

1 **Yap1 safeguards mouse embryonic stem cells from excessive apoptosis during differentiation**

2

3 Lucy LeBlanc^{1,2}, Bum-Kyu Lee^{1,2}, Andy C. Yu¹, Mijeong Kim^{1,2}, Aparna V. Kambhampati¹, Shannon M.
4 Dupont¹, Davide Seruggia³, Byoung U. Ryu¹, Stuart H. Orkin^{3,4}, and Jonghwan Kim^{1,2,5}

5

6 ¹ Department of Molecular Biosciences

7 ² Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University
8 of Texas at Austin, Austin, TX 78712

9 ³ Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology,
10 Dana-Farber Cancer Institute (DFCI), Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
11 02115, USA

12 ⁴ Howard Hughes Medical Institute, Boston, MA 02115, USA

13 ⁵ Corresponding author

14

15 Short title: Yap1 safeguards differentiating ESCs from apoptosis

16 Keywords: Yap1, Apoptosis, Embryonic Stem Cells, Differentiation

17

18 **Corresponding author**

19 Jonghwan Kim, Ph.D.

20 jonghwankim@mail.utexas.edu

21

22

23

24

25

26

27

28 **SUMMARY**

29 Approximately 30% of embryonic stem cells (ESCs) die after exiting self-renewal, but regulators of this
30 process are not well known. Yap1 is a Hippo pathway transcriptional effector that plays numerous roles
31 in development and cancer. However, its functions in ESC differentiation remain poorly characterized.
32 We first reveal that ESCs lacking Yap1 experience massive cell death upon the exit from self-renewal.
33 We subsequently show that Yap1 contextually protects differentiating, but not self-renewing, ESC from
34 hyperactivation of the apoptotic cascade. Mechanistically, Yap1 strongly activates anti-apoptotic genes
35 via *cis*-regulatory elements while mildly suppressing pro-apoptotic genes, which moderates the level of
36 mitochondrial priming that occurs during differentiation. Individually modulating the expression of single
37 apoptosis-related genes targeted by Yap1 is sufficient to augment or hinder survival during
38 differentiation. Our demonstration of the context-dependent pro-survival functions of Yap1 during ESC
39 differentiation contributes to our understanding of the balance between survival and death during cell
40 fate changes.

41

42

43 **INTRODUCTION**

44 Yap1 regulates genes involved in many cellular functions, including proliferation, organ size control,
45 and tumorigenesis (Ehmer and Sage, 2016; Hansen et al., 2015; Huang et al., 2005). When Hippo
46 signaling is active, kinases Lats1/2 phosphorylate Yap1, leading to cytoplasmic sequestration (Hao et
47 al., 2008). When Hippo signaling is inactive, Yap1 translocates to the nucleus to co-activate or co-
48 repress numerous target genes with interacting partner proteins such as Tead factors (Kim et al., 2015;
49 Stein et al., 2015).

50 Previous research indicated that, in mouse embryonic stem cells (ESCs), nuclear translocation
51 of Yap1 occurs shortly after withdrawal of leukemia inhibitory factor (LIF), a cytokine that maintains self-
52 renewal, and that depletion of Yap1 inhibits differentiation, whereas overexpression (OE) of Yap1
53 stimulates differentiation (Chung et al., 2016). Deletion of Yap1 leads to embryonic lethality by E10.5
54 although the downstream mechanism remains poorly characterized (Morin-Kensicki et al., 2006).
55 Additionally, whether Yap1 has any other roles during ESC differentiation and early development
56 remains unclear.

57 Apoptosis influences numerous biological processes, including development, differentiation, and
58 infection (Fuchs and Steller, 2011; Meier et al., 2000). A previous study has reported that withdrawal of
59 LIF causes the death of 30% or more of ESCs (Bashamboo et al., 2006; Duval et al., 2000), and
60 around 30% of human ESCs are also annexin V positive when they exit from self-renewal (Dravid et al.,
61 2005). A proposed function of apoptosis during ESC differentiation is to cull cells that fail to exit self-
62 renewal, thus promoting efficient differentiation (Wang et al., 2015). This process is not limited to ESCs,
63 as defective cells are executed during human neural progenitor differentiation as well (Jaeger et al.,
64 2015), and apoptosis eliminates self-reactive and non-reactive lymphocytes during T and B cell
65 differentiation (Francelin, 2011; Nemazee, 2017; Opferman, 2007).

66 This process must be finely tuned to ensure efficient changes in cell identity without excessive
67 loss of cell viability. However, mechanisms that regulate the balance between survival and death during
68 ESC differentiation remain insufficiently characterized. Here, we find that Yap1 attenuates
69 mitochondrial apoptosis during ESC differentiation, primarily by upregulating anti-apoptotic factors,

70 such as Bcl-2, Bcl-xL (*Bcl2l1*), and Mcl-1, through direct transcriptional regulation. Mouse ESCs lacking
71 Yap1 have no defect in survival in self-renewing conditions. However, just after the exit from self-
72 renewal, we find that Yap1 knockout (KO) cells develop a high degree of mitochondrial priming that
73 precedes elevated rates of apoptosis. OE of anti-apoptotic factors or repression of pro-apoptotic factors
74 in Yap1 KO cells rescues this enhanced rate of cell death during differentiation. This collectively
75 suggests that Yap1 is critical for ESC survival in a context-dependent manner, advancing our
76 understanding of regulation of cell death during changes in cell identity.

77

78

79 RESULTS

80

81 **Genetic ablation of *Yap1* intensifies caspase-dependent cell death during ESC differentiation**

82 To determine context-specific roles of Yap1, we attempted to differentiate J1 ESCs in which *Yap1* had
83 been deleted via CRISPR/Cas9 in KO clones established in our previous publication (Figure 1-figure
84 supplement 1A). While ~30% cell death was observed from wild-type (WT) cells as previously reported
85 (Bashamboo et al., 2006), cell death was dramatically higher (up to >70%) in Yap1 KO cells 72 hr after
86 LIF withdrawal (Figure 1A and Figure 1-figure supplement 1B). In both cases, cell death was
87 substantially reduced after supplementation with Z-VAD-FMK (zVAD), a pan-caspase inhibitor, but not
88 with necrostatin-1, which blocks necroptosis. Undifferentiated cells had extremely low rates of cell
89 death regardless of genotype (Figure 1A). An additional J1 Yap1 KO clone as well as Yap1 KO clones
90 established in the CJ7 and E14 ESC lines (Figure 1-figure supplement 1C) also experienced drastically
91 heightened cell death during differentiation, but not self-renewal (Figure 1B). Furthermore, depletion of
92 *Yap1* using shRNA-mediated knockdown (KD) dose-dependently increased cell death during
93 differentiation (Figure 1-figure supplement 1D and E). Finally, measuring cell death in stable Yap1 OE
94 cell lines (Figure 1-figure supplement F) reduced cell death to a mere ~10% during differentiation
95 (Figure 1C). Thus, Yap1 is key for survival during ESC differentiation, and ablation of *Yap1* specifically
96 exacerbates apoptosis.

