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Abstract Activation of heterotrimeric G proteins is a key step in many signaling cascades.

However, a complete mechanism for this process, which requires allosteric communication between

binding sites that are ~30 Å apart, remains elusive. We construct an atomically detailed model of G

protein activation by combining three powerful computational methods: metadynamics, Markov

state models (MSMs), and CARDS analysis of correlated motions. We uncover a mechanism that is

consistent with a wide variety of structural and biochemical data. Surprisingly, the rate-limiting step

for GDP release correlates with tilting rather than translation of the GPCR-binding helix 5. b-

Strands 1 – 3 and helix 1 emerge as hubs in the allosteric network that links conformational

changes in the GPCR-binding site to disordering of the distal nucleotide-binding site and

consequent GDP release. Our approach and insights provide foundations for understanding

disease-implicated G protein mutants, illuminating slow events in allosteric networks, and

examining unbinding processes with slow off-rates.

DOI: https://doi.org/10.7554/eLife.38465.001

Introduction
Heterotrimeric G proteins are molecular switches that play pivotal roles in signaling processes from

vision to olfaction and neurotransmission (Oldham and Hamm, 2006; Oldham and Hamm, 2008;

Johnston and Siderovski, 2007). By default, a G protein adopts an inactive state in which guanosine

diphosphate (GDP) binds between the Ras-like and helical domains of the a-subunit (Ga, Figure 1).

A dimer consisting of the b- and g-subunits (Gbg ) also binds Ga. G protein-coupled receptors

(GPCRs) trigger G-protein activation by binding Ga and stimulating GDP release, followed by GTP

binding to Ga and dissociation of Ga from Gbg . Ga and Gbg then interact with effectors that trigger

downstream cellular responses. Ga returns to the inactive state by hydrolyzing GTP to GDP and

rebinding Gbg . Given the central role Ga plays, a common Ga numbering scheme (CGN) has been

established to facilitate discussion of the activation mechanisms of different Ga homologs

(Flock et al., 2015). For example, the notation Lys52G.H1.1 indicates that Lys52 is the first residue in

helix 1 (H1) of the Ras-like domain (also called the GTPase domain, or G). S6 refers to b-strand 6 and

s6h5 refers to the loop between S6 and H5.

Strikingly, the GPCR- and nucleotide-binding sites of Ga are ~30 Å apart (Figure 1), but the allo-

steric mechanism coupling these sites to evoke GDP release remains incompletely understood

(Oldham and Hamm, 2008). Biochemical and structural studies have elucidated some key steps, but

the entire process has yet to be described in atomic detail. Early studies of Ga subunits revealed

structures of the GDP- and GTP-bound states, as well as the transition state for GTP hydrolysis
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(Sunahara et al., 1997; Leipe et al., 2002; Westfield et al., 2011). The high similarity of these struc-

tures and the binding of GDP or GTP deep in the protein’s core suggests that activation occurs by

adoption of other conformational states that allow GDP release (Lambright et al., 1994). One inter-

mediate in G protein activation was suggested by the first crystal structure of a GPCR-bound G pro-

tein in which the Ras-like and helical domains of Ga are hinged apart and GDP has dissociated

(Rasmussen et al., 2011). Structural analysis has led to the proposal of a universal mechanism for

G protein activation (Flock et al., 2015). In this model, GPCR binding induces translation of H5 away

from H1, which increases disorder in H1 and the P-loop (or Walker A motif [Leipe et al., 2002]) to

facilitate GDP release. However, there is evidence that additional intermediates may be involved in

Ga activation, (Oldham and Hamm, 2008; Westfield et al., 2011; Liang et al., 2017; Hilger et al.,

2018) and the functional importance of this conformational ensemble has been previously suggested

(Furness et al., 2016). Furthermore, mutagenesis and nuclear magnetic resonance (NMR) studies

have suggested important roles for other structural elements (Toyama et al., 2017; Sun et al.,

2015; Goricanec et al., 2016).

Molecular dynamics simulations promise to capture the entire mechanism of G protein activation

and synthesize the wealth of experimental data on this process. Methodological advances now

enable simulations to capture millisecond timescale processes for proteins with less than 100 resi-

dues (Lindorff-Larsen et al., 2011). For example, it is now possible to capture the binding or release

of small molecules (Buch et al., 2011; Bowman and Geissler, 2012; Silva et al., 2011; Plattner and

Noé, 2015; Tiwary et al., 2015) and peptides (Plattner et al., 2017; Zhou et al., 2017) from small

proteins. Impressive simulations on the ANTON supercomputer have revealed critical conformational

dynamics of G proteins in their inactive and active states, elucidating the role of domain opening in

GDP unbinding (Dror et al., 2015; Yao et al., 2016). However, even this specialized hardware could

eLife digest Cells communicate with each other by exchanging chemical signals, which allow

them to coordinate their activities and relay important information about their environment. Often,

cells secrete specific signals into their surroundings, which are then picked up by a receiving cell that

has the right receptors to recognize the message. Once the signal attaches to the receptor, its

shape or activity changes, which in turn triggers cascades inside the cell to convey the signal, much

like a circuit would.

A group of proteins called heterotrimeric G-proteins play an important role in these pathways.

They act as molecular switches inside the cells to help transmit signals from the outside of the cell to

the inside. The proteins are made up of three parts, one of which is G-alpha. When G-alpha receives

a signal from its receptor, it becomes activated. To turn on, G-alpha needs to release a molecule

called GDP – which is bound to G-alpha when turned off – and instead bind to another molecule

called GTP. However, it remains unclear how exactly GDP is released when it receives a signal from

its receptor.

Faulty G-alphas have been linked to many diseases, including cancer and heart conditions.

However, current treatments do not currently target this part of G-protein signaling. To develop

new drugs in the future, we first need a better understanding about the critical steps driving G-alpha

activation, such as the release of GDP.

Now, Sun, Singh et al. used computer simulations and mathematical models to investigate how

G-alpha is activated, and to identify the structural changes underlying the release of GDP. The

simulations allow to observe how the atoms within G-alpha behave and were obtained from citizen-

scientist volunteers, who ran simulations on their personal computers using the Folding@home app.

