
THE NATURAL HISTORY OF MODEL ORGANISMS

Frommolecular manipulation of
domesticated Chlamydomonas
reinhardtii to survival in nature
Abstract In the mid-20th century, the unicellular and genetically tractable green alga Chlamydomonas reinhardtii

was first developed as a model organism to elucidate fundamental cellular processes such as photosynthesis, light

perception and the structure, function and biogenesis of cilia. Various studies of C. reinhardtii have profoundly

advanced plant and cell biology, and have also impacted algal biotechnology and our understanding of human

disease. However, the ’real’ life of C. reinhardtii in the natural environment has largely been neglected. To extend

our understanding of the biology of C. reinhardtii, it will be rewarding to explore its behavior in its natural habitats,

learning more about its abundance and life cycle, its genetic and physiological diversity, and its biotic and abiotic

interactions.
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Introduction
Chlamydomonas reinhardtii is a single-celled

green alga found in temperate soil habitats (Fig-

ure 1). It has proven to be such a powerful

model for dissecting fundamental processes in

biology that investigators have dubbed it the

’green yeast’ (Goodenough, 1992;

Rochaix, 1995). Ehrenberg described the genus

Chlamydomonas in 1833, and Dangeard the

species C. reinhardtii in 1888 (Harris et al.,

2009). Chlamydomonas was found suitable for

genetic studies in the early 20th century (Har-

ris, 2001), while the development of C. rein-

hardtii as a model organism dates to the 1950s

when the first mutants were generated

(Harris, 2009).

Various features make C. reinhardtii an excel-

lent laboratory species. It grows vegetatively as

a haploid, which allows mutant phenotypes to

be expressed immediately. Under optimal condi-

tions, C. reinhardtii grows so rapidly that its

numbers can double approximately every 8

hours (Harris, 2001). The fact that it can grow in

the dark on acetate-containing medium while

retaining a functional photosynthetic apparatus,

has allowed even light-sensitive photosynthesis

mutants to be isolated (Levine, 1969;

Spreitzer and Mets, 1980). The motile cilia

of this photosynthetic eukaryote share the same

structure and many of the same constituent pro-

teins as those of mammals, and so research into

its motility prompted studies that greatly

advanced our understanding of cilium dysfunc-

tions in humans (Brown and Witman, 2014).

Furthermore, C. reinhardtii can be induced to

sexually reproduce in the laboratory, making it

easy to introduce multiple traits into a single

haploid strain (e.g. to generate double or triple

mutants). The power of C. reinhardtii as a model

organism was further elevated by the advent of

genetic transformation (Boynton et al., 1988;

Kindle, 1990; Remacle et al., 2006), the estab-

lishment of a full nuclear genome sequence

(Merchant et al., 2007), the construction of a

genome-wide library of mapped, indexed inser-

tional mutants (Li et al., 2016) and CRISPR-

mediated targeted gene disruptions

(Ferenczi et al., 2017 and references therein).

Studies of C. reinhardtii have enabled numer-

ous landmark discoveries and advances. One

remarkable example is the discovery of intrafla-

gellar transport of granule-like particles
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(Kozminski et al., 1993) and the roles of motor

proteins in the process (Prevo et al., 2017 and

references therein). Furthermore, structural anal-

yses of wild type and mutants with defective cilia

have massively contributed to our knowledge of

the building blocks of these structures, their

organization and their function

(Goodenough and Heuser, 1985; Silflow and

Lefebvre, 2001; Nicastro et al., 2006). These

analyses also led to classic studies that demon-

strated that abnormal cilia could cause human

genetic diseases such as polycystic kidney dis-

ease (Pazour et al., 2000; Li et al., 2004). Addi-

tionally, acetate-requiring mutants (often unable

to perform photosynthesis) have immensely

advanced our understanding of photosynthesis,

especially the ordering of electron carriers in the

photosynthetic electron transport chain (e.g.

