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Abstract Developed areas are thought to have low species diversity, low animal abundance, few

native predators, and thus low resilience and ecological function. Working with citizen scientist

volunteers to survey mammals at 1427 sites across two development gradients (wild-rural-exurban-

suburban-urban) and four plot types (large forests, small forest fragments, open areas and

residential yards) in the eastern US, we show that developed areas actually had significantly higher

or statistically similar mammalian occupancy, relative abundance, richness and diversity compared

to wild areas. However, although some animals can thrive in suburbia, conservation of wild areas

and preservation of green space within cities are needed to protect sensitive species and to give all

species the chance to adapt and persist in the Anthropocene.

DOI: https://doi.org/10.7554/eLife.38012.001

Introduction
Global loss of biodiversity leads to disruption of ecosystem services around the world, ultimately

threatening human well-being (Cardinale et al., 2012). Vertebrate species loss is typically consid-

ered to be worst in the most developed landscapes, where urbanization serves as an intense and

long-term disturbance that permanently alters habitat and truncates food webs (Lombardi et al.,

2017; McKinney, 2006). However, for some species, urbanization can offer abundant nutrient-rich

food that is less ephemeral compared to wild areas (Bateman and Fleming, 2012; Wang et al.,

2017). Whether this food is enough to counteract the negative effects of disturbance (i.e. higher

road mortality, fragmentation) depends on a species’ ability to adapt to the stressors of urban living

(Witte et al., 1982). Mammal species, especially those with large home ranges, are arguably most at

risk from development, leading some to suggest that developed areas have a dearth of predators,

and that prey species could benefit by using humans as a shield (Crooks, 2002; Ordeñana et al.,

2010). Previous studies have shown cities to be depauperate of bird life, supporting the traditional

view that development and biodiversity cannot coexist (Keast, 1995; Strohbach et al., 2014).

However, recent evidence has shown that some mammal species previously thought mal-adapted

to urban landscapes (i.e. mountain lion [Puma concolor], fisher [Martes pennanti]) are thriving in

them (Bateman and Fleming, 2012; LaPoint et al., 2013), suggesting an evolutionary trend that

could be important for conservation in the Anthropocene. Existing research on mammal
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communities across urbanization gradients has focused on single cities, yielding conflicting results,

perhaps due to variation in city structure and characteristics (Lombardi et al., 2017; Saito and

Koike, 2013). Given the rapid expansion of urban areas worldwide, and the recent case studies of

urban adaptations by wildlife (LaPoint et al., 2013; Riley et al., 2014; Wang et al., 2017), more

large-scale studies are needed to evaluate the response of wildlife communities to urban develop-

ment if we are to understand urban ecology, conservation, and evolution in the Anthropocene.

Here, we present the results of a large-scale mammal survey of two urban-wild gradients. Our

objectives were to determine how diversity, richness, detection rate, and occupancy of the mammal

community change as a function of human disturbance. We hypothesized that the availability of sup-

plemental food at higher levels of development would positively affect mammalian populations and

outweigh the negative effects of disturbance, except for the most sensitive species. Specifically, we

predicted that mammalian relative abundance would increase with developmental level but that spe-

cies richness and diversity would decrease. Furthermore, we predicted that occupancy of the most

sensitive species (i.e. large and medium carnivores) would be highest in wild areas both in our study

area and around the world.

Materials and methods

Study sites
Washington, District of Columbia, USA (hereafter DC) is a city of approximately 177 km2 with an esti-

mated human population size of 681,000, thus a density of 3847 people/km2. Our study spanned a

56,023.7 km2 area around the city with a mean of 4.4 houses/km2 and matrix of agriculture (~21.3%)

and forest (~54.1%). Raleigh, North Carolina, USA (hereafter Raleigh) is approximately 375 km2 with

an estimated human population size of 459,000, thus a density of 1278 people/km2. Our study

eLife digest Humans transform natural ecosystems worldwide into towns and cities, replacing

natural habitat with human-built surfaces. This loss of habitat and increase in human activity make

suburban areas difficult for some species to survive in, raising concerns that developed areas

become ecologically unbalanced as they lose biodiversity. However, the preservation of urban green

space and lack of hunting could also open the door for some species to thrive in the midst of large

human populations. Indeed, some animals, mammals in particular, have grown more tolerant of

humans and appear to have adapted to suburban landscapes around the world. Some species that

have been exclusively living in the wilderness, such as a small carnivore called the fisher, are even

moving back into cities.