Together, they generated an enormous amount of data that would normally take over 150 years

to collect with one computer. Subsequent analyses identified the critical atomic motions driving the

release of GDP and a network of amino acids located within G-alpha. These amino acids allow

G-alpha to act like a switch and connect the part that receives the signal from the receptor to the

GDP-binding site. In the future, this model could serve as a platform for developing drugs that

target G-alpha and shed more light into how signals are transmitted within our cells.

DOI: https://doi.org/10.7554/eLife.38465.002
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not capture the entire process of G protein activation and GDP release due to the size of the Ga

subunit (>300 residues) and the slow kinetics of GDP dissociation (~10�3 min�1) (Chidiac et al.,

1999; Ross, 2008; Mukhopadhyay and Ross, 1999).

Here, we introduce an approach to capture rare or long-timescale events, such as GDP release,

and reveal the mechanism of Ga activation. As a test of this methodology, we apply it to Gaq, which

has one of the slowest GDP release rates (Chidiac et al., 1999) and is frequently mutated in uveal

melanoma (Van Raamsdonk et al., 2009; Van Raamsdonk et al., 2010). To highlight aspects of the

activation mechanism that we propose are general to all G proteins, we focus our analysis on the

behavior of secondary structure elements and amino acids that are conserved across Ga domains.

Our approach first combines two powerful sampling methods, metadynamics (Laio and Parrinello,

2002) and Markov state models (MSMs), (Bowman et al., 2014) to observe GDP release and identify

the rate-limiting step for this slow process. Then we use our recently developed CARDS method

(Singh and Bowman, 2017), which quantifies correlations between both the structure and disorder

of different regions of a protein, to identify the allosteric network connecting the GPCR- and nucleo-

tide-binding sites. The resulting model is consistent with a wealth of experimental data and leads to

a number of predictions, described below. Taken together, our results provide the most comprehen-

sive model of G protein activation to date. Based on this success, we expect our approach to be

valuable for studying other rare events, including conformational changes and unbinding processes.

Figure 1. Structure of Gaq with key secondary structure elements labeled according to the Common Ga

Numbering (CGN) system. The coloring scheme highlights the GPCR binding interface (gray), GDP phosphate-

binding regions (pink), GDP nucleotide-binding regions (green), b-sheets (blue), and switch 2 (orange).

DOI: https://doi.org/10.7554/eLife.38465.003
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Figure 2. Structural and dynamical changes during the rate limiting step for GDP release. (A) Overlay of

representative structures before (blue) and after (orange) the rate limiting step. (B) Change in conformational

disorder (Shannon entropy) across the rate-limiting step, according to the color scale on the right. (C) Histograms

of inter-domain distances before (top, blue) and after (middle, orange) the rate limiting step, along with the inter-

domain distance distribution after GDP is released (bottom, black). Inter-domain distance is measured using

residues analogous to those used in DEER experiments (Dror et al., 2015), Leu97H.HA.29 in the helical domain and

Glu250G.H3.4 on H3. (D) Distribution of distances between Glu49G.s1h1.4 and Arg183G.hfs2.2 (left) before (blue) and

after (orange) the rate-limiting step, as well as after GDP release (black). Representative structures of the

interacting residues are also shown (right).

DOI: https://doi.org/10.7554/eLife.38465.004

The following figure supplements are available for figure 2:

Figure 2 continued on next page
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Results and discussion

Capturing G-protein activation and GDP release in atomic detail
We reasoned that studying the mechanism of spontaneous GDP release from a truncated form of

Gaq would be representative of the mechanism of GPCR-mediated activation of the heterotrimeric

G protein while minimizing the computational cost of our simulations. This hypothesis was inspired

by previous work demonstrating that a protein’s spontaneous fluctuations are representative of the

conformational changes required for the protein to perform its function (Boehr et al., 2006;

Fraser et al., 2009; Changeux and Edelstein, 2011). Therefore, we hypothesized that GPCRs stabi-

lize conformational states that G proteins naturally, albeit infrequently, adopt in the absence of a

receptor. We chose to focus on Ga since it forms substantial interactions with GPCRs, compared to

the relatively negligible interactions between GPCRs and G protein b and g subunits. This view is

supported by the fact that GPCRs and ‘mini’ G proteins, essentially composed of just the Ras-like

domain of Ga, recapitulate many features of GPCR-G protein interactions (Carpenter et al., 2016).

We also reasoned that truncating the last five residues of Gaq would facilitate the activation process.

These residues contact Ga in some GDP-bound structures but not in GPCR-bound structures,

(Lambright et al., 1996; Noel et al., 1993) and removing these residues promotes GDP release due

to a reduced GDP-binding affinity (Denker et al., 1992; Marin et al., 2002). Taken together, such

evidence suggests that the last five residues of Gaq help stabilize the inactive state and that remov-

ing them would accelerate activation. In support of this hypothesis, we find that the energetic barrier

to GDP release is lower in metadynamics simulations of the truncated variant than for full-length

Gaq (Figure 2—figure supplement 1). These simulations, and those described hereafter, were initi-

ated from an X-ray structure of the Gaq heterotrimer bound to GDP and an inhibitor of nucleotide

exchange (Nishimura et al., 2010); Gbg and the inhibitor were excluded from all simulations.

To observe G-protein activation, we developed a variant of adaptive seeding (Huang et al.,

2009) capable of capturing slow processes like ligand unbinding that are beyond reach of conven-

tional simulation methods. First, we use metadynamics (Tiwary et al., 2015; Laio and Parrinello,

2002; Dama et al., 2014) to facilitate broad sampling of conformational space by biasing simula-

tions to sample conformations with different distances between GDP and Gaq. Doing so forces GDP

release to occur but provides limited mechanistic information because adding a biasing force can

distort the system’s kinetics or cause the simulations to sample high-energy conformations that are

not representative of behavior at thermal equilibrium. To overcome these limitations, we chose start-

ing conformations along release pathways observed by metadynamics as starting points for standard

molecular dynamics simulations, together yielding an aggregate simulation time of 122.6 ms. These

simulations should quickly relax away from high-energy conformations and provide more accurate

kinetics. Then we use these simulations to build an MSM (Source data 1). MSMs are adept at

extracting both thermodynamic and kinetic information from many standard simulations that,

together, cover larger regions of conformational space than any individual simulation

Figure 2 continued

Figure supplement 1. Free-energy surface from metadynamics simulations of GDP release for the full Gaq (blue)

and truncated form (green, without the last five C-terminal residues).