97

98 **Loss of Yap1 leads to caspase hyperactivation during differentiation**

99 During apoptosis, initiator caspases 8 (Casp8) and 9 (Casp9) are activated first, either by death
100 receptors or mitochondrial outer membrane permeabilization, respectively (Bao and Shi, 2006). They
101 then cleave executioner caspases such as caspase-3 (Casp3), which then cleave hundreds of
102 downstream targets in the cell that result in its death, including Parp1 (Fischer et al., 2003). Treatment
103 of ESCs with NucView 488 enabled live visualization of active Casp3. In undifferentiated ESCs, Casp3
104 activation was rare in both WT and KO cells, but the proportion of cells with active Casp3 increased
105 visibly after LIF withdrawal as a function of time (Figure 1D). Notably, a far greater proportion of Yap1
106 KO cells than WT cells possessed active Casp3 by 60 hr. Then, we performed flow cytometry to
107 quantify active Casp3 as well as externalized phosphatidylserine. Both the relative proportion of Casp3
108 positive cells and the fluorescent intensity of the Casp3 substrate fluorescent probe were higher in
109 Yap1 KO differentiating ESCs (dESCs), and this was correlated with an increased proportion of annexin
110 V positive cells (Figures 1E and F). Immunoblot analysis confirmed faster and more intense cleavage of
111 Casp9, Casp3, and Parp1 in Yap1 KO cells during differentiation (Figure 1G). To determine whether
112 Yap1 KO dESCs were more sensitive to exogenous apoptosis-inducing stimuli, we treated dESCs with
113 staurosporine (STS), a high-affinity, non-specific kinase inhibitor that has long been used to dissect the
114 induction of intrinsic apoptosis in a myriad of cellular contexts (Belmokhtar et al., 2001; Preta and
115 Fadeel, 2012; Xu et al., 2015). This treatment induced faster and more drastic activation of Casp3 and
116 Parp1 in Yap1 KO than in WT dESCs as quickly as two hours after addition, reflecting a vastly
117 heightened sensitivity to apoptosis-inducing stress (Figure 1-figure supplement 1G).

118 Next, we quantified caspase activity using a luminogenic substrate. By 60 hr after LIF removal,
119 all caspases tested were approximately two-fold more active in Yap1 KO cells than in WT (Figure 1H).
120 These observations demonstrate that lack of Yap1 accelerates and intensifies caspase activation
121 during differentiation. We decided to dissect which part of the apoptotic pathway is affected first by loss
122 of Yap1. Though Casp8 activity is elevated in Yap1 KO cells, we did not detect substantial differences
123 in cell death after Casp8 KD (data not shown), so we decided to target Casp9 with two different

124 shRNAs (Figure 1-figure supplement 1H). As expected, KD of Casp9 reduced cell death during
125 differentiation, and this was particularly stark for Yap1 KO cells, where cell death was reduced to WT
126 levels without Casp9 KD (Figure 1I). This implied that the abnormally high rates of apoptosis in Yap1
127 KO cells are sustained by heightened Casp9 activation. We observed that mRNA expression of
128 caspases was relatively equal between Yap1 KO cells and WT cells during differentiation (Figure 1-
129 figure supplement 1I). Additionally, protein levels of Casp3 showed similar fluctuations in dESCs for
130 both WT and KO cells; although Casp8 and Casp9 were elevated in Yap1 KO cells (Figure 1G).
131 However, since caspase activity is strongly activated by cleavage (Hu et al., 2013), we speculated that
132 Yap1 may regulate other factors that indirectly affect the rate of caspase cleavage.

133

134 **Yap1 protects against apoptosis regardless of differentiation method and acts directly after the**
135 **exit from self-renewal**

136 To determine whether the roles of Yap1 are either specific to LIF withdrawal or broadly applicable to the
137 exit from self-renewal in different conditions, we utilized alternate differentiation methods (Figure 2A).
138 Utilizing N2B27 medium (neural ectoderm fate) or low serum DMEM supplemented with IDE1 (definitive
139 endoderm fate) (Borowiak et al., 2009), we again observed that dESCs without Yap1 experienced
140 much higher rates of cell death compared to WT cells, which could be rescued by zVAD (Figures 2B
141 and C). We verified by RT-qPCR that N2B27 medium indeed induced neural ectoderm marker
142 expression (Figure 2-figure supplement 1A) whereas IDE1 treatment induced endoderm marker
143 expression (Figure 2-figure supplement 1B), as well as repression of *Nanog*, an ESC self-renewal
144 marker.

145 We also induced differentiation towards epiblast-like cells (EpiLCs) to mimic early embryo
146 development *in vitro*; whereas mESCs are equivalent to the inner cell mass of the blastocyst at E3.5-
147 4.5, EpiLCs represent the next developmental stage, the E5.5-6.0 epiblast (Hayashi et al., 2011). We
148 confirmed repression of *Nanog* and upregulation of EpiLC-specific markers (Figure 2-figure supplement
149 1C). As expected, EpiLCs lacking Yap1 underwent substantially higher cell death than WT by d3, and
150 zVAD reduced cell death in both genotypes to the low, basal rates experienced in 2i media (Figure 2D).

151 Finally, we used a well-characterized inhibitor of Yap1, verteporfin (Brodowska et al., 2014), to
152 investigate Yap1's role during late -LIF differentiation (Figure 2E). While treatment with as low as 1 μ M
153 verteporfin before the exit from self-renewal phenocopied Yap1 KO, treatment during late differentiation
154 had more modest effects on cell death, and treated cells had death rates nearly identical to untreated
155 by d7 (Figure 2F). Together, these data suggest that loss of *Yap1* increases rates of apoptosis in ESCs
156 directly after the exit from self-renewal, regardless of the ultimate lineage those ESCs are destined for.

157

158 ***Yap1 modulates the expression of apoptosis-related genes during differentiation***

159 Following our deduction that Casp9 hyperactivation distinguishes Yap1 KO dESCs from WT dESCs
160 and that lack of *Yap1* enhances apoptosis in several differentiation conditions, we examined the
161 expression of anti- and pro-apoptotic genes that affect Casp9 activation. After 72 hr of LIF withdrawal,
162 we detected a deficiency in three key anti-apoptotic proteins (Bcl-2, Bcl-xL, and Mcl-1) in Yap1 KO cells
163 by immunoblot (Figure 3A). Immunocytochemistry confirmed reduced expression of Bcl-2 and Mcl-1 in
164 Yap1 KO dESCs compared to WT, as well as lower mitochondrial content as measured by MitoTracker
165 dye (Figure 3-figure supplement 1A and B); as expected, Bcl-2 and Mcl-1 strongly colocalized with the
166 mitochondria (weighted colocalization coefficient for all samples ~0.7-0.9). We then investigated the
167 significance of this expression defect in the context of what normally happens during differentiation. In
168 WT ESCs, we found that *Bcl2* was strongly upregulated in all differentiation conditions tested; pro-
169 apoptotic genes such as Puma (*Bbc3*) and Noxa (*Pmaip1*) were also activated, whereas *Bcl2l1* and
170 *Mcl1* either stayed constant or were weakly upregulated (Figure 3B). Comparing Yap1 KO cells to WT
171 ESCs, by d2, we found a general trend for decreased anti-apoptotic gene expression (most consistently
172 *Bcl2*) and increased pro-apoptotic gene expression (Figure 3C). This defect worsened over time in -LIF
173 (Figure 3D) and was particularly stark for *Bcl2*, which was upregulated as much as 80 to 100-fold by 96
174 hr in WT ESCs upon differentiation (Figure 3E).