Research into how mammals are coping with the urbanization of their habitats has produced

conflicting results. Studies that explore a variety of cities and habitats would help to clear up this

confusion.

Parsons et al. worked with citizen scientist volunteers to survey the mammals at 1,427 sites across

Washington DC and Raleigh, North Carolina. The volunteers set up motion-triggered cameras in

these sites, which covered a full range of urban and wild habitats, including back yards and large

nature preserves.

The cameras detected similar or higher numbers of mammal species in suburban sites compared

to wild areas. Indeed, most species appear to use suburban areas at least as much as wild land.

Urban green space is especially important; it is used by less urban-adapted species like coyotes to

navigate areas that are densely populated by humans.

The results presented by Parsons et al. suggest that many mammals have indeed adapted to the

suburban environment over the last few decades, resulting in more balanced urban ecosystems.

More testing in other cities will help to determine how general this pattern of adaptation is, and

provide us with knowledge that could help us to conserve many different species. However, some

species were still most abundant in wild areas, emphasizing the need to also conserve wildlands and

to minimize our impact on natural ecosystems.

DOI: https://doi.org/10.7554/eLife.38012.002
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spanned a 66,640 km2 area around the city with a mean of 17.7 houses/km2 and matrix of agriculture

(~24.3%) and forest (~52.3%).

Citizen science camera trap surveys
From 2012–2016, 557 trained volunteers deployed 1427 unbaited camera traps across an urban-wild

gradient around Raleigh and DC. Each individual camera was considered a ’camera site’ and volun-

teers ran cameras at an average of two sites each. Following Hammer et al. (2004), we used the Silvis

housing density dataset with 1km grid cells to define five development levels of the gradient for

sampling stratification (excluding open water): urban (>1000 houses/km2), suburban (147.048–1000

houses/km2), exurban (12.64–147.047 houses/km2), rural (0.51–12.63 houses/km2) and wild (<0.5

houses/km2). Within those gradient levels, camera placement was also stratified between residential

yards, open areas (>0.001 km2 absent of trees), small forest fragments (� 21 km2) and large forest

fragments (>1 km2) Supplementary file 1. Forest fragment size was verified using the 2006 US

National Landcover Dataset (NLCD) and Landscape Fragmentation Tool v2.0 (Vogt et al., 2007) in

ArcMap (Version 10.1, ESRI, Redlands, CA, USA) which defines forest fragments by size. Yards were

not available for sampling in the urban or wild levels of the gradient. Urban areas were not sampled

in Raleigh and open areas were not sampled in DC. All adjacent cameras were spaced at least 200

m apart. Camera placement was randomized as much as possible using ArcMap (Version 10.1) to

randomly generate points within polygons while following certain rules. For example, we selected

sites within forests that volunteers were permitted to access and were within a reasonable hiking dis-

tance (i.e. < 11 km hike round trip) with terrain that was not too steep to traverse safely (i.e. <45

degree slope). Within yards, cameras were placed as randomly as possible while avoiding the high-

est human traffic areas (i.e. walkways, doors, gates and driveways).

No explicit power analysis was used to predetermine sample size. Our sample size goal was 20

spatial replicates (equating to ~420 trap nights), which has been found to maximize precision for

estimating detection rate (Kays et al., 2010; Rowcliffe et al., 2008). Camera sites are biological

replicates, parallel measurements capturing random biological variation. This study did not include

technical replicates.

