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Abstract Individual differences in delay-discounting correlate with important real world

outcomes, for example education, income, drug use, and criminality. As such, delay-discounting has

been extensively studied by economists, psychologists and neuroscientists to reveal its behavioral

and biological mechanisms in both human and non-human animal models. However, two major

methodological differences hinder comparing results across species. Human studies present long

time-horizon options verbally, whereas animal studies employ experiential cues and short delays.

To bridge these divides, we developed a novel language-free experiential task inspired by animal

decision-making studies. We found that the ranks of subjects’ time-preferences were reliable across

both verbal/experiential and second/day differences. Yet, discount factors scaled dramatically

across the tasks, indicating a strong effect of temporal context. Taken together, this indicates that

individuals have a stable, but context-dependent, time-preference that can be reliably assessed

using different methods, providing a foundation to bridge studies of time-preferences across

species.

Editorial note: This article has been through an editorial process in which the authors decide how

to respond to the issues raised during peer review. The Reviewing Editor’s assessment is that all

the issues have been addressed (see decision letter).

DOI: https://doi.org/10.7554/eLife.39656.001

Introduction
Intertemporal choices involve a trade-off between a larger outcome received later and a smaller out-

come received sooner. Many individual decisions have this temporal structure, such as whether to

purchase a cheaper refrigerator, but forgo the ongoing energy savings. Since research has found

that intertemporal preferences are predictive of a wide variety of important life outcomes, ranging

from SAT scores, graduating from college, and income to anti-social behaviors, for example gam-

bling or drug abuse (Frederick et al., 2002; Madden and Bickel, 2010; Casey et al., 2011;

Golsteyn et al., 2014; Åkerlund et al., 2016), they are frequently studied in both humans and ani-

mals across multiple disciplines, including marketing, economics, psychology, psychiatry, and

neuroscience.

A potential obstacle to understanding the biological basis of intertemporal decision-making is

that human studies differ from non-human animal studies in two important ways: long versus short

time-horizons and choices that are made based on verbal versus non-verbal (i.e. ‘experiential’) stim-

uli. In animal studies, subjects experience the delay between their choice and the reward (sometimes
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cued with a ramping sound or a diminishing visual stimulus) before they can proceed to the next trial

(Cai et al., 2011; Blanchard et al., 2013; Tedford et al., 2015). Generally, there is nothing for the

subject to do during this waiting period. In human studies, subjects usually make a series of choices

(either via computer or a survey, often hypothetical) between smaller sooner and larger offers

delayed by months or years (McClure et al., 2004; Andersen et al., 2014). (We are aware of only a

handful of studies that have used delays of minutes (McClure et al., 2007) or seconds (Lane et al.,

2003; Gregorios-Pippas et al., 2009; Prevost et al., 2010; Tanaka et al., 2014; Fung et al.,

2017)). During the delay (e.g. if the payout is in 6 months) the human subjects go about their lives,

likely forgetting about the delayed payment, just as individuals do not actively think about their

retirement savings account each moment until their retirement.

Animal studies of delay-discounting take several forms (Dalley et al., 2011; Redish et al., 2008;

Cai et al., 2011; Wikenheiser et al., 2013), but all require experiential learning that some non-ver-

bal cue is associated with waiting. Subjects experience the cues, delays and rewards, and slowly

build an internal map from the cues to the delays and magnitudes. Subjects may only have implicit

knowledge of the map, which likely engage distinct neural substrates to the explicit processes

engaged by humans when considering a verbal offer (Reber et al., 2003; Poldrack et al., 2001).

Whether animal studies can inform human studies depends on answers to the following ques-

tions. Do decisions that involve actively waiting for seconds invoke the same cognitive and neural

processes as decisions requiring passively waiting for months? Do decisions made based on experi-

ence and perceptual decisions invoke the same cognitive and neural processes as decisions that are

made based on explicitly written information?

The animal neuroscience literature on delay-discounting mostly accepts as a given that the behav-

ior of animals will give insight into the biological basis for human impulsivity (Fineberg et al., 2010;

Huang et al., 2015; Schoenbaum et al., 2009; Robison and Nestler, 2011) and rarely

(Blanchard et al., 2013; Rosati et al., 2007; Vanderveldt et al., 2016) addresses the methodologi-

cal gaps considered here. This view is not unfounded. Neural recordings from animals (Cai et al.,

2011) and brain imaging studies in humans (McClure et al., 2004; Kable and Glimcher, 2007) both

find that the prefrontal cortex and basal ganglia are involved in delay-discounting decisions, sug-

gesting common neural mechanisms. Animal models of attention-deficit hyperactive disorder

(ADHD) have reasonable construct validity: drugs that shift animal behavior in delay-discounting

tasks can also improve the symptoms of ADHD in humans (Paterson et al., 2012; Fineberg et al.,

2010). Thus, most neuroscientists would likely predict that our experiments would find high within-

subject reliability across both time-horizons and verbal/experiential dimensions.

Reading the literature from economics, a different picture emerges. Traditional economic models

(e.g. Samuelson, 1947) posit that agents make consistent intertemporal decisions, thereby implying

a constant discount rate regardless of context. In contrast, growing evidence from behavioral eco-

nomics provides support for the view that discounting over a given time delay changes with the

time-horizon (Berns et al., 2007; Andreoni et al., 2015). Among human studies comparing short

and long time-horizons only a few are within subject and incentivized, leaving this matter unresolved

(Paglieri, 2013; Johnson et al., 2015; Vanderveldt et al., 2016; Horan et al., 2017). Yet, there

remains debate in the empirical economics literature about how well discounting measures elicited

in human studies truly reflect the rates of time-preference used in real-world decisions since mea-

sured discount rates have been found to vary by the type of task (hypothetical, potentially real, and

real), stakes being compared, age of participants and across different domains (Chapman and

Elstein, 1995). Thus, most economists surveying the empirical evidence would be surprised if a

design that varied both type of tasks and horizons would generate results with high within-subject

reliability.

Here, we have addressed these questions by measuring the discount factors of human subjects in

three ways. First, we used a novel language-free task involving experiential learning with short

delays. To our knowledge, this is the first time the time-preferences of human subjects have been

measured in this way (Vanderveldt et al., 2016). Then, we measured discount factors more tradi-

tionally, with verbal offers over both short and long delays. This design allowed us to test whether,

for each subject, a single process is used for intertemporal choice regardless of time-horizon or ver-

bal vs. experiential stimuli, or whether the choices in different tasks could be better explained by dis-

tinct underlying mechanisms.
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Results
In our main experiment, 63 undergraduate students from NYU Shanghai participated in five experi-

mental sessions. In each session, subjects completed a series of intertemporal choices. Across ses-

sions, at least 160 trials in each task were conducted after learning (Materials and methods,

Figure 1—figure supplement 1). In each trial, irrespective of the task, subjects made a decision

between the sooner (blue circle) and the later (yellow circle) options. In the non-verbal task

(Figure 1A), the parameters of the later option were mapped to an amplitude modulated pure tone.

The reward magnitude was mapped to frequency of the tone (larger reward / higher frequency).

The delay was mapped to amplitude modulation rate (longer delay / slower modulation). Across tri-

als, the delay and the magnitude of the sooner option were fixed (4 coins, immediately), later

options were drawn from all possible pairs of 5 magnitudes and delays (25 different offers, Materials

and methods). For the short delay tasks, when subjects chose the later option, a clock appeared on

the screen, and only when the clock image disappeared, could they collect their reward by clicking

in the reward port. After clicking the reward port, the chosen number of coins appeared at the

reward port and then a ‘dropping coins’ sound was played as the coins were added to a stack of

coins on the right side of the screen that accumulated over the session. This stack gave subjects a

visual indication of the total amount of rewards they had earned in the session. At the end of the

session, the coins were converted to RMB as payment to the subject.

In the verbal tasks, the verbal description of the offers appeared within the blue and yellow circles

in place of the amplitude modulated sound (Figure 1B). In the verbal long delay task, after each

choice, subjects were given feedback confirming their choice (e.g. "Your choice: 8 coins in 30 days")

and then proceeded to the next trial. Unlike the short tasks, there was no sound of dropping coins

nor visual display of coins. At the end of the session, a single long-verbal trial was selected randomly

to determine the payment (e.g. a subject was notified that "Trial 10 from session one was randomly

chosen to pay you. Your choice in that trial was 8 coins in 30 days"). If the selected trial corre-

sponded to a subject having chosen the later option, she received her reward via an electronic trans-

fer after the delay (e.g. in 30 days).

Subjects’ time-preferences are reliable across both verbal/experiential
and second/day differences
Subjects’ impulsivity was estimated by fitting their choices with a Bayesian hierarchical model (BHM)

of hyperbolic discounting with decision noise. The model had six population level parameters (log

discount factor, logðkÞ, and decision noise, t, for each of the three tasks, also known as fixed effects)

and four parameters per subject: logðkNV Þ, logðkSV Þ, logðkLV Þ and t. We used this model to fit 32,707

choices across 63 subjects in the three tasks. We use the natural log of k, logðkÞ, and not k as a

model parameter because we found that k is approximately log-normally distributed over our sub-

jects (as in Sanchez-Roige et al., 2018). The subject level effects are drawn from a normal distribu-

tion with mean zero. In other words, the subject level effects reflect the difference of each subject

relative to the mean across subjects. As such, the actual discount factor for the nth subject in the SV

task, kn;SV ¼ elogðk̂SV Þþlogð _kn;SV Þ ¼ k̂SV � _kn;SV , where logðk̂SV Þ represents the population level log discount

factor for SV and logð _kn;SV Þ represents the subjects level effect for subject n in SV. For the sake of

brevity, we refer to ‘log discount factor’ as ‘discount factor’ throughout the text.