175 To reinforce this observation, we examined the expression of apoptosis-related genes after 2d
176 of transient OE of Yap1 after 3d of differentiation total, and found a modest induction in *Bcl2*, *Bcl2l1*,
177 and *Mcl1*, as well as a modest repression of *Bbc3* and *Bmf* (Figure 3-figure supplement 1C). Using

178 RNA-seq data from a previous study (Chung et al., 2016), we found that differentiation induces the
179 expression of a group of anti-apoptotic genes in WT cells, but this induction is debilitated after Yap1 KD
180 (Figure 3-figure supplement 1D). Meanwhile, constitutive Yap1 OE during +LIF conditions appeared to
181 slightly induce anti-apoptosis genes on average, though not significantly (Figure 3-figure supplement
182 1E). Collectively, these data show that Yap1 may function as a master regulator in proper maintenance
183 or induction of anti-apoptotic genes (particularly *Bcl2*) during differentiation, and it may also dampen the
184 upregulation of pro-apoptotic genes.

185

186 **Yap1 directly regulates apoptosis-related genes via transcription**

187 We performed ChIP-seq of Yap1 using ESCs overexpressing FLAG-Bio-Yap1 (FB-Yap1) under
188 differentiation (-LIF, 72 hr) and self-renewal (+LIF) conditions, detecting 8,453 peaks significantly
189 enriched over the BirA control above threshold between duplicates during differentiation and only 699
190 peaks in +LIF, reflecting its known cytoplasmic localization during self-renewal. Many of the
191 differentiation-related peaks were intergenic as well as in promoters (Figure 4-figure supplement 4A).
192 Yap1 occupancy was positively correlated with degree of gene downregulation upon Yap1 KD,
193 although some upregulated genes upon KD were associated with unusually low Yap1 occupancy
194 (Figure 4A). By integrating data from a previous study investigating enhancer patterns at different
195 stages of pluripotency (Buecker et al., 2014), we found that Yap1 peaks were strongly correlated with
196 increased Ep300 (p300) occupancy during differentiation (Figure 4B). Although EpiLC differentiation
197 induces a different cell fate than -LIF due to supplementation with activin A and bFGF, we reasoned
198 that apoptosis-related regulation would be shared between the two conditions. We confirmed a physical
199 interaction between Yap1 and p300 as well as one of its known cofactors, Tead4 (Chen et al., 2010),
200 during ESC differentiation using co-immunoprecipitation (Figure 4-figure supplement 1B), consistent
201 with known Yap1 nuclear localization in dESCs (Chung et al., 2016). Indeed, motif analysis revealed a
202 significant enrichment of the Tead factor motif in addition to Zic3 and AP-1 complex (JunB and Fra1
203 (Fosl1)) motifs in the center of Yap1 peaks, whereas Esrrb (a negative control) was not found (Figure 4-
204 figure supplement 4C and D). Finally, since p300 possesses histone acetyltransferase activity, we

205 confirmed an increase in H3K27ac, an activating histone mark, in Yap1 peaks during differentiation
206 (Figure 4-figure supplement 1E). Gene ontology (GO) analysis of genes bound by Yap1 and
207 downregulated by Yap1 KD mainly yielded terms related to cell migration and motility, and regulation of
208 cell death was also statistically significant (Figure 4-figure supplement 1F).

209 In addition to its co-activating properties, Yap1 also acts as a co-repressor in other contexts
210 (Kim et al., 2015), and we observed Yap1 occupancy on both anti-apoptotic and pro-apoptotic genes
211 (Figure 4C). To characterize Yap1 target putative *cis*-regulatory elements, we performed the dual
212 luciferase assay in Yap1 KO cells, WT cells, and cells transfected with a Yap1 OE vector using the
213 pGL3 promoter vector (Figure 4D-figure supplement 1G). In Yap1 KO cells, luciferase constructs with
214 regulatory elements associated with *Mcl1*, *Bcl2*, or *Bcl2l1* have lower luciferase activity relative to WT
215 cells, while regulatory elements associated with *Bmf*, *Pmaip1*, and *Bbc3* led to higher luciferase activity
216 (Figure 4D). Meanwhile, transient OE of Yap1 led to higher luciferase activity with anti-apoptotic gene
217 regulatory elements and lower luciferase activity with pro-apoptotic gene regulatory elements (Figure
218 4E). Though the initial *Bcl2* intronic regulatory element was unresponsive to Yap1 OE, combining it with
219 another element in the same intron (Figure 4-figure supplement 1H) caused its activity to increase 2x
220 during OE (Figure 4E).

221 To determine the importance of the known Yap1-Tead interaction for the function of these
222 regulatory elements, we chose the strongest enhancers (*Mcl1* distal and *Bcl2* intronic tandem) for
223 further testing. Transient OE of Yap1 in Yap1 KO cells rescued enhancer function to levels comparable
224 to Yap1 OE in WT cells, whereas OE of Yap1 S79A, a mutant less capable of binding to Tead factors
225 (Schlegelmilch et al., 2011), only mildly rescued *Mcl1*'s enhancer's activity and failed to rescue *Bcl2*'s
226 enhancer's activity at all (Figure 4F). Furthermore, ablation of the Tead binding sequence (Δ TBS) from
227 the *Mcl1* enhancer not only eliminated its Yap1 responsiveness, but also nearly abolished its enhancer
228 activity (Figure 4G). Intriguingly, Yap1 occupancy on apoptosis-related genes seems to be relatively
229 conserved ($r = \sim 0.5$) among different human cancer cell types (Figure 4-figure supplement 1I and J).
230 Thus, Yap1 may regulate apoptosis-related genes through conserved binding locations in both the
231 human and mouse genome. Additionally, Yap1 peaks in mouse dESCs also correlated with Tead1 and

232 Tead4 peaks in other mouse cell types, and signal tracks show similar occupancy patterns particularly
233 for *Bcl2* (Figure 4-figure supplement 1K and L). Taken together, our data as well as data reanalyzed
234 from other labs suggest that Yap1 directly regulates apoptosis-related genes.

235

236 **Loss of Yap1 contributes to heightened mitochondrial priming and dependence on anti-**
237 **apoptotic proteins**

238 Mitochondrial priming describes how close a cell is to the threshold of apoptosis and is a function of the
239 balance between anti-apoptotic and pro-apoptotic proteins (Czabotar et al., 2012; Deng, 2017; Sarosiek
240 et al., 2013). Since Yap1 KO cells already show higher expression of pro-apoptotic genes and lower
241 expression of anti-apoptotic genes upon differentiation (Figure 3C), we surmised that loss of *Yap1*
242 would increase mitochondrial priming and thereby sensitize dESCs to activation of the apoptotic
243 cascade.