Figure 1. Structure of a vegetative Chlamydomonas reinhardtii cell. This cell has a 5-10 mm diameter

(Gallaher et al., 2015). The two anterior cilia possess a 9+2 microtubule structure characteristic of motile cilia of

eukaryotes. The cilia are critical for mating processes and confer motility to the cell (Harris, 2001). A single cup-

shaped chloroplast occupies a large proportion of the cell’s volume. This organelle houses the machinery for

oxygenic photosynthesis and contains the pyrenoid, a structure in which Rubisco is concentrated; the pyrenoid is a

component of the carbon concentrating mechanism (CCM) which functions to concentrate inorganic carbon in the

cell against a concentration gradient (Mackinder et al., 2016). Close to the cell equator, at the edge of the

chloroplast, is the eyespot. This primordial visual system allows the cells to orient their swimming toward or away

from the light (phototaxis). Under hypoosmotic conditions, the cytoplasmic water content is maintained by

pumping water out of the cell through contractile vacuoles positioned at the cell’s anterior (Komsic-

Buchmann et al., 2014). At the base of the cilia are the basal bodies, which are responsible for ciliary assembly

(Dutcher and O’Toole, 2016). Other features of the cell include a centrally located nucleus, a proteinaceous cell

wall, Golgi bodies within the cup-shaped region formed by the chloroplast, and mitochondria. Image credit:

Debbie Maizels.
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Gorman and Levine, 1965). Two core proteins

of photosystem II (D1 and D2) were first identi-

fied in C. reinhardtii (Chua and Gillham, 1977)

and later proposed to be key components of

this photosystem’s reaction centers

(Deisenhofer et al., 1985; Trebst, 1986;

Satoh, 2003). More recently, a central role of

the STT7 kinase in photosynthetic state transi-

tions (Depège et al., 2003), and a key function

of the xanthophyll cycle in nonphotochemical

quenching were first established in C. reinhardtii

(Niyogi et al., 1997).

The field of optogenetics experienced

a recent quantum leap with the discovery of

channelrhodopsins in C. reinhardtii. When

expressed in other cells, these gated ion chan-

nels can be stimulated with light to activate vari-

ous processes, including neuronal

activity (Hegemann and Nagel, 2013). Sophisti-

cated genetic, biochemical and cell biological

analyses of C. reinhardtii are currently being per-

formed to understand the cell cycle (Cross and

Umen, 2015), basal bodies/centrioles function

(Dutcher and O’Toole, 2016), pyrenoid struc-

ture (Freeman Rosenzweig et al., 2017),

mechanisms associated with photoreceptor func-

tion and light acclimation (Minagawa and

Tokutsu, 2015; Petroutsos, 2017) and organis-

mal interactions in ecosystems (Thrane et al.,

2016). Finally, C. reinhardtii is being exploited

to study the evolution of multicellularity, espe-

cially with respect to multicellular algal species

of the order Volvocales (Hallmann, 2011).

Habitats and biogeography
C. reinhardtii can unambiguously be identified

by sequencing internal transcribed spacers (ITS)

or various phylogenetically informative genes

(Pröschold et al., 2005). Yet many ecological

studies have relied on light microscopy to iden-

tify Chlamydomonas species (sensu lato – see

Box 1). Typically, two anterior cilia and a cup-

shaped chloroplast harboring a pyrenoid have

been sufficient criteria for a cell to be consid-

ered a Chlamydomonas sp. This morphology-

based identification may be reliable to the level

of genus, but rarely to the species level since

many species look very similar. For these rea-

sons, at times we omit species designations and

simply note the organism as Chlamydomonas

Box 1. Taxonomic and laboratory history of C. reinhardtii

Based on traditional taxonomic criteria, the genus Chlamydomonas (sensu lato) contains more

than 500 species. In the course of taxonomic revisions, which are still in progress, Chlamydomo-

nas (sensu stricto) is comprised of three species (Pröschold et al., 2018). Accordingly, the taxon-

omy of some species mentioned in this article, such as C. nivalis or C. euryale, may be revised in

the future. Furthermore, our use of the designations ’Chlamydomonas sp.’ and ’Chlamydomonas

spp.’ refers to one or more Chlamydomonas species, respectively, which were typically not clas-

sified to the level of species and may not be C. reinhardtii. The majority of the contemporary C.