The population level parameters reflect the mean over all subjects. For example, if the mean dis-

count factor across subjects was equal in all tasks, then the population level discount factor parame-

ters would also be equal. If all subjects were exactly twice as impulsive in short vs. non-verbal tasks,

then that change would be reflected in the population level discount factor

(kSV ¼ 2 � kNV ! logðkSV Þ ¼ logðkNV Þ þ logð2Þ), and the subject level parameters would be the same

across tasks. If, on the other hand, impulsive subjects (relative to the mean) became more impulsive,

and patient subjects became more patient, that would result in clear changes to subject level param-

eters, with relatively little change in the population level parameters (assuming the same scaling fac-

tor for impulsive and patient subjects).

Subjects’ choices were well-fit by the model (Figure 2, Figure 2—figure supplement 1,

Supplementary file 1). Since we did not ex ante have a strong hypothesis about how the subjects’

impulsivity measures in one task would translate across tasks, we fit subjects’ choices in the units of

the task (i.e. seconds or days), examined ranks of impulsivity at first and found significant correlations
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Figure 1. Behavioral Tasks. (A) A novel language-free intertemporal choice task. This is an example sequence of screens that subjects viewed in one

trial of the non-verbal task. First, the subject initiates the trial by pressing on the white-bordered circle. During fixation, the subject must keep the cursor

inside the white circle. The subject hears an amplitude modulated pure tone (the tone frequency is mapped to reward magnitude and the modulation

rate is mapped to the delay of the later option). The subject next makes a decision between the sooner (blue circle) and later (yellow circle) options. If

Figure 1 continued on next page
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across experimental tasks (Table 1). In other words, the most impulsive subject in one task was likely

to be the most impulsive subject in another task. This result is robust to different functional forms of

discounting (e.g. hyperbolic vs. exponential) and estimation (e.g. Bayesian hierarchical models vs. fit-

ting subjects individually using maximum likelihood estimation vs. model-free) methods (Figure 2—

figure supplement 1, Figure 2—figure supplement 2, Figure 2—figure supplement 3). For exam-

ple, if we ranked the subjects by the fraction of trials in which they chose the later option in each

task, we obtained a similar result (Spearman r: SV vs. NV r ¼ 0:71; SV vs. LV r ¼ 0:49; NV vs. LV

r ¼ 0:30, all p< 0:05). The correlations of discount factors across tasks extended to Pearson correla-

tion of logðkÞ (Figure 3, Table 1). This indicates that subjects’ preferences are reliable across the ver-

bal/experiential gap and time-horizons.

Having addressed our initially planned analysis, we continued with analyses to further understand

the subjects’ choices within and across the tasks. Consistent with existing research, we found that

time-preferences were stable in the same task within subjects between the first half of each reward

block and the second half of the block within sessions (time-preferences are measured as % of yellow

choices, Wilcoxon signed-rank test, p ¼ 0:35; Pearson r ¼ 0:81, p< 10
�9) and also across experimental

sessions that take place every two weeks: % of yellow choices between NV sessions (Wilcoxon

signed-rank test, p ¼ 0:47; Pearson r ¼ 0:7, p< 10
�9), between SV sessions (Wilcoxon signed-rank

test, p ¼ 0:66; Pearson r ¼ 0:82, p< 10
�9) and a slight difference between LV sessions (Wilcoxon

signed-rank test, p< 0:1; Pearson r ¼ 0:66, p< 10
�9) (Meier and Sprenger, 2015; Augenblick et al.,

2015). In our verbal experimental sessions, the short and long tasks were alternated and the order

was counter-balanced across subjects. We did not find any order effects in either main (boot-

strapped mean test, SV-LV-SV-LV vs. LV-SV-LV-SV for SV and LV logðkÞ, all p> 0:4) or control experi-

ments (NC, bootstrapped mean test, SV-LV-SV-LV vs. LV-SV-LV-SV for SV and LV logðkÞ, all p> 0:6;

DW, bootstrapped mean test, DV-WV-DV-WV vs. WV-DV-WV-DV for DV and WV logðkÞ, all p> 0:2).

In addition to the reliability of subjects’ choices, other aspects of their behavior were also consis-

tent. We examined the total time it took subjects to finish each session. This time includes

waiting time (i.e. the chosen delays in the short task) and also non-waiting time (i.e. intertrial intervals

and subject reaction times). The total time taken did not change significantly across sessions (boot-

strapped mean tests: between NV session 2 and 3, p ¼ 0:55; between verbal sessions 1 and 2,

p ¼ 0:08). By definition, the waiting time is correlated with logðkÞ. But we also found that for the short

sessions non-waiting time (and total-time) were correlated with logðkÞ and also the fraction of total

reward earned (relative to a subject that always picked the larger offer regardless of time; Figure 3—

figure supplement 1). This suggests that impulsive subjects not only express their impatience in

their choices of a sooner option, but also make their choices faster.

In our experimental design, the SV task has shared features with both the NV and LV task. First,

the SV shares time-horizon with the NV task. Second, the SV and LV are both verbal and were under-

taken at the same time, always following NV task. The NV and LV tasks differ in both time-horizon

and verbal/non-verbal. The central feature that is shared between all tasks is delay-discounting. To

test whether the correlation between NV and LV might be accounted for by their shared correlation

with the SV task, we performed linear regressions of the discount factors in each task as a function

of the other tasks (e.g. logðkNV Þ ¼ bSV logðkSV Þ þ bLV logðkLV Þ þ b0 þ � ). For NV the two predictors

explained 63% of the variance (Fð60; 2Þ ¼ 50:63, p< 10
�9). It was found that logðkSV Þ significantly pre-

dicted logðkNV Þ (bSV ¼ 1:28� 0:15, p< 10
�9) but logðkLV Þ did not (bLV ¼ �0:12� 0:09, p ¼ 0:18). For LV

we were able to predict 40% of the variance (Fð60; 2Þ ¼ 19:64, p< 10
�6) and found that logðkSV Þ

Figure 1 continued

the later option is chosen, the subject waits until the delay time finishes, which is indicated by the colored portion of the clock image. Finally, the

subject clicks in the middle bottom circle (‘reward port’) to retrieve their reward. The reward is presented as a stack of coins of a specific size and a coin

drop sound accompanies the presentation. (B) Stimuli examples in the verbal experiment during decision stage (the bottom row of circles is cropped).

(C) Timeline of experimental sessions. Note: The order of short and long delay verbal tasks for sessions 4 and 5 was counter-balanced across subjects.

DOI: https://doi.org/10.7554/eLife.39656.002

The following figure supplement is available for figure 1:

Figure supplement 1. Learning stages example performance.

DOI: https://doi.org/10.7554/eLife.39656.003
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significantly predicted logðkLV Þ (bSV ¼ 1:26� 0:26, p< 10
�5) but logðkNV Þ did not (bNV ¼ �0:24� 0:18,

p ¼ 0:18). For SV the two predictors explained 72% of the variance (Fð60; 2Þ ¼ 78:93, p< 10
�9). Coeffi-

cients for both predictors were significant (bNV ¼ 0:44� 0:05, p< 10
�9; bLV ¼ 0:22� 0:05, p< 10

�5);

where b ¼ mean� std:error.

We further checked whether the correlations between discount factors in the three tasks may

have arisen due to some undesirable features of our task design. For example, different subjects

experienced the offers in different orders. Anchoring effects (Tversky and Kahneman, 1974;

Wilson et al., 1996; Furnham and Boo, 2011) may have set a reference point in the early part of

the experiment that guided choices throughout the rest. As such, we repeated the analyses

Figure 2. A 50% median split (±1 standard deviation) of the softmax-hyperbolic fits. (A–C) more patient and (D–F) less patient subjects. The values of k

and t are the means within each group. Average psychometric curves obtained from the model fits (lines) versus actual data (circles with error bars) for

NV, SV and LV tasks for each delay value, where the x-axis is the reward magnitude and the y-axis is the probability (or proportion for actual choices) of

later choice. Error bars are binomial 95% confidence intervals. We excluded the error in the model for visualization. Note: The lines here are not a

model fit to aggregate data, but rather reflect the mean model parameters for each group. As such, discrepancies between the model and data here

are not diagnostic. See individual subject plots (Supplementary file 1) to visualize the quality of the model fits.

DOI: https://doi.org/10.7554/eLife.39656.004

The following figure supplements are available for figure 2:

Figure supplement 1. An example of the softmax-hyperbolic fit for one subject in Matlab and Stan.

DOI: https://doi.org/10.7554/eLife.39656.005

Figure supplement 2. BHM fits vs. Matlab fits.

DOI: https://doi.org/10.7554/eLife.39656.006

Figure supplement 3. Non-parametric out-of-sample prediction.