Volunteers used Reconyx (RC55, PC800, and PC900, Reconyx, Inc. Holmen, WI) and Bushnell (Tro-

phy Cam HD, Bushnell Outdoor Products, Overland Park, KS) camera traps attached to trees at 40

cm above the ground. Cameras were deployed for three weeks and then moved to a new location

without returning, with sampling taking place continuously throughout the year. Cameras recorded

multiple photographs per trigger, at a rate of 1 frame/s, re-triggering immediately if the animal was

still in view. We grouped consecutive photos into on sequence if they were <60 s apart, and used

these sequences as independent records, counting animals in the sequence, not individual photos

(Parsons et al., 2016). We then collapsed these independent records into daily detection/non-

detection for occupancy modeling. Initial species identifications were made by volunteers using cus-

tomized software (available freely from eMammal.org, source code proprietary) and all were subse-

quently reviewed for accuracy before being archived at the Smithsonian Digital Repository

(McShea et al., 2016).

Diversity
We used package iNEXT (Hsieh et al., 2016) in R (Version 3.1.0; R Development Core Team.,

2008) via R Studio (RStudio Team, 2015) to calculate Hill numbers (i.e. the effective number of spe-

cies, incorporating relative abundance and richness) of species richness and Shannon diversity

(Chao et al., 2014) between gradient levels (urban-suburban-exurban-rural-wild) and plot types

(yard, open, small forest, large forest). iNEXT calculates the Shannon diversity as Hill number q = 1,

equal to the exponential of Shannon’s entropy index, thus the natural log of those results was used

for display purposes. We used detection/non-detection data to compute diversity estimates and the

associated 95% confidence intervals via rarefaction, plotting the diversity estimates while accounting

for sample size. We fit a curve to diversity estimates between gradient levels using a generalized

additive model with a polynomial term.
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Model covariates
We modeled variation in occupancy (y) and detection rate using 13 covariates (Supplementary file

2) representing development level, the amount of core forest, small scale forest cover, prey relative

abundance and whether hunting was allowed. We added year as a covariate to account for popula-

tion changes over time. We used the Landscape Fragmentation Tool v2.0 (Vogt et al., 2007) and

the NLCD (2006) land use dataset in ArcMap (Version 10.1) to create a landcover layer representing

the percent of large core forest (forest patches larger than 1 km2) in a 5 km radius around camera

locations which we considered best approximated the home range size of our target species (Bek-

off, 1977; Fritzell and Haroldson, 1982; Lariviere and Pasitschniak-Arts, 1996; Lariviere and Wal-

ton, 1997). Forest patches did not necessarily fall entirely within the buffer. We considered road

density as an additional covariate at the 5 km scale but initial evaluations showed it to be highly cor-

related with housing density (87.1%) so we chose to eliminate it from the analysis. We used a 100 m

radius for small-scale forest cover to best represent small forest patches within suburban neighbor-

hoods (e.g. small vacant lots with trees, greenways). We represented deer and rodent+lagomorph

relative abundance using site-specific detection rate (the number of detections divided by the total

number of camera-nights). We included an indicator (0/1, no hunting/hunting) to categorize whether

a site allowed hunting or not. We modeled detection probability (p) using five covariates

(Supplementary file 2). Because both ambient temperature and undergrowth can affect the cam-

era’s ability to detect an animal, we included daily covariates for temperature and NDVI (Moderate

Resolution Imaging Land Terra Vegetation Indices 1 km monthly, an average value over the month(s)

the camera ran) obtained from Env-DATA (Dodge et al., 2013). To complement NDVI, we also con-

sidered site-specific detection distance, a measure of how far away the camera was able to detect a

human, which is influenced by both understory and site topography. We included an indicator (0/1,

not yard/yard) to categorize whether a site was a residential yard or not. In Raleigh, two different

camera models were used (both Reconyx and Bushnell) so we added a 0/1 (Bushnell/Reconyx) covar-

iate to account for potential difference in detection probability between the two brands. We diag-

nosed univariate correlations between covariates using a Pearson correlation matrix, and used a

restrictive prior for beta coefficients where correlation was >0.60 (i.e. logistic(0,1); a prior with

reduced variance to induce shrinkage, similar to ridge regression; Hooten and Hobbs, 2015). All

covariates were mean-centered.