DOI: https://doi.org/10.7554/eLife.38465.005

Figure supplement 2. Overlay of representative structures of Gaq when bound to GDP (blue) or across the rate-

limiting step (orange).

DOI: https://doi.org/10.7554/eLife.38465.006

Figure supplement 3. Changes in the structure (left) and disorder (right) of specific regions across the rate-

limiting step.

DOI: https://doi.org/10.7554/eLife.38465.007

Figure supplement 4. Distribution of distances between the side-chains of K275G.s5hg.1 and D155H.hdhe.5 for the

GDP-bound state (blue), across the rate-limiting step (orange), and upon GDP dissociation (black).

DOI: https://doi.org/10.7554/eLife.38465.008

Figure supplement 5. Implied timescales for the Markov state model.

DOI: https://doi.org/10.7554/eLife.38465.009
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Figure 3. Tilting of H5 is correlated with GDP release but translation of H5 is not. (A) Displacements of H5 relative

to the GDP-bound crystal structure (blue). The three other orientations of H5 come from the rate-limiting step in

our model (orange), the co-crystal structure of Gas and b2AR (green, PDB ID 3SN6) (Hilger et al., 2018), and the

co-crystal structure of a C-terminal fragment of Gat and rhodopsin (magenta, PDB ID 3PQR) (Van Raamsdonk

et al., 2010). The black arrows highlight the change in orientation of the long axis of each helix. A representative

GPCR (gray) and Ga (white) structure are shown for reference. (B) GDP release distance across the highest flux

pathway, defined as the distance from the GDP b-phosphate to the center of mass between residues Lys52G.H1.1,

Ser53G.H1.2, and Thr54G.H1.3 on H1. The state marking the rate-limiting step is highlighted by the blue dashed line.

(C) H5 motion across the highest flux pathway. The distances measured here representing H5 motion are taken

from the same states as in B. H5 tilting (orange) is measured by the distance between Leu349G.H5.16 and Tyr325G.

S6.2. Likewise, H5 vertical motion (green) is measured by the distance between Thr334G.H5.1 and Phe341G.H5.8. The

rate-limiting step is marked with the blue dashed line, extended down from B.

DOI: https://doi.org/10.7554/eLife.38465.010

The following source data and figure supplements are available for figure 3:

Source data 1. Table of measurements comparing tilting and translation of H5 across PDB structures and MD

simulation.

DOI: https://doi.org/10.7554/eLife.38465.013

Figure 3 continued on next page
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(Bowman et al., 2014). Related approaches have successfully captured the dynamics of small model

systems (Biswas et al., 2018) and RNA polymerase (Zhang et al., 2016).

This protocol enabled us to capture the entire mechanism of G-protein activation, including GDP

release and the rate-limiting step for this process. Identifying the rate-limiting step for this process is

of great value because GDP release is the rate-limiting step for G-protein activation and downstream

signaling. Therefore, the key structural and dynamical changes responsible for activation should be

apparent from the rate-limiting conformational transition for this dissociation process.

To identify the rate-limiting step, we applied transition path theory (Noé et al., 2009;

Weinan and Vanden-Eijnden, 2006) to find the highest flux paths from bound structures resembling

the GDP-bound crystal structure to fully dissociated conformations. Then, we identified the least

probable steps along the 10 highest flux release pathways (Figure 2A and Figure 2—figure supple-

ment 2), which represent the rate-limiting step of release. By comparing the structures before and

after the rate-limiting step, we define the bound state as all conformations where the distance from

the center of mass of GDP’s phosphates to the center of mass of three residues on H1 that contact

the GDP b-phosphate (Lys52G.H1.1, Ser53G.H1.2, and Thr54G.H1.3) is less than 8 Å. Consistent with this

definition, this distance remains less than 8 Å throughout the entirety of 35.3 ms of GDP-bound

simulations.

The conformational changes we observe during the rate-limiting step are consistent with previous

structural and biochemical work. For example, we observe that the Ras-like and helical domains sep-

arate (Figure 2C and Source data 3), as observed in DEER experiments (Van Eps et al., 2011) and

previous simulations (Dror et al., 2015). This finding is consistent with the intuition that these

domains must separate to sterically permit GDP release, and that this separation is driven by the dis-

ruption of multiple inter-domain interactions. For example, we note a disrupted salt bridge between

K275G.s5hg.1 and D155H.hdhe.5 (Figure 2—figure supplement 4), previously identified in structural

studies (Flock et al., 2015). Domain opening is accompanied by disruption of a key salt bridge

between Glu49G.s1h1.4 of the P-loop and Arg183G.hfs2.2 of switch 1 (Figure 2D and Source data 3),

as well as an increase in the disorder of many of the surrounding residues (Figure 2B and Figure 2—

figure supplement 3A), consistent with the proposal that this salt bridge stabilizes the closed, GDP-

bound state (Liang et al., 2017).

While domain opening is necessary for GDP release, previous simulations suggest it is insufficient

for unbinding (Dror et al., 2015). Indeed, we also see that this opening is necessary but not suffi-

cient for GDP unbinding, as the Ras-like and helical domains often separate prior to release

(Figure 2C and Source data 3). Notably, the Ras-like and helical domains only separate by ~10 Å

during the rate-limiting step. In contrast, these domains separate by 56 Å in the first structure of a

GPCR-G-protein complex. This result suggests that GDP release may have occurred long before a G

protein adopts the sort of widely opened conformations observed in crystallographic structures

(Rasmussen et al., 2011).