DOI: https://doi.org/10.7554/eLife.39656.007

Figure supplement 4. The role of parameters in hyperbolic utility model with softmax.

DOI: https://doi.org/10.7554/eLife.39656.008
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described in the previous paragraph, but we added six additional factors: the mean rewards and

delays presented in the first block of the 2nd and 3rd non-verbal session and also the % of yellow

choices made in those blocks. We reasoned that if anchoring effects were playing a role then sub-

jects that were presented with longer delays, or smaller rewards early in the experiment should have

correlations between these factors and logðkSV Þ or logðkLV Þ. Likewise, if subjects were simply trying to

be consistent with their early choices, then the ‘% yellow’ in the early reward blocks would have an

Table 1. Correlations of subjects’ discount factors [95% CI].

Corrected rank correlations of subjects’ discount factors were normalized using simulations to esti-

mate the expected maximum correlation we could observe (Figure 3—figure supplement 4). The

correlations between each task were significantly different from each other at p< 0:05 using various

methods as in the R package ‘cocor’ (Diedenhofen and Musch, 2015).

Spearman
Rank Correlation

Corrected
Rank Correlation

Pearson
Correlation

SV vs. NV 0.76 [0.61, 0.85] 0.77 [0.62, 0.87] 0.79 [0.65, 0.88]

SV vs. LV 0.54 [0.30, 0.73] 0.57 [0.31, 0.77] 0.61 [0.41, 0.76]

NV vs. LV 0.36 [0.11, 0.57] 0.39 [0.12, 0.62] 0.40 [0.18, 0.60]

all p< 0:01

DOI: https://doi.org/10.7554/eLife.39656.014

Figure 3. Comparison of discount factors across three tasks in the main experiment. (A, B) Each circle is one subject (N = 63). The logs of discount

factors in SV task (x-axis) plotted against the logs of discount factors in NV (A) and LV (B) tasks (y-axis). The color of the circles and the colorbar identify

the ranksdiscount factors in NV task. Pearson’s r is reported on the figure (p< 0:01 - ’**’). The error bars are the SD of the estimated coefficients

(posterior means). Three lines (Huang et al., 2013) represent the vertical yðxÞ, horizontal xðyÞ and perpendicular (or total) least squares (TLS) regression

lines. (C) Distribution of posterior parameter estimates of logðkÞ and decision noise t from the model fit for the three tasks in the main experiment

(kNV ~ 1= sec, kSV ~ 1= sec, kLV ~ 1=day). The light blue shaded area marks the 80% interval of the posterior estimate. The outline of the distribution extends

to the 99.99% interval. Thin grey lines are drawn through the mean of each distribution to ease comparison across tasks. Comparisons between tasks

are reported in Table 3. Note, the units for kSV & kNV (1= sec) would need to be scaled by 86400secs=day ! logð86400Þ ¼ 11:37 to be directly compared

to kLV .

DOI: https://doi.org/10.7554/eLife.39656.009

The following figure supplements are available for figure 3:

Figure supplement 1. Model-free analysis of short tasks.

DOI: https://doi.org/10.7554/eLife.39656.010

Figure supplement 2. Ruling out the anchoring effect.

DOI: https://doi.org/10.7554/eLife.39656.011

Figure supplement 3. Obtained subjective utilities and hyperbolic fits of individual subjects.

DOI: https://doi.org/10.7554/eLife.39656.012

Figure supplement 4. Simulation results: distributions of expected correlations of the discount factors ranks between tasks.

DOI: https://doi.org/10.7554/eLife.39656.013
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important influence. We tested the contribution of each factor by dropping it from the model to cre-

ate a reduced nested model and using a likelihood ratio test against the full model (Figure 3—fig-

ure supplement 2). We found no evidence for anchoring effects or that subjects were simply trying

to be consistent with their early choices.

In order to test whether the verbal/non-verbal gap or the time-horizons gap accounted for more

variation in discounting, we used a linear mixed-effects model where we estimated logðkÞ as a func-

tion of the two gaps (as fixed effects) with subject as a random effect, using the ‘lme4’ R package

(Bates et al., 2014). We created two predictors: days was false in NV and SV tasks for offers in sec-

onds and was true in the LV task for offers in days; verbal was true for the SV and LV tasks and false

for the NV task. We found that time-horizon (bdays ¼ �0:52� 0:24, p ¼ 0:03) but not verbal/non-verbal

(bverbal ¼ �0:32� 0:24, p ¼ 0:18) contributed significantly to the variance in logðkÞ. This result was fur-

ther supported by comparing the two-factor model with reduced one-factor models (i.e. that only

contained either time or verbal fixed effects). Dropping the days factor significantly decreased the

likelihood, but dropping the verbal factor did not (Table 2).

We described above that subject’s time-preferences were highly correlated across tasks. How-

ever, correlation is invariant to shifts or scales across tasks. Our hierarchical model allows us to

directly estimate the posterior distributions of logðkÞ and t (Figure 3C) and report posterior means

and 95% credible intervals (logðkÞ NV = �3.2 [-3.77,–2.64], SV = �3.49 [�3.86, �3.11], LV = �3.95

[�4.55, �3.34]). Note, that kNV and kSV have units of Hz (1=s), but kLV has units of 1=day. Thus, while

the 95% credible intervals of the means of logðkÞ are overlapping for the three tasks when expressed

in the units of each task, the mean logðkLV Þ is in fact shifted to �14.86 when kLV is expressed in units

of 1/s. We further analyze and discuss this scaling subsequently, but first we compare logðkÞ in the

units of each task, in consideration of subjects potentially ignoring the time units in their choices

(Furlong and Opfer, 2009; Cox and Kable, 2014). We find that, on average, subjects were most

patient in LV, then SV then NV Table 3). Note, that a shift of 1 log-unit is substantial. For example, a

subject with logðkSV Þ» � 3 would value 10 coins at half its value in just 20 s. But for logðkSV Þ» � 4 the

coins would lose half their value in 55 s (Figure 3—figure supplement 3).

In addition to the shift, we observed significant scaling of logðkÞ between SV and the other two

tasks (Table 3, note: scaling is insensitive to the units of k, since logðC � kÞ ¼ logðCÞ þ logðkÞ). This is

likely driven by subgroups that were exceptionally patient in the LV task (Figure 3B) or impulsive in

the NV task (Figure 3A). We also observed a clear increase in the decision noise in the NV task, tNV ,

compared to the other two tasks (Figure 3C), which is unsurprising given that in NV subjects have to

make a perceptual decision (mapping the sound features to delay and magnitude) in addition to an

economic decision. However, even in the verbal tasks subjects show stochasticity in choice. This is

clearly evident for the longer delays (Supplementary file 1).

Controlling for visuo-motor confounds
In the main experiment, we held the following features constant across three tasks: the visual display

and the use of a mouse to perform the task. However, after observing the strong correlations

between the tasks (Figure 3) we were concerned that the effects could have been driven by the

superficial (i.e. visuo-motor) aspects of the tasks. In other words, the visual and response features of

the SV and LV tasks may have reminded subjects of the NV task context and nudged them to use a

similar strategy across tasks. While this may be interesting in its own right, it would limit the general-

ity of our results. To address this, we ran a control experiment (n = 25 subjects) where the NV task

was identical to the original NV task, but the SV and LV tasks were run in a more traditional way,

with a text display and keypress response (control experiment 1, Materials and methods, Figure 4—

Table 2. Relative contributions of two gaps to variance in logðkÞ (two-factor model comparison with

two reduced one-factor models).

Dropped factor Ddf AIC LR test p

none 743.06

verbal 1 742.88 0.18

days 1 745.99 0.03

DOI: https://doi.org/10.7554/eLife.39656.015
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figure supplement 1). We replicated the main findings of our original experiment for ranks of logðkÞ

(Figure 4) and correlation between logðkÞ in SV and LV tasks (Figure 4B). To determine whether the

correlations observed were within the range expected by chance (given the difference in sample

size), we repeatedly (10,000 times) randomly sampled 25 of the original 63 subjects (from Figure 3)

and computed the correlations between tasks. Pearson’s r ¼ :42 is lower than we would expect for

NC (the 95% CI of the correlation between SV and NV in the main experiment assuming 25 subjects

is [0.50 0.92]). This suggests that some of the correlation between SV and NV tasks in the main

experiment may be driven by visuo-motor similarity in experimental designs. We did not find shifts

Table 3. Shift and scale of logðkÞ between tasks.

kSV ; kNV ~ ð1=sÞ. kLV ~ ð1=dayÞ. The evidence ratio (Ev. Ratio) is the Bayes factor of a hypothesis vs. its

alternative, for example Pða> bÞ=Pða< bÞ. ’*’denotes p< 0:01, one-sided test. Expressing logðkLV Þ in

units of 1/s (for direct comparison with the other tasks) results in a negative shift in logðkLV Þ and even

larger differences in means without changing the difference between standard deviations.