Detection rate models
We used a Poisson count model (e.g. Kays et al., 2017) to assess differences in total mammal detec-

tion rate (i.e. the intensity with which a site was used, count/day) between the five gradient levels

(urban, suburban, exurban, rural, wild) and four plot types (large forest, small forest, open, yard). We

fit a curve to total detection rate estimates between gradient levels using a generalized additive

model. No other covariates were used in this model. We then ran separate count models for four

predator species (coyote (Canis latrans), gray fox (Urocyon cinereoargenteus), red fox (Vulpes vulpes)

and bobcat [Lynx rufus]) to evaluate covariates of detection rate, running one fully-parameterized

model (Supplementary file 2) to evaluate which explained the most variation in detection rate. We

assessed model fit with posterior predictive checks (PPC) (Gelman et al., 2014; Kery and Schaub,

2012) by calculating the sum of squared Pearson residuals from observed data (T(y)) and from data

simulated assuming the fully parameterized model was the data-generating model (T(ysim)). We cal-

culated a Bayesian p-value as pB = Pr(T(ysim)>T(y)) from posterior simulations and assumed adequate

fit if 0.1 < pB < 0.9 (Supplementary file 3). We fit the detection rate model in OpenBUGS v3.2.3

(Lunn et al., 2009) via R2OpenBUGS v3.2 (Sturtz et al., 2005) in R (Version 3.1.0) via R Studio. We

based inference on posterior samples generated from three Markov chains, using trace plots to

determine an adequate burn-in phase. All models achieved adequate convergence (R�1.1)

(Gelman et al., 2014) by running for 50,000 iterations following a burn-in phase of 1000 iterations,

thinning every 10 iterations. We based significance on whether parameter 95% credible intervals

overlapped zero.

Occupancy models
We used the multispecies occupancy model of Rota et al. (2016) to estimate the probability of

occupancy of four predator species: bobcat, coyote, red fox and gray fox. Although we are using
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the term occupancy, because data were collected from camera traps estimates are more analogous

to ‘use’ than true occupancy (Burton et al., 2015). This model is distinct from the classic multispe-

cies community models (Dorazio and Royle, 2005;Dorazio et al., 2006; Gelfand et al., 2005) and

is rather a generalization of the single-season occupancy model (MacKenzie et al., 2002) to accom-

modate two or more interacting species. It contains single-species (first order) occupancy models for

each interacting species alone as well as pairwise (second order) models for the co-occurrence of

each pair of species (Rota et al., 2016). For each species and pairwise interaction, the model esti-

mates detection probability (p), defined as the probability of detecting an occurring species at a

camera site, and occupancy (y), defined as the probability that a given camera site is occupied, for

each species. The latent occupancy state of each species at a site is modeled as a multivariate Ber-

noulli random variable such that (assuming 2 interacting species):

Z ~MVB  11;  10;  01;  00ð Þ

Where  11is the probability that both species occupy a site,  10 is the probability that only species

1 occupies a site,  01 is the probability that only species 2 occupies a site and  00 is the probability

that neither species occupies a site. We assumed all species occurred independently and considered

the same set of five covariates for the detection probability models and 13 covariates in the occu-

pancy model of each species (Supplementary file 2). We considered interactions (i.e. city*covariate)

between each occupancy covariate and city (0/1, DC/Raleigh). We estimated occupancy for each

species across levels of the development gradient (urban, suburban, exurban, rural, wild) and plot

types (yard, open, small forest, large forest) within each city separately by including development

level and plot type as categorical covariates in our model.

