctuations of fixed strength.

Finally, we add Langevin noise to the equations to simulate internal noise; when available, we fol-

lowed the finite volume prescription for rates in the original publications or related papers to set the

size of Langevin noise for each reaction. Simulation and model details are in Appendix 2.

These models here all exhibit a Hopf bifurcation as kinetic parameters are tuned. The publications

(Leloup et al., 1999; Schmal et al., 2014; Locke et al., 2005; Leloup and Goldbeter, 2003; Goldb-

eter, 1991; Goodwin, 1965; Gonze and Abou-Jaoudé, 2013; Kondepudi and Prigogine, 2014;

Buşe et al., 2009) identified a parameter which when tuned leads to a Hopf bifurcation; that is, on

one side of the bifurcation, we find damped oscillations while on the other side, we find free running

oscillations of increasing amplitude. We picked three points along this parameter; the green and

purple data correspond to free running oscillations of large and smaller natural amplitude relative to

the size of the external drive. The red data corresponds to a choice of parameters on the other side

of the Hopf bifurcation, that is, to damped oscillations. For the red data, we chose � such that the

relaxation timescale was comparable to the period of the external driving force, much as in the Kai

model of P. marinus. The damped oscillator is a useful clock only when the relaxation timescale is

comparable to the period.

In each case, we observed the same trade-off as seen in the Kai system; free running oscillations

of large amplitude relative to the external drive (green) were most precise when only subject to

external noise but are most fragile to internal noise. Damped oscillations in the same oscillator mod-

els are more robust and thus are preferable at sufficiently high internal noise. We find that intermedi-

ate amplitude free running oscillations show intermediate noise properties. Consequently, we can
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Figure 2. A diverse range of biochemical oscillators show the trade-off between resistance to external and internal noise. For each oscillator, the

regime (green) of largest free running amplitude relative to the driving strength is most robust to external fluctuations but is most fragile to internal

noise. In contrast, damped oscillations (red) are robust to internal noise and thus preferable at sufficiently high internal noise. Regimes (purple) of

intermediate free running amplitude are preferred at intermediate internal noise levels. (a–g) Diverse biochemical oscillators from the literature were

Figure 2 continued on next page
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continuously trade-off resistance to internal noise for resistance to external noise by changing the

amplitude of free running oscillations relative to the strength of the external drive.

Dynamical systems theory of noise resistance
We have demonstrated a trade-off between external and internal noise resistance in diverse clocks.

While it is possible to trace the origin of this trade-off to specific features of each clock, here, we

take a different approach based on dynamical systems theory. Dynamical systems theory has been

use to make fruitful general predictions about biological clocks since Winfree’s analysis of phase sin-

gularities (Winfree, 2001). In a similar vein, we use dynamical systems theory to show this trade-off

emerges due to basic features of free running and damped clock dynamics and can thus be

expected to hold broadly.

Limit cycle clocks and point attractor clocks
Free running clocks are phenomenologically well-described by a limit cycle attractor, a non-linear

oscillator of fixed amplitude (Winfree, 2001). While such descriptions have been used for numerous

biochemical oscillators, limit cycle dynamics can be experimentally seen in molecular detail for the

KaiABC clock in S. elongatus as shown in Figure 3a (reproduced from [Leypunskiy et al., 2017]).

Figure 2 continued

simulated with increasing internal noise �int ¼ 1=
ffiffiffiffi

N
p

while driven by a periodic square wave light signal with fixed strength external noise, using the

external coupling and parameters specified in the original publications (Leloup et al., 1999; Schmal et al., 2014; Locke et al., 2005; Leloup and

Goldbeter, 2003; Goldbeter, 1991; Goodwin, 1965; Gonze and Abou-Jaoudé, 2013; Kondepudi and Prigogine, 2014; Elowitz and Leibler, 2000;

Buşe et al., 2009). Clock precision is defined as mutual information between outputs and time. The original publications identified a Hopf bifurcation

parameter in these models, with free running oscillations on one side and damped oscillations on the other. Green and purple data correspond to

parameter regimes with large and smaller amplitude free running oscillations relative to driving amplitude while the red data corresponds to a damped

oscillator. Details in Appendix 2.

DOI: https://doi.org/10.7554/eLife.37624.004

Figure 3. Experiments and models of biological clocks show that external driving can be viewed as a switch between distinct day-time and night-time

dynamics. (a) Experiments on the Kai system at distinct ATP levels corresponding to day and night conditions reveal limit cycles shifted relative to each

other in a phosphorylation space for Kai (reproduced from [Leypunskiy et al., 2017[). Similar behavior (Winfree, 2001) is seen in models of diverse

biochemical oscillators studied in Figure 2. (b) We build a minimal model of such driven clocks as a limit cycle of radius R whose center is shifted by a

distance L between day and night. In cycling conditions (see signal in (d)), an entrained clock’s state executes a trajectory that encompasses both limit

cycles as shown (bottom). (c) For damped clocks (Saunders, 2002), phenomenology suggests that the day and night limit cycle dynamics are replaced

by a point attractor whose position changes between day and night. The relaxation time between the day and night attractors is comparable to ~ 12

hours, giving rise to the trajectory shown in cycling conditions. (d) The plot shows cycling conditions of light intensities that couple to (b) and (c).

DOI: https://doi.org/10.7554/eLife.37624.005
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The clock follows distinct limit cycle dynamics during the day (orange data) and night (black data)

(Leypunskiy et al., 2017; Pattanayak et al., 2014), with the day cycle positioned at higher phos-

phorylation levels due to a higher ATP/ADP ratio.

The Kai model and indeed the diverse range of biochemical oscillators in Figure 2 show such a

change in the limit cycle between day and night conditions. Here, we build a minimal model of such

free-running clocks using circular day and night limit cycles of radius R in a plane. The limit cycle is

defined by the dynamics trelax _r ¼ r � r3=R2; _� ¼ ! about its own center; but the center of the limit

cycle itself moves along the x axis in Figure 3b as ð�ðtÞL; 0Þ where �ðtÞ 2 ½0; 1� is the normalized light

intensity level at time t and L is a measure of the physiological changes between day and night (e.g.,

ATP/ADP ratio change in S. elongatus). Thus, for example in Figure 3b, the system follows the blue

dynamics at night and then after dawn it relaxes to the orange day attractor on a time scale trelax.

Note that R represents the amplitude of free-running oscillations while L represents the strength or

amplitude of the external driving signal.

In contrast, damped clocks are phenomenologically well-described by a day-time and a night-

time point attractor with slow relaxation dynamics between them (Figure 3c), modeled as _r ¼
�r=trelax; _� ¼ ! about an attractor point whose location varies with current light levels as ð��ðtÞL; 0Þ.
Here we assume 2trelax ~ 24 hrs as in P. marinus (Holtzendorff et al., 2008); if relaxation were faster

and completed before the day is over, the clock cannot resolve all times of the day.

Here, we will also consider a family of limit cycle clocks of varying R=L to interpolate between

large-R=L limit cycles and point attractors (approximated by R=L ¼ 0).

External noise
We begin with the performance of different clocks in the presence of external intensity fluctuations.

Weather patterns cause large fluctuations in the intensity of light over a wide range of time-scales as

shown in Figure 4a. Much like with biochemical circuits, we subject an in silico population of dynam-

ical system clock models to different realizations of such noisy weather patterns.

When subject to weather fluctuations, we see in Figure 4b that the population variance of clock

states for limit cycles at given times (purple) is fundamentally limited by the spacing between the

day and night limit cycles. Point attractors develop larger overlapping population distributions at dif-

ferent times.

We can geometrically understand the daytime phase variance increase s2

clouds in terms of the

phase lag DF due to a single, say 2:4 hr dark pulse, administered during the day. Figure 4c shows

that the deviation in trajectory for limit cycle clocks (purple) is fundamentally limited by the presence

of a continuous attractor. In contrast, for the point attractor, the trajectory is in free fall towards the

night point attractor, with no limit cycle to arrest such a fall. Consequently, the geometrically com-

puted phase shift DF due to the particular dark pulse shown in Figure 4c is much smaller for limit

cycles (DF~ 0:5 hr for the R; L geometry shown) than for point attractors (DF~ 4 hr) (see Appendix 5).

In fact, this contrast in DF between limit cycles and point attractors holds for dark pulses of any

duration and time of occurrence. The contrast is even greater at small L=R since ðDFÞ2 ~ ðL=RÞ2 for

small L=R, as shown geometrically in Appendix 5 and confirmed in simulations that average over ran-

dom weather conditions (Figure 4d). Hence, limit cycles are more resistant to external fluctuations

than point attractors.

To complete the analysis, we note that phase variance increases additively during the day and

falls multiplicatively at dusk (and dawn), that is,

s2 !day s2 þs2

clouds !
dusk ðs2 þs2

cloudsÞ=s2 !night ðs2 þs2

cloudsÞ=s2 !dawn ðs2 þs2

cloudsÞ=s4:

Solving for steady state phase variance (s2 ¼ ðs2þs2

cloudsÞ=s4), we obtain

s
2;ext
limit cycle ~DF

2=ðs4 � 1Þ: (1)

where we have equated s2

clouds to DF
2 for a typical dark pulse Here, s2 represents the variance drop

during a dawn/dusk entrainment. As shown in Appendix 5 for external noise (and in Figure 5 for

internal noise), this factor s, can be geometrically explained by the slope of the circle map relating
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the two cycles Leypunskiy et al., 2017; we find that s2 � 1~L=R for large-R=L limit cycles. Plugging

this and DF
2
~ ðL=RÞ2 into Equation1, we see that s2 ! L=R! 0 for large -R=L cycles.

Figure 4e shows that the precision (i.e., mutual information between clock state and time) com-

puted from random weather simulations agrees with this theory; clock precision drops as we interpo-

late from limit cycles to point attractors by changing L (with equivalent results for changing R).

Internal noise
Internal noise due to finite copy number effects in biochemical networks can be modeled exactly

using the Gillespie method used in Figure 1. In the context of our dynamical systems model, we fol-

low Gillespie, 2007 and add Langevin noise to all dynamical variables of the system of strength

�int ~ 1=
ffiffiffiffi

N
p

, where N is the overall copy number, with the ratios of different species assumed fixed

(see Appendix 3). Such a Langevin approach is an approximation Gillespie, 2007 to the exact Gilles-

pie method used in Figure 1.