Comparison log2ðEv: RatioÞ

between means

� logðkSV Þ>� logðkLV Þ 6.79 *

� logðkNV Þ>� logðkLV Þ 7.92 *

� logðkNV Þ>� logðkSV Þ 4.16

between standard deviations

s logðkLV Þ>s logðkSV Þ 8.43 *

s logðkNV Þ>s logðkLV Þ 0.92

s logðkNV Þ>s logðkSV Þ 11.48 *

DOI: https://doi.org/10.7554/eLife.39656.016

Figure 4. Comparison of discount factors across three tasks in control experiment 1. (A,B) Control experiment 1 (n = 25). The logs of discount factors in

SV task (x-axis) plotted against the logs of discount factors in NV (A) and LV (B) tasks (y-axis). The color of the circles and the colorbar identify the

discount factors in NV task. Each circle is one subject. Pearson’s r is reported on the figure (p< 0:01 - ‘**’, p< 0:05 - ‘*’). Spearman r: SV vs. NV r ¼ 0:52;

SV vs. LV r ¼ 0:52 (all p< 0:01). The error bars are the SD of the estimated coefficients. Three lines represent the vertical yðxÞ, horizontal xðyÞ and total

least squares (TLS) regression lines. See individual subject plots (Supplementary file 2) to visualize the quality of the model fits. (C) Distribution of

posterior parameter estimates of logðkÞ and decision noise t from the model fit for the three tasks in control experiment 1 (kNV ~ 1=s, kSV ~ 1=s,

kLV ~ 1=day). The light blue shaded area marks the 80% interval of the posterior estimate. The outline of the distribution extends to the 99.99% interval.

Thin grey lines are drawn through the mean of each distribution to ease comparison across tasks.

DOI: https://doi.org/10.7554/eLife.39656.017

The following figure supplement is available for figure 4:

Figure supplement 1. Control experiment 1 choice screen example.

DOI: https://doi.org/10.7554/eLife.39656.018
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or scaling between the posterior distributions of logðkÞ across tasks in this control experiment

(Figure 4C, mean [95% CI] NV = �3.98 [-5.44,–2.67], SV = �3.8 [�4.94, �2.75], LV = �3.76 [�4.79,

�2.76]), but we found again that noise in NV was higher than in the other tasks.

Controlling for differences in reward experience
We designed our non-verbal task so that with minimal changes we could use it in animals: rats and

mice in particular. In rodent decision-making primary rewards are typically used (e.g. (Carter and

Redish, 2016; Wikenheiser et al., 2013; Erlich et al., 2015)). In order to make the reward in the

short tasks more like a primary reinforcer, we included visual and auditory cues at the time of the

reward. This introduces a potential confound to one of our findings: that the correlation between

the two short tasks is higher than the correlation between long and short tasks. It could be that

inter-subject variability in the experience of the audio-visual cues could lower the correlation

between the short and long tasks, but since it is shared between the two short tasks, those correla-

tions would be artificially inflated. In order to address this, we refit our model with the following

changes: we added a reward scaling parameter that multiplies with reward magnitude on each trial.

This parameter has two levels (short/long) which can vary for each subject. This adds two population

level parameters and 63� 2 ¼ 126 subject level parameters to the model. We compared the original

and expanded model using 10-fold cross-validation (‘kfold’ function in the ‘brms’ R package). This

process fits model parameters using 90% of the data and then produces a posterior predictive den-

sity for the left out 10% and repeats this 10 times (for each left out 10%). This procedure results in

an expected log posterior density for the model (Vehtari et al., 2017), which is then multiplied by

�2 to produce a K-fold Information Criteria (KfoldIC), as in other metrics like Akaike, Bayesian or

deviance information criteria. The expanded model was substantially better than the original model

(DKfoldIC � SE ¼ 2207:40� 81:06, r2original ¼ 0:595� 0:002; r2expanded ¼ 0:640� 0:002). This is strong evi-

dence that an important component of the intersubject variability in our task comes from differences

in experience of the reward.

Having justified the additional parameters, we re-examined the correlations between logðkÞ in the

three tasks in the expanded model. We found that the between task correlations were slightly larger

but highly overlapping with the correlations in the original model (Table 4), thus supporting our find-

ings about the relative reliability between tasks. The population logðkÞ and decision noise estimates

also followed the same pattern as in the original model (compare Figure 3C with Figure 5). The

logðkÞ estimates were shifted slightly higher (estimating subjects as more impulsive) with a corre-

sponding increase in the experience of the rewards. That is, in both long and short tasks, the reward

scaling was greater than one. Note, however, that reward scaling for long vs short tasks are not 5

orders of magnitude apart, so this cannot account for the massive scaling of discount factors

between the long and short tasks.

Table 4. Correlations of subjects’ log discount factors [95% CI] in the original model (taken from

Table 1) and the expanded model which included differential reward scaling between the short and

long tasks.

The correlations between each task were significantly different from each other at p< 0:05 for both

the original and expanded models using various methods as in the R package

‘cocor’ (Diedenhofen and Musch, 2015).

Original model
Pearson Correlation

Expanded model
Pearson Correlation

SV vs. NV 0.79 [0.65, 0.88] 0.84 [0.75, 0.90]

SV vs. LV 0.61 [0.41, 0.76] 0.65 [0.48, 0.77]

NV vs. LV 0.40 [0.18, 0.60] 0.50 [0.29, 0.66]

all correlations are significantly different from 0, p< 0:01

DOI: https://doi.org/10.7554/eLife.39656.020
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Strong effect of temporal context
As described above, we fit the discount factors for each task in the units of that task: kSV and kNV in

units of seconds and kLV in units of days. Since there are 86,400 s in a day, classic economic theory

would posit that we would find D logðkÞ ¼ 11:37 between the long and short tasks to account for the

difference in units. But, we found that the discount factors in the LV task, kLV , were close to those in

the other tasks (within » 1 log-unit) (Figure 3C). This finding implies that for a specific reward value,

if a subject would decrease their subjective utility of that reward by 50% for a 10 s delay in the SV

task, they would also decrease their subjective utility of that reward by 50% for a 10-day delay in the

LV task. This seems incredible, particularly from a neoclassical economics perspective, but has been

previously reported (Navarick, 2004; Lane et al., 2003). What could explain this scaling effect? In

addition to the change in time units, reward units also changed between the short and long tasks. In

our sessions, the exchange rates in NV and SV were 0.1 and 0.05 CNY per coin, respectively (since

all coins are accumulated and subjects are paid the total profit), whereas in LV, subjects were paid

on the basis of a single trial chosen at random using an exchange rate of 4 CNY for each coin. These

exchange rates were set to, on average, equalize the possible total profit between short and long

delays tasks. However, even accounting for both the magnitude effect (Green et al., 1999;

Green et al., 2004) and unit conversion (calculations presented in Materials and methods) the dis-

count rates are still scaled by 4 orders of magnitude from the short to the long time-horizon tasks

(Navarick, 2004).

One possible explanation for this scaling is that subjects are simply ignoring the units and only

focusing on the number. This would be consistent with an emerging body of evidence that numerical

value, rather than conversion rate or units matter to human subjects (Furlong and Opfer, 2009;

Cox and Kable, 2014). A second possible explanation is that subjects normalize the subjective delay

of the offers based on context, just as they normalize subjective value based on current context and

recent history (Lau and Glimcher, 2005; Tymula and Glimcher, 2016; Louie et al., 2015;

Khaw et al., 2017). A third possibility is that in the short delay tasks (NV and SV), subjects experi-

ence the wait for the reward on each trial as quite costly, in comparison to the postponement of

NV

SV

LV

−5 −4 −3 −2

log(k)

NV

SV

LV

0.5 1.0 1.5

noise

Short

Long

1.0 1.5 2.0 2.5

rew scale

Figure 5. Distribution of population level posterior parameter estimates from the expanded model fit with reward

scaling for the three tasks in the main experiment. The light blue shaded area marks the 80% interval of the

posterior estimate. The outline of the distribution extends to the 99.99% interval. Thin grey lines are drawn

through the mean of each distribution to ease comparison across tasks. Note, the units for kSV & kNV (1=s) would

need to be scaled by 86400secs=day ! logð86400Þ ¼ 11:37 to be directly compared to kLV ð1=dayÞ.

DOI: https://doi.org/10.7554/eLife.39656.019
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reward in the LV task. This ‘cost of waiting’ may share some intersubject variability with delay-dis-

counting but may effectively scale the discount factor in tasks with this feature (Paglieri, 2013).

To test the first hypothesis, that subjects ignore units of time, we ran a control experiment

(n = 16 subjects) using two verbal discounting tasks (control experiment 2, Materials and methods).

In one task, the offers were in days (DV). In the other, the offers were in weeks (WV). This way, we

could directly test whether subjects would discount the same for 1 day as 1 week (i.e. ignore units)

or 7 days as 1 week (i.e. convert units). For this experiment, we converted the delays from the weeks

task into days (i.e. delay in days = 7� delay in weeks) before fitting the BHM. Subjects’ discount fac-

tors were highly correlated across the two tasks (Pearson r ¼ 0:92; Spearman r ¼ 0:92, all p< 0:01).