We fit models in STAN (Version 2.15.1; Stan Development Team, 2015b) via the RSTAN (Version

2.15.1; Stan Development Team, 2015a) interface in R (Version 3.4.0) via R Studio (Version

1.0.143). We based inference on posterior samples generated from two Markov chains, using trace

plots to determine an adequate burn-in phase and subsequently running chains until they reached

adequate convergence (R>1.1) (Gelman et al., 2014). All models achieved adequate convergence

by running for 3000 iterations following a burn-in phase of 1000 iterations. We based predictor sig-

nificance on whether beta coefficient 95% credible intervals overlapped zero. We assessed model fit

with posterior predictive checks (PPC) (Gelman et al., 2014; Kery and Schaub, 2012) by calculating

the sum of squared Pearson residuals from observed data (T(y)) and from data simulated assuming

the fully parameterized model was the data-generating model (T(ysim)). We calculated a Bayesian p-

value as pB = Pr(T(ysim)>T(y)) from posterior simulations and assumed adequate fit if 0.1 < pB < 0.9.

To our knowledge, the squared Pearson’s residual has not been derived in the context of occupancy

models, so we present our derivation of this test statistic in Supplementary file 4. We added a ran-

dom effect on detection/non-detection for the coyote portion of the model since initial assessments

of fit for this species were inadequate (i.e. pB >0.9). We assessed differences in occupancy between

gradient levels for each species using overlapping 95% confidence intervals.

Comparison with global occupancy data
We removed omnivores from the dataset of Rich et al. (2017) to better compare with carnivore

occupancy from our own dataset. Where species occupancy was estimated from multiple studies in

the Rich et al. dataset, we calculated averages to compare to occupancy estimates from our own

study. We summarized occupancy estimates of Rich et al. and our own study within each develop-

mental level using a box and whisker plot and assessed statistically significant differences based on

whether or not interquartile ranges overlapped.

Data accessibility
Raw detections data have been deposited in Data Dryad, doi:10.5061/dryad.11rf64v. The software

used for initial species identifications is available via eMammal.org. To download and use the soft-

ware, users must first create an account on eMammal and become associated with an existing proj-

ect. This can be done by using the ’Join’ button on the project’s homepage, or by emailing the

contact person, also listed on the project homepage. Usually the user will also have to pass an online

or in person training, depending on the project requirements, to be approved to download the

software.
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Results and discussion
Working with citizen scientist volunteers, we obtained 53,273 detections of 19 mammal species at

1427 sites along an urban-wild gradient in Washington, DC and Raleigh, NC, USA, sampling both

private and public lands. In DC, we detected 17 mammal species with mean naı̈ve occupancy of 0.19

(min = 0, max = 0.93) and mean detection rate of 0.09 detections/day (min = 0, max = 1.05). In

Raleigh, we detected 17 mammal species with mean naı̈ve occupancy of 0.14 (min = 0, max = 0.79)

and mean detection rate of 0.08 detections/day (min = 0, max = 0.09).

We found no significant decline of species diversity or richness from suburban to wild gradient

levels (Figure 2—figure supplement 1, Figure 1). However, Shannon diversity was significantly

lower at the urban level in DC, possibly due to low sampling (Figure 2, Supplementary file 1).

Diversity in yards was significantly higher or not statistically different from large and small forest frag-

ments in both cities (Figure 2—figure supplements 2,3). Most (92.3%) of the 13 mammal species

Figure 1. The percent of detections for each species of carnivores (left) and herbivores (right) in each development level along the urban-wild gradient

in Washington, DC and Raleigh, NC, USA accounting for the effort (i.e. camera nights) within each level, sorted from lowest to highest proportion

urban/suburban in DC. The dashed line shows 50% of total detections. Some species were predominantly rural/wild (i.e. bobcats and fox squirrels)

while others were mainly detected in urban/suburban habitats (i.e. red fox, raccoon). Patchy distributions at different gradient levels were seen for

species at the edge of their ranges (i.e. chipmunks and woodchucks in Raleigh). Urban habitats were not sampled in Raleigh.