Tilting of H5 helps induce GDP release
We also observe less expected conformational changes associated with GDP release. The most strik-

ing is tilting of H5 by about 26˚ (Figure 3A, and Figure 3—figure supplement 1). We find that H5

tilting correlates strongly with the distance between GDP and Gaq along the highest flux dissocia-

tion pathway (Figure 3B and Source data 1). In particular, substantial tilting of H5 is coincident with

the rate-limiting step for GDP release. This tilting contrasts with X-ray structures and the universal

mechanism, in which H5 is proposed to translate along its helical axis towards the GPCR, initiating

the process of GDP release (Figure 3A). During our simulations we also observe translation of H5,

but it is not correlated with the rate-limiting step of GDP release (Figure 3C, Figure 3—figure

Figure 3 continued

Figure supplement 1. Probability distribution of the distance between Leu349G.H5.16 on H5 and Phe194G.S2.6 on

S2 to monitor the tilting motion of H5 upon GDP release when bound to GDP (blue), across the rate-limiting step

(orange), and upon GDP dissociation (black).

DOI: https://doi.org/10.7554/eLife.38465.011

Figure supplement 2. H5 vertical motion is sampled across GDP release simulations.

DOI: https://doi.org/10.7554/eLife.38465.012
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supplement 2, and Source data 3). Therefore, we are not merely missing an important role for

translation due to insufficient sampling.

The potential importance of H5 tilting is supported by other structural data. For example, a crys-

tal structure of rhodopsin (Choe et al., 2011) with a C-terminal fragment from H5 of Gat shows a

similar degree of tilting (Figure 3A). Also, the tilt of H5 varies in crystal structures of the b2AR-Gs

complex (Rasmussen et al., 2011), two different GLP-1 receptor-Gs complexes (Liang et al., 2017;

Zhang et al., 2017), and an A2AR-mini-Gs complex (Carpenter et al., 2016). The potential rele-

vance of tilting has also been acknowledged by a number of recent works (Flock et al., 2015;

Rasmussen et al., 2011; Oldham et al., 2006) including four recently published structures of recep-

tor-G-protein complexes across which H5 also shows a broad range of tilting and translational

motion (Koehl et al., 2018; Draper-Joyce et al., 2018; Garcı́a-Nafrı́a et al., 2018; Kang et al.,

2018). Interestingly, the tilting and translation we observe falls within the observed range of tilting

and translational motions that H5 undergoes in available GPCR-G protein complex structures

(Rasmussen et al., 2011; Koehl et al., 2018; Draper-Joyce et al., 2018; Garcı́a-Nafrı́a et al., 2018;

Kang et al., 2018), providing support that conformational selection plays an important role (Fig-

ure 3—source data 1). Finally, H5 is translated toward the GPCR in the A2AR-mini-Gs structure but

GDP remains bound (Carpenter et al., 2016). The authors of that study originally suggested that

one of the mutations in mini-Gs decouples H5 translation from GDP release. However, given that we

see GDP release without H5 translation in our simulations, it is also possible that amino acid substitu-

tions required to create mini-Gs instead mitigate H5 tilting. Both of these models are consistent with

the fact that some of the mutations in mini-Gs stabilize the GDP-bound state (Sun et al., 2015).

We propose that tilting of H5 is an early step in the GDP release process, which is followed by

upward translation of this helix to form a GPCR-G protein complex primed to bind GTP. This hypoth-

esis stems from our observation that tilting of H5 is coincident with the rate-limiting step for GDP

release, while translation of H5 only becomes stable after GDP dissociates (Figure 3C). This model is

consistent with previous suggestions that G-protein activation occurs through a series of sequential

interactions with a GPCR (Oldham and Hamm, 2008; Rasmussen et al., 2011). Another possibility

is that any displacement of H5, whether tilting or translation, may be sufficient to trigger GDP

release.

Identification of the allosteric network that triggers GDP release
While conformational changes of H5 are important for Ga activation, other regions could also play a

role (Hilger et al., 2018; Sun et al., 2015). However, it is not straightforward to determine what

other structural elements contribute to activation or their importance relative to H5. Our hypothesis

that spontaneous motions of a protein encode functionally relevant conformational changes sug-

gests that the coupling between the GPCR- and nucleotide-binding sites of Ga should be present in

simulations of the inactive protein; This provides a means to identify key elements of this allosteric

network. To test this hypothesis, we ran 35.3 ms of simulation of GDP-Gaq. Then we applied the

CARDS method (Singh and Bowman, 2017) to detect correlations between both the structure and

dynamical states of every pair of dihedral angles. Structural states are determined by assigning dihe-

dral angles to the three dominant rotameric states for side-chains (gauche+, gauche-, and trans) and

the two dominant rotameric states for backbone dihedrals (cis and trans). Dynamical states are

determined by whether a dihedral angle remains in a single rotameric state (ordered) or rapidly tran-

sitions between multiple rotameric states (disordered). These pairwise correlations serve as a basis

for quantifying the correlation of every residue to a target site, such as the GPCR-binding site. Com-

bining these correlations with structural and dynamical changes in our model of GDP release pro-

vides a basis for inferring how perturbations to the GPCR-binding site are transmitted to the

nucleotide-binding site. We focus our analysis on the most direct routes for communication between

the GPCR- and nucleotide-binding sites by following correlated motions that emanate from struc-

tural elements that directly contact GPCRs until they reach the GDP-binding site. There are correla-

tions between many other elements of Gaq, including parts of the helical domain, that branch off of

this allosteric network. Such correlations may be important for aspects of Ga function besides activa-

tion, but are beyond the scope of the present study, which focuses on how GPCR-binding impacts

nucleotide release.

To understand how H5 tilting triggers GDP release, we first identified structural elements with

strong coupling to H5 and then worked our way outward in repeated iterations until we reached the
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Research article Computational and Systems Biology Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.38465


Figure 4. Allosteric network connecting H5 motion to the nucleotide binding-site via s6h5. CARDS data showing communication per residue to a target

site (dashed box) is plotted (left) and mapped onto the structure of Gaq (right) for (A) H5, (B) s6h5, (C) HG, (D) H1, and (E) the P-loop. Arrows indicate

regions of importance with significant communication to the target site.