Moreover, there is a high degree of overlap in the population estimates of logðkÞ for the two tasks

(Figure 6B). If subjects had ignored units then we would expect that

logðkWÞ ¼ logðkDÞ þ logð7Þ ¼ logðkDÞ þ 1:95. Comparing the posteriors with that predicted shift, we

can say that the shift is highly unlikely (p< 0:0001). Nonetheless, the discount factors in the two tasks

were not equal. We observed a kind of amplification of preferences: the impulsive subjects were

more impulsive in days than weeks and the patient subjects were more patient in days than weeks

(Figure 6—figure supplement 1). We do not have an explanation for this effect, but overall this con-

trol experiment is consistent with and extends our main results: subjects’ time-preferences are reli-

able but context-dependent and the context dependence cannot be explained by subjects ignoring

the units of time.

Having ruled out the possibility that subjects ignore units of time, we test our second potential

explanation: that subjects make decisions based on a subjective delay that is context dependent.

We reasoned that if choices are context dependent then it may take some number of trials in each

task before the context is set. Consistent with this reasoning, we found a small but significant adap-

tation effect in early trials in our main experiment: subjects are more likely to choose the later option

Figure 6. Control experiment 2. (A) The discount factors in WV task plotted against the discount factors in DV

task, (n = 14, two out of 16 subjects who always chose the later option were excluded from the model). The color

of the circles identifies the order of task appearance. Each circle is one subject. Pearson’s r is reported on the

figure (p< 0:01 - ‘**’). The error bars are the SD of the estimated coefficients. Three lines represent the vertical yðxÞ,

horizontal xðyÞ and total least squares (TLS) regression lines. See individual subject plots (Supplementary file 3) to

visualize the quality of the model fits. (B) Distribution of posterior parameter estimates of logðkÞ and decision noise

t from the model fit for the two tasks in control experiment 2 (kDV ~ 1=day, kWV ~ 1=day). The light blue shaded area

marks the 80% interval of the posterior estimate. The outline of the distribution extends to the 99.99% interval.

Thin grey lines are drawn through the mean of each distribution to ease comparison across tasks.

DOI: https://doi.org/10.7554/eLife.39656.021

The following figure supplement is available for figure 6:

Figure supplement 1. Subjective utilities as a function of the delay in days.

DOI: https://doi.org/10.7554/eLife.39656.022
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in the first trials of SV task (Figure 7A,B). It seems that, at first, seconds in the current task are inter-

preted as being smaller than days in the preceding task, but within several trials days are forgotten

and time preferences adapt to a new time-horizon of seconds.

Discussion
We set out to test whether the same delay-discounting process is employed regardless of the ver-

bal/non-verbal nature of the task and the time-horizon. We found significant correlations between

subjects’ discount factors across the three tasks, providing evidence that there are common cogni-

tive (and presumably basal neural) mechanisms underlying the decisions made in the three tasks. In

particular, the strong correlation between the short time-horizon non-verbal and verbal tasks

(r ¼ 0:79, Figure 3A) provides the first evidence for generalizability of the non-verbal task; suggest-

ing that this task can be applied to both human and animal research for direct comparison of cogni-

tive and neural mechanisms underlying delay-discounting. However, the correlation between the

short-delay/non-verbal task and the long-delay/verbal task, while significant, is weaker (r ¼ 0:40).

Taken together, our results suggest animal models of delay-discounting may have more in common

with short time-scale consumer behavior such as impulse purchases and ‘paying-not-to-wait’ in

mobile gaming (Evans, 2016) and some caution is warranted when reaching conclusions from the

broader applicability of these models to long-time horizon real-world decisions, such as buying insur-

ance or saving for retirement.

Reliability of preferences
The question of reliability is of central importance to applying in-lab studies to real-world behavior.

There are several concepts of reliability that our study addresses. First, is test/re-test reliability; sec-

ond, reliability across the verbal/non-verbal gap; third, reliability across the second/day gap. Consis-

tent with previous studies (Lane et al., 2003; Meier and Sprenger, 2015; Augenblick et al., 2015),

we found high test/re-test reliability. Choices in the same task did not differ when made at the

beginning or the end of the session nor when they were made in sessions held on different days

even 2 weeks apart.

We found a high degree of reliability in time-preferences across the verbal/non-verbal gap

(r ¼ 0:79, Figure 3A,Table 1, Table 2). This reliability has not been, to the best of our knowledge,
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Figure 7. Evidence for context dependent temporal processing. (A,B) Main experiment early trials adaptation

effect. The offers for each subject were converted into a subjective utility, U, based on the subjects’ discount

factors in each task. This allowed us to combine data across subjects to plot psychometric curves of the probability

of choosing the later option, PðlaterÞ, for SV and LV averaged across all subjects comparing late trials (Trial in task

> 5) (A) to the first four trials (B). Using a generalized linear mixed effects model, we found a significant interaction

between early/late and SV/LV (bSVLV:early ¼ 0:86� 0:17; p< 10
�6, nsubjects ¼ 63; ntrials ¼ 20387).
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previously measured and is of similar strength to the reported test-retest reliability of personality

traits (Viswesvaran and Ones, 2000; Berns et al., 2007). The closest literature that we are aware

finds that value encoding (the convexity of the utility function) but not probability weighting is similar

across the verbal/non-verbal gap in sessions that compare responses to a classic verbal risky eco-

nomic choice task with an equivalent task in the motor domain (Wu et al., 2009). It may be that

unlike time or value, probability is processed differently in verbal vs. non-verbal settings

(Hertwig and Erev, 2009). The main difference between choices in the NV and SV tasks was the

increase in noise in NV. A worthwhile future direction is to disentangle the neural substrates of per-

ceptual noise vs. decision noise in a non-verbal task of economic preferences (Hanks et al., 2015;

Constantinople et al., 2018).

We found a moderate degree of reliability across the second/day gap (r ¼ 0:61, Figure 3B,

Table 1, Table 2). There are several aspects to the time-horizon gap that may contribute indepen-

dently to the lower correlations observed between our short and long tasks (compared to the two

short tasks). First, there is the difference in order of magnitudes of the delays. Second, there is a dif-

ference in the experience of the delayed rewards, in that subjects must wait, staring at the clock,

through all delays in the short tasks, but in the long task, subject wait for a single reward, but can go

about their lives while waiting. Paglieri (2013) described these as ‘waiting’ in seconds compared to

‘postponing’ in days. Third, our short tasks had a ‘coin drop’ sound at the time of the reward, which

may have acted as a secondary reinforcer and contributed to the discounting of delayed rewards.

The absence of this from the long task may have contributed to the decreased reliability between

short and long tasks.

Our control study using delays of days vs. weeks compared tasks with different scales but did not

differ in the experience of the delayed rewards, as in LV, only (at most) one delayed reward was

experienced for both days and weeks tasks. In that experiment, we found extremely high reliability

between time-preferences across tasks (Figure 6a). That is, Figure 6 shows that on average, subjects

discounted 7 days as frequently as 1 week was discounted in the other task. While, days and weeks

are only scaled by seven times and may be easily approximated via preexisting rules of thumb, sec-

onds vs. days are scaled by 86400. Moreover, people have more practice at converting days and

weeks than seconds and days. So while the days/weeks experiment provides some evidence that a

difference in the magnitude of the delays does not, on its own, affect reliability, it may be that larger

or unfamiliar differences (e.g. an experiment comparing hours vs. weeks) may do so. Still, we find

the second hypothesis for the lower reliability across time-horizons more compelling: that individual

differences in subjective costs of waiting are distinct from (but correlated with) individual differences

in costs of postponing (discussed in more detail below).

The evidence from the literature on the issue of reliability across time-horizons is mixed. On the

one hand, some have found that measures of discount factors on month-long delays are not predic-

tive of discount factors for year-long horizons (a difference of one order of magnitude) (Thaler, 1981;

Loewenstein and Thaler, 1989) but others have found consistent discounting for the same ranges

(Johnson and Bickel, 2002). Other studies that compared the population distributions of discount

factors for short (up to 28 days) to long (years) delays (2 orders of magnitude) found no differences

in subjects’ discount factors (Eckel et al., 2005; Andersen et al., 2014). Some of these discrepan-

cies can be attributed to the framing of choice options: standard larger later vs. smaller sooner com-

pared to negative framework (Loewenstein and Thaler, 1989), where subjects want to be paid

more if they have to worry longer about some negative events in the future.

Several previous studies have compared discounting in experienced delay tasks (as in our short

tasks) with tasks where delays were hypothetical or just one was experienced (Johnson and Bickel,

2002; Lane et al., 2003; Reynolds and Schiffbauer, 2004; Navarick, 2004; Horan et al., 2017).

For example, Lane et al. (2003), also used a within-subject design to examine short vs. long delays

(e.g. similar to our short-verbal and long-verbal tasks) and found similar correlations (r ~ 0:5� 0:1)

with a smaller sample size (n = 16). (Interestingly, they also found, but did not discuss, a 5 order of

magnitude scaling factor between subjects’ discounting of seconds and days suggesting that this is

a general phenomenon.)