reinhardtii laboratory strains were derived from a single zygote isolated from a potato field in

Massachusetts in 1945 (Harris, 2009). The sequencing of 39 common laboratory strains shows

that they fall into five genetically distinct lineages from two parents or haplotypes

(Gallaher et al., 2015). Under laboratory conditions, mutations accumulate at a rate of ~0.03

division-1 genome-1, corresponding to one mutation every 30 generations (Gallaher et al.,

2015). In addition, removal of C. reinhardtii from its natural environment, including cultivation in

the laboratory or cryopreservation, may unintentionally select for specific traits. For example, C.

reinhardtii is often grown on medium containing ammonium as a nitrogen source, which allowed

for the evolution of mutants (nit1, nit2) unable to utilize nitrate (Harris, 2009; Gallaher et al.,

2015). For these reasons, the isolates domesticated for decades in the laboratory may only

loosely correspond to wild C. reinhardtii strains. Furthermore, we do not know if the laboratory

strains are still capable of surviving in the wild. To examine the ecological significance of labora-

tory findings, it will be important to isolate additional wild C. reinhardtii strains and characterize

their behavior both in the field and in culture.

DOI: https://doi.org/10.7554/eLife.39233.003
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sp. A routine use of genetic taxonomic markers

in the future would improve our knowledge of

the geographical distribution of C. reinhardtii

and related species and allow for more precise

classifications.

While Chlamydomonas spp. (not identified at

the species level) occur widely in temperate,

subtropical and tropical soils (Starks et al.,

1981), confirmed C. reinhardtii has only been

found in temperate soils in Northern America

and Japan (Pröschold et al., 2005;

Nakada et al., 2010). It occurs in cultivated

fields but appears absent from many other habi-

tats, suggesting it prefers nutrient-rich, dis-

turbed soils (Sack et al., 1994). Most

contemporary laboratory strains have emanated

from a single soil isolate collected in 1945

(Box 1). Light typically penetrates only milli-

meters into the soil, depending on factors such

as the soil structure and moisture content

(Tester and Morris, 1987; Ciani et al., 2005).

Therefore, photosynthetic microbes are gener-

ally most abundant in the upper few millimeters

where they can harvest light energy, although in

some instances they can be present in soil layers

where there is essentially no light (Met-

ting, 1981). Chlamydomonas spp. are even

present in biological soil crusts where they help

stabilize the surface of drylands, contribute to

primary production and potentially act as pio-

neer species (Büdel et al., 2009).

All unambiguously identified C. reinhardtii iso-

lates were collected from soil habitats (T. Prösc-

hold, personal communication), yet

Chlamydomonas spp. are also commonly found

in the pelagic zone of lakes, where they some-

times form spring blooms (Similä, 1988;

Krivtsov et al., 2000). The term ’pelagic zone’

refers to the water column of lakes and oceans

not on or near the lake or ocean bottom.

Box 2. Outstanding questions about the natural history of

C. reinhardtii

. What are the geographic origins of C. reinhardtii? What are its current geographic and ver-
tical distributions? How do populations of C. reinhardtii quantitatively change over time
and what factors impact these changes? What are the major mechanisms of C. reinhardtii
dispersal? For example, are aquifers common routes for the transport of C. reinhardtii over
long distances?

. What is the genetic variability within and between C. reinhardtii populations? What are the
relationships among populations of the various Chlamydomonas species?

. Do specific pelagic strains of C. reinhardtii exist in lakes? If so, do they have major differen-
ces in their life histories, physiologies and genome sequences compared to soil-dwelling
strains?