244 Using the JC-10 assay, we measured differences in mitochondrial priming between *Yap1* KO
245 and WT ESCs during differentiation, initially. Whereas mitochondria were equally primed during self-
246 renewal, all four differentiation conditions (-LIF, neural, endoderm, EpiLC) resulted in a greater loss of
247 mitochondrial membrane potential ($\Delta\psi$) in *Yap1* KO cells normalized to WT ESCs (Figure 5A). Next, we
248 treated ESCs with a small panel of BH3 mimetics capable of inhibiting *Bcl-2*, *Bcl-xL*, *Mcl-1*, and/or
249 *Bcl-w* to measure addiction to anti-apoptotic proteins. As expected, inhibition of anti-apoptotic proteins
250 increased $\Delta\psi$ in dESCs more than in self-renewing ESCs (Figure 5B). Furthermore, deletion of *Yap1*
251 significantly sensitized dESCs, but not undifferentiated ESCs, to $\Delta\psi$ loss post BH3 mimetic treatment.
252 We then investigated whether the higher loss of $\Delta\psi$ in *Yap1* KO cells correlated with greater rates of
253 cell death. Our results showed that mere inhibition of anti-apoptotic proteins was sufficient to cause cell
254 death, particularly in dESCs, even before apoptosis normally occurs during differentiation (Figure 5C).
255 Strikingly, loss of *Yap1* significantly amplified cell death in response to BH3 mimetics at almost all
256 concentrations tested, but only during differentiation (Figure 5C). Ablation of *Yap1* also enhanced
257 addiction to *Mcl-1* and *Bcl-xL*; inhibition of either protein resulted in 2-3x greater cell death in *Yap1* KO
258 than WT (Figure 5C). Thus, loss of *Yap1* leads to increased mitochondrial priming during differentiation,

259 which subsequently sensitizes Yap1 KO to excessive activation of the apoptotic cascade. Importantly,
260 despite how critical mitochondrial priming is to biomedical applications such as successful
261 chemotherapy, almost no genes that regulate mitochondrial priming upstream of apoptosis-related
262 proteins have been shown in any context.

263

264 **Manipulation of the levels of BH3-only proteins Bmf or Puma mildly affect rates of ESC death in**
265 **the absence of Yap1 during differentiation**

266 BH3 mimetics promote cell death by mimicking pro-apoptotic BH3-only proteins (Dai et al., 2016). In
267 addition to lower expression of anti-apoptotic proteins, we observed higher expression of BH3-only
268 genes in Yap1 KO cells relative to WT cells (Figure 3C). Though it is known that KD of Puma in self-
269 renewing ESCs reduces sensitivity to cytotoxic agents (Huskey et al., 2015), roles of Bmf and Puma
270 during differentiation are relatively unknown. Therefore, we performed KD of Bmf and Puma (Figure 5-
271 figure supplement 1A and B) and this mildly reduced cell death in Yap1 KO cells during differentiation
272 but not in WT ESCs (Figure 5D). Inducible OE of either factor (Figure 5-figure supplement 1C and D)
273 accelerated apoptosis during differentiation, particularly in Yap1 KO cells, and Puma promoted cell
274 death more strongly than Bmf (Figure 5E). This difference may be because Puma promiscuously binds
275 to all known anti-apoptotic Bcl-2 family proteins, whereas Bmf binds only weakly to Mcl-1, preferring
276 Bcl-2, Bcl-xL, and Bcl-w (Chen et al., 2005). Thus, although Yap1's pro-survival function is primarily via
277 activation of anti-apoptotic proteins, heightened expression of individual pro-apoptotic BH3-only
278 proteins seems to contribute to enhanced cell death during differentiation of Yap1 KO cells. Finally, we
279 used BH3 mimetics to probe differential roles of anti-apoptotic proteins during early differentiation. Mcl-
280 1 expression was already reduced in Yap1 KO cells 28 hr after LIF withdrawal compared to WT ESCs.
281 Yap1 KO cells were acutely sensitive to inhibition (4 hr) of either Mcl-1 or Bcl-2/Bcl-xL/Bcl-w, indicating
282 increased mitochondrial priming even at such an early timepoint (Figure 5F). Since Mcl-1 is much more
283 highly expressed than both Bcl-2 and Bcl-xL, we surmise that deficiency its expression helps explain
284 heightened apoptotic activation in Yap1 KO cells even before differences in Bcl-2 expression become
285 apparent (Figure 3E).

286

287 **Modulation of anti-apoptotic proteins controls cell death during differentiation**

288 Having shown that Yap1 directly regulates apoptosis-related genes and thus reduces mitochondrial
289 priming during differentiation, we sought to characterize whether modulating individual Yap1 targets
290 could control cell death during differentiation. We stably overexpressed Yap1 (as a positive control to
291 complement the KO) and Bcl-xL (Figure 6-figure supplement 1A) and inducibly overexpressed Bcl-2
292 (Figure 6-figure supplement 6B, C, and D) in Yap1 KO cells, which reduced cell death in Yap1 KO to
293 levels comparable to WT (Figures 6A and B). Intriguingly, inducible OE of Taz, a Yap1 paralog also
294 possessing a Tead-binding domain, reduced cell death in both Yap1 KO cells and WT cells to levels
295 just below uninduced WT cells, perhaps via upregulation of Bcl-xL (Figures 6C and D, and Figure 6-
296 figure supplement 1F). Conversely, KD of Bcl-xL, Mcl-1 (Figure 6-figure supplement 1F), or Bcl-2
297 (Figure 6-figure supplement 1G) in WT ESCs individually increased cell death during differentiation 1.5
298 to 2-fold compared to controls (Figures 6E and F, Figure 6-figure supplement 1H). Since Yap1 is crucial
299 for ES differentiation, we questioned whether the apoptosis-related genes regulated by Yap1 might
300 have some effect on differentiation efficiency. Surprisingly, we found that OE of Bcl-2 led to increased
301 induction of trophectoderm (*Cdx2* and *Gata3*) and mesoderm markers (*Gsc* and *T*), while KD of Bcl-2
302 tended to reduce induction of lineage markers. However, KD of Bcl-xL or Mcl-1 had no effect on lineage
303 marker induction (Figure 6G and Figure 6-figure supplement 1I and J). Taken together, these data
304 clearly demonstrate that anti-apoptotic factors transcriptionally regulated by Yap1 are critical for dESC
305 survival, and that OE or KD of each apoptotic factor can significantly shift the balance between survival
306 and death. The results additionally suggest the previously unknown roles of Bcl-2 in regulation of ESC
307 lineage specification, as only its roles in self-renewal have been deeply probed (Yamane et al., 2005).
308 Our combined model of Yap1's role in ESC differentiation is provided in Figure 6H.

309

310

311 **DISCUSSION**

312 Though ESCs experience 30% or more cell death during differentiation, regulators of this process
313 remain largely unknown. In this study, we have shown that in the absence of *Yap1*, this proportion of
314 cell death increases to 70-80%. Accordingly, we have demonstrated that *Yap1* directly and strongly
315 activates anti-apoptotic genes, in addition to mildly repressing pro-apoptotic genes, to promote survival
316 during the stressful process of differentiation. *Yap1* therefore attenuates the increase in mitochondrial
317 priming during differentiation that threatens mitochondrial integrity and leads to Casp9 activation. OE of
318 *Yap1*, its paralog *Taz*, or its anti-apoptotic targets in *Yap1* KO cells reduces cell death to WT levels or
319 even lower. Our proposed role for *Yap1* as a pro-survival factor in ESCs is consistent with other studies
320 done in cancer or epithelial contexts (Lin et al., 2015; Rosenbluh et al., 2012; Song et al., 2015; Zhao et
321 al., 2016), but our work is the first study to show such a contextual, differentiation-specific role for *Yap1*
322 in ESCs.

