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Analytical solution derivation

We wanted to find analytical solutions at steady state for the following variables in
the pump-leak formulation for a single compartment including KCC2: intracellu-
lar concentrations of sodium, potassium, chloride and impermeant anions ([Na+]i;
[K+]i; [Cl−]i; and [Xz]i, with charge z); and membrane voltage (V ). The steady
state should occur in the presence of both a pump leak mechanism (sodium-potassium

ATPase with pump rate modified by the sodium gradient, Jp = p ·
(

[Na+]i
[Na+]o

)3
) and

chloride-potassium extrusion (type 2 potassium-chloride co-transporter, KCC2, with
conductance gKCC2 and driving force proportional to the difference in the Nernst
reversal potentials of potassium and chloride — see Doyon et al. (2016)). The usual
passive forces acting across the membrane on each ion are also included. To allow for
an analytical solution inclusive of differences in osmolarity between the intracellular
and extracellular environments (Fig. 6A-E), we derive the analytical solution with
Πi = Πo + NHp , where Πi is the intracellular osmolarity and Πo the extracellular.
Thus NHp is often but not always equal to 0.

The situation described above ought to satisfy the following five equations at
steady state, in which the conductance of an ion is denoted gion, an ion’s Nernst
reversal potential as Eion, F the Faraday constant and Am the ratio of surface area
to volume. This system is similar to that given in Keener and Sneyd (2009).

− d

dt

(
F

Am
[Na+]i

)
= gNa(V − ENa) + 3Jp (S1)

− d

dt

(
F

Am
[K+]i

)
= gK(V − EK)− 2Jp − gKCC2(EK − ECl) (S2)

d

dt

(
F

Am
[Cl−]i

)
= gCl(V − ECl) + gKCC2(EK − ECl) (S3)

0 = [K+]i + [Na+]i − [Cl−]i + z[Xz]i (S4)

Πo +NHp = Πi = [K+]i + [Na+]i + [Cl−]i + [Xz]i (S5)

We first solve the system for constant Jp at steady state, i.e. equations S1, S2
and S3 set to 0, and then show that a parametric solution exists for p such that the
function mapping Jp to p is bijective. Thus we begin by solving each of (S1), (S2)
and (S3) for the reversal potential of the intracellular ion that they refer to, and
then for the intracellular ions’ concentration itself. By simple rearrangement,

[Na+]i = [Na+]o · e−
FV
RT · e−

3JpF

RTgNa (S6)

and

ECl =
gClV + gKCC2EK

gCl + gKCC2
(S7)

Let β be equal to gKgCl− gKCC2gCl + gKgKCC2. If we substitute (S7) into (S2)
for ECl, we can solve for EK and [K+]i, hence enabling us to substitute back into
(S7) in order to solve for [Cl−]i.

Thus,
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EK = V − 2Jp
gCl + gKCC2

β

and hence

[K+]i = [K+]o · e−
FV
RT · e

F
RT

·2Jp
gCl+gKCC2

β (S8)

so then

[Cl−]i = [Cl+]e · e
FV
RT · e−

F
RT

· 2Jp·gKCC2
β (S9)

We have now found equations for all permeant intracellular ions in terms of
constants and V . An extension of these results means that we can find an equation
for X in terms of V by rearranging the osmotic equilibrium equation (S5).

[Xz]i = (Πo +NHp)− [Na+]i − [K+]i − [Cl−]i (S10)

In order to solve for V , we substitute (S10) into (S4), the equation that ensures
intracellular charge neutrality. Thus we obtain:

0 = z · (Πo +NHp) + (1− z) · ([K+]i + [Na+]i)− (1 + z) · [Cl−]i (S11)

Before substituting in for the permeable intracellular ions, let us denote θ =

e−
FV
RT . Then with substitution of (S9), (S8) and (S6) and multiplication through by

θ equation S11 becomes:

0 = (1−z)·
(

[K+]o·e
2JpF ·(gCl+gKCC2)

RT ·β +[Na+]o·e
− 3JpF

RT ·gNa

)
·θ2+z·(Πo+NHp)·θ−(1+z)·[Cl−]o·e

−2JpF ·gKCC2
RT ·β

This quadratic equation can be solved in terms of θ using the quadratic formula.

θ =

−z · (Πo +NHp ) +

√√√√
z2 · (Πo +NHp )2 + 4(1 − z2) · [Cl−]o · e

−
2JpF ·gKCC2

RT ·β ·
(

[Na+]o · e
−

3JpF
RT ·gNa +Ke · e

2JpF ·(gCl+gKCC2)
RT ·β

)

2 · (1 − z) ·
(

[Na+]o · e
−

3JpF
RT ·gNa + [K+]o · e

2JpF ·(gCl+gKCC2)
RT ·β

)
(S12)

From this one can solve the system for any constants — at least those constants
which give positive real solutions for θ — and then use V = −RT

F ln θ to transform
the solution into the corresponding membrane voltage. This implies that initial
values of the intracellular ion concentrations do not affect the final steady state
(this includes shifts in X that do not change the average intracellular charge z).
Note that (S12) when z = −1, to avoid division by 0, the solution is found by
substituting z = −1 into (S11) and simplifying.

Finally, we extend the solution from the constant pump rate assumed above to
a pump rate modulated by the sodium concentration, as used in our model. The

sodium-dependent pump rate updated by Jp = p ·
(

[Na+]i
[Na+]o

)3
cannot be solved purely

analytically because one ends up attempting to find a solution for an expression
unsolvable in the reals (W-Lambert Function). In this case, one might substitute
different values of Jp into the solution above, and then use the function f(Jp, [Na

+]i)

defined by Jp = p ·
(

[Na+]i
[Na+]o

)3
to solve for p.

f rearranged with p as the subject of the formula resembles a parametric func-
tion. Were p an independent variable determining the ionic solutions of the analytic
solution, each simulation beginning with constant p would have a unique steady
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state. To make this claim, the function mapping Jp and the steady state [Na+]i to
p needs to be injective (more strictly, f : Jp → p must be bijective). The reason for
this constraint is that if ever a p is produced by more than one Jp and [Na+]i, we
would have at least two possible steady states for the time series run with that pump
rate constant, and thus a poor mapping between the constant pump rate solution
and the cubic pump rate model.

Indeed, the mapping between p and Jp is found to be bijective over the range of
Jps for which we are concerned by numeric methods. This proves that the analytic
solution derived here is sufficient for finding a parametric solution for the cubic
pump rate pump leak model used in our manuscript.
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