. What are the typical division rates of vegetative C. reinhardtii cells in the wild? How fre-
quently does sexual reproduction occur in natural populations? How common are dormant
zygospores in the environment, and where do they occur? Are zygospores typical overwin-
tering forms, and do they also have an increased resistance to challenging biotic
interactions?

. What are the most common biotic interactions of C. reinhardtii in the environment (compet-
ing photosynthetic microbes, grazers, bacteria, fungi)? In what ways does C. reinhardtii
communicate with its neighbors (e.g. infochemical signals)? What is the metabolic signifi-
cance of these interactions?

. How often and under what situations do cells shed their cilia in nature? Is there a selective
advantage of deciliation in response to stress?

. Does C. reinhardtii associate with biofilms on soil particles and, if so, how are the algal cells
organized within the biofilm community?

DOI: https://doi.org/10.7554/eLife.39233.004
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Chlamydomonas spp. are usually motile, and

although this has an energetic cost, it gives them

a competitive advantage in lakes that have strati-

fied into distinct layers as a consequence of sea-

sonal changes in temperature (Striebel et al.,

2009). Under conditions of stratification, motile

algae often ascend toward the lake surface dur-

ing the day to optimize their exposure to sun-

light. During the night, they tend to descend to

access the nutrient-rich environment below the

surface. Indeed, this pattern of vertical move-

ment has been observed for the population of

Chlamydomonas sp. in a small Finnish lake

(Jones, 1988).

Environmental conditions and the availability

and distribution of natural resources differ sub-

stantially in soils and lakes (Sommer et al.,

2012; Coleman et al., 2017). Phosphorous, for

example, is likely to be limiting to the growth of

organisms in lakes and geologically old soils,

while nitrogen limitation is more common in

young soils (Schindler, 1977; Vitousek and

Howarth, 1991). Light availability and grazing

pressure by predators represent additional key

environmental differences between soil and lake

habitats. Consequently, these two habitats

require distinct adaptations and life history strat-

egies to optimize fitness, and it is still an open

question as to whether specific pelagic strains of

C. reinhardtii exist in lakes (Box 2).

Chlamydomonas spp. other than C. reinhard-

tii are adapted to a wide range of habitats. For

example, Chlamydomonas eustigma is an acido-

philic species isolated from acid mine drainage

(Hirooka et al., 2017), Chlamydomonas euryale

is found in temperate marine environments

(Burch et al., 2015), Chlamydomonas spp. have

been isolated from Antarctic ice (Liu et al.,

2006), and some members of the genus Chlamy-

domonas are carotenoid-rich organisms present

on the surface of snow, giving it a red appear-

ance (Remias et al., 2005). A Chlamydomonas

sp. has even been identified in the air at 1,100

meters above the ground: this and other algae

can be dispersed by wind over extended distan-

ces (Brown et al., 1964). Taken together, sev-

eral reports provide information on the

biogeographical distribution of C. reinhardtii

and other Chlamydomonas spp. However, there

is little knowledge of the abundance and varia-

tions of Chlamydomonas spp. in different soil

types, the dynamics of these natural populations

over daily or seasonal cycles, and their physio-

logical capabilities.

Genomics
The chloroplast and mitochondrial genomes of C.

reinhardtii have been sequenced and are 206 and

15.8 kb, respectively (Vahrenholz et al., 1993;