323 Intriguingly, our Casp3 live imaging assay revealed that activation of Casp3 was extremely
324 heterogeneous, with many cells changing their morphology during differentiation without detectable
325 caspase activation. Future studies focusing on how individual cells make the molecular decision of
326 differentiation vs. apoptosis will be desired. We hypothesize that relative changes in the expression of
327 key pro- and anti-apoptotic genes at the single cell level, as well as lineage markers, shortly after LIF
328 withdrawal could successfully predict whether an individual cell will differentiate or perish.

329 One unexpected finding from our study is that OE of *Bcl-2* improved induction of essential
330 trophectoderm and mesoderm markers, and KD of *Bcl-2* (but not *Mcl-1* or *Bcl-xL*) conversely hampered
331 such induction. Elucidating the mechanism by which *Bcl-2* accelerates induction of lineage markers is
332 beyond the scope of this work but would enhance understanding of how apoptosis-related factors
333 influence non-apoptotic processes such as differentiation. Additionally, we noted that *Yap1* binding
334 peaks on apoptosis-related genes are conserved across several human cancer cell types, which
335 corroborates previous findings (Rosenbluh et al., 2012). Since addiction to anti-apoptotic factors is a
336 defining characteristic of cancer cells, the regulation mechanisms we have elucidated may be broadly
337 applicable to how *Yap1* promotes tumorigenesis.

338 In sum, our study has clearly demonstrated that Yap1 robustly promotes survival of ESCs
339 during differentiation by direct transcriptional regulation of apoptotic genes. Nearly all cells in the body
340 originate from various progenitor cells, and since the process of differentiation is often fraught with error
341 and stress, our research may spur advances in the regulation of the survival or death decision during
342 cell fate changes in a broad variety of contexts.

343
344
345
346
347
348

MATERIALS AND METHODS

Key Resources Table				
Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
antibody	Mouse anti-β-actin	Abgent	Cat#AM1829b RRID:AB_10664137	1:20,000 in 5% BSA
antibody	Mouse anti-Yap1	Santa Cruz Biotechnology	Cat#sc-101199 RRID:AB_1131430	1:1000 in 5% milk
antibody	Rabbit anti-cleaved caspase-3	Cell Signaling Technology	Cat#9661S RRID:AB_2341188	1:1000 in 5% BSA
antibody	Mouse anti-cleaved Parp1	Cell Signaling Technology	Cat#9548S RRID:AB_2160592	1:1000 in 5% BSA
antibody	Mouse anti-caspase-9	Cell Signaling Technology	Cat#9508S RRID:AB_10695598	1:1000 in 5% BSA
antibody	Rabbit anti-Bcl-2	Cell Signaling Technology	Cat#3498S RRID:AB_1903907	1:1000 in 5% BSA (WB), 1:200 in 4% BSA, 1% NGS (ICC)
antibody	Rabbit anti-Bcl-xL	Cell Signaling Technology	Cat#2764S RRID:AB_10695729	1:1000 in 5% BSA
antibody	Rabbit anti-Mcl-1	Cell Signaling Technology	Cat#94296S RRID:AB_2722740	1:1000 in 5% BSA, 1:800 in 4% BSA, 1% NGS (ICC)
antibody	Mouse anti-Puma	Santa Cruz Biotechnology	Cat#sc-374223 RRID:AB_10987708	1:500 in 5% BSA
antibody	Rabbit anti-Bmf	Bioss	Cat#bs-7587R RRID:AB_2722741	1:1000 in 5% BSA
antibody	Horse anti-mouse secondary, HRP-	Cell Signaling Technology	Cat#7076P2 RRID:AB_33092	1:10,000 in TBST

	conjugated		4	
antibody	Goat anti-rabbit secondary, HRP-conjugated	Cell Signaling Technology	Cat#7074S RRID:AB_2099233	1:10,000 in TBST
antibody	Goat anti-rabbit IgG Alexa Fluor 594	Thermo Scientific	Cat#R37117 RRID:AB_2556545	1:1000 in 4% BSA, 1% NGS (ICC)
antibody	Dynabeads™ MyOne™ Streptavidin T1	Thermo Scientific	Cat#65601	1:2000 in 5% BSA
antibody	Rabbit anti-Taz (Wwtr1)	Sigma Aldrich	HPA007415 RRID:AB_1080602	1:500 in 5% milk
chemical compound, drug	Z-VAD-FMK	ApexBio	Cat#A1902	
chemical compound, drug	Necrostatin-1	Selleck Chemicals	Cat#S8037	
chemical compound, drug	CHIR99021	Selleck Chemicals	Cat#S2924	
chemical compound, drug	PD184352	Selleck Chemicals	Cat#S1020	
chemical compound, drug	IDE1	Cayman Chemical Company	Cat#13816	
chemical compound, drug	Staurosporine	Cell Signaling Technology	Cat#9953S	
chemical compound, drug	Polybrene	Millipore	Cat#TR-1003-G	
chemical compound, drug	Puromycin	Thermo Scientific	Cat#A1113803-02	
chemical compound, drug	Geneticin/G418	Thermo Scientific	Cat#10131027	
chemical compound, drug	ABT-737	Selleckchem	Cat#S1002	
chemical compound, drug	Venetoclax/ABT-199	Selleckchem	Cat#S8048	
chemical compound, drug	A-1210477	Selleckchem	Cat#S7790	
chemical compound, drug	A-1155463	Selleckchem	Cat#S7800	
chemical compound, drug	Lipofectamine 3000	Life Technologies	Cat#L3000008	
chemical compound, drug	INTERFERin®	Polyplus Transfection	Cat#409-10	
chemical compound, drug	Verteporfin	Selleck Chemicals	S1786	
chemical compound, drug	Recombinant Human/Mouse/Rat Activin A Protein	R&D Systems	338-AC-010	
chemical compound, drug	Gibco FGF Basic Recombinant Mouse Protein	Thermo Fisher Scientific	PMG0034	
chemical compound, drug	KnockOut™ Serum Replacement	Thermo Fisher Scientific	10828028	
commercial assay or kit	Pierce LDH Cytotoxicity Assay Kit	Thermo Scientific	Cat#88954	
commercial assay or kit	RNeasy Plus Mini Kit	Qiagen	Cat#74136	