Subjective scaling of time
It may seem surprising that human subjects would discount later rewards, that is choosing small

immediate rewards, in a task where delays are in seconds. After all, subjects cannot consume
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earnings immediately. Yet, this result is consistent with earlier work that suggests individuals derive

utility from receiving money irrespective of when it is consumed (Reuben et al., 2010;

McClure et al., 2004; McClure et al., 2007). In our design, a pleasing (as reported by subjects) ‘slot

machine’ sound accompanied the presentation of the coins in the short-delay tasks. This sound may

be experienced as an instantaneous secondary reinforcer (Kelleher and Gollub, 1962). Whether or

not the secondary reinforcer used in our task is experienced in an analogous way to primary rein-

forcers used in animal studies may limit the degree of overlap in underlying neural mechanisms. On

the other hand, our subjects’ behavior would not be surprising for those who develop (or study)

‘pay-not-to-wait’ video games (Evans, 2016), which exploit player’s impulsivity to acquire virtual

goods with no actual economic value.

The range of rates of discounting we observed in the long-verbal task was consistent with that

observed in other studies. For example, in a population of more than 23,000 subjects the log of the

discount factors ranged from �8.75 to 1.4 (Sanchez-Roige et al., 2018), which is similar to the

ranges presented in Figure 3B. This implies that, in our short tasks, subjects are discounting

extremely steeply, that is they are discounting the rewards per second at approximately the same

amount that they discounted the reward per day. This discrepancy has been previously found

(Lane et al., 2003; Navarick, 2004). We consider three (non-mutually exclusive) explanations for this

scaling. First, subjects may ignore units. However, by testing overlapping time-horizons of days and

weeks we confirmed that subjects can pay attention to units.

Second, it may be that with short delay tasks we are capturing cost of waiting while long delay

tasks measure delay-discounting. The costs of waiting could take several forms (Paglieri, 2013). One

form is the cost of boredom (Mills and Christoff, 2018); a feeling which animals may also experi-

ence (Wemelsfelder, 1984). Subjects could find it painful to sit and wait, staring at the clock on the

computer screen, during the delay. Additionally, there could be opportunity costs related to how

much subjects value their own time. We found that in the short tasks, subjects with large discount

factors also performed the task faster (Figure 3—figure supplement 1). If these subjects value their

time more and thus have higher costs of waiting, then given our results Figure 3B there is a surpris-

ingly large correlation between how much subjects value their time (in the short tasks) and how

much they discount postponed rewards (in the long task). Regardless of the precise form of the costs

of waiting (Chapman, 2001; Paglieri, 2013; Navarick, 2004) in order for these costs to explain the

temporal scaling we observed between short and long tasks, relative to the costs of postponing,

they would have to be, coincidentally, close in value to the number of seconds in a day.

We feel this coincidence is unlikely, and thus favor the third explanation for the scaling: temporal

context. When making decisions about seconds, subjects ‘wait’ for seconds and when making deci-

sions about days subjects ‘postpone reward’ for days (Paglieri, 2013). Although our experiments

were not designed to test whether the strong effect of temporal context was due to normalizing,

existence of extra costs for waiting in real time, or both, we did find some evidence for the former

(Figure 6C). Consistent with this idea, several studies have found that there are both systematic and

individual level biases that influence how objective time is mapped to subjective time for both short

and long delays (Wittmann and Paulus, 2009; Zauberman et al., 2009). Thus, subjects may both

normalize delays to a reference point and introduce a waiting cost at the individual level that will

lead short delays to seem as costly as the long ones.

Conclusion
We have shown for the first time that there is a high degree of reliability across verbal and non-ver-

bal delay-discounting tasks. In the analysis of experimental data, we found several interesting phe-

nomena which warrant further examination at both the behavioral and the neural level: the extreme

scaling effects from seconds to days; the compression toward the mean of discount factors in weeks

vs. days; and the adaptation observed at the beginning of tasks. Nonetheless, these effects were

consistent across the subject population: affecting the quantitative estimate of discount factor but

not the subjects’ impulsivity relative to the group. Overall, this work provides support for connecting

non-verbal animal studies with verbal human studies of delay-discounting.
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Materials and methods

Participants
For the main experiment, participants were recruited from the NYU Shanghai undergraduate student

population on two occasions leading to a total sample of 67 (45 female, 22 male) NYU Shanghai stu-

dents. Using posted flyers, we initially recruited 35 students but added 32 more to increase statisti-

cal power (the power analysis indicates that for expected correlation r ¼ 0:5 and 80% power (the

ability of a test to detect an effect, if the effect actually exists; Cohen, 1988; Bonett and Wright,

2000) the required sample size is N = 29, for a medium size correlation of r ¼ 0:3 the required sam-

ple size is N = 84).

The study was approved by the IRB of NYU Shanghai. The subjects were between 18–23 years

old, 34 subjects were Chinese Nationals (out of 67). They received a 30 CNY (~ $5 USD) per hour

participation fee as well as up to an additional 50 CNY ( ~ $8 USD) per session based on their individ-

ual performance in the task (either in NV task, or total in SV and LV tasks, considering the delay of

payment in the LV task). The experiment involved five sessions per subject (three non-verbal sessions

followed by two verbal sessions), permitting us to perform within-subject analyses. The sessions

were scheduled bi-weekly and took place in the NYU Shanghai Behavioral and Experimental Eco-

nomics Laboratory. In each session, all decisions involved a choice between a later (delay in seconds

and days) option and an immediate (now) option. Three subjects did not pass the learning stages of

the NV task. One subject did not participate in all of the sessions. These four subjects were excluded

from all analyses.

Experimental design
The experiments were constructed to match the design of tasks used for rodent behavior in Prof.

Erlich’s lab. We provided relatively minimal instructions for the subjects other than explaining that

coins were worth real money (See subject instructions in Supplementary file 4 and

Supplementary file 5). For the temporal discounting task, the value of the later option is mapped to

the frequency of pure tone (frequency / reward magnitude) and the delay is mapped to the ampli-

tude modulation (modulation period / delay). The immediate option was the same on all trials for a

session and was unrelated to the sound. There were 25 different ‘later’ options presented in each

task: all possible combinations of 5 delays (3, 6.5, 14, 30, 64) and 5 reward magnitudes (1, 2, 5, 8,

10). The immediate option was fixed at 4 coins, so later offers of 1 or 2 were considered ‘smaller-

later’ offers that were created to encourage subjects to pay attention to the sound in the non-verbal

task, and to make sure subjects were paying attention in the verbal tasks. In the non-verbal task the

two ‘smaller-later’ options made up 25% of later options, whereas in the verbal experiment they

made up 10% of later options. All ‘larger-later’ offers were equally likely to be presented. Given that

the smaller later option is always strictly worse than larger immediate option, if in such a trial

‘smaller-later’ is chosen, economic theory would

classify this choice as reflecting a first-order vio-

lation. The offers in each task were structured in

short blocks. Each block used the same reward

magnitude for a ‘later’ option offered at differ-

ent randomly ordered delays. For each subject

the order of reward blocks was chosen ran-

domly. Jittering the number of trials in each

reward resulted in 160 trials on average for each

subject in each of the two verbal tasks and up to

200 trials in the non-verbal task.

Through experiential learning, subjects

learned the map from visual and sound attrib-

utes to values and delays. This was accomplished

via six learning stages (0, 1, 2, 3, 4, 5; Video 1)

that build up to the final non-verbal task (NV)

that was used to estimate subjects’ discount-fac-

tors. Briefly, the first four stages were designed

Video 1. Learning. A video of the learning stages,

showing the examples of violations that can be made.

The video starts with stage 0 and continues with stage

1 at 00:14, stage 2 at 00:31, stage 3 at 00:55, stage 4

(trimmed) at 01:18 and stage 5 (trimmed) at 01:41.

DOI: https://doi.org/10.7554/eLife.39656.024
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to (0) learn that a mouse-click in the middle bottom ‘reward-port’ produced coins (that subjects

knew would be exchanged for money), (1) learn to initiate a trial by a mouse-click in a highlighted

port, (2) learn ‘fixation’: to keep the mouse-cursor in the highlighted port, (3) associate a mouse-click

in the blue port with the sooner option (a reward of a fixed 4 coin magnitude that is received

instantly) (4) associate varying tone frequencies with varying reward at the yellow port (5) associate

varying amplitude modulation frequencies with varying delays at the yellow port. In stage 4, subjects

are primed to the sound frequency to learn the variability of reward magnitudes: first, the lower and

upper bounds, then, in ascending and descending order and, finally, in random order. In the final

stage 5, subjects heard the AM of a sound during fixation that is now mapped to the delay of the

later option. The order of the stimuli presented was the same as in the previous stage. On each trial

of the stage 3, 4 and 5 there was either a blue port or a yellow port (but not both). The exact values

for reward and delay parameters experienced in the learning stages correspond to values that are

used throughout the experiment. After selecting the yellow-port (i.e. the delayed option), a count-

down clock appeared on the screen and the subject had to wait for the delay which had been indi-

cated by the amplitude modulation of the sound for that trial. Any violation (i.e. a mouse-click in an

incorrect port or moving the mouse-cursor during fixation) was indicated by flashing black circles

over the entire ‘poke’ wall accompanied by an unpleasant sound (for further demonstration of the

experimental time flow, please see the Video 1).