DOI: https://doi.org/10.7554/eLife.38012.003
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detected >20 times occupied all levels of development below the urban level. Two of the largest

predators, coyotes and bobcats, were absent from the highest development level (urban) but were

detected at all other levels in both cities. Black bears (Ursus americanus), which are actively discour-

aged from colonizing central North Carolina (North Carolina Wildlife Resources Commission,

2011), were not detected in Raleigh and were detected in DC at all levels of the gradient except

Figure 2. Mean Shannon diversity and total detection rate along a gradient of housing density in two cities, Washington, DC and Raleigh, NC USA

taken from camera traps. Bars show 95% confidence intervals, lines are fit using a generalized additive model with a polynomial term. Diversity peaked

at intermediate levels of urbanization (exurban in DC and suburban in Raleigh). Total detection rate peaked at the urban level in DC and exurban level

in Raleigh.

DOI: https://doi.org/10.7554/eLife.38012.004

The following figure supplements are available for figure 2:

Figure supplement 1. Rarefaction curves estimating species richness in five development levels (urban, suburban, exurban, rural, wild) in two cities,

Washington, DC and Raleigh, NC, USA, using camera traps between 2012 and 2016.

DOI: https://doi.org/10.7554/eLife.38012.005

Figure supplement 2. Shannon diversity index estimates from camera trapping in two cities, Washington, DC and Raleigh, NC, USA, across five

development levels (urban, suburban, exurban, rural, wild).

DOI: https://doi.org/10.7554/eLife.38012.006

Figure supplement 3. Rarefaction curve estimating species richness in three plot types (residential yard, small forest, large forest) in two cities,

Washington, DC and Raleigh, NC, USA, using camera traps between 2012 and 2016.

DOI: https://doi.org/10.7554/eLife.38012.007
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suburban and urban, though were predominantly in the wild level. These results indicate that the

extant mammal guild exploits all levels of the urban-wild gradient and that no species are entirely

relegated to the wild gradient level. However, some species appear less adapted to habitation in

human-dominated areas, spending most of their time at the wild levels of the gradient (i.e. bobcat,

bear; Figure 1). We recognize that the current community represents species that survived the initial

arrival of high-density human settlement. In particular, two large predators (wolves (Canis lupus) and

cougars [Puma concolor]) were extirpated from our study area a century ago. However, even cougars

and wolves have recently shown surprising adaptability in the face of development at other sites

(Bateman and Fleming, 2012; Wang et al., 2017) suggesting that, given enough time and protec-

tion from persecution, many of the most ‘wild’ of species may adapt to human development.

Predators are thought to be the most at risk from urbanization (Crooks, 2002), therefore, we

evaluated predictors for occupancy (MacKenzie et al., 2002) and detection rate (Kays et al., 2017)

for four carnivores: coyote, gray fox, red fox, and bobcat. Both of our models fit well, with Bayesian

p-values between 0.1 and 0.9 (Supplementary file 3). Suburban and urban occupancy probabilities

were not statistically different from wild for any of the species (Figure 3—figure supplement 1) and

we noted a decreasing trend in occupancy from urban to wild (Figure 3). We compared the occu-

pancy estimates from our study to those reported for carnivores in protected areas around the world

(Rich et al., 2017) and found no significant difference (Figure 3), suggesting that the ecological

function of predators in this urban system is not substantially reduced from the current wild state,

excepting the historical extirpation of the two largest native predators from the region.

Our occupancy and detection rate models yielded similar results (Supplementary file 5–7) dem-

onstrating that green space is important to carnivore species that are less-adapted to human-altered

landscapes. These models show a greater association of carnivores with green space when housing

density is high (e.g. coyote and gray fox, Supplementary file 6, 7), consistent with other studies

finding urban green space important in maintaining biodiversity in cities (Gallo et al., 2017;

Lombardi et al., 2017; Matthies et al., 2017). It is likely that shyer species are not avoiding regions

of high human density, but require patches of forest to navigate residential areas that are freely

used by more commensal species, such as red foxes (Tigas et al., 2002), which we frequently

detected in yards. Indeed, we found a gradient of responses in carnivore use of human-dominated

environments, from red fox which are the most urban adapted (i.e. negatively associated with local

large forest fragments and the only species to have a positive association with yards) to bobcats

which appear to be the most human-averse (i.e. rarely detected in the suburban level of the gradi-

ent) (Figure 1; Figure 3—figure supplement 1).