DOI: https://doi.org/10.7554/eLife.38465.014
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nucleotide-binding site (Figure 4 and Source data 2). This analysis reveals that tilting of H5 directly

communicates with and impacts the conformational preferences of the s6h5 loop, which contacts

the nucleobase of GDP (Figure 4, Figure 5, Source data 2, and Source data 3). During the rate-lim-

iting step, these contacts are broken and there is increased disorder in the s6h5 loop, particularly

Ala331 of the TCAT motif (Figure 5 and Figure 2—figure supplement 3B). The importance of the

TCAT motif in our model is consistent with its conservation and the fact that mutating it accelerates

GDP release (Iiri et al., 1994; Posner et al., 1998; Thomas et al., 1993). Based on our model, we

propose these mutations accelerate release by weakening shape complementarity with GDP.

We also observe an important role for communication from H5 to H1, consistent with the univer-

sal mechanism. In particular, H1 is strongly coupled with the s6h5 loop (Figure 4B and Source data

2), which is sensitive to displacement of H5. In the rate-limiting step, s6h5 moves away from H1, con-

tributing to an increase in disorder of H1 and the P-loop (Figure 2—figure supplement 3A and Fig-

ure 2—figure supplement 3B). Increased disorder in a set of residues that directly contact the GDP

phosphates (Glu49G.s1h1.4, Ser50G.s1h1.5, Gly51G.s1h1.6, Lys52G.H1.1, and Ser53G.H1.2) likely contributes

to a reduced affinity for GDP (Figure 2—figure supplement 3A). Increased disorder in these resi-

dues also contributes to disruption of the salt bridge between Glu49G.s1h1.4 of the Ras-like domain

and Arg183G.hfs2.2 of the helical domain, facilitating inter-domain separation.

We further note that the s6h5 loop impacts the nucleotide-binding site through allosteric cou-

pling with the HG helix, which also contacts GDP via Lys275G.s5hg.1 and Asp277G.HG.2 (Figures 4E

and 6). The disorder of both of these residues increases during the rate-limiting step, consistent with

observations of increased mobility in HG upon receptor-mediated activation (Oldham and Hamm,

2008). There are also correlations between the P-loop and Lys275G.s5hg.1 on Helix G (Figure 4E and

Source data 2), which result from the disruption of a key salt bridge between Lys275G.s5hg.1 and

Glu49G.s1h1.4 on the P-loop during the rate-limiting step (Figure 6 and Source data 3). Lys275G.s5hg.1

is conserved across all Ga families, suggesting it plays an important role in the stability or function

of the protein. However, attempts to experimentally examine the role of this residue by mutating

Lys275G.s5hg.1 have resulted in aggregation (Sun et al., 2015). Our simulations suggest Lys275G.

s5hg.1 plays an important role in stabilizing the GDP-bound state and that breaking the salt bridge

with Glu49G.s1h1.4 facilitates GDP release. This finding demonstrates the utility of our atomistic simu-

lations, as we can examine the role of residues that are difficult to probe experimentally.

Figure 5. Change in the s6h5 loop conformation across the rate-limiting step. Distribution of distances (left) from

GDP’s b-phosphate to Ala331G.s6h5.3 on the s6h5 loop before (blue) and after (orange) the rate-limiting step, as

well as after GDP release (black). Representative structures of the s6h5 loop (right) are shown for before (top right,

blue) and after (bottom right, orange) the rate limiting step.

DOI: https://doi.org/10.7554/eLife.38465.015
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H1 and the b-sheets are communication hubs
To identify other important structural elements in the allosteric network underlying G protein activa-

tion, we followed correlated motions emanating from other sites that are known to interact directly

with GPCRs, including the hNs1 loop, the h3s5 loop, and the h4s6 loop (Oldham and Hamm, 2008).

We find that h3s5 and h4s6 are largely isolated, suggesting they play a role in forming a stable

GPCR-G protein complex but not in the allosteric mechanism that triggers GDP release. This finding

is consistent with sequence analysis suggesting these structural elements are important determinants

of the specificity of GPCR-Ga interactions (Flock et al., 2017). In contrast, the hNs1 loop has strong

correlations with b-strands S1-S3 (Figure 7 and Source data 2). These strands, in turn, communicate

with H1, switch 1, and the P-loop.

Integrating our correlation analysis with structural insight from the rate-limiting step described

above suggests an important role for S1-S3 in a complex allosteric network that couples the GPCR-

and nucleotide-binding sites (Figures 7 and 8, Figure 7—figure supplement 1, and Source data 2).

S2 and S3 twist relative to S1 and away from H1 (Figures 2A and 9, Figure 9—figure supplement

1, and Source data 3). This twisting disrupts stacking between Phe194G.S2.6 on S2 and His63G.H1.12

on H1 and increases disorder of side-chains in H1 (Figures 2B and 9, Figure 2—figure supplement

3C, and Source data 3). Increased disorder in H1 is also a crucial component of the proposed uni-

versal mechanism, but in that model translation of H5 is the key trigger for changes in H1. The role

Figure 6. Probability distributions of the distance between the side-chains of Lys275G.s5hg.1 and Glu49G.s1h1.4.

Distributions were computed for the bound (blue), rate-limiting step (orange), and dissociated (black)

states. Representative structures (above) for the bound (left, blue) and rate-limiting step (right, orange) are

included with residues as sticks.

DOI: https://doi.org/10.7554/eLife.38465.016
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Figure 7. Allosteric network connecting hNs1 motion to the nucleotide-binding site via the b-sheets. CARDS data showing communication per residue

to a target site (dashed box) is plotted (left) and mapped onto the structure of Gaq (right) for (A) hNs1, (B) S1, (C) S3, (D) S2, and (E) H1. Arrows

indicate regions of importance with significant communication to the target site.

DOI: https://doi.org/10.7554/eLife.38465.017

Figure 7 continued on next page
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for the b-sheets in our model is consistent with previous work identifying interactions between S2

and H1 (Flock et al., 2015), NMR experiments showing chemical exchange in the methyls of S1-S3

upon receptor binding (Toyama et al., 2017), and mutational data. In particular, Flock et al. have

previously noted the important interaction between residues Phe194G.S2.6 and His63G.H1.12

(Flock et al., 2015).