We simulated a population of clocks in externally noiseless day-night light cycles but with internal

Langevin noise. We see in Figure 5b that limit cycle populations have significantly higher variance of

clock state due to internal noise than point attractors, in contrast to Figure 4b with external noise

alone.

We can understand the weakness of limit cycle attractor relative to the point attractor in terms of

diffusion during day/night balanced by dawn/dusk transitions. The flat direction along the limit cycle

attractor cannot contain diffusion caused by the Langevin noise during the day/night; hence the

phase variance increases by s2 ! s2 þ �2intTday during a day of length Tday (and similarly at night).

Dawn and dusk times reduce the phase variance s2 ! s2=s2 as the trajectories originating on,

say, the day cycle converge on the night cycle (see Figure 5c and Leypunskiy et al., 2017;

Monti and Lubensky, 2017). In fact, we can compute this variance drop s2 entirely through geomet-

ric considerations. We define the circle map f ¼ Pð�Þ as relating originating points � near dusk on

Figure 4. External weather-related light fluctuations are filtered out by limit cycle attractors but not by point attractors. (a) Light intensity levels fluctuate

on a range of time scales due to weather (power spectrum reproduced from Gu et al., 2001). (b) A population of limit cycle clocks of identical fixed

geometry, subject to different realizations of weather conditions, show non-overlapping distributions (purple blobs) at different times of the day. Point

attractor clocks form larger and more overlapping distributions. (c) A single representative dark pulse of ~ 2:4 duration causes only a DF~ 30 min phase

lag in limit cycles since the trajectory’s deviation (purple) is fundamentally bounded by the circular attractor. In contrast, DF~ 4 hr for the point attractor

since the trajectory is in free-fall towards the blue night-time attractor. (d) The geometrically computed DF
2 phase shift for a dark pulse of any fixed

duration and time of occurrence (see Appendix 5) drops rapidly as ðR=LÞ�2 for large-R=L limit cycles; this theoretical prediction agrees well with the

population variance gain over a day in simulations. (e) Consequently, weakly driven limit cycles (i.e., high R=L) can tell time with high precision.

DOI: https://doi.org/10.7554/eLife.37624.006
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the day cycle to final points on the night cycle f after relaxation (experimentally characterized in

Leypunskiy et al., 2017). Then s�1 ¼ dPð�Þ=d�. Figure 5c shows that this slope s�1 ¼ dPð�Þ=d�, geo-
metrically computed in the SI, agrees with the dawn/dusk variance drop in Langevin simulations and

scales as s2 � 1~ L=R for large R=L.

Thus, the population phase variance changes as

s2 !Day s2 þ �2intTday !Dusk ðs2þ �2intTdayÞ=s2 !Night ðs2 þ �2intTdayÞ=s2 þ �2intTday !Dawn ððs2þ �2intTdayÞ=s2 þ �2intTdayÞ=s2:

Assuming T ¼ Tday ¼ Tnight and solving for steady-state phase variance

(s2 ¼ ððs2 þ �2intTdayÞ=s2 þ �2intTdayÞ=s2), we obtain

s
2;int
cycle ~

�2intT

s2� 1
(2)

Consequently, as the cycles become large (large R=L), the dawn/dusk variance drop vanishes as

s2� 1~L=R! 0 while diffusion along the flat direction still adds �2intT to the variance during each day

and each night; hence large-R=L limit cycles have large s
2;int
cycle and thus low precision. (Unlike with

external noise, internal noise introduces a diffusion length scale and hence changing L and R are not

equivalent. To make a fair comparison, we fix R and internal noise while changing L in Figure 5e;

see Appendix 3 for more detail about other equivalent choices).

Note that Equation 2 is invalid for strictly undriven clocks (i.e., s ¼ 1); such clocks show a variance

that increases indefinitely with time. Here, we focus on driven clocks, which always settle to the finite

variance given by Equation 2.

Figure 5. Internal fluctuations severely affect continuous attractors but not point attractors. (a) We model fluctuations due to finite copy number N as

Langevin noise with mean zero and standard deviation �int, resulting in a diffusion constant �2int ~ 1=N for the clock state. (b) The flat direction of limit

cycles cannot contain diffusion, leading to large increases �2intTday in population variance of clock state during each day (and night). In contrast, point

attractor dynamics have constant curvature at all times, leading to a constant population variance over time. (c) The variance drops s2 ! s2=s2 at dawn

and dusk for limit cycles during the off-attractor dynamics between the day and night cycles. As with external noise, the variance drop is predicted by

the slope dPð�Þ=d� of the circle map between the cycles. This dawn/dusk drop goes to zero for large R=L limit cycles but variance still increases during

the day and night. (d) The variance for point attractors is Dtrelax, a constant determined by the curvature t
�1

relax of the harmonic potential. (e) Thus, with

only internal noise present, the precision of limit cycle clocks increases with increasing separation L=R, asymptotically approaching the performance of

point attractors.

DOI: https://doi.org/10.7554/eLife.37624.007
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In contrast, for point attractors, the population variance stays constant during the day-night cycle

and is shown to be

s
2;int
point ~�

2

inttrelax

in the SI, which matches Langevin simulations (Figure 5d). Since trelax ~Tday to have distinct clock

states through the day (Figure 3), we find s
2;int
cycle � s

2;int
point.

In summary, in both cases, population variance is reduced by the geometric ‘curvature’ of the

dynamics, that is, convergence of nearby trajectories. Point attractor trajectories experience a con-

stant curvature of 1=trelax. But limit cycle clocks experience such ‘curved’ off-attractor dynamics only

at dawn and dusk, which is offset by dephasing (Mihalcescu et al., 2004; Gonze et al., 2002) during

long periods of zero curvature on the limit cycle (day/night). Hence limit cycles underperform point

attractors under high internal noise.

Combination of external and internal noise
We now subject the clock systems to both internal and external noise at the same time. We find

results (see Figure 6a) that parallel those for explicit molecular models of biochemical oscillators

studied in Figure 2. Large-R=L limit cycles outperform other clocks in filtering out external noise

when internal noise is low, but their precision degrades more rapidly than other clocks as internal

noise �2int ~ 1=N is increased. Point attractors have poor precision with only external noise but do not

significantly degrade with internal noise and outperform all other clocks at high internal noise. At

comparable strengths of internal and external noise, limit cycles with an intermediate value of R=L

are most precise. In the SI, we show that the optimal geometry is set by the ratio of internal and

external noise strength,

ðL=RÞoptimal ¼
�int
�ext

: (3)

In the SI, also we show that, under certain simplifying assumptions, Equations 1 and 2 can be

combined to give an explicit trade-off relationship,

s2

ints
2

ext ~Q (4)

where Q¼ �2int�
2

ext and where s2

int is the population angular variance of the clock state due to internal

Figure 6. Large-R=L limit cycle attractors, which correspond to large amplitude free running clocks, outperform all

other oscillators in projecting out external noise but are least robust to internal noise. (a) Point attractors and

smaller R=L limit cycles (red and purple curves) show low precision (i.e., low mutual information) but do not

degrade as much as large-R=L limit cycles with increasing internal noise �int . Thus this simple dynamical systems

model of clocks reproduces and explains the trade-off seen in the complex biochemical clocks shown in Figures 1

and 2. (b,c) Speed-precision trade-off. (b) With external noise alone, the most precise clocks (i.e., large R=L limit

cycles) average over longer signal history and are thus the slowest to entrain, that is, slow to transform a

population with uniform phase distribution to the steady state distribution. (c) However, with internal noise alone,

there is no trade-off between speed and precision; faster entraining clocks (i.e., point attractors) are more accurate

since slow clocks are exposed to more internal noise.

DOI: https://doi.org/10.7554/eLife.37624.008
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noise when driven by a noiseless external signal and s2

ext is the population angular variance in the

absence of internal noise due to amplitude fluctuations of the external signal. Note that angular vari-

ance is a better indicator than variance because we want to know how well the system can tell time.

Equation 4 makes our trade-off explicit and also clarifies which parameters are varied and which

parameters are held fixed in this trade-off. As long as Q is held fixed, we allow all other parameters

to vary – for example, the overall strength of the external drive L, the size of the cycle R, and as dis-

cussed in the SI, all other parameters characterizing the normal form of limit cycles near a Hopf

bifurcation.

However, in holding Q fixed, our trade-off does assume that the strength of the external fluctua-

tions �ext – that is, the fractional size of amplitude fluctuations in the external signal – is held fixed.

Similarly, we hold �2int, the phase diffusion constant, fixed – that is, we are comparing clocks that

would show the same population phase variance (in units of radians) over the same time in undriven

conditions. See Appendix 3 for alternative comparisons and other details.

Speed-precision trade-off
Another measure of clock quality is the entrainment speed, that is, the time taken to reach steady

state population variance, starting from a population uniformly distributed in clock phase. In

Figure 6b, we see that with external noise only, the most precise clocks (i.e., small-L=R limit cycles)

are the slowest to entrain because they retain a longer history of the external signal, allowing them

to average out external noise better.

But strikingly, such a speed-precision trade-off is absent if internal noise is high. In Figure 6c,

only internal noise is present and the external signal has no fluctuations. We see that clocks most

robust to internal noise are also the fastest to entrain. Intuitively, the phase of slow entraining clocks

is affected by the cumulative effect of internal fluctuations over a longer period of time. With both

external and internal noise present, clocks with intermediate entraining speed - that is, intermediate

ðL=RÞoptimal ¼ �int=�ext - will have the highest precision.

Discussion
Free running circadian clocks are a remarkable result of evolution in a changing but predictable envi-

ronment and are thought to provide numerous benefits (Troein et al., 2009). Here, we showed that

the limit cycle attractor underlying such a clock is able to effectively project out weather-related

amplitude changes that are perpendicular to the flat direction of the attractor. Similar roles for the

flat direction of continuous attractors in projecting out external (or input) fluctuations have been

explored in neuroscience (Burak and Fiete, 2012); Seung (1996), for example, for head and eye

motor control and spatial navigation. However, we also found that the same flat direction becomes

a vulnerability with internal fluctuations since such fluctuations cannot be restricted to be perpendic-

ular to the attractor.