commercial assay or kit	qScript™ cDNA SuperMix	QuantaBio/VWR	Cat#101414-108	
commercial assay or kit	PerfeCTa SYBR Green FastMix	VWR	Cat#95072-012	
commercial assay or kit	Caspase-Glo® 3/7	Promega	Cat#G8090	
commercial assay or kit	Caspase-Glo® 8	Promega	Cat#G8200	
commercial assay or kit	Caspase-Glo® 9	Promega	Cat#G8210	
commercial assay or kit	Cell Meter™ JC-10 Mitochondrion Membrane Potential Assay Kit	AAT Bioquest	Cat#22800	
commercial assay or kit	NEBNext® Ultra™ II DNA Library Prep Kit for Illumina®	New England Biolabs	Cat#E7645S	
commercial assay or kit	Dual-Glo® Luciferase Assay System	Promega	Cat#E2920	
recombinant DNA reagent	pLKO-puro	Millipore Sigma	See table S3	
recombinant DNA reagent	pLVX-TRE3G-ZsGreen1	Clontech	Cat#631164	
recombinant DNA reagent	pCMV-Tet3G	Clontech	Cat#631164	
recombinant DNA reagent	pCMV3-Bcl2I1/Bcl-xL	Sino Biological	Cat#MG50012-UT	
recombinant DNA reagent	pGL3-promoter	Promega	Cat#E1761	
recombinant DNA reagent	pRL-TK	Promega	Cat#E2231	
recombinant DNA reagent	3149 pSFFV-neo Bcl-2 cDNA	AddGene	Cat#8750	
recombinant DNA reagent	Mus musculus BCL2 binding component 3 (Bbc3), mRNA. NM_133234.2	GenScript	Cat#OMu19350D	
recombinant DNA reagent	pcDNA3.1/HisC-mTAZ	AddGene	Cat#31793	
cell line (<i>Mus musculus</i> , male)	J1 Embryonic Stem Cells	ATCC	ATCC SCRC-1010	
cell line (<i>M. musculus</i> , male)	CJ7 Embryonic Stem Cells	ENCODE	RRID:CVCL_C316	
cell line (<i>M. musculus</i> , male)	ES-E14TG2a Embryonic Stem Cells	ATCC	ATCC® CRL-1821	
cell line (<i>Homo sapiens</i>)	HEK293T cells	ATCC	ATCC CRL-3216	
software, algorithm	FlowJo	Treestar		
software, algorithm	BoxPlotR	http://shiny.chemgrid.org/boxplotr/		
software, algorithm	Java TreeView	http://jtreeview.sourceforge.net/		
software, algorithm	AmiGO 2	http://amigo.geneontology.org		
software, algorithm	Primer3	http://primer3.ut.ee/		
software,	HOMER	http://homer.ucsd.edu/homer		

algorithm		omer/		
software, algorithm	GORilla	http://cbl-gorilla.cs.technion.ac.il/		
software, algorithm	Cistrome	http://cistrome.org/db/#/		
software, algorithm	Galaxy	http://cistrome.org/ap/		
software, algorithm	SRA Toolkit	https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc		
software, algorithm	Bowtie 2	http://bowtie-bio.sourceforge.net/bowtie2/index.shtml		
software, algorithm	MACS2	https://github.com/taoliu/MACS		
software, algorithm	Vassar Stats	http://vassarstats.net/matrix2.html		
software, algorithm	Integrated Genome Viewer	http://software.broadinstitute.org/software/igv/		
software, algorithm	ZEN Microscope Software	https://www.zeiss.com/microscopy/int/downloads/zen.html		
software, algorithm	ImageJ	https://imagej.nih.gov/ij/index.html		
software, algorithm	STAR	https://github.com/alexdobin/STAR		

349

350 **Cell culture.** J1, CJ7, and E14TG2a (E14) male mouse ESCs were cultured on 0.1% gelatin-coated
 351 plates in Dulbecco's Modified Eagle's Medium (DMEM, Gibco) supplemented with 18% fetal bovine
 352 serum (BioWest), MEM nonessential amino acids (Gibco), EmbryoMax nucleosides (Millipore), 50
 353 U/mL penicillin/streptomycin/L-glutamine (PSG, Gibco), 100 μ M β -mercaptoethanol, and 1000 U/mL
 354 recombinant mouse leukemia inhibitory factor (LIF, Millipore) in a 37°C with 5% CO₂. Media was
 355 changed daily, and cells were passaged every 2 days. J1, CJ7, E14TG2a mouse ES cells and
 356 HEK293T cells were all obtained from ATCC (except CJ7 line was obtained from Dr. Stuart Orkin),
 357 confirmed by partial genomic DNA sequencing. Mycoplasma contamination was not detected by PCR
 358 based methods.

359

360 **Cell death assay.** ESCs were seeded at a density of 2×10^5 cells/mL in the indicated media type in a
 361 clear 96-well plate. Inhibitors were administered 24 hr after seeding at a concentration of 50 μ M (Z-
 362 VAD-FMK, ApexBio; Necrostatin-1, Selleckchem). At the indicated timepoints, lactate dehydrogenase

363 (LDH) activity was quantified in the supernatant using the Pierce LDH Cytotoxicity Assay Kit (Thermo
364 Scientific) according to the manufacturer's instructions. $A_{680\text{nm}}$ values were first subtracted as
365 background noise. Then, absorbance from an average of 3 media-only wells (reflecting background
366 LDH activity) was subtracted from every sample's $A_{490\text{nm}}$ value. Data were normalized to wells that had
367 been lysed completely using the provided lysis buffer to establish a benchmark for 100% cell death.

368

369 **Cell differentiation.** For nonspecific differentiation, ESCs were washed in -LIF medium and then
370 seeded at the cell densities specified below in each assay, as well as passaged on day 1 after seeding.
371 Cells were assayed at 24, 48, 60, and/or 72 hr according to the experiment. For neural differentiation,
372 ESC were first maintained in NDiff 227 medium (N2B27, Clontech) supplemented with 3 μM
373 CHIR99021 (Selleck Chemicals) and 1 μM PD184352 (Selleck Chemicals), defined as 2i, to promote
374 self-renewal in the absence of serum and LIF. Differentiation occurred in N2B27 in the absence of 2i
375 and assayed at 24, 48, and 72 hr. For definitive endoderm differentiation, ESCs were grown in DMEM
376 supplemented with 1% FBS, PSG, and 5 μM IDE1 (Cayman Chemical Company) and assayed at 48 hr.
377 For EpiLC differentiation, ESCs were grown in N2B27 supplemented with 20 ng/mL activin A (R&D
378 Systems), 12 ng/mL bFGF (Thermo Fisher), and 1% KOSR (Thermo Fisher) as previously shown
379 (Hayashi et al., 2011), and assayed at 72 hr. For verteporfin-related experiments, verteporfin was
380 diluted in DMSO to a concentration of 1 mM and then further diluted in fresh media during media
381 changes, and cells were protected from light with aluminum foil. HEK293T cells (ATCC® CRL-3216™)
382 were cultured in DMEM supplemented with 10% FBS and PSG. All cells were grown at 37°C in the
383 presence of 5% CO_2 .

384

385 **Flow cytometry.** For analysis of externalized phosphatidylserine and active caspase-3, ESCs were
386 seeded at a density of 4×10^5 cells per well on a 6 well plate in medium with or without LIF. After
387 incubating cells for the indicated number of hours, cells were gently detached and dissociated into a
388 single cell suspension using Accutase (Biolegend). Cells were then resuspended in 200 μL 1X Annexin
389 V binding buffer plus 5 μL of 0.2 mM NucView 488 caspase-3 substrate solution and 5 μL CF 594

390 annexin V solution (Biotium). Cells were incubated in the dark at room temperature for 30 mins, then
391 centrifuged (1000 rpm, 5 mins) at 4°C and washed. Then, stained cells were filtered using a 70µm cell
392 strainer to remove clumps (Celltreat). Flow cytometry was performed on a BD LSRFortessa SORP
393 Flow Cytometer (BD Biosciences) and analysis was carried out with FlowJo (Treestar).