The importance of H1 and b-strands S1-S3 is underscored by mapping the global communication

of every residue onto a structure of Ga (Figure 8—figure supplement 1). The global communication

of a residue is the sum of its correlations to every other residue and is a useful metric for identifying

residues that are important players in allosteric networks (Singh and Bowman, 2017). Interestingly,

these b-strands and H1 have higher global communication than H5 and the s6h5 loop. This suggests

that H1 and the b-sheets integrate conformational information from multiple sources, including the

hNs1 loop, and not just H5. The importance of the b sheets and H1 for allosteric communication is

consistent with their conservation (Sun et al., 2015), which may not simply reflect the role they play

in protein folding and stability, as had been suggested previously (Sun et al., 2015; Hatley et al.,

2003).

Figure 7 continued

The following figure supplement is available for figure 7:

Figure supplement 1. Allosteric network connecting hNs1 contacts to the P-loop and switch 1 via S4.

DOI: https://doi.org/10.7554/eLife.38465.018

Figure 8. Allosteric network connecting the GPCR- and nucleotide-binding interfaces. The coloring scheme

corresponds to that used in Figure 1, highlighting the GPCR binding interface (gray), GDP phosphate-binding

regions (pink), GDP nucleotide-binding regions (green), and the b-sheets (blue).

DOI: https://doi.org/10.7554/eLife.38465.019

The following figure supplement is available for figure 8:

Figure supplement 1. Global communication of each residue in the Ras-like domain mapped onto the structure

of Gaq, colored based on the scale (right).

DOI: https://doi.org/10.7554/eLife.38465.020
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GDP release alters the structure and dynamics of the Gb-binding site
We also find that switch 2 has strong correlations with the nucleotide-binding site, especially switch

1 (Figure 7—figure supplement 1 and Source data 2). Given that switch 2 is a major component of

the interface between Ga and Gb, this communication could enable GDP release to trigger dissocia-

tion of Ga from Gbg . Examining the rate-limiting step for GDP release reveals that switch 2 shifts

towards the nucleotide-binding site (Figure 10 and Source data 3) and exhibits increased conforma-

tional disorder (Figure 2B and Figure 2—figure supplement 3D). These findings are consistent with

previous kinetic studies postulating that switch 2 dynamics are impacted prior to GDP release

(Herrmann et al., 2004).

Figure 9. p–stacking between S2 and H1 is disrupted during the rate-limiting step. Distribution of the c1 angle

(bottom) of Phe194G.S2.6 on S2 before (blue) and after (orange) the rate-limiting step, as well as after GDP release

(black). Representative structures of Phe194G.S2.6 and His63G.H1.12 (top) corresponding to before and after the rate-

limiting step are also shown.

DOI: https://doi.org/10.7554/eLife.38465.021

The following figure supplement is available for figure 9:

Figure supplement 1. Probability distributions of the twist angle between S1 and S3.

DOI: https://doi.org/10.7554/eLife.38465.022
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Conclusions
We have succeeded in simulating G protein activation, including both the allosteric coupling

between the GPCR- and nucleotide-binding sites of Gaq and consequent unbinding of GDP. Our

results reveal a previously unobserved intermediate that defines the rate-limiting step for GDP

release and, ultimately, G protein activation. Our model synthesizes a wealth of experimental data

and previous analyses. For example, we identify an important role for coupling from H5 to the s6h5

loop and H1 that is consistent with a previously proposed universal mechanism for G protein activa-

tion. However, we also find that this allosteric network incorporates the hNs1 loop, b-strands S1-S3,

and the HG helix. Strands S1-S3 and H1 serve as hubs in this network, simultaneously integrating

information from both H5 and the hNs1 loop. Our observation is consistent with previous postulates

that information flows from H5 and hNs1 to H1 (Preininger et al., 2013). It is important to note that

our model was extracted using simulations of Gaq, and so some correlations or changes in confor-

mation and dynamics may apply only to Gaq. However, by focusing our analysis on secondary struc-

ture elements and residues that are shared across all Ga homologs, our model likely captures a

universal ‘skeleton’ of changes involved in Ga activation, expanding upon a previously proposed uni-

versal mechanism for Ga activation (Flock et al., 2015). The consistency of our model with a wide

variety of structural and biochemical data suggests that it is a promising foundation for future efforts

to understand the determinants of GPCR-Ga interaction specificity, how mutations cause aberrant

signaling and disease, and how small molecule inhibitors modulate Ga activation. Our model also

adds weight to the growing appreciation for the fact that a protein’s spontaneous fluctuations

encode considerable information about its functional dynamics (Koehl et al., 2018; Draper-

Joyce et al., 2018; Garcı́a-Nafrı́a et al., 2018; Kang et al., 2018). Construction of our model was

enabled by a powerful combination of simulation methods, namely metadynamics and MSMs. In the

future, we expect this methodology will prove valuable for understanding other slow conformational

changes and unbinding processes.

Figure 10. Switch 2 moves towards GDP across the rate-limiting step. Distance distribution (left) of Gly207G.s3h2.1

to GDP before (blue) and after (orange) the rate-limiting step, as well as after GDP release (black). Representative

structures of Switch 2 motion are shown (right).

DOI: https://doi.org/10.7554/eLife.38465.023
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Materials and methods

Molecular dynamics simulations of GDP unbinding
System preparation
We used the crystal structure of Ga from the heterotrimeric Gaq protein (PDB entry 3AH8) as the

initial structure to set up our simulations (Nishimura et al., 2010). The first 36 residues were

removed prior to simulation, as they come from Gai, along with the Gb and Gg subunits which were

removed to minimize the system size and maximize our chances of observing GDP release

(Oldham and Hamm, 2008).

The protein structure was solvated in a dodecahedron box of TIP3P water (Jorgensen et al.,

1983) that extended 1 nm beyond the protein in every dimension. A single Mg2+ ion was added

coordinating the phosphate groups of GDP as its presence accelerates GDP release (Zhang et al.,

2000). Thereafter, Na+ and Cl- were added to produce a neutral system at 0.15 M NaCl. The final

system consists of one GDP, one Gaq, 57 Cl�1, 64 Na+1, one Mg2+, and 18696 TIP3P water mole-

cules, for a total of 61,893 atoms.