We confirmed the trade-off between resistance to external and internal noise in diverse models

of biochemical clocks and oscillators, using parameters inferred from experimental data by the origi-

nal publications (Leloup et al., 1999; Schmal et al., 2014; Locke et al., 2005; Leloup and Goldb-

eter, 2003; Goldbeter, 1991; Goodwin, 1965; Gonze and Abou-Jaoudé, 2013; Kondepudi and

Prigogine, 2014; Elowitz and Leibler, 2000; Buşe et al., 2009). The trade-off in each of these mod-

els can be given explanations that are specific to those models; for example, one can identify spe-

cific bottlenecks for external and internal noise in these models (Cheong et al., 2011). However, we

have provided an alternative kind of analysis based on the geometry of the dynamical systems

involved. Such an explanation misses aspects specific to each clock - for example, how specific bio-

logically tuneable parameters in each model affect internal and external noise resistance. However,

the dynamical systems picture has the advantage in that it identifies the common origin of the trade-

off across these systems. Such a dynamical systems picture has been fruitful in making other general

but falsifiable predictions in biology (Gan and O’Shea, 2017; Leypunskiy et al., 2017; Corson and

Siggia, 2017), going back to Winfree’s phase singularity (Winfree, 2001).

Our dynamical systems theory shows that the critical parameter for noise resistance is the

strength of the external driving relative to the amplitude of free running oscillations, captured by the

geometric ratio L=R in our analysis. Weak driving provides resistance to external noise while strong
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driving provides resistance to internal noise. While our dynamical systems theory involve planar cir-

cular limit cycles, the models in Figure 2 have complex non-planar non-circular limit cycles and yet

reproduce our trade-off. Finally, while the internal noise discussed here is set by finite copy number,

this dependence is not essential to the results here. Any source of disturbance (e.g., bursty transcrip-

tion) that perturbs the phase of the oscillator in constant light conditions is equivalent to internal

noise. Similarly, external noise can involve any kind of fluctuation (e.g., multiplicative fluctuations,

phase fluctuations) of the external signal that does not result in a persistent phase shift of the exter-

nal signal itself.

Our work suggests that the damped oscillators are not merely poor cousins of the remarkable

free running oscillators found for example, in S. elongatus. At the low protein copy numbers such as

those found in P. marinus, damped clocks keep time more reliably than free running clocks. (Low

copy number has been linked to a trend towards reduced genome size and cell size in P. marinus

[Bryant, 2003].) In addition to the noisy internal environment of P. marinus, the external environment

might also play a role in selecting a damped clock; P. marinus is typically found in the open ocean,

where the external environment may be more regular than the fresh water habitat of S. elongatus. In

addition to P. marinus, damped oscillators are found elsewhere in biology, often in specific physio-

logical conditions (Saunders, 2002; Kidd et al., 2015). Understanding the benefits and drawbacks

of such damped oscillators in different conditions is critical since such oscillations are easily over-

looked experimentally, in comparison to free running oscillations.

While numerous upstream and downstream considerations can modify (Rand et al., 2004;

Domijan and Rand, 2011) the ultimate biological impact of fluctuations, we find that the core oscil-

lator’s geometry in itself can continuously trade off protection against external fluctuations for pro-

tection against internal fluctuations in the diverse range of models studied here.

Note added in proofs: The study of Monti et al. (2018, in press) independently arrived at the con-

clusion that free running clocks based on limit-cycles are more robust to external noise. Experiments

in Chew et al. (2018, in press) suggest that the free running clock in S. elongatus is less robust to

internal noise than the hourglass clock in P. marinus.

Materials and methods
We incorporated most of our methods in Results and Discussion. For details beyond those pre-

sented in Results, please see Appendices. Code to simulate the systems can be found at https://

github.com/WeerapatP/elife_tradeoff_clocks (Pittayakanchit, 2018; copy archived at https://github.

com/elifesciences-publications/elife_tradeoff_clocks).
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Appendix 1

DOI: https://doi.org/10.7554/eLife.37624.010

Trade-off in Kai-based clocks
We demonstrate our trade-off using Gillespie simulations of an explicit biomolecular KaiABC

model of the post-translational clocks in S. elongatus and P. marinus.

S. elongatus clock - hexamers with collective KaiA
feedback
The S. elongatus clock has been well-characterized experimentally (Bryant, 2003; Gutu et al.,

2013; Dufresne et al., 2003; Kitayama et al., 2003 - see Appendix 1—figure 1a). The clock

is fundamentally based on the ordered phosphorylation and dephosphorylation of KaiC

(Rust et al., 2007). Phosphorylation of KaiC is KaiA-dependent which allows for feedback that

enables collective coherent oscillations in a cell. After complete phosphorylation of KaiA-C

complexes (usually by the end of the day), KaiC forms a KaiB-C complex which then

dephosphorylates in an ordered manner. Crucially, the KaiB-C complex also sequesters KaiA in

a KaiABC complex, reducing the pool of available KaiA for phosphorylation of other KaiC

hexamers. This negative feedback enables coherent oscillations of the population of KaiC

molecules in a single cell (Rust et al., 2007).

Appendix 1—figure 1. Explicit biochemical KaiABC model simulated using the Gillespie algo-

rithm. (a) The experimentally well-characterized clock in S. elongatus consists of a negative

feedback-enabled self-sustained oscillator. KaiBC complexes sequester KaiA, preventing

runaway KaiC molecules from going through the cycle independently. (b) The genome of P.

marinus lacks kaiA. We assume a minimal model consistent with known facts (Rust et al.,

2007) about this clock; KaiC phosphorylation proceeds without KaiA and hence different KaiC

hexamers can proceed independently through the cycle. (c) We combine both clocks in one

model with an interpolating parameter g that selects between an S. elongatus-like KaiA-

dependent pathway and an P. marinus-like KaiA-independent pathway. All reactions shown

are assumed to be first order mass-action kinetics. We simulate such a system at different

overall copy numbers N using the Gillespie algorithm. (d) We find limit cycles for g>0:9. The

resulting limit cycles for g ¼ 1; 0:95 violate the simplifying assumptions used in our dynamical
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systems (e.g., non-circular cycles of different size); and yet our results are qualitatively

validated by this model (Figure 1d from the main text).

DOI: https://doi.org/10.7554/eLife.37624.011

P. marinus model - independent hexamers
P. marinus lacks the kaiA gene but possesses and expresses kaiB and kaiC. While the details of

the protein clock dynamics are not as fully known as with S. elongatus, gene expression shows

cycling in cycling conditions but decays in constant conditions (Holtzendorff et al., 2008). A

conservative model, consistent with all these known facts about P. marinus, is shown in

Appendix 1—figure 1b; without KaiA feedback, different hexamer units phosphorylate

independently and settle to a hyperphosphorylated state at the end of the day. At night, they

dephosphorylate along a distinct pathway (homologous to that used by S. elongatus but

without KaiA) and reach a hypophosphorylated state by dawn.

Hybrid model
We created the following hybrid model that includes S. elongatus and P. marinus models as

different limits. In our model, shown in Appendix 1—figure 1c, KaiC has a KaiA-dependent

phosphorylation pathway, much like in S. elongatus, that is used during the day and driven

forward by ATP.

But to also include P. marinus-like behavior in the model, we allow for a second parallel

phosphorylation pathway for KaiC that is independent of KaiA. The relative access of these

two pathways is controlled by a parameter g. When g ¼ 1, only the S. elongatus-like KaiA

dependent pathway is accessible. When g ¼ 0, only the P. marinus-like KaiA independent

pathway is accessible. Collectively, we call these states along these phosphorylation pathways,

the UP states of KaiC - phosphorylation are going UP along these pathways which are usually

used during the day.

After maximum phosphorylation (usually at dusk), KaiA unbinds (if present) and a KaiB-

based dephosphorylation pathway takes over (common to both systems). We call these states

the DOWN states of KaiC.

Critically, KaiA is assumed to be sequestered through the formation of KaiABC complexes

during this dephosphorylation stage. In S. elongatus, reduced KaiA availability prevents other

KaiC hexamers from proceeding independently through the UP stage while most of the

population is in the DOWN state. Such negative feedback is critical in maintaining free-running

limit cycle oscillations in S. elongatus.

However, as g ! 0, the KaiA-independent pathway is more active and thus the system

effectively has no feedback. In fact, we find that at about g » 0:82, sustained oscillations

disappear (for kinetic parameters used here and reported below). Hence we chose g ¼
1; 0:95; 0 as representative of two limit cycle-based free running clocks and one point-attractor

based damped clock respectively. In this way, we can view the clock dynamics of S. elongatus

and P. marinus can be viewed as being on either side of the Hopf bifurcation that occurs at

g » 0:82.

Gillespie simulations
We ran explicit Gillespie simulations corresponding to the deterministic equations above at

different overall copy number N with fixed stoichiometric ratios of the molecules KaiA,B,C.

We simulated external input noise by varying the ATP levels during the day. External noise

in these simulations were implemented by changing ATP levels in the following way: we

fluctuated the ATP levels fATP ¼ ATP=ðATPþ ADPÞ during the day between the f
day
ATP and

f
night
ATP þ ðf dayATP � f

night
ATP Þ=3, where f

day
ATP, f

night
ATP are the ATP values during a cloudless day and night

respectively. We used different day and night ATP levels for different g that ensure that the

limit cycles had periods comparable to 24 hours. For g ¼ 1, we used ATP/ADP ratios of

f
day
ATP ¼ 0:55; f nightATP ¼ 0:45. For g ¼ 0:95, we used f

day
ATP ¼ 0:57; f nightATP ¼ 0:17 and for g ¼ 0,

f
day
ATP ¼ 0:8; f nightATP ¼ 0:2. The corresponding limit cycles and point attractors are shown in

Appendix 1—figure 1d.
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We used the following kinetic parameters in all simulations: dt ¼ 0:01 hr;

kþ ¼ k� ¼ 2m � 0:04932 hr�1; kAon ¼ 0:2466 �M�1hr�1; kAoff ¼ 0:02466 hr�1; kC!C� ¼ 0:2466 hr�1;

kABC ¼ 123:30 hr�1;m ¼ 18. We set up Kai C and Kai A in a 1 : 1 stoichiometric ratio, each

present at a copy number N where N was varied systematically. These rates are consistent with

those measured in (Qin et al., 2010; Snijder et al., 2017; Hayashi et al., 2004).