394

395 **Immunoblotting.** For generating lysates suitable for Western blot, ESCs were cultivated under various
396 conditions (e.g., differentiation) in 6-well, 12-well, or 24-well gelatin-coated plates. After various
397 conditions were met cells were quantified using 0.2% trypan blue to distinguish viable from nonviable
398 cells. Then, up to 4×10^6 cells were directly lysed via addition of 2x Laemmli Sample Buffer (Bio-Rad)
399 supplemented with 5% β -mercaptoethanol (Millipore Sigma). Lysates were heated at 95°C for 5 mins,
400 then cooled to room temperature and routinely stored at -20°C. Lysates were loaded into gels such that
401 either the absolute number of viable cells (quantified by trypan blue) or amount of protein (quantified by
402 the Pierce BCA Assay, Thermo Scientific) loaded in each well was the same. Up to 15 μ L of lysate was
403 run on a 4-20% Mini-PROTEAN® TGX Stain-Free™ protein gel (Bio-Rad) or a 10% TGX FastCast gel
404 (Bio-Rad) in denaturing conditions at 130V for 50-70 mins followed by semi-dry transfer using the
405 Trans-Blot ® Turbo™ Transfer System (Bio-Rad) onto 0.2 μ m nitrocellulose or methanol-activated
406 PVDF membranes (Bio-Rad). Successful protein transfer was verified with Ponceau S staining
407 (Amresco) or stain-free fluorescent crosslinking.

408 After blocking with 5% bovine serum albumin (BSA) or 5% skim milk (for Yap1 and β -actin only)
409 in Tris-buffered saline containing 0.1% Tween 20 (TBST), membranes were incubated overnight with
410 primary antibodies, diluted in 5% BSA as described in the paragraph below. The following day,
411 membranes were washed, incubated with secondary antibodies, washed again, incubated with
412 Amersham ECL Prime Western Blotting Detection Reagent (GE Healthcare) and visualized on a
413 ChemiDoc™ XRS+ (Bio-Rad). β -actin was used as a loading control.

414 Primary antibodies (purchased from Cell Signaling Technology unless otherwise specified)
415 along with dilutions used were the following: β -actin (Abgent #AM1829b, 1:20,000), Yap1 (Santa Cruz
416 Biotechnology #sc-101199, 1:1000), Casp8 (#4927S, 1:1000), Casp3 (#9662S, 1:1000), Cleaved

417 Caspase-3 (#9661S, 1:1000), Cleaved Parp1 (#9548S, 1:1000), Caspase-9 (#9508S, 1:1000), Bcl-2
418 (#3498S, 1:1000), Bcl-xL (#2764S, 1:1000), Mcl-1 (#94296S, 1:1000), Tead4 (Abcam #ab58310,
419 1:5000), Puma (Santa Cruz Biotechnology #sc-374223, 1:500), and Bmf (Bioss #bs-7587R, 1:1000).
420 HRP-conjugated secondary antibodies (purchased from Cell Signaling Technology), used at a dilution
421 of 1:10,000 in TBST, were horse anti-mouse (#7076P2) and goat anti-rabbit (#7074S).

422

423 **Lentiviral production and infection and transposon-mediated gene integration.** Lentiviruses were
424 used to transduce shRNA and overexpression constructs. Bacterial glycerol stocks containing the
425 appropriate shRNA were purchased from Millipore Sigma. A complete list of shRNA can be found in
426 supplemental table S3. HEK293T cells were seeded at a density of 1.2×10^6 cells per well on a 6 well
427 plate. After reaching a confluence of 50-60%, cells were transfected with 1.2 μ g of an shRNA-
428 containing pLKO-puro vector (Millipore Sigma) as well as 800 ng pCMV- Δ 8.9 and 400 ng VSVG
429 packaging plasmids with Fugene 6 (Promega) using the manufacturer's protocol. For inducible
430 overexpression (OE), a pLVX-IRES-ZsGreen1 vector (Clontech) containing the gene of interest and
431 pLVX-TRE3G vector (Clontech) were transfected separately with packaging plasmids. After 18 hr of
432 overnight incubation, HEK293T medium was replaced with ES medium. Then, two days after
433 transfection, medium was supplemented with HEPES to a final concentration of 15 mM to act as an
434 additional buffer, and the supernatant (which contains lentiviral particles) was filtered through a 0.45-
435 μ m Supor® membrane (PALL). ESCs were infected at a density of 2×10^5 cells/mL in medium
436 supplemented with 10 μ g/mL polybrene (Millipore). 48 hours post-infection, ESCs were selected with
437 puromycin (Thermo Scientific) or geneticin/G418 (Thermo Scientific). Given that cells were passaged
438 every two days, relevant experiments were performed within five passages of the initial infection.

439 As an alternative method for inducible OE, for the *Wwtr1* gene (Taz), a pSBtet-GP vector
440 (AddGene) with luciferase replaced by a multiple cloning site and cloned with the gene of interest. The
441 resultant construct was transfected along with a transposase-containing pCMV(CAT)T7-SB100 vector
442 (AddGene) into ESCs at a density of 6×10^5 cells/mL. Selection with puromycin occurred 24 hr later. All
443 relevant experiments were performed within five passages of the initial transfection. Doxycycline

444 (Fisher Scientific) was used at a concentration of 500 ng/mL for all inducible OE experiments. cDNAs
445 for all OE experiments were obtained from either vectors (Bcl-xL - Sino Biological, Bcl-2 - 3149 pSFFV-
446 neo Bcl-2 cDNA from AddGene, Puma - GenScript, Taz - pcDNA3.1/HisC-mTAZ from AddGene) or full-
447 length mouse ESC cDNA reverse transcribed using the ProtoScript II First Strand cDNA Synthesis Kit
448 from New England Biolabs (Bmf). All inserts were confirmed by Sanger sequencing.

449

450 **Caspase activity assay.** For determination of caspase activity, the Caspase-Glo® 3/7, 8, and 9 Assay
451 Systems (Promega) was used. ESCs were seeded at a density of 1×10^5 cells/mL in a white-walled 96-
452 well plate (Millipore Sigma). At the indicated timepoints, cells were assayed using the respective kits
453 according to manufacturer's instructions. After subtracting the noise from blank wells (containing media
454 but no cells), luminescent signals in each well were normalized to the cell number.

455

456 **Gene expression analysis.** RNA-seq data was downloaded from Gene Expression Omnibus. Yap1
457 KD data belonged to the series GSE69669. Samples corresponding to accession numbers
458 GSM1706496, GSM1706495, GSM1706489, and GSM1706488 were used for analysis. Boxplots were
459 generated using BoxPlotR (<http://shiny.chemgrid.org/boxplotr/>) where whiskers extend to the 5th and
460 95th percentiles. Gene lists were taken from AmiGO 2 (<http://amigo.geneontology.org>), specifically
461 positive (GO:2001244) and negative (GO:2001243) regulation of intrinsic apoptotic signaling pathway.
462 Lists were double-checked for any genes known to behave differently than annotated in the ES cell
463 context. Genes that were not expressed were removed from the analysis to reduce noise. Gene
464 ontology analysis was carried out using GOrilla (<http://cbl-gorilla.cs.technion.ac.il/>) using the "two
465 unranked lists of genes" option, where the background list was populated by all genes listed in the
466 RNA-seq output.