Maul et al., 2002; Gallaher et al., 2018). Since

the sequence of the nuclear genome was first

published (Merchant et al., 2007), the scientific

community has focused some effort on elevating

the quality of the genome sequence and improv-

ing its assembly and annotation (Blaby et al.,

2014). The current version 5.5 nuclear genome is

111 Mb, which is similar in size to the genome of

the model land plant Arabidopsis thaliana

(Blaby et al., 2014). Recently, whole-genome

sequences for more than 50 additional laboratory

strains and field isolates were generated

(Flowers et al., 2015; Gallaher et al., 2015). The

sequences of 12 field isolates confirmed earlier

reports that with a nucleotide diversity (p) of ~3%,

the C. reinhardtii genome is among the most

polymorphic of all eukaryotes (Flowers et al.,

2015). The field strains, isolated from various

locations in the United States and Canada, genet-

ically group into three distinct populations, with

gene flow between populations sufficiently low

to allow the populations to adapt to their local

environments. The low ratio of genome-wide

non-synonymous to synonymous substitutions

(0.58) further indicates that natural selection effi-

ciently eliminates C. reinhardtii alleles of low fit-

ness (Flowers et al., 2015). Whole-genome and

epigenome sequencing has also been used to

examine adaptation in the laboratory under

changing environmental conditions

(Kronholm et al., 2017).

Life cycle and its role in nature
Forming zygotes likely allows C. reinhardtii to sur-

vive when conditions become harsh (Har-

ris, 2001; Goodenough et al., 2007). In the

laboratory, gametogenesis can be induced by

nitrogen starvation (Treier et al., 1989) in con-

junction with specific light conditions; both sig-

nals may inform the cell of deteriorating

environmental conditions (see below). The fusion

of haploid gametes results in diploid zygotes that

can develop over several days into highly resis-

tant, dormant zygospores (Figure 2). When nitro-

gen is added back to the medium, the zygotes

germinate in the light, undergo meiosis and

typically release four haploid cells that resume

vegetative growth (Harris, 2001). Dormant zygo-

spores can remain viable in soil for many years

(Harris, 2001) and survive freezing (Suzuki and

Johnson, 2002), desiccation (Heimerl et al.,
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Figure 2. Life cycle of C.reinhardtii. Haploid (n) vegetative cells occur as two mating types, mt
+ and mt

-, that

divide by mitosis (“Asexual reproduction”; Harris, 2001, Goodenough et al., 2007). Gametogenesis can be

induced by nitrogen starvation (-N) in the presence of light, and gametes of opposite mating types can fuse to

form diploid (2n) zygotes (“Sexual reproduction”). Within a few hours of fertilization, zygotes resorb their four cilia

to become immotile. Over the course of several days these zygotes are remodeled into highly resistant, dormant

zygospores. In this process, a strong, multilayered cell wall is formed, and chlorophyll is degraded (Harris, 2001;

Goodenough et al., 2007). As a result, mature zygospores appear orange, which reflects their carotenoid content

(Lohr, 2009). When environmental conditions improve, the zygote undergoes meiosis to release four haploid cells

(sometimes 8 and 16 when mitosis also occurs within the zygote wall; “Germination”). The haploid cells then

resume vegetative growth. In the laboratory, zygote germination is induced by the addition of nitrogen (+N) to the

medium in the light (Harris, 2001); nitrogen also causes reprogramming of gametes to vegetative cells

(Pozuelo et al., 2000). Image credit: Debbie Maizels.

DOI: https://doi.org/10.7554/eLife.39233.005
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2018) and probably other forms of harsh environ-

mental conditions. This extraordinary resistance

is associated with the multilayered cell wall of the

zygospores, which contains a durable lipid poly-

mer structurally similar to those found in million-

year-old microfossils (described for Chlamydo-

monas monoica; Blokker et al., 1999). Further-

more, sexual reproduction can increase the rate

of adaptation of C. reinhardtii to new or changing

environmental conditions, particularly if the pop-

ulation and genetic diversity within the popula-

tion are large (Colegrave, 2002).

Following gamete fusion, a pair of homeodo-

main transcription factors initiates the genetic

program for zygote development

(Kurvari et al., 1998; Lee et al., 2008). The first

zygote-specific genes are induced within

minutes of gamete fusion, with hundreds of

additional genes activated over the next few

hours (Lopez et al., 2015; Joo et al., 2017). A

gene encoding a polyketide synthase is induced

two days after zygote formation and is critical

for the zygote-to-zygospore transition, probably

because it participates in the biosynthesis of the

cell wall lipid polymer (Heimerl et al., 2018).