Much like with Langevin simulations of dynamical systems performed in this paper, we run

the Gillespie simulation until equilibration of the population. However, the system appears to

reach the equilibrium state much faster (only over five light-dark cycles of 12 hr: 12 hr). We

extracted one day of such a trajectory on day six and repeated the simulation 100–400 times.

We repeat 400 times when the copy number is low (<1200) since the spread will be big and we

found that the probability distribution is not smooth. We run only 100 times for the high copy

number (>1200). Pooling together these trajectories, we computed the mutual information

between clock state (i.e., ðu; dÞ where u is the net phosphorylation state of KaiC in the up-

pathways and d is the net phosphorylation state of KaiC in the KaiB-bound ‘down’ pathways in

Appendix 1—figure 1c ) and time of day. The ðu; dÞ space was binned using bins of fixed size

of dimension ð0:05; 0:05Þ while the 24 hr time-of-day was binned with bins of size 0:5 hrs.

Phase portrait
With these choices, we see in Appendix 1—figure 1d that this model has limit cycles of

different position during the day and night. The corresponding experimental data, reproduced

from Leypunskiy et al. (2017), are presented in the main paper.
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Appendix 2

DOI: https://doi.org/10.7554/eLife.37624.012

Other oscillators
Here, we study the effect of internal and external noise on a diverse array of biochemical

oscillator models from the literature in the parameter regimes described in the original

publications. We confirm the same trade-off described in the paper in these models; a

summary of our results is presented in the main paper.

In all of the models described below, we set all parameters to values used in the original or

cited papers with only two exceptions: (a) the parameter identified as coupling to external

signals in these publications is varied over time as a square wave with amplitude fluctuations

added, (b) the parameter designated by the relevant original publication as controlling the

distance from the Hopf bifurcation was used to simulate a point attractor-based ‘hourglass’

oscillator (red lines in Figure 2 of the main paper) and limit cycles of different free running

oscillation amplitude (green and purple lines in Figure 2 of the main paper). This latter

parameter roughly corresponds to R, the size of limit cycle, while the amplitude of square

wave coupled to the former parameter corresponds to L, the separation of the limit cycles, in

our dynamical systems theory, that is, the separation of the ‘day’ and ‘night’ limit cycles. (In

several papers, these two are the same parameter, in which case the day-night difference

reflects L while the mean value reflects R.) Finally, we add Langevin noise to the equations to

simulate internal noise; when available, we followed the finite volume prescription for rates in

these papers to set the size of Langevin noise for each reaction.

We keep the strength of external noise �ext, defined as the noise-to-signal ratio of the

amplitude fluctuations in the external signal, fixed. We varied internal noise �int along the x axis

of plots in Figure 2 of the main paper. Here, �int is defined as the phase diffusion constant of a

clock in undriven conditions (see how we define internal noise in the section on Neurospora

and Drosophilia below); this normalization, which depends on the Hopf bifurcation parameter

in (b) above, allows us to make a fair comparison between different clocks since they develop

the same phase variance over the same time in undriven conditions.

As seen in Figure 2 of the main paper, these diverse models agree with the trends found in

our analysis of dynamical systems and with simulations of the KaiABC system, showing that our

results are not tied to any particular molecular model.

Neurospora and Drosophila circadian clocks by Goldbeter
The circadian clock in Neurospora has been modeled (Leloup et al., 1999) as arising from

interactions between mRNA (M) and a protein that can shuttle in and out of a nucleus (PN ;PC).

The equations used in Gonze and Goldbeter (2006) to model this are,

dM

dt
¼ vs


ðKI
Þn
ðKI
Þn þPn

N

þ vm

M

Km
þM

dPC

dt
¼ ksM� vd


PC

Kd
þPC

� k1PC þ k2PN

dPN

dt
¼ k1PC � k2PN (5)

where ns is an mRNA transcription rate that is modulated by external signals (Leloup et al.,

1999; Gonze and Goldbeter, 2006), and 
 is the volume of the system which in turn

determines the strength of stochastic noise. (A model with very similar equations has also

been suggested as a model of the Drosophila circadian clock [Leloup et al., 1999].)

We use the same parameters used in the Ref. (Leloup et al., 1999; Gonze and Goldbeter,

2006): KI = 1 nM, n = 4, vm = 0.505 nM/h, Km = 0.5 nM, ks= 0.5 1/h, vd = 1.4 nM/h, Kd= 0.13

nM, k1 = 0.5 nM/h, k2 = 0.6 nM/h, and assume the volume 
 dependence of these parameters
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to be exactly as used in Gonze and Goldbeter (2006). We add internal stochasticity by

adding Langevin noise with a diffusion matrix (Gonze and Goldbeter, 2006):

dX

dt
¼ �ðx; tÞþSðx; tÞhð0;1Þ (6)

where �ðx; tÞ is the RHS of Equation 5, hð0; 1Þ is a vector whose entries are independent

standardized Gaussian noise (mean 0, variance 1), and

Sðx; tÞ ¼

ffiffiffi

A
p ffiffiffi

B
p

0 0 0 0 0

0 0
ffiffiffiffiffiffiffiffi

ksM
p ffiffiffiffiffiffiffiffiffiffi

k1PC

p ffiffiffiffiffiffiffiffiffiffi

k2PN

p
0 0

0 0 0 0 0
ffiffiffiffiffiffiffiffiffiffi

k1PC

p ffiffiffiffiffiffiffiffiffiffi

k2PN

p

2

6

4

3

7

5
(7)

where A ¼ vs

ðKI
Þn

ðKI
ÞnþPn
N

and B ¼ vm

M

Km
þM
. This is how internal noise get added into other

oscillators models as well. However, for the system of equations that use concentration instead

of the number of molecules, the equation has to be modified to dX
dt
¼ �ðx; tÞ þ 1

ffiffiffi



p Sðx; tÞhð0; 1Þ.

As in Leloup et al. (1999) and Gonze and Goldbeter (2006), we take ns to be modulated

by the external signal (light). As shown in Leloup et al. (1999) and Gonze and

Goldbeter (2006), a Hopf bifurcation occurs at ns = 0.57 nM/h. Hence, in Figure 2 from the

main text, we used nDays = 0.55 nM/h,nNights =0.05 nM/h for the point attractor (red). For the two

limit cycles, we used nDays = 0.9 nM/h,nNights =0.6 nM/h (green), and nDays = 0.705 nM/h,nNights

=0.695 nM/h (purple). The driving period is 18 hr, similar to the driving period of the system at

v1 = 0.7 nM/h

Arabidopsis circadian clock by Millar et al
A model of the circadian clock in Arabidopsis thaliana was introduced in Locke et al. (2005).

While many biologically important features have been added in the years since then, the

original model was based on a single negative feedback loop and involves two transcription

factors (LHY and CCA1) that inhibit their activator TOC1. A reduced model with the same

phenomenology was presented in Schmal et al. (2014), in which LHY and CCA1 are combined

into one variable, representing their mRNA and protein levels by MLðtÞ and PLðtÞ respectively.
Denoting the mRNA and protein levels of TOC1 by MTðtÞ and PTðtÞ, Schmal et al. (2014)

present a reduced version of the model in Locke et al. (2005) as:

dML

dt
¼ LðtÞþ v1

Pa
T

ga
1
þPa

T

�m1

ML

k1 þML

dPL

dt
¼ p1ML�m2

PL

k2 þPL

dMT

dt
¼ v2

gb
2

gb
2
þPb

L

�m3

MT

k3þMT

dPN

dt
¼ p2MT �m4

PT

k4 þPT

(8)

where LðtÞ is a light input function, and other parameters except the variables specified on the

left hand sides are constant.

To simulate this system, we use the parameters used in Schmal et al. (2014): a = 2, b = 2,

g1 = 0.5 nM, g2 = 0.1 nM, m1 = 0.4 nM/h, m2 = 0.6 nM/h, m3 = 0.6 nM/h, m4 = 0.3 nM/h, k1 = 1

nM, k2 = 0.5 nM, k3 = 1 nM, k3 = 1 nM, p1 = 0.5 1/h, p2 = 0.3 1/h, v2 = 0.6 nM/h. With other

parameters fixed, the system undergoes Hopf bifurcation at v1 = 0.194 nM/h We use v1 = 0.26

nM/h for limit cycles and v1 = 0.05 nM/h for point attractor. LðtÞ is a light input function. For

the two limit cycles in Figure 2 in the main text, we set LDay = 0.05 nM/h and LNight = 0 (green

data) and we set LDay = 0.01 nM/h and LNight = 0 (purple data). For point attractor, we set LDay
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= 0.2 nM/h and LNight = 0 (red data). The period of the driving signal is 24 hr, which is around

the natural period of the system when v1 = 0.26 nM/h and L = 0.

B.3 Mammalian Per-Cry circadian clock by Leloup et al
The circadian clock in mammalian cells was modeled in detail by Leloup and Goldbeter

(2003), using 19 equations representing the interactions between Per;Cry and other genes.

We simulate this entire system explicitly with the parameter values specified in the original

publication (Leloup and Goldbeter, 2003). To introduce Langevin noise, we use a simplified

diagonal diffusion matrix with entry
ffiffiffiffiffiffiffiffi

DXi

p
for species Xi. We do not reproduce these 19

equations or parameter values used from Leloup and Goldbeter 2003) here in interest of

space; the only modification we made is to introduce Langevin noise to each of the 19

equations.