Molecular dynamics (MD) simulations were carried out using Gromacs (Abraham et al., 2015;

Van Der Spoel et al., 2005) and the AMBER03 force field (Duan et al., 2003). The force field

parameters of GDP were obtained from the AMBER Parameter Database (http://research.bmh.man-

chester.ac.uk/bryce/amber) (Meagher et al., 2003). The system was energy minimized with the

steepest descent algorithm for 50,000 steps until the maximum force fell below 100 kJ/mol/nm using

a step size of 0.02 nm and a cut-off distance of 0.9 nm for the neighbor list, electrostatic interactions

and van der Waals interactions. Afterward, the solvent was relaxed by a NVT simulation of 100 ps

with the constraint of 1000 kJ/mol/nm applied to the protein heavy atoms and 2 fs as the time step.

In this relaxation simulation, the temperature of the system is constrained to 300 K using V-rescale

thermostat (with a time constant of 0.1 ps) (Bussi et al., 2007). A cut-off distance of 1 nm was used

for the van der Waals, short-range electrostatic interactions. Periodic boundary conditions are

applied to x, y and z directions. The Particle-Mesh-Ewald method is employed to recover the long-

range electrostatic interactions with 0.16 nm as the grid spacing and with a fourth order spline

(Kolafa and Perram, 1992). All the bonds connecting to hydrogens are constrained using LINCS

algorithm (Hess, 2008). After the NVT relaxation, the system further underwent an NPT simulation

for one ns with the time step of 2 fs for equilibration. The simulation parameters here are kept the

same as the NVT relaxation except for the application of Parrinello-Rahman barostat for pressure

coupling (Parrinello and Rahman, 1981). After these equilibration runs, the constraint on heavy

atoms were removed for all subsequent production runs. Virtual sites were used to allow for a 4 fs

time-step (Feenstra et al., 1999). We then applied a three-step protocol to simulate GDP release.

Step one: MD simulations of the GDP-bound state
We performed 100 parallel simulations of the GDP bound state on the Folding@home (Shirts and

Pande, 2000) distributed computing environment for an aggregate simulation time of 35.3 ms.

Step two: Metadynamics simulations
We subsequently ran metadynamics simulations (Laio and Parrinello, 2002; Tribello et al., 2014)

initiated from conformations generated in step one to actively promote GDP release. Starting con-

formations were selected from step one by clustering protein conformations into 625 states using a

hybrid K-center/K-medoids method (Beauchamp et al., 2011) with a 2 Å cutoff. The 10 most popu-

lated states included conformations with large inter-domain separation distances between the Ras-

like and AH domains as measured by the angle formed between the a-carbon atoms of Leu97H.

HA.29, Asn82H.HA.14, Ile258G.H3.12, and Glu250G.H3.4. This inter-domain angle ranged from �30˚ to 0˚.

From these states, three representative structures were chosen with inter-domain angles of �6˚

(Conf. 1),–10˚ (Conf. 2), and �26.6˚ (Conf. 3) as starting conformations for metadynamics simulations,

which were run on PLUMED (Tribello et al., 2014). We defined two collective variables for our meta-

dynamics simulations: 1) the distance between GDP’s phosphate groups and the backbone of

Lys52G.H1.1-Thr54G.H1.3 in Gaq subunit (CV1), and 2) the RMSD of GDP to the starting conformation

(CV2).
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In metadynamics, a history-dependent biased potential VG S; tð Þ is added to the two selected

CVs.

VG S; tð Þ ¼

Z t

0

dt
0

! exp �
X

d

i¼1

Si Rð Þ� Si R t
0� �� �� �2

2s2

i

 !

where t represents time, S are collective variables, ! is the energy rate and si controls the width of

the Gaussian for the ith collective variable. Summing up the Gaussians allows us to obtain the biased

potential VG. The free energy �F Sð Þ is derived by the assumption,

t!¥
limVG S; tð Þ~ �F Sð Þ

The metadynamics simulations were repeated three times for each selected representative struc-

ture using different Gaussian widths (Table 1). We set the Gaussian height to 1.5 kJ/mol.

We observed the release of GDP from Ga in the metadynamics simulations and obtained the

free-energy landscape for the release. We then applied the string method (Maragliano et al., 2006)

to detect potential release pathways and use these conformations as the seeds for simulations in

step 3. We can use the function � að Þ to represent � C1;C2ð Þ which showing the minimum free-energy

path. We thus have

dZ að Þ

da
¼
X
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which is parallel to
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can be represented as
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The points determining the minimum free-energy path along the surface satisfy

0 ¼ Mij zð ÞDF z að Þð Þ
� �?

.

Table 1. Details of metadynamics simulations.

Starting conformation Width of CV1 (Å) Width of CV2 (Å) Number of conformations selected

1 0.1 0.1 171

1 0.08 0.03 132

1 0.03 0.01 504

2 0.1 0.1 145

2 0.08 0.03 141

2 0.03 0.01 320

3 0.1 0.1 198

3 0.08 0.03 186

3 0.03 0.01 288

DOI: https://doi.org/10.7554/eLife.38465.024
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We applied this method (Maragliano and Vanden-Eijnden, 2007; Maragliano et al., 2014) to

obtain a minimum free energy path, extracting 2085 conformations along potential GDP release

pathways. Notably, we only observed the transition from the bound state and the unbound state for

one time in a single metadynamics simulation. This implies that the predicted free-energy surface

from metadynamics cannot be used to describe the release events accurately. In spite of this, we can

still use the conformations along the release pathway explored by metadynamics to seed unbiased

parallel MD simulations.

Step three: Metadynamics-seeded MD simulation of GDP release
Lastly, we carried out unbiased MD simulations initiated from the 2085 conformations obtained from

metadynamics using the Folding@home platform (Shirts and Pande, 2000). A total of 122.6 ms of

simulation was generated in this step. All the following analyses are based on unbiased MD

simulations.