When a subject passed the learning stages (i.e. four successive trials without a violation in each

stage, Figure 1—figure supplement 1), they progressed to the decision stages of the non-verbal

task (NV). Progressing from the learning stages, a two-choice decision is present where the subject

can choose between an amount now (blue choice) versus a different amount in some number of sec-

onds (yellow choice). During the decision stages the position of blue and yellow circles on the poke

wall was randomized between left and right and was always symmetrical (Figure 1, Video 2). Each

of the three non-verbal sessions began with learning stages and continued to the decision stages. In

the 2nd and the 3rd non-verbal sessions, the learning stages were shorter in duration.

The final two sessions involved verbal stimuli (Video 3, Video 4). During each session, subjects

experience an alternating set of tasks: short delay (SV)–long delay (LV)–SV–LV (or LV-SV-LV-SV,

counter-balanced per subject). An example of a trial from the short time-horizon task (SV) is shown

in the sequence of screens presented in Figure 1. The verbal task in the long time-horizon (LV)

includes Initiation, Decision (as in Figure 1) and the screen that confirms the choice. There are two

differences in the implementation of these sessions relative to the non-verbal sessions. First, the

actual reward magnitude and delay are written within the yellow and blue circles presented on the

screen, in place of using sounds. Second, in the non-verbal and verbal short delay sessions, subjects

continued to accumulate coins (following experiential learning stages) and the total earned was paid

via electronic payment at the end of each experimental session. In the long-verbal sessions, a single

trial was selected at random at the conclusion of the session for payment (method of payment com-

monly used in human studies with long delays, (Cox and Kable, 2014)). The associated payment is

made now or later depending on the subject’s choice in the selected trial.

Control experiment 1: No Circles (NC)
In total, 25 (29 started, 4 withdrew) undergradu-

ate students from NYU Shanghai participated in

five experimental sessions (three non-verbal and

two verbal sessions, in this sequence, that were

scheduled bi-weekly). The study requirements in

order to meet the IRB protocol conditions

remained the same as in the main experiment. In

each session, subjects completed a series of

intertemporal choices. Across sessions, at least

160 trials were conducted in each of the follow-

ing tasks mimicking the main experiment, (i)

non-verbal (NV), (ii) verbal short delay (SV, 3–64

s), and (iii) verbal long delay (LV, 3–64 days). In

each trial, irrespective of the task, subjects made

Video 2. NV. A video of the several consecutive trials

of the non-verbal task.

DOI: https://doi.org/10.7554/eLife.39656.025
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a decision between the sooner and the later options. The NV task was exactly the same as in the

main experiment. All subjects passed learning stages. The SV and LV tasks differed from the main

experiment in exactly two ways: First, the stimuli presentation didn’t include a display of circles of

different colors. Instead, two choices were presented on the left or on the right side (counterbal-

anced) of the screen (Figure 4—figure supplement 1); Second, the subjects did not have to click on

the circles using mouse, instead they used a keyboard to indicate ‘L’ or ‘R’ choice. Everything else

stayed the same as in the main experiment, that is the last two sessions included an alternating set

of verbal tasks: SV-LV-SV-LV (or LV-SV-LV-SV, for a random half of subjects), the payment was done

differently for SV and LV (randomly picked trial for payment in LV), etc. The purpose of this control

experiment is to confirm that significant correlation between non-verbal tasks and verbal tasks we

report in Results is not an artifact of our main experimental design: subjects experience the same

visual display and motor responses in the non-verbal and verbal tasks and this design similarity might

drive the correlation between time-preferences in these tasks. Instead, in this control experiment the

verbal tasks are made as similar as possible (keeping our experiment structure) to typical intertem-

poral choice tasks used in human subjects.

Control experiment 2: Days and weeks (DW)
In total, 16 subjects took part in this experiment (2 of 16 were excluded from analyses because their

choices were insensitive to delay). Subjects were undergraduate students from NYU Shanghai. This

experiment was approved under the same IRB protocol as the control experiment 1 and the main

experiment. This experiment included two following experimental tasks: (i) verbal days delay (DV, 1–

64 days) and (ii) verbal weeks delay (WV, 1–35 weeks). Subjects underwent only one session where

the verbal tasks were alternated: DV-WV-DV-WV (or WV-DV-WV-DV, for roughly half of subjects; 200

trials per task). For each of the tasks in this control experiment the stimuli and procedures were

exactly the same as for LV task in the control experiment 1. The purpose of this control task is to

check whether subjects pay attention to units.

Significance tests of demographic and psychological categories
We did not find any significant differences between any of the categorical subjects’ groups, includ-

ing gender and nationality in learning stages (Figure 1—figure supplement 1), intertemporal deci-

sions and first-order violations. For the proportion of ‘yellow’ choice (mean � std. dev.) there is no

significant difference between females and males (females: 0:56� 0:24 males: 0:53� 0:29 Wilcoxon

rank sum test, p ¼ 0:22) and between Chinese and Non-Chinese (Chinese: 0:57� 0:23 Non-Chinese:

0:54� 0:29 Wilcoxon rank sum test, p ¼ 0:33) subjects. Similarly, for the first-order violations there is

no significant difference between females and males (violations per session, females: 1:14� 1:97

males: 1:07� 2:20 Wilcoxon rank sum test, p ¼ 0:2607) and a slight difference between Chinese and

Non-Chinese (Chinese: 1:21� 2:07 Non-Chinese: 1:00� 2:00 Wilcoxon rank sum test, p< 0:1)

subjects.

We used the Barratt Impulsiveness Scale (BIS-11; (Patton et al., 1995)) as a standard measure of

impulsivity. This test is reported to often correlate with biological, psychological, and behavioral

characteristics. The mean total score for our students sample was 61.79 (std = 9.53), which is consis-

tent with other reports in the literature (e.g., (Stanford et al., 2009)). The BIS-11 did not correlate

significantly with the estimated discount factors (BIS vs. logðkNV Þ: Pearson r ¼ 0:2, p ¼ 0:1180; BIS vs.

logðkSV Þ: Pearson r ¼ 0:19, p ¼ 0:1384; BIS vs. logðkLV Þ: Pearson r ¼ 0:15, p ¼ 0:2521). Prior research

finds mixed evidence of the association between the BIS-11 and delay: some report significant posi-

tive correlations (Mobini et al., 2007; Beck and Triplett, 2009; Cosenza and Nigro, 2015), others

do not find significant correlations and suggest that delay-discounting tasks might measure a differ-

ent aspect of impulsivity (Mitchell, 1999; Fellows and Farah, 2005; Reynolds et al., 2006;

Saville et al., 2010). Following earlier research that reports that components of the BIS score might

drive the correlation with discounting (Fellows and Farah, 2005; Mobini et al., 2007; Beck and Tri-

plett, 2009; Ahn et al., 2016), we next decomposed the score. Similar to others we found that cor-

relation between BIS nonplanning component and logðkNV Þ is positive and significant (Pearson

r ¼ 0:3, p< 0:05).
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Time and reward re-scaling
In our main experimental tasks we used two units

for delays: seconds and days, where 1

day = 86400 s. We also used three exchange

rates: for non-verbal task 1 coin = 0.1 CNY; for

verbal short delay 1 coin = 0.05 CNY; for long

delay 1 coin = 4 CNY. Humans tend to discount

large rewards less steeply than small rewards,

that is discounting rates tend to increase as

amounts decrease (Green et al., 1999;

Green et al., 2004). We re-calculated the model-

based (softmax-hyperbolic model) median BHM

model fits: 1) we convert them to the same units

(1/days): kNV ¼ 4173:1 (by multiplying k ~ 1=day by

the day to seconds conversion rate), kSV ¼ 2548:8,

kLV ¼ 0:0356, 2) we consider reward re-scaling:

"going from $10 to $.20, a factor of 50, k values would increase by a factor of 2" (Navarick, 2004)

kNV ¼ 4173:1, kSV ¼ 2548:8, kLV ¼ 0:0712 and 3) conclude that discrepancy of discount rates between

time-horizons cannot be accounted by magnitude effects. Thus, the discount rate revealed in the

verbal short delay task is more than 10
4 times larger than the rate describing the choices made by

the same participants in the verbal long delay task.

Analysis
In order to be sure that our results and main conclusions did not depend on the method (e.g. Bayes-

ian hierarchical vs. maximum likelihood estimation of individual subject parameters) or functional

form (e.g. exponential vs. hyperbolic), we validated our results with several methods. We estimated

subjects’ time-preferences individually (since discounting factors differ among people) for each

experimental task with maximum likelihood estimation (MLE) and used leave-one-trial-out cross-vali-

dation for model comparison. In the delay-discounting literature, there is no consensus which func-

tional form of discounting best describes human behavior: the exponential model

(Samuelson, 1937) of time discounting has a straightforward economic meaning - a constant proba-

bility of loss of reward per waiting time, whereas the hyperbolic model (Mazur, 1987) seems to

more accurately describe how individuals discount future rewards, in particular preference reversals

(Berns et al., 2007). We considered both a shift-invariant softmax rule and a scale-invariant matching

rule to transform the subjective utilities of the sooner and later offers into a probability of choosing

the later offer. Thus, we considered four model classes: (1) hyperbolic utility with softmax, (2) expo-

nential utility with softmax, (3) hyperbolic utility with matching rule and (4) exponential utility with

matching rule. We also considered models that account for utility curvature, that is V is replaced by

Vai and models that account for trial number and cumulative waiting time. Based on the Bayesian

information criterion criterion (BIC; top three models by BIC: (2) �179.47 (SE = 4.99), (1) �191.16

(SE = 4.96), and (4) �192.03 (SE = 4.82)) and

number of subjects that were well described by

the models, the softmax-hyperbolic model (1)

was selected.