Leloup and Goldbeter (2003) identified parameter vsP (a transcriptional rate) to be the

light input function. We use v
Day
sP = 1.09 nM/h and v

Night
sP = 1.07 nM/h for the purple limit cycle

data in Figure 2, vDaysP = 1.15 nM/h and v
Night
sP = 1.07 nM/h for the green limit cycle data. For the

point attactor data (red), we set vDaysP = 1.5 nM/h and v
Night
sP = 0. In addition, Leloup and

Goldbeter (2003) identified parameters KAC; vmB as controlling the distance from the Hopf

bifurcation. For the point attractor, we used KAC = 0.4 nM, and vmB = 0.9 nM/h (also used in

Leloup and Goldbeter, 2003). For the limit cycles, we used KAC = 0.6 nM, and vmB = 0.8

nM/h, which lies on the other side of the Hopf bifurcation. The period of the input signal is at

21.5 hr, which is around the natural period of the system when vsP = 1.07 nM/h.

B.4 cdc2-cyclin cell cycle by Goldbeter
A classic model of the cell cycle was proposed by Goldbeter (1991). While many additional

details have been added on since then, the model captures the essential mechanism behind

the self-sustained nature of cell cycles.

dC

dt
¼ vi
� kdC� vdX


C

Kd
þC

dM

dt
¼ v1

C

KC
þC

1�M

K1 þð1�MÞ�V2

M

K2þM

dX

dt
¼ v3M

ð1�XÞ
K3 þð1�XÞ�V4

X

K4 þX
(9)

where 
 is the size of the system and other parameters are constants. The three variables are

the cyclin concentration C, the fraction of active cdc2 kinase M, and the fraction of active

cyclin protease X. For C, the internal noise is proportional to the square root of the rates, but

for M and X, it is proportional to the square root of the rates divided by 
 because they are

fractions and not concentrations (following the prescription in Gonze and Goldbeter, 2006

for a similar model). Parameter values were taken from Goldbeter (1991): Ki ¼ 0:1 (i=1–4),

VM1 ¼ 0:5 ~min�1, V2 ¼ 0:167~min�1, VM3 ¼ 0:2~min�1, V4 ¼ 0:1~min�1, vd ¼ 0:1 ~�Mmin�1,

KC ¼ 0:3�M, Kd ¼ 0:02 ~�M, kd ¼ 3:33� 10
�3

~min�1.

Goldbeter (Goldbeter, 1991) suggested that vi is modulated by external signals. So, we

use v
Day
i = 0.0106 ~�Mmin�1 and v

Night
i = 0.0105 ~�Mmin�1 for small L/R limit cycle, vDayi =

0.0111 ~�Mmin�1 and v
Night
i = 0.0105 ~�Mmin�1 for large L/R limit cycle, and v

Day
i = 0.009

~�Mmin�1 and v
Night
i = 0 for point attractor. The bifurcation from point attractor to limit cycle

happen around vi = 0.01 ~�Mmin�1. The period of the driving signal is 35 min.
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B.5 Goodwin oscillator
One of the earliest models of biochemical oscillators was proposed by Goodwin (1965) (later

corrected). We use the simplest widely-studied version of such a Goodwin oscillator

(Gonze and Abou-Jaoudé, 2013; Woller et al., 2014),

dX

dt
¼ aðtÞ
1þZn

�X

dY

dt
¼ X�Y

dZ

dt
¼ Y �Z (10)

When n ¼ 9, the limit cycles disappear at a Hopf bifurcation found at a» 7. As is commonly

done (Woller et al., 2014), we couple the external signal to the bifurcation parameter aðtÞ.
We use aDay ¼ 120;aNight ¼ 80 for the green limit cycle in Figure 2c of the main paper, aDay ¼
108;aNight ¼ 92 for purple limit cycle data, and aDay ¼ 2:5;aNight ¼ 1 for the red point attractor

data. The input signal has a period of 4, which is roughly the natural period of the limit cycle at

a ¼ 100 are taken to the output of the clock for computing MI.

B.6 Repressilator
The repressilator is a model of an early synthetic biology system (Elowitz and Leibler, 2000)

that demonstrated oscillations in a synthetically wired gene regulatory circuit. While

resembling the Goodwin oscillator in topology, the network has the total non-linearity spread

equally amongst all three reactions, lowering the requisite Hill coefficient of any one reaction

to a biochemically realistic n ¼ 3. Repressilator circuits are not usually driven by an external

signal, except in a few theoretical analyses (e.g., Russo et al., 2010; Schultz et al., 2013). We

use the simplest version of these, with the driving signal modulating the transcription rate of

only one of the proteins

dX

dt
¼ a � ð1þ sðtÞÞ

1þYn
�X

dY

dt
¼ a

1þZn
�Y

dZ

dt
¼ a

1þXn
�Z (11)

where a is the bifurcation parameter and sðtÞ is the variable coupled to the input signal. In a

non-driven repressilator, sðtÞ ¼ 0. When n ¼ 3, the Hopf bifurcation occurs at a» 2:5, so for

limit cycles, we use a ¼ 5:2 and for point attractor we use a ¼ 1:9.

We use sDay ¼ 0:7=5:2; sNight ¼ �0:7=5:2 for the green limit cycle in Figure 2g in the main

paper, sDay ¼ 4:8=5:2; sNight ¼ �1:7=5:2 for the purple limit cycle data, and sDay ¼ 0:5=1:9; sNight ¼
�1:9=1:9 for the point attractor (red). The input signal has a period of 4, which is roughly the

natural period of the limit cycle at a ¼ 5:2 and sðtÞ ¼ 0 are taken to the output of the clock for

computing MI.

B.7 Brusselator
The Brusselator is a model of autocatalytic reactions that show limit cycle oscillations. This

model has been extensively studied over the years; while the explicit biochemical reactions

can be found in Kondepudi and Prigogine, 2014), these reactions are modeled by the ODEs:
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dX

dt
¼ 1�ð1þ bðtÞÞXþX2Y

dY

dt
¼ bðtÞX�X2Y (12)

where b has been identified as a bifurcation parameter (Kondepudi and Prigogine, 2014).

Most studies do not consider driven Brusselator models; we follow the driving prescriptions of

the Goodwin model and couple the external light to the bifurcation parameter, converting the

constant b into bðtÞ. The bifurcation point is at b ¼ 2. For b<2, we have a point attractor and

for b>2 we have a limit cycle. We use bDay ¼ 2:25 and bNight ¼ 2:2 for the purple limit cycle data

in Figure 2f from main text. We use bDay ¼ 2:8 and bNight ¼ 2:2 for the green limit cycle data.

Lastly, we use bDay ¼ 1:8 and bNight ¼ 0:5 for the point attractor (red). The signal has a period of

6.4 which is around the natural period of the system when b ¼ 2:2.
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Appendix 3

DOI: https://doi.org/10.7554/eLife.37624.013

Dynamical Systems
To complement our study of detailed biochemical implementations of such systems, we study

two kinds of dynamical systems in this paper; limit cycles and point attractors. The minimal

model of limit cycles and point attractors is given by the ‘normal form’ near a Hopf bifurcation:

_r¼ a r� r3

R2

� �

(13)

_�¼ ! (14)

For a>0, the above equation describes a circular limit cycle of radius R and frequency !.

This equation undergoes a Hopf bifurcation at a ¼ 0, where the limit cycle shrinks to zero and

resulting in point attractor for a<0. The ‘normal form’ can be seen as the universal simple form

– for example, circular limit cycles of radius R – that any limit cycle and point attractor will

reduce to in the neighborhood of a Hopf bifurcation. We add White noise in the Cartesian

space representation of the Dynamical equations to represent the internal noise as follows:

dx¼ a 1� x2 þ y2

R2

� �

x�!y

� �

dtþ
ffiffiffiffiffiffi

2D
p

~dW (15)

dy¼ a 1� x2 þ y2

R2

� �

yþ!x

� �

dtþ
ffiffiffiffiffiffi

2D
p

~dW (16)

where D ~R2�2int is the diffusion constant, dW is a Wiener process, and here we assume that the

internal noise is a homogeneous white-noise in the 2-dimensional space. (Similar assumptions

are made in reference Potoyan and Wolynes, 2014)

While we assume this simple form here as a minimal model, we do not assume that the

oscillator is weakly driven. Instead, based on experimental observations of the Kai clock

(Leypunskiy et al., 2017) and models of numerous other clocks (Winfree, 2001), we assume

that the origin of the limit cycle or point attractor equations above moves by a finite amount L

as the external light signal switches between day and night values. In fact, we move the origin

along the x-axis as a function of time as ðLsðtÞ; 0Þ where sðtÞ is the external light signal,

assumed to be of amplitude 1. Thus we are assuming a simple circular form of limit cycles and

point attractors but do not restrict to weak driving. (In the limit of weak driving, that is, small

L=R, our model can be shown to reduce to the universal Stuart-Landau model of weakly driven

oscillators as a special case.)

In Equation 14, trelax ~
1

jaj is the relaxation time for perturbations away from the limit cycle

or point attractor. For limit cycles, perturbations away from the limit cycle tend to decay fast

relative to the period 2p=!, typically on the order of hours (Leypunskiy et al., 2017).

In contrast, the point attractor in damped ‘hourglass’ clocks P. marinus needs to have

relaxation trelax ~
1

jaj ~ 2p=! comparable to the period of the day-night cycle itself. As explained

in the main paper, if relaxation were much faster, the clock state would decay to a fixed point

before the end of the day (or night) and thus not show distinct states at distinct times of the

day-night cycle.

Simulations
For both limit cycles and point attractors, we simulate a population of clocks, each

represented by a particle in the given dynamical system, subject to external and/or internal

noise.
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We use a ¼ 5 for limit cycle system and a ¼ �5 for point attractor system where ! ¼ 2p in

these units. For point attractors, we set R ¼ 1000L, where L is the separation of the day and

night attractor. In such a limit, the point attractors are quadratic potentials with linear

restoring forces since r3

R2 is small. The center of the cycle and point attractors during the day

are assumed to be at ð�L; 0Þ and at ð0; 0Þ at night; or more generally at ð�LsðtÞ; 0Þ were sðtÞ
the light signal (assumed to be of amplitude 1).