Several stages of the sexual cycle, including

gamete formation and maintenance and zygote

germination, depend on light and involve regu-

lation by three different photoreceptors

(Huang and Beck, 2003; Müller et al., 2017;

Zou et al., 2017).

Similar to Saccharomyces cerevisiae

(Liti, 2015), we know little about the life cycle of

C. reinhardtii in its natural environment. For

example, there is no quantitative data on the fre-

quency of sexual reproduction relative to vegeta-

tive growth. Yet, nitrogen is thought to become

limited more commonly in soils than lakes (Schin-

dler, 1977; Vitousek and Howarth, 1991;

Coleman et al., 2017). This notion is congruent

with nitrogen limitation being a major cue for

zygospore formation in nature, but we are not

aware of any data on zygospore induction in nat-

ural soil environments. The occurrence of clonal

cultures of opposite mating types that are

derived from a single zygospore isolated from

dry soil provides additional evidence for a critical

role of zygospores during desiccation (Har-

ris, 2009). Freezing resistance of zygospores and

their more efficient germination under long-day

conditions compared to short-day conditions

suggests that zygospore formation is an overwin-

tering strategy (Suzuki and Johnson, 2002). If

true, the question arises as to whether or not

nitrogen limitation and day length are adequate

cues to herald the approach of winter, or

whether, for example, a decrease in soil moisture

content or temperature can also induce zygo-

spore formation in C. reinhardtii.

Physiological and metabolic
capabilities
C. reinhardtii not only orients itself with respect

to light, but can also swim upward in complete

darkness. This negative gravitaxis may facilitate

orientation and movement of the cells at night

or in the soil environment, potentially helping

the alga locate areas with more favorable condi-

tions of illumination following daybreak

(Bean, 1977). Furthermore, vegetative cells are

attracted to ammonium, nitrite and nitrate

(Ermilova and Zalutskaya, 2014 and references

therein). Chemotaxis towards ammonium is

strongest during the night, whereas phototaxis

towards the light is strongest during the day,

with both processes regulated by the circadian

clock (Bruce, 1970; Byrne et al., 1992). Finally,

the hypothesis that the circadian clock depends

on gravity or a magnetic field was refuted by

experiments performed with C. reinhardtii on a

space shuttle under microgravity conditions

(Mergenhagen and Mergenhagen, 1987).

Cilia enable C. reinhardtii to swim in an aque-

ous medium, and also glide on solid surfaces.

Gliding motility may be important when C. rein-

hardtii resides within a thin water film that coats

soil particles (Mitchell, 2000). The gliding speed

of C. reinhardtii is ~1 mm s-1 (Shih et al., 2013)

whereas the average forward swimming speed is

100-200 mm s-1 (Rüffer and Nultsch, 1985).

Under various stress conditions, such as acidifi-

cation of the medium, C. reinhardtii loses or

sheds its cilia when a specific break point near

the base of the cilium is activated

(Quarmby, 2009). When conditions improve,

the cilia regenerate. The biological reason for

deciliation is still a mystery, but various hypothe-

ses have been put forth (Quarmby, 2009). Deci-

liation is observed in a wide range of different

cell types; for example, inhalation of irritant

chemicals can lead to deciliation of respiratory

epithelial cells in mammals (Buckley et al.,

1984). Therefore, it seems likely that a predeter-

mined break point is an ancient and inherent

property of every cilium (Quarmby, 2009). Con-

sequently, deciliation may not confer a selective

advantage, but might be a consequence of path-

ological conditions that cause over-stimulation

of the ciliary disassembly process. On the other

hand, the ciliary membrane of C. reinhardtii is in

direct contact with the environment (not
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protected by cell wall) and therefore, deciliation

may reduce the entrance of noxious compounds

into cells. Deciliation may also allow cells to

escape when their cilia are stuck to the surface

of a predator (Quarmby, 2009). Studying decili-

ation in the natural environment holds the prom-

ise of new insights into selection pressures that

led to its evolution.