Contrary to expectations, we found no evidence for a negative impact of suburban and exurban

development on extant native mammal diversity, richness, and occupancy and detection rate of car-

nivores. In fact, all metrics were significantly greater than, or equal to, wild areas. We suspect that

developed areas offer good food resources for wildlife through direct and indirect feeding (i.e. bird

feeders supplementing prey, pets), accidental feeding (i.e. garbage), and ornamental plantings (for

herbivores), but testing this hypothesis will require additional diet studies in urban landscapes

(Contesse et al., 2004). Furthermore, the structure of mature suburbia (i.e. older, established neigh-

borhoods with large trees, wooded riparian areas, small parks) contributes to a more diverse and

varied landscape than wild areas with more homogenous forest cover, which is potentially beneficial

for many generalist species. Developed areas where hunting is limited or prohibited also offer a safe

haven for game species, presuming they can navigate the road networks (Collins and Kays, 2011)

and avoid direct human conflict.

Our discovery of a wild suburbia suggests high levels of adaptation by mammals to developed

landscapes over the last few decades, including predators and prey. The resilience of these species

gives hope for wildlife in the Anthropocene, but the generality of this pattern needs to be tested in

other cities to understand how habitat type, development patterns, apex predators, and hunting

regulations influence urban mammal communities, as there are examples of far more drastic impacts

of urbanization on other taxa and in other places around the globe (Keast, 1995; McKinney, 2008).

Indeed, in Tokyo, Japan, the relative abundance of mammals declined with urbanization (Saito and

Koike, 2013) and avian communities in Quebec, Canada and Rennes, France showed a similar

decline in richness (Clergeau et al., 1998; Saito and Koike, 2013). This suggests that city structure,

size and human density may influence mammalian distribution along urban-wild gradients with large,

sprawling New World cities showing different patterns than the smaller more concentrated cities of
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the Old World. Although our study provides a less dire picture of urban ecosystem function than

previously thought, we do not suggest abandoning mitigation of urbanization’s negative impacts, or

conservation of completely wild areas. Factors such as urban green space, connectivity and availabil-

ity of completely wild areas give species the time and space to adapt to changing habitats and cli-

mates. Further understanding of how urban wildlife navigates human-dominated areas and factors

that contribute to the adaptation of species to the Anthropocene will be critical to maintaining diver-

sity in a rapidly urbanizing world.

Figure 3. Comparison of carnivore (i.e.bobcat, coyote, gray fox, red fox) occupancy probabilities at each developmental level in two cities with global

values from Rich et al. (Rich et al., 2017), representing 93 carnivores from 13 protected areas on five continents (Global Wildlands). Each box for our

dataset represents the distribution of marginal occupancy probabilities for each of four carnivore species in that city (i.e. four probabilities). The boxes

for Global Wildlands represent the distribution of marginal occupancy probabilities for 93 species. We found no statistically significant differences

between any habitat levels in our study or between our study and global wildland occupancy probabilities but noted a decreasing trend in occupancy

from urban-wild. We included only predators from Rich et al. (2017) and removed omnivores (i.e. raccoon, coati) to better reflect our data.

DOI: https://doi.org/10.7554/eLife.38012.008

The following figure supplement is available for figure 3:

Figure supplement 1. Occupancy estimates from single season occupancy model for four carnivore species (bobcat, coyote, gray fox and red fox) in

five development levels (urban, suburban, exurban, rural, wild) in two cities, Washington, DC and Raleigh, NC, USA, using camera traps between 2012

and 2016.

DOI: https://doi.org/10.7554/eLife.38012.009
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