To simulate external noise, we use a square wave signal sðtÞ of amplitude 1 with amplitude

fluctuations set by �ext. As explained in Appendix 4 on external noise, we take the fluctuations

in sðtÞ to have a correlation time of 2:4 hours.

To simulate internal noise, we add Langevin noise to Equations 14 as described in

Appendix 6 on Langevin noise. As explained in Appendix 6, our measure of internal noise �2int
is a measure of phase diffusion, independent of limit cycle size. In other words, �2int is a

measure of the population phase variance (i.e., variance in �) developed by limit cycles of any

size in undriven conditions in a given period of time.

To interpolate between limit cycles and point attractors, we systematically change L

holding R fixed. For limit cycle simulations, changing L and R are equivalent. To see this for

external noise simulations, note that L=R is the only dimensionless parameter. For internal

noise, our definition of �2int above as the phase diffusion in undriven conditions for limit cycles

of any size, ensures that changing L and R are equivalent for limit cycles.

For point attractors, we set the separation L be the diameter of the limit cycles simulated in

the same plots to keep the size of the resolvable chemical spaces roughly comparable for limit

cycles and point attractors. While this precise choice is arbitrary to some extent, note that the

point attractor results for external noise do not depend on this parameter at all since L is the

only relevant length scale in external noise simulations. The separation L does affect the clock

precision with internal noise (of fixed absolute strength �int) but the mutual information

changes only logarithmically with L.

We evolve our dynamical system using the Euler method with time step dt ¼ 0:001 days

until the value of mutual information from one day to the next does not change by more than

2–3% - that is. the system has reached steady state. Reaching steady-state usually takes

around 200 days, but if the ratio of L=R is smaller than 0:1, then we may need to run the

simulation until day 500 to reach an equilibrium (See speed-error tradeoff in Figure 6b and c

in the main text).

For limit cycles, we initialize the population of 104 particles by uniformly distributing them

along the perimeter of the night cycle. In the point attractor system, we initialize a population

of 105 at the night-time point attractor.

We use a larger population with point attractors since the particles tend to be distributed

over a larger area of the dynamical system. Note that we bin the population by position to

compute mutual information between position in the 2d state space and time. Doing so

reliably requires a smooth distribution after binning. For limit cycles, the particles usually stay

close to attractor and thus provide sufficient count in each bin. However, for the point

attractor, the population is usually spread over the entire 2d area between the two point

attractors. Therefore, we need 10
5 particles to get an accurate value of mutual information of

point attractor system.

Optimal Dynamical system and trade-off
To find the optimal dynamical system geometry that operates with best accuracy when both

internal noise and external noises are present, recall that we derived the following equations

for strongly-driven limit cycles,

s2

int ~
�2intT

s2 � 1
(17)
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s2

ext ~
DF

2

s4 � 1
(18)

For a small L=R, we had found that DF~ �extL=R where �2ext is a measure of the variance of

light during the day. Further, we showed that s2 � 1 ~ L=R in this limit. Hence, in the small L=R

(‘Stuart-Landau’) regime, the above equations reduce to,

s2

int ~�
2

intR=L (19)

s2

ext ~�
2

extL=R (20)

The population variance when both noises are present is approximately given by

maxð�2intR=L; �2extL=RÞ. This variance is minimized when the two terms are equal, giving

L

R

� �

optimal

~
�int
�ext

;

which defines the optimal geometry of the dynamical system for given strength of internal and

external noise.

In contrast, by taking the product of the equations above, we find the trade-off

relationship,

s2

exts
2

int ~Q� �2ext�
2

int (21)

The trade-off relationship above clarifies which parameters are held fixed and which ones

are varied in our trade-off. If Q is held fixed, this trade-off relationship holds under variations

of all the parameters of the normal form of limit cycles (Equation 14). (While L=R allows us to

navigate the trade-off by increasing one of s2

ext;s
2

int and decreasing the other, other

parameters such as the relaxation time leave both s2

ext;s
2

int relatively unaffected.)

Holding Q fixed does involve holding the strength of external �ext and internal �int noise

fixed. In all the models studied here, �ext is simply defined as the size of the amplitude

fluctuations in the external signal relative to the amplitude of the external signal itself - that is,

the noise-to-signal ratio of the external signal - with no reference to the clock dynamics.

Changing L=R and other parameters can strengthen or weaken the coupling of this noisy

external signal to the clock but do not affect the signal-to-noise ratio of the external signal

itself.

Analogously, the strength of internal noise �2int is defined as the diffusion constant for the

phase of a clock (e.g., in radians2) in the absence of an external driving signal. As discussed in

Appendix 3, this definition ensures that limit cycles of different sizes develop the same phase

variance over the same time when subject to the same �int.

For some purposes, it may make sense to hold the dimensionful diffusion constant Dint ¼
�2intR

2 fixed while making comparisons. In this case, in addition to the trade-off effect discussed

in this paper, large limit cycles are given an additional robustness to internal noise, trivially by

virtue of their size, since the diffusion constant Dint in chemical space is held fixed (instead of

the dimensionless diffusion constant �2int for clock phase). In this case, it is insightful to re-write

Q ¼ �2ext�
2

int ¼ �2extDint=R
2 and recognize that P ¼ Q�1 is a measure of the power needed to

maintain free running clock oscillations Cao et al., 2015 - larger cycles cost more energy per

cycle to maintain. Thus, in this case, our trade-off should be understood as one at fixed power.
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Appendix 4

DOI: https://doi.org/10.7554/eLife.37624.014

Supplementary Methods
Modeling external noise (weather fluctuations) We generate a square wave of period 24 hours

to model the day-night cycle of light on Earth with the day length of 12 hr. However, such a

square wave is modulated by weather fluctuations, for example, periods of reduced intensity

due to passing clouds during the daytime. We model such fluctuating intensity as follows. We

assume each weather condition lasts a random interval of time drawn from an exponential

distribution of mean 2:4 hrs (1/10 of a day). During a given weather condition, we set the

intensity of light to a random value, drawn uniformly from ½1� noiseext; 1� where noiseext is the

strength of the external noise: 0 means no external noise and 1 means full external noise. This

random value will range from 0 to 1 where one represents the maximum intensity during the

day. (At night, the intensity is held at zero with no fluctuations). In the simulation of our limit

cycle model, we set noiseext to 1. However, in our simulations for eight different models of

biological clocks, noiseext ranges from 0.5 to 1 because when noiseext is too high, the system

may not get entrained due to the difference in the natural and driving frequencies.

This noisy external signal is coupled to the diverse range of systems studied here in

different ways as described in the respective sections. For each system, we simulate a

population of organisms where each individual is subject to a different realization of the

weather conditions described above. (a) In the Kai clock, the light signal is taken to affect the

cellular ATP levels. (b) In the other eight diverse oscillators in the main paper, we coupled the

light signal to the parameter specified as coupled to external signals in the original

publications. (c) For the dynamical systems model, we assume that the position of the limit

cycle is moved by the light signal. When the light intensity is reduced during the day to a value

� 2 ½0; 1�, we switch the dynamics to an alternative limit cycle (or point attractor) at a fractional

distance � between the ideal day and night cycles. For example, assume the night cycle is

centered at ð0; 0Þ and the day cycle is centered at ð�L; 0Þ. During a weather condition with

intensity � 2 ½0; 1�, we follow dynamics due to a limit cycle located at ð��L; 0Þ. We follow the

same rules for the point attractor.

Note that we have used a square wave to approximate the natural cycle of light on earth.

The square wave also allows for an intuitive derivation of Equations 1, 2 by dividing up the

day-night cycle into four parts: diffusion during the day and during the night, contracting

variance during dawn and dusk. For other waveforms, such a clear separation is not possible

and all these processes occur concurrently. However, Equations 1, 2 are expected to still hold

up to Oð1Þ prefactors. Numerically, we tested sinusoidal inputs and verified our trade-off

relationship.

Modeling internal noise The internal noise represents any source of stochasticity intrinsic to

a single cell that would exist even in constant conditions. Such noise could be due to finite

copy numbers of molecules, bursty of transcription etc.

We model internal noise in the Kai clock using explicit Gillespie simulations at finite copy

number N as described in the section on Kai clocks. For the diverse other biochemical clocks

studied here, we add Langevin noise to the dynamical equations, following the prescriptions

laid out in the original publications when available. In the dynamical systems models, we

model internal noise by adding Langevin noise to the dynamical equations as described in the

section on Langevin noise. Each individual particle in our simulation is subject to an

independent random realizations of such Langevin noise. In order to ensure an apples-apples

comparison between different clocks, we define the strength of the internal noise �int to be the

phase diffusion constant in undriven condition. See Appendix 3 on Dynamical systems

simulations for more.
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Measures of clock time-telling quality
We develop and use two distinct measures of performance of noisy clocks driven by noisy

inputs.

Mutual information: The performance of the clock is quantified by the mutual information

between the clock state~c and the time t,

MIðC;TÞ ¼
X

~c2C;t2T
pð~c; tÞ log2

pð~c; tÞ
pð~cÞpðtÞ

� �

(22)

for all~c in the set of available positions C and all t in the available time bins T. (In the

dynamical systems model,~c represents the position in the 2d r; t plane. For the explicit

KaiABC biomolecular model,~c represents the phosphorylation state of KaiC.) We simulate a

population of clocks, where each clock is subject to a different realization of input signals,

representing different weather conditions and also subject to different realizations of internal

Langevin noise (or Gillespie fluctuations). We then collect the trajectories of each clock on the

last day of the simulations and calculate the probability distribution pð~cjtÞ of clock states at a

given (objective) time t 2 ½0; 24� hrs of the last day in the simulation. The probability function

pð~cÞ is calculated by accumulating the distribution of pð~cjtÞ over time t 2 ½0; 24� hrs of the last

day. The position~c and time t are binned into different bins depending on their values. We

start the minimum and maximum values of the bins to the minimum and maximum values of

the variables. The bin size in the time dimension is 0.48 hr or 28.8 min, while The bin size in

the x and y dimensions are both 0:01.

We refer to this mutual information measure as ‘Precision’ in Appendix 1—figure 1d,

2 and 6a from the main text.