The ability of C. reinhardtii to grow under het-

erotrophic and fermentative conditions might be

an adaptation to soil environments where there

can be both low light and low oxygen. Anoxic/

hypoxic conditions are likely to mostly occur at

night when there is no photosynthesis to release

oxygen and the soil microbes are respiring.

Under anoxic conditions, C. reinhardtii can use

glycolysis to yield energy, which is sustained by

fermentation metabolism and the release of

reduced organic compounds (Catalanotti et al.,

2013). C. reinhardtii has recently been shown to

activate a variety of different pathways that result

in the formation of many fermentation products

including formate, lactate, acetate, acetyl-CoA,

succinate, hydrogen and glycerol (Atteia et al.,

2013; Catalanotti et al., 2013; Yang et al.,

2015). While some regulatory elements involved

in anoxic metabolism are known

(Hemschemeier et al., 2013; Huwald et al.,

2015; Düner et al., 2018), little is understood

about what controls the various pathways associ-

ated with fermentation and the ways in which

these pathways are integrated.

Biotic interactions
In nature, C. reinhardtii is continuously in contact

with other organisms, including competitors,

predators, pathogens, parasites, commensals or

mutualists. Most molecular details concerning

these interactions, which likely involve chemical

signaling, nutrient exchange and receptor-medi-

ated processes, have not been examined. In

lakes, the various Chlamydomonas spp. success-

fully compete with many other pelagic algal spe-

cies for light and nutrients; rapid growth of

Chlamydomonas spp. likely compensates for

severe grazing losses, such as during periods of

rapid proliferation of filter feeders, like water

fleas (cladocerans). High rates of algal growth

demand high nutrient levels. The concentrations

of dissolved nutrients during the growing season

are usually highest after spring mixing

(Sommer et al., 2012), and therefore, the abun-

dance of Chlamydomonas spp. in temperate

lakes often shows a strong peak in spring or

summer (Dembowska, 2015). In addition, the

absence of filter feeders and the presence of

more selective feeders in the soil may result in

lower grazing losses and less seasonal differen-

ces in abundance patterns.

Predation of C. reinhardtii by zooplankton

such as Daphnia, a highly efficient filter feeder

(Van Donk et al., 1997), rotifers (Lurling and

Beekman, 2006), and protists such as Tetrahy-

mena (Taub and McKenzie, 1973) or Peranema

(Figure 3), has been shown to occur in the labo-

ratory. These predators either live exclusively in

the pelagic zone of lakes, or at least more com-

monly in this habitat compared to soils. In the

soil, animals such as earthworms or springtails,

and protists are typical predators of microscopic

algae (Schmidt et al., 2016; Seppey et al.,

2017), but there is currently little specific infor-

mation on predators of C. reinhardtii. The forma-

tion of large aggregates of C. reinhardtii cells is

a general and probably non-specific defense

strategy by which the alga may avoid ingestion.

For example, the rotifer Brachionus calyciflorus

triggers the formation of so-called palmelloid

colonies (Lurling and Beekman, 2006). These

colonies are aggregates of C. reinhardtii that

may form as a consequence of the failure of the

mitotically dividing mother cell to release the

daughter cells from its encapsulating cell wall

(Khona et al., 2016). This phenomenon may be

triggered by stress under conditions in which

zygospore formation is not possible

(Khona et al., 2016). On the other hand, C. rein-

hardtii can actively aggregate in the presence of

the predatory protist Peranema trichophorum

(Sathe and Durand, 2016). A P. trichophorum

culture filtrate was able to induce algal aggrega-

tion, suggesting that C. reinhardtii senses an

unidentified substance (a kairomone) that is

released by the predator (Sathe and Durand,

2016).