Identifying the allosteric network with CARDS
To determine how the GPCR- and GDP-binding regions communicate with one another, we applied

the CARDS (Singh and Bowman, 2017) methodology to simulations of the GDP-bound state of

Gaq. CARDS measures communication between every pair of dihedrals via both correlated changes

in structural motions and dynamical behavior. Structural states are captured by discretizing back-

bone F and  dihedrals into two structural states (cis and trans), while side-chain � angles are placed

into three states (gauche+, gauche-, and trans). Every dihedral is also parsed into dynamical states,

capturing whether the dihedral is stable in a single state (ordered), or rapidly transitioning between

multiple states (disordered). These dynamical states are identified using two kinetic signatures of

dihedral motion: the average time a dihedral persists in a structural state (an ordered timescale), and

the typical timescale for transitions between structural states (a disordered timescale). Parsing into

dynamical states utilizes a two-step process by (i) calculating the distribution or ordered and disor-

dered times from the simulations and (ii) assigning each period of time between two consecutive

transitions into ordered and disordered states based on which distribution the time between two

transitions is most consistent with.

From these states, a holistic communication IH X; Yð Þð Þ is computed for every pair of dihedrals

X and Y:

IH X;Yð Þ ¼ Iss X;Yð Þþ Isd X;Yð Þþ Ids X;Yð Þþ IddðX;YÞ

where Iss X;Yð Þ is the normalized mutual information between the structure (i.e., rotameric state) of

dihedral X and the structure of dihedral Y , Isd X;Yð Þ is the normalized mutual information between

the structure of dihedral X and the dynamical state of dihedral Y, Ids X;Yð Þ is the normalized mutual

information between the dynamical state of dihedral X and the structure of dihedral Y , and Idd X;Yð Þ

is the normalized mutual information between the dynamical state of dihedral X and the dynamical

state of dihedral Y. The Mutual Information (I) is

I X;Yð Þ ¼
x2X

X

y2Y

X

p x;yð Þ log
p x;yð Þ

p xð Þp yð Þ

� �

where x 2 X refers to the set of possible states that dihedral X can adopt, p xð Þ is the probability that

dihedral X adopts state x, and p x;yð Þ is the joint probability that dihedral X adopts state x and dihe-

dral Y adopts state y. Normalized mutual information is computed using the maximum possible

mutual information for any specific mode of communication.

From the pairwise correlation for every dihedral-pair, we extracted how much each individual resi-

due communicates with a target site of interest via bootstrapping with 10 random samples with

replacement. After locating the group of residues communicating most strongly with a specific tar-

get site, we set this newly identified group as the new target site; The iteration of this process allows

us to identify a pathway of communication from one region of interest to another. Here, we set the

GPCR contact sites as our initial target sites. We then iteratively used this approach to identify path-

ways connecting these contact sites with the GDP-binding site of Gaq.
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Markov state model construction
We clustered Gaq conformations and GDP binding states separately and combined the assignments

to build a Markov State Model using MSMbuilder (Beauchamp et al., 2011; Bowman et al., 2009)

and enspara (Porter et al., 2018). First, we clustered protein conformations into 5040 states using a

hybrid k-center/k-medoids method with 1.8 Å cutoff. Then we clustered the GDP-binding state into

321 states using the automatic partitioning algorithm (APM) (Sheong et al., 2015) with a residence

time of 2 ns. By combining the assignments from protein conformations and the GDP-binding states,

we obtained a total of 221,965 states. The implied timescales of this MSM show Markovian behavior

with a lag time of 5 ns (Swope et al., 2004). (Figure 2—figure supplement 5). Analyses of distan-

ces, angles, and dihedrals of interest were carried out using bootstrapping with ten random samples,

with replacement. Results were insensitive to varying the number of bootstrapped samples between

5 and 30. Histograms were generated using 100 bins.

Quantifying conformational disorder
The disorder of every residue was measured by computing Shannon entropy (Shannon, 1948) of

each dihedral as they are natural degrees of freedom for describing protein dynamics. Shannon

entropy (HÞ is defined as

H Xð Þ ¼ �
x2X

X

p xð Þ log p xð Þð Þ

where x2 X refers to the set of possible states that dihedral X can adopt and p xð Þ is the probability

that dihedral X adopts state x. Dihedral angles were calculated using MDTraj (McGibbon et al.,

2015) and assigned to discrete rotameric states as described above using CARDS. The entropy of a

single residue was computed by summing up the entropies of its dihedrals, and normalized by the

residue’s maximum possible Shannon entropy. This maximum possible Shannon entropy, using a flat

distribution for the appropriate number of bins, is referred to as the ’channel capacity’ and has been

used to normalize other information-theoretic metrics (Singh and Bowman, 2017). Summing entro-

pies within a residue establishes an upper bound on the degree of motion for a single residue, while

ignoring intra-residue correlations between dihedrals.

Identification of the rate-limiting step for GDP release
We used transition path theory (TPT) (Noé et al., 2009; Weinan and Vanden-Eijnden, 2006) to find

the highest flux paths from the bound state to the unbound state (Metzner et al., 2009). The bound

state was defined as all clusters that satisfied two criteria: (i) GDP is within 6 Å of the backbone

atoms of Lys52-Thr54, and (ii) GDP has an RMSD <0.5 Å to its crystallographic conformation. The

unbound state was defined as all clusters with GDP > 55 Å from the binding pocket. The rate-limit-

ing step was identified by finding the bottleneck in the highest flux paths. To obtain this, we first cal-

culate the flux between states i and j along any possible unbinding path using

f BUij ¼
piq

�
i Tijq

þ
j i 6¼ j

0 i¼ j

�

where qþi is the committor probability from the bound to the unbound state, and q�i is 1-qþi ; pi is the

weighted probability, and Tij is the transition matrix. The highest flux paths can be identified by max-

imizing the fluxes between the bound states and the unbound states using

c wð Þ ¼min fþil ilþ1
jl¼ 1::nw� 1

� �

where il are intermediate states. From this, the slowest step was extracted as the minimum flux step

of the highest flux release pathway.
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