Population variance along direction of motion: Mutual information is a good indicator of

how well the clock encodes information about time. However, it is calculated for the entire

day. Often, we want to see how the time-telling ability of a clock changes during the day (e.g.,

day vs night or before and after dusk). Hence we develop a new measure, closely related to

mutual information, but can be computed at specific times of day.

Intuitively, the mutual information quantifies how much the population distributions of clock

states at different times t overlap. If these distributions are not overlapping, the clock state is a

good readout of the time t. Such distributions are shown in Figures 4b and 5b (purple) in the

main text.

We argue that only the spread of the clock distribution along the direction of motion of the

clock in state space affects mutual information. The spread of the distribution in orthogonal

directions does not affect mutual information as much.

To see this, we write mutual information between clock state~c and time t as,

MIðC;TÞ ¼HðTÞ�HðT jCÞ: (23)

Here HðTÞ is a constant, independent of the clock mechanism. Thus, MI depends entirely

on the entropy of the distribution pðtjcÞ of real times given clock state c, averaged over

different clock states,

HðTjCÞ ¼
Z

pðcÞdcHðTjcÞ (24)

¼�
Z

pðcÞdc
Z

dtpðtjcÞ logpðtjcÞ
� �

(25)

Consider a clock whose state-space is two dimensional with a periodic x-axis as shown in

Appendix 4—figure 1. Further, assume that the distribution pð~cjtÞ of clock states at a given

time is supported on a rectangle of size ax � ay as shown in Appendix 4—figure 1 and that

the clock states move along the x-axis at a uniform velocity u. This situation implies that
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Appendix 4—figure 1. Mutual information MIð~c; tÞ between clock state~c and time t is only

affected by the variance of the clock state distribution pð~cjtÞ at a given time t along the direction

of motion and not orthogonal to it. In this toy example, we assume the distribution pð~cjtÞ to be

supported on a rectangle of size ax and ay in a 2d clock state space. The clock state moves at

a speed u in the x-direction. Time telling quality is affected by how much the population at

different times overlap with each other. Consequently, clocks with large ax and small ay
(bottom) have lower mutual information MIð~c; tÞ relative to clocks with small ax and large ay

(top). Consequently, we use the population variance along the direction of motion as an

instantaneous measure of time-telling ability in the paper.

DOI: https://doi.org/10.7554/eLife.37624.015

pðtjcÞ ¼ 0 for jcx � utj>ax
u
2ax

for jcx � utj � ax

�

So,

HðTjCÞ ¼�
R

pðcÞdc
R ðaxþcxÞ=u
t¼ðcx�axÞ=u dt

u
2ax

log u
2ax

� �

¼ log 2ax
u

� �

Since MIðC; TÞ ¼ HðTÞ � HðTjCÞ, MI depends on � log ax and is independent of ay, meaning

that only the spread in the direction of motion ax affects the mutual information.

Consequently, to understand the quality of time-telling at different times of the day, we

project the population variance of pð~cjtÞ to the direction of the instantaneous velocity of the

center of mass of pð~cjtÞ.
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Cramer-Rao bounds
Cramer-Rao (CR) bounds quantify the total available information about phase in a given length

of history of the signal. Any estimator working with that length of history must necessarily have

higher variance (i.e., higher error) than the Cramer- lower bound corresponding to that length

of history. In the limit of infinitely long histories, the CR bound in this context corresponds to

zero error; with any finite binning in time, the upper bound on MI is simply set by the number

of bins in time. In our case, this bound is given by log250 ¼ 5:64 bits. As shown in the main

paper, as L=R ! 0, limit cycles process longer and longer histories of the external signal.

Consequently, the mutual information for such cycles approaches the upper bound in the limit

L=R ! 0 (assuming no internal noise) when computed with the same number of temporal bins

(50 in this case).
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Appendix 5
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Circle Map - Dark pulse phase shift
During the daytime, sunlight intensity fluctuates because of cloud cover and we have referred

to these fluctuations as external noise. In our simulations, we subject each individual in a

population to a different realization of these weather conditions and compute the resulting

population variation of clock state. Such variation limits the ability of the cell to read out the

objective time from the clock state.

Here, we relate the population phase variance caused by random cloud cover in our

dynamical systems model to the geometrically computed Phase Response Curve (PRC) due to

a single dark pulse administered during the day. Using this geometric method, we will find

that the ability of limit cycle to withstand external intensity fluctuations increases with R=L, the

size R of limit cycles relative to their separation L. In particular, we will show geometrically that

the gain in phase variance during the day s2 ) s2 þ s2

clouds scales as ðL=RÞ
2, in perfect agree

with stochastic weather simulations.

To compute the scaling relationship of s2

clouds, we compute the phase shift DF caused by a

single dark pulse with width t on the limit cycles with angular speed ! (i.e., the Phase

Response Curve (PRC) corresponding to such a dark pulse). Appendix 5— figure 2a shows an

example of a dark pulse in the signal and how it affects the trajectory. Consider a clock at

state � on the day cycle. A dark pulse of length t administered just then will change the

dynamics to that of the night cycle. This clock has state f ¼ Pð�Þ with respect to the night

cycle and will evolve for a time t according to the night cycle dynamics, reaching a new state

fþ !t, at a radial position determined by R; L. At the end of the dark pulse, we use the night-

day circle map, � ¼ QðfÞ, to find the clock state back on the day cycle. Note that all these

shifts depend on the limit cycle geometry, that is, on R and L, as shown in Appendix 5—

figure 2. We can write each mapping using simple trigonometry:

Appendix 5—figure 1. The population variance of clock states is reduced by dusk and can be

computed geometrically. (a) A population of clocks near state � on the day cycle is mapped to

the neighborhood of state f on the night cycle by the dusk transition. We define f ¼ Pð�Þ to
be the map relating the clock state � on the day cycle just before dusk to its eventual position

f on the night cycle after dusk (assumed greater than the relaxation time). (b) This map can be
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analytically computed for circles of size R with centers separated by length L. (c) For a given R/

L = 2 , we obtain Pð�Þ shown here. Since � ¼ p=2 corresponds to the dusk time of the

entrained trajectory, the slope s�1 ¼ dP=d� at � ¼ p=2 determines the change in population

variance of clock states at dusk. (d,e) The variance drop s2 at dusk, defined as s2 ! s2=s2 at

dusk, seen in both the external (averaging over weather) and internal noise (averaging over

Langevin noise) simulations agree well with the geometrically computed sðR=LÞ, especially at

large R=L. We find that s2 � 1~ L=R for large-R=L limit cycles.

DOI: https://doi.org/10.7554/eLife.37624.017

Appendix 5—figure 2. Increase in population variance due to random weather conditions can

be estimated from the phase shifts DF due to dark pulses (i.e., the Phase Response Curve). (a) A

single dark pulse administered during the day shifts the phase of a clock (purple) relative to a

clock that experiences no such dark pulse (black). (b) We can compute the phase shift DF due

to such a dark pulse geometrically by computing the deviation in trajectory. Assuming a dark

pulse of length t, the clock evolves for a time t according to the night cycle dynamics. At the

end of such a pulse, we switch back to the day limit cycle and compute the resulting phase

shift DF. (c) The resulting phase shift DF due to a pulse of length t ¼ 2:4 hrs, depends on the

time � when it is administered but is generally smaller for larger R=L. (d) We find that DF2 for a

specific t ¼ 2:4 hrs dark pulse administered at the same time (8 AM) falls as ðL=RÞ2 for large-
R=L limit cycles. This trend matches the variance gain s2

clouds seen in stochastic simulations that

average over random weather conditions (pulses of different length, intensity and time of

application). The broken brown curve shows a theoretical prediction for such an average

hDF2i, obtained by sampling the curve shown in (c) at different points of application and

differing intensity. Despite the presence of a variance-reducing zero around mid-day in (c),

s2

clouds drops as ðL=RÞ
2, much as DF2 for any particular pulse. (Brown theory curves translated

together using one fitting parameter).

DOI: https://doi.org/10.7554/eLife.37624.018

f¼ Pð�Þ ¼ arctan
LþR sin�

Rcos�

� �

(26)

and
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�� ¼QðfÞ ¼ arctan
�LþR sinðfþ!tÞ

Rcosðfþ!tÞ

� �

: (27)

Notice the mapping Q only differs from P by changing L to �L. We also include the

diagram showing the transition due to dark pulse in Appendix 5— figure 2. The process ‘1’

corresponds to f ¼ Pð�Þ, ‘2’ corresponds to the rotation on the night cycle f ! fþ !t, and

‘3’ corresponds to the transition back to the day cycle �� ¼ Qðfþ !tÞ. Combining this three

processes, we write �� as ��ð�; t; L=RÞ and expand it in the limit that L=R ) 0 to obtain that

DF¼�L

R
cosð�þ!tÞ� cosð�Þð ÞþO L

R

� �2

(28)

where DF ¼ �� � ð�þ !tÞ because �þ !t is the phase of the clock if it did not experience the

dark pulse.

This expression DF indicates the amount of phase shifted that the cloud causes. With

different clocks experiencing different weather conditions, the variance gained among the

population due to the fluctuation of sunlight grows like jDFj2 ~ ðL=RÞ2. We see good

agreement between stochastic weather simulations and this geometric computation as shown

in Appendix 5— figure 2d.

In this calculation, we focused on dark pulses administered at a fixed generic time (8 AM in

Appendix 5— figure 2d). However, the PRC DFð�Þ for dark pulses has a zero at a specific

time of the day (see Appendix 5— figure 2c). That is, for each dark pulse of width t, there

exists a time of administration such that DF ¼ 0! In fact, such a dark pulse has an entraining

effect, reducing the population variance. We leave experimental and theoretical investigation

of the counter-intuitive effects of such specially timed dark pulses to future work.