Following modern statistical convention, we

used a Bayesian hierarchical model (BHM) brms,

2.0.1 (Carpenter et al., 2016; Bürkner, 2017)

that allows for pooling data across subjects, rec-

ognizing individual differences and estimating

posterior distributions, rather than point esti-

mates of the parameters. We validated that our

results were not sensitive to the model fitting

methods used; the means of BHM posteriors of

the individual discount-factors for each task are

almost identical to the individual fits done for

Video 3. SV. A video of the several consecutive trials of

the short delay task.

DOI: https://doi.org/10.7554/eLife.39656.026

Video 4. LV. A video of the several consecutive trials of

the long delay task.

DOI: https://doi.org/10.7554/eLife.39656.027
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each experimental task separately using maximum likelihood estimation through fmincon in Matlab

(Figure 2—figure supplement 1 , Figure 2—figure supplement 2). We further validated the BHM

method by simulating choices from a population of ‘agents’ with known parameters and demonstrat-

ing that we could recover those parameters given the same number of choices per agent as in our

actual dataset (not shown). In order to assess the goodness of fit for individual subjects in each task,

we computed the Bayesian r2 using the ‘bayes_R2’ function in the ‘brms’ package in R.

The first non-verbal session data was excluded from model-fitting due to a comparatively high

proportion of first-order violations relative to the following two non-verbal sessions (from 26% of tri-

als in the first non-verbal session (NV1) to 19% and 13% for the next two non-verbal sessions, NV2

and NV3, respectively, Wilcoxon signed-rank test, NV1 vs. NV2 & NV1 vs. NV3, p< 0:01). Compliance

with first-order stochastic dominance means that, in principle, this observed behavior can be ade-

quately modeled with a utility-function style analysis (Tymula et al., 2013; Yamada et al., 2013). In

the non-verbal task, violations could result from lapses in attention, motor errors or difficulty in trans-

forming the perceptual stimuli into offers (in particular, early on in the first session while learning has

not completed). In the verbal tasks, inattention and/or misunderstanding are likely explanations of

violations. It is important that NV1 did not differ significantly in choice consistency (the number of

preference reversals was not significantly different between NV1 and later non-verbal sessions, Wil-

coxon signed-rank test, all p> 0:2).

A six population level and four subject level parameters model (mixed-effects model) is used to

estimate discount-factors and decision-noise from choices. Using the ‘brms’ (Bürkner, 2017) pack-

age in R allows to do BHM of nonlinear multilevel models in Stan (Carpenter et al., 2016) with the

standard R formula syntax:

choice~

inv logit ððlater reward=ð1þ expðlogkÞ �delayÞ� sooner rewardÞ=noiseÞ;

noise~ taskþð1 j subjidÞ;

logk~ taskþðtask j subjidÞ

where later_reward is the later reward, sooner_reward is the sooner reward; logk is the natural

logarithm of the discounting parameter k and noise (t) is the decision noise (as in Equation 1 and

Equation 2, respectively). The population level effects estimate shared shifts in delay discounting

logðkÞ and decision noise t (e.g. if all subjects are more impulsive in one task).

At the subject level, this model transforms the reward and delays on each trial and individual pref-

erences into a probability distribution about the subject’s choice. For the non-verbal task, we

assumed that the subjects had an unbiased estimate of the meaning of the frequency and AM modu-

lation of the sound. Rewards and delays are converted in the subjective value of each choice option

using hyperbolic utility model (Equation 1). Then, Equation 2 (a logit, or softmax function) translates

the difference between the subjective value of the later and the subjective value of the sooner (esti-

mated using Equation 1) into a probability of later choice for each subject. Two functions below rely

on the four parameters (ki;t: (ki;NV ,ki;SV ,ki;LV ), the discounting factor per subject, i, in each task, t, and

ti;t individual decision noise). For example, for subject 12 in task NV the effective discount factor is

the product of the population level discount factor in NV and subject 12 effect in NV ,

k12;NV ¼ k̂NV � _k12;NV .

Hyperbolic utility model:

Ui ¼
V

1þ ki;tT
(1)

where V is the current value of delayed asset and T is the delay time.

Softmax rule:
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PðLiÞ ¼
eULi=ti

eULi=ti þ eUSi=ti
(2)

where L is the later, S is the sooner offer and ti is the individual decision noise.

To test for differences across tasks we examined the BHM fits using the ‘hypothesis’ function in

the ‘brms’ R package. This function allows us to directly test the posterior probability that the logðkÞ

is shifted and/or scaled between treatments. This function returns an ‘evidence ratio’ which tells us

how much we should favor the hypothesis over the inverse (e.g. Pða> bÞ
Pða< bÞ) and we used Bayesian confi-

dence intervals to set a threshold (p< 0:05) to assist frequentists in assessing statistical significance.

The bootstrapped (mean, median and variance) tests are done by sampling with replacement and

calculating the sample statistic for each of the 10000 boots, therefore creating a distribution of boot-

strap statistics and (i) testing where 0 falls in this distribution for unpaired tests or (ii) doing a permu-

tation test to see whether the means are significantly different for paired tests.

Simulations done for both model-based and model-free analyses are described in detail in (Fig-

ure 2—figure supplement 3 , Figure 3—figure supplement 4).

To estimate the effect of adaptation (Figure 6B,C), we first used the fitted parameters from the

hierarchical model to transform each offer to each subject into a difference in utility, DU. We classi-

fied the first four trials in a long or short task as early trials. Then, we fit a generalized linear mixed

model (using the function ‘glmer’ from the ‘lme4’ R package) where we fit the choice of the subjects

with fixed-effects DU, early/late, LV/SV, and interactions between LV/SV:DU and early/late:LV/SV.

We also included a slope and intercept for each subject as random effects. To test for the signifi-

cance of this adaptation effect, we compared this model to a reduced nested model where we

removed the early/late term and interaction early/late:LV/SV.

Full model with adaptation:

choice~DUþLV SV : DUþLV SV � earlyþð1þDUjsubjidÞ

Reduced model without adaptation:

choice~DUþLV SV : DUþLV SV þð1þDUjsubjidÞ

Df AIC BIC logLik Deviance Chisq Chi df Pr(>chisq)

Reduced Model 7 10955.51 11010.97 �5470.76 10941.51

Full Model 9 10932.40 11003.70 �5457.20 10914.40 27.11 2 <10�4

Software
Tasks were written in Python using the PsychoPy toolbox (1.83.04, (Peirce, 2007)). All analysis and

statistics was performed either in Matlab (version 8.6, or higher, The Mathworks, MA), or in R (3.3.1

or higher, R Foundation for Statistical Computing, Vienna, Austria). R package ‘brms’(2.0.1) was

used as a wrapper for Rstan (Guo et al., 2016) for Bayesian nonlinear multilevel modeling (Bürk-

ner, 2017), shinystan (Gabry, 2015) was used to diagnose and develop the brms models. R package

‘lme4’ was used for linear mixed-effects modeling (Bates et al., 2014).

Data availability
Software for running the task, as well as the data and analysis code for regenerating our results are

available at https://github.com/erlichlab/delay3ways/tree/v1.0 (Lukinova and Erlich, 2018; copy

archived at https://github.com/elifesciences-publications/delay3ways).
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ian r2 for each task. Plots from Left to right, row-by-row are ordered by discount factor (as estimated

using BHM) for SV.
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. Supplementary file 2. Individual subjects fits for control experiment 1. Each plot is the softmax-

hyperbolic fit for each subject in the control experiment 1. In each panel, the marker and error bar

indicate the mean and binomial confidence intervals of the subjects choices for that offer. The

smooth ribbon indicated the BHM model fits (at 50, 80, 99% credible intervals). At the top of each

subject plot we indicate the mean estimates of logðkÞ and t for each task for that subject. We also

indicate the Bayesian r2 for each task. Plots from Left to right, row-by-row are ordered by discount

factor for SV.
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. Supplementary file 3. Individual subjects fits for control experiment 2. Each plot is the softmax-

hyperbolic fit and data for each subject in control experiment 2. In each panel, the marker and error

bar indicate the mean and binomial confidence intervals of the subjects choices for that offer. The

smooth ribbon indicated the BHM model fits (at 50, 80, 99% credible intervals). At the top of each

subject plot we indicate the mean estimates of logðkÞ and t for each task for that subject. We also

indicate the Bayesian r2 for each task. Plots from Left to right, row-by-row are ordered by discount

factor for SV.

DOI: https://doi.org/10.7554/eLife.39656.031

. Supplementary file 4. Subject Instructions for non-verbal task.

DOI: https://doi.org/10.7554/eLife.39656.032

. Supplementary file 5. Subject Instructions for verbal tasks.

DOI: https://doi.org/10.7554/eLife.39656.033

. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.39656.034

Data availability

Data and code is available on GitHub (https://github.com/erlichlab/delay3ways/tree/v1.0; copy

archived at https://github.com/elifesciences-publications/delay3ways).
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