Figure 3. C. reinhardtii ingested by the predatory protist Peranema trichophorum. Image

credit: Santosh Sathe and Pierre Durand.

DOI: https://doi.org/10.7554/eLife.39233.006
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C. reinhardtii is also a prey for soil bacteria.

The bacterium Pseudomonas protegens can sur-

round and immobilize algal cells (Video 1); it

secretes a cyclic lipopeptide that triggers an

increase in calcium levels inside C. reinhardtii

cells with subsequent deciliation (Aiyar et al.,

2017). This antagonistic interaction inhibits algal

growth and probably leads to the death of most

of the algal cells; the bacteria may acquire trace

metals from the dying cells (Aiyar et al., 2017).

Furthermore, small molecules from C. reinhardtii

activate quorum sensing in Pseudomonas aeru-

ginosa (Rajamani et al., 2008). It will be impor-

tant to determine if algal cells also produce

quorum-sensing mimics that influence P. prote-

gens. Finally, while no viral pathogens of C. rein-

hardtii have been reported, it seems likely that

they exist. The areas of algal-bacterial and algal-

viral interactions are fertile for more probing

basic research.

Several beneficial interactions of C. reinhardtii

have been described, including interactions with

growth-promoting bacteria and even mutualism

(e. g. Nikolaev et al., 2008; Lörincz et al.,

2010; Kim et al., 2014). These findings provide

the basis for future studies that address regula-

tory mechanisms and identify specific com-

pounds that impact the biology of C. reinhardtii

in nature. One compound synthesized by prokar-

yotes and used by many algae is vitamin B12.

Although C. reinhardtii does not depend on vita-

min B12 to grow, it can obtain the compound

from bacteria and use it as a cofactor in a path-

way for methionine biosynthesis that is thermal

tolerant (Kazamia et al., 2012; Xie et al.,

2013). Indeed, under elevated temperatures,

B12-providing bacteria increase the fitness of the

alga (Xie et al., 2013). A mutualism was also

observed between C. reinhardtii and S. cerevi-

siae in sealed microtiter plates, with the algae

trading reduced nitrogen for CO2 (Hom and

Murray, 2014). While the significance of these

interactions may be uncertain, they, and many

yet to be discovered, likely shape the ways in

which C. reinhardtii navigates in a complex

biosphere.

Conclusions
Although C. reinhardtii has been studied in the

laboratory for many decades, we do not know

the extent to which results from the laboratory

reflect growth, life cycle and behavior of this

alga in nature (Box 2). As a model system, C.

reinhardtii is almost exclusively grown as a pure

culture, a situation almost never encountered in

the ’wild’. Returning a laboratory strain of C.

reinhardtii to its native habitat would reveal

whether domestication caused it to lose its abil-

ity to survive within the dynamic fabric of nature.

Molecular analyses of the reintroduced strain

could also reveal changes in the cells’ physiology

that underlie the loss of fitness in natural habi-

tats, as well as other changes potentially associ-

ated with its adaptation to laboratory

conditions.

Field surveys are often hampered by difficul-

ties in assessing the metabolic state of the cells

and in establishing key inter-organismal interac-

tions. However, harnessing the full potential of

meta-omics and single-cell technologies could

provide a fuller appreciation of the physiological

status of cells as they experience environmental

fluctuations and the dominant interactions that

shape the life of C. reinhardtii. Expanding this

understanding will require time-resolved data on

the geographical occurrence of C. reinhardtii in

different habitats, its genetic potential and pop-

ulation genetics, and dissection of biotic and

abiotic interactions. Such studies could then be

extended to include analyses performed under

controlled laboratory conditions that closely

align with conditions encountered in the field,

using innovative methods such as microfluidics

to mimic conditions of the soil and other com-

plex environments (Stanley et al., 2016).
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