Here, we show that even if we include such dark pulses with an entraining effect, the

variance gained at the end of the day is still proportional to ðL=RÞ2 in the limit that L=R goes to

zero. To simplify our derivation but retain the essence of what dark pulses do during the

daytime, let’s us consider dark pulses coming at three times: in the morning (� ¼ �p=2),

around noon (� ¼ �!t=2 with small !t), and in the evening (� ¼ p=2). Starting the day with

variance s2

0
, by the end of the day the variance becomes

s2 ¼
s2

0
þðDFÞ2�¼�p=2

ð1þ dDF
d�

� �

�¼�!t=2
Þ2
þðDFÞ2�¼p=2 (29)

»
s2

0
þ L

R
sin!t

� �2

1þ 2L
R
sin !t

2

� �� �2
þ L

R
sin!t

� �2

(30)

s2
»s2

0
þ 2

L

R
sin!t

� �2

þO L

R

� �2

: (31)

Thus, the variance gained due to fluctuation, s2 � s2

0
¼ s2

clouds, is proportional to ðL=RÞ2.
This simple derivation may not rigorously reflect the correct constant in front of ðL=RÞ2 term,

but the full rigorous derivation, concerning the dark pulses coming randomly at random time

during the day, should yield the same power law dependent on L=R. Appendix 5— figure 2d

shows that averaging DF
2 over pulses administered at different times numerically (dashed line)

results in the same power law as for single pulses and as seen in stochastic weather

simulations.

Circle Map - Step Response Curve
In our main paper, we claim that the variance of the clock state across a population drops

s2 ) s2=s2 at dusk where s2 � 1 ~L=R as L=R ) 0. Data from Langevin simulations was

presented. Here we will derive this result using a simple geometric argument about circle

maps.

Pittayakanchit et al. eLife 2018;7:e37624. DOI: https://doi.org/10.7554/eLife.37624 34 of 38

Research article Computational and Systems Biology Physics of Living Systems

https://doi.org/10.7554/eLife.37624


We define f ¼ PTð�Þ to be the phase on the night cycle that a clock evolves to, after time a

time T , if the lights were suddenly turned off when the clock is at state � on the day cycle. See

Appendix 5—figure 1a,b. In principle, with complex relaxation dynamics between the limit

cycles, PTð�Þ could show complex dependence on T . However, we work in a simplified model

where the angular frequency of the clock is independent of the amplitude of oscillations. In

this limit, T only causes an overall shift in f ¼ PT ð�Þ; that is, we can write PTð�Þ ¼ Pð�Þ þ !T

where ! is the angular frequency of the clock. In what follows, we will be interested in the

derivative of q�PTð�Þ; hence we will work with Pð�Þ instead of PTð�Þ.
This circle map, f ¼ Pð�Þ, is important since it determines whether two differing day-time

clock states are brought closer or taken further at dusk and thus determines the rate of

entrainment of a population to the external signal. Consider two organisms that have nearby

but distinct clock states �0, �0 þ D� at dusk. After dusk, these two clocks will be mapped to

Pð�0Þ and Pð�0 þ D�Þ»Pð�0Þ þ D�dPð�Þd�j�¼�0
respectively. Thus, dusk changes the difference

between the clock states from D� to Df where,

Df»D�
dPð�Þ
d�

�

�

�

�

�¼�0

(32)

By a similar argument, if the phase variance of clock states across a population is s2 before

dusk, it will be reduced by,

s2 !dusk s2
dPð�Þ
d�

�

�

�

�

�¼�0

 !2

(33)

This expression is valid in the regime where the population variance s2 is small enough to

linearize the circle map Pð�Þ. Similar considerations apply to the dawn transition between the

night and day cycle as well. Both circle maps were recently experimentally characterized for S.

elongatus in Leypunskiy et al. (2017).

In our simple theoretical model where clock frequency does not change with amplitude (i.e.

the radial coordinate), we can easily compute Pð�Þ from geometry. In Appendix 5—figure 1,

we draw a diagram of the transition from a particle on the day cycle at the phase � to the

night cycle at the phase f. By trigonometry, we write

f¼ Pð�Þ ¼ arctan
LþR sin�

Rcos�

� �

; (34)

and derive

s2 � 1¼ dPð�Þ
d�

� ��2

�1 (35)

¼ Lð2L3 þ 7LR2 � 3LR2 cosð2�Þþ 4Rð2L2 þR2Þsin�Þ
2R2ðRþL sin�Þ2

(36)

¼ 2 sinð�ÞL
R
þO L

R

� �2

; (37)

where � corresponds to the angle on the day cycle at dusk, which is at p=2 in Appendix 5—

figure 1a. This equation implies that as the day and night limit cycle gets closer, the

geometric focusing effect s converges to one. This asymptotic behavior is intuitive because if

L ¼ 0, meaning no transition, then the variance should remain the same (s ¼ 1, so s2 ! s2=12

at the transition).

Remarkably, our geometric derivation of s2 � 1 matches the variance drop s2 ! s2=s2 seen

in stochastic simulations of weather conditions; see Appendix 5—figure 1b. The variance gain

during the day is the result of the fluctuation of sunlight, simulated as random dark pulses of

random intervals, amplitude and time of delivery. Such variance is accumulated during the day

and the drop over dusk time is measured (green Xs).

Appendix 5—figure 1e shows the variance drop seen in simulations with internal noise in

Langevin simulations. While the cause of variance increase during the day is different (finite
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copy number effects), the variance drop at dusk agrees well with the geometric computation

of s2 and thus with the external noise simulations as well. In both cases, the simulations and

geometric theory show that s2 � 1~ L=R as L=R ) 0.
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Appendix 6
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Langevin model of finite copy number fluctuations
Chemical reactions that occur in the bulk of a homogeneous solution can be described by a

set of ordinary differential equations. However, within a single cell the copy number of

molecule is limited and thus the reaction carries internal noise from the stochastic fluctuations.

Gillespie showed that chemical reactions under finite copy number can be approximated by a

Langevin dynamics using the following argument (Gillespie, 2007),

Consider an elementary reaction

AþB�>CþD (38)

with the forward rate constant kþ, during each infinitesimal time dt, the probability of the

occurrence of this reaction follows a Poisson distribution whose mean and variance both equal

to Rþdt ¼ kþ � NA � NB � dt. Integration over a larger time step, the Poisson distribution can be

approximated into a Gaussian form, resulting in Langevin dynamics,

dNA ¼�kþ �NA �NB �dtþ
ffiffiffiffiffiffi

Rþ
p

dW (39)

where W is a standard Wiener process of mean 0 and autocorrelation function

hWðt1ÞWðt2Þi ¼ dðt1 � t2Þ.
To describe a chemical reaction network, the Langevin equation for each species consists of

contributions to the noise from each reaction where the species is involved. Now consider

adding another reaction

CþD�>AþB (40)

with the rate constant k�, then the Langevin equation for species A becomes,

dNA ¼�kþ �NA �NB �dtþ k� �NC �ND �dtþ
ffiffiffiffiffiffi

Rþ
p

dW1 þ
ffiffiffiffiffiffi

R�
p

dW2 (41)

where Rþ ¼ kþ � NA � NB and R� ¼ k� � NC � ND respectively denote the number rates of the

forward and the backward reaction; dW1 and dW2 are identical independent standard Wiener

processes.

To fully determine the effect of the noise using the Langevin dynamics for a chemical

reaction network, one needs to consider all of the reactions corresponding to the species of

interest; the noise term usually becomes time-dependent and multiplicative. To simplify the

description of internal noise in our phenomenological model of limit cycle/point attractor, we

take a first order approximation that the diffusion coefficient in the reaction coordinate space

is homogeneous in both space and time. (See similar treatments of another biological system

in Potoyan and Wolynes (2014). In contrast, our explicit KaiABC simulations, as well as

numerical simulations on the other types of bio-oscillators, presented later, do not make this

simplifying assumption of homogeneous diffusion.) This allows us to write a 2-dimension

phenomenological stochastic differential equation

d~z¼ f ð~z; tÞ �dtþ
ffiffiffiffiffiffi

2D
p

�d~W (42)

where the f ð~z; tÞ denotes the deterministic dynamics driven by day-night cycles and the

diffusion constant D is assumed to be inversely proportional to the total number of Kai-C

molecules within the cell. For limit cycles of radius R, we set D ~R2�2int. Then, �
2

int is the diffusion

constant for the phase of the oscillator. We hold �2int fixed while changing R to make a fair

comparison across systems of different size.
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Population variance
For the cell to carry out a reliable computation, the population variance from the internal noise

needs to be reduced. Such noise reduction comes from the dynamics of the attractor. In the

limit cycle attractor mechanism, the internal noise reduction is performed only along the radial

axis but not along the flat attractor direction.

In contrast, the point attractor mechanism is able to limit population variance due to

internal noise in all directions due to the effective ‘curvature’ of the dynamics. Here we

analytically estimate the steady-state population variance for a point attractor mechanism. The

population variance is together determined by the diffusive term
ffiffiffiffiffiffi

2D
p

� d~W, and the noise

reduction effect from the restoring force of the point attractor’s harmonic well. During each

infinitesimal time dt, the internal noise increase the variance by

s2ðtþ dtÞ ¼ s2ðtÞþ 2Ddt: (43)

In contrast, the overdamped deterministic motion within a harmonic well provides a

focusing effect that reduces the variance exponentially with time. To quantify this focusing

effect, consider a 1-d overdamped dynamics of a particle within a harmonic energy well of

VðrÞ ¼ k � r2. The solution to the equation of motion is rðtÞ ¼ r0 � e�2kt, with initial position

rð0Þ ¼ r0. Consider an ensemble of points with a mean initial position �0 and a initial variance

of s2

0
, one can solve the dynamics of the mean as

�ðtÞ ¼ �0 � e�2kt (44)

and the dynamics of the variance as

s2ðtÞ ¼ s2

0
� e�4kt (45)

Thus, per infinitesimal time dt, the geometric focusing effect of the energy well of the point

attractor reduces the population variance by

s2ðtþ dtÞ ¼ s2ðtÞ=g (46)

where g ¼ e4kdt.

Under the competition between the spreading effect from the internal noise and the

geometrical focusing effect from the deterministic dynamics, the population variance reaches

a steady value solved by

s2

st ¼
s2

st þ 2Ddt

g
¼ s2

st þ 2Ddt

e4kdt
(47)

and by taking the limit of dt goes to 0, we have s2

st ¼ D=2k.
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