467 For RT-qPCR, total RNA was extracted from cells with the RNeasy Plus Mini Kit (Qiagen). Then,
468 600 ng of RNA was reverse transcribed into cDNA using the qScript™ cDNA SuperMix from QuantaBio
469 (VWR). Next, qPCR was performed in 20 μ L reactions using the PerfeCTa SYBR Green FastMix (VWR)
470 plus 6 ng of cDNA and 250 nM forward and reverse primers. Primers were designed using Primer3

471 (<http://primer3.ut.ee/>) such that each primer amplified the junction between two or more exons, and
472 their specificity as well as lack of primer dimer formation was verified with melt curve analysis showing
473 one peak. Relative expression was normalized to Gapdh using the $2^{-\Delta\Delta CT}$ method. All reactions were
474 performed at least in triplicate on a StepOnePlus Real-Time PCR System (Applied Biosystems). All
475 primer sequences are listed in Supplemental Table S1.

476

477 **Immunofluorescence.** ESCs were seeded (6×10^5 cells/mL) on a gelatin-coated μ -Slide VI 0.4 (Ibidi).
478 For cells growing in -LIF conditions, cells were differentiated on a 10 cm plate for one day before
479 seeding the μ -Slide and seeded at 2×10^5 cells/mL. After an additional 2 days, cells were thoroughly
480 washed with Dulbecco's phosphate-buffered saline (DPBS) and fixed using 4% paraformaldehyde
481 (freshly cracked with 70 mM NaOH at 70°C) for 15 mins. For mitochondrial staining, after washing but
482 before fixation, cells were incubated in 300 nM MitoTracker Deep Red FM in OptiMem for 30 mins.
483 Cells were washed again with DPBS and then permeabilized with 0.3% Triton X-100 in PBS for 5 mins.
484 After washing once more, samples were blocked using IF blocking solution (4% BSA and 1% normal
485 goat serum diluted in DPBS) for one hour, then incubated overnight with Bcl-2 (1:200) or Mcl1 (1:800)
486 primary antibodies diluted in IF blocking solution. Then, samples were washed thoroughly followed by
487 incubation with fluorescent secondary antibody (goat anti-rabbit IgG Alexa Fluor 594 from Thermo
488 Scientific) diluted 1:1000 for one hour. After further washing, ProLong™ Glass Antifade Mountant with
489 NucBlue (Thermo Scientific) was added to the samples, which were allowed to cure for 18-24 hr at
490 room temperature. Slides were then imaged using a Zeiss LSM 710 Confocal Microscope using the
491 Plan-Apo 63X (oil) objective and images were processed using ZEN microscope software.
492 Colocalization was quantified using Zen software by setting the crosshairs such that noise was
493 restricted to the lower left quadrant, and the same crosshair coordinates were used for all samples.
494 Intensity was quantified using ImageJ and normalized to the number of discrete nuclei (stained by
495 NucBlue) that could reasonably be assigned to separate cells.

496

497 **Chromatin immunoprecipitation followed by NextGen sequencing (ChIP-seq).** After reaching ~80%
498 confluence in a 15 cm plate, BirA ESCs with or without FLAG-Bio-Yap1 were crosslinked with 1%
499 formaldehyde for 7 min at room temperature and constant shaking. Formaldehyde was quenched with
500 addition of glycine to a final concentration of 125 mM along with shaking for 5 min. Cells were then
501 sonicated using a Bioruptor (Diagenode), and sheared chromatin including DNA fragments ~300 bp in
502 length were used for immunoprecipitation with Dynabeads™ MyOne™ Streptavidin T1 (Thermo
503 Scientific). Sequencing libraries were prepared with the enriched ChIP sample using the NEBNext®
504 Ultra™ II DNA Library Prep Kit for Illumina® (New England Biolabs) and sequenced using the Illumina
505 HiSeq 4000 at the UT Austin Genomic Sequencing and Analysis Facility (GSAF).

506

507 **ChIP-seq Data Analysis.** Public ChIP-seq data sets were downloaded from Cistrome
508 (<http://cistrome.org/db/#/>). When possible, only data sets that passed all of Cistrome's quality control
509 conditions were used. To determine pairwise correlations between ChIP-seq data sets, human YAP1
510 ChIP-seq peaks.bed files were sent directly to Galaxy (<http://cistrome.org/ap/>) and peaks were
511 assigned to genes using the BETA-minus functionality (assembly hg19). For mouse Tead factor ChIP-
512 seq datasets and our own Yap1 ChIP-seq data, fastq files were directly processed using the SRA
513 Toolkit, and 75 bp reads were mapped onto the mouse genome (assembly mm9) using Bowtie 2.
514 Peaks were then called using model-based analysis of ChIP-seq (MACS2). For comparison with p300
515 ChIP-seq data, Bowtie 2 output was used to compare target overlap within a window of 6 kb of the
516 Yap1 peak center (in dESCs) using a bin size of 100 bp. The apoptosis gene list was retrieved from
517 AmiGO 2 (GO:0006915). Binding scores for all genes were then used for pairwise correlations using
518 Vassar Stats (<http://vassarstats.net/matrix2.html>) and correlations were visualized using Java TreeView
519 (<http://jtreeview.sourceforge.net/>). Signal tracks were visualized using Integrated Genome Viewer (IGV,
520 <http://software.broadinstitute.org/software/igv/>).

521 For our own Yap1 ChIP-seq data, motif analysis was performed using HOMER
522 (<http://homer.ucsd.edu/homer/motif/fasta.html>). Peak to gene features were assigned using in-house
523 Perl code. Binding sites were assigned to genomic features according to the following hierarchy:

524 promoter (\pm 2 kb of the TSS) > upstream (2 - 20 kb upstream of the TSS) > intron > exon > intergenic
525 (all other binding sites that did not fit the other categories). Gene ontology (GO) analysis was performed
526 using GOrilla (<http://cbl-gorilla.cs.technion.ac.il/>) using the two unranked lists of genes (target and
527 background lists) setting. For the target list, all the genes with a peak score (normalized to BirA) greater
528 than 2 were included. These Yap1 target genes were further sorted into either upregulated upon Yap1
529 KD ($\log_2(\text{KD}/\text{control}) \geq 0.5$) or downregulated ($(\log_2(\text{KD}/\text{control}) \leq -0.5)$). For the background list, all the
530 genes from the bed file (20,422) were included. The top five GO terms (relative to $-\log_{10}(\text{p-value})$), plus
531 the top apoptosis-related GO term, were then graphed.

532

533 **Dual luciferase reporter assay.** ESCs were seeded (6×10^5 cells/mL when comparing Yap1 OE to
534 empty, 4×10^5 cells/mL when comparing Yap1 KO to WT) in a white-walled 96-well plate. Cells were
535 transfected with 40 ng pGL3-promoter (Promega) containing firefly luciferase downstream of the SV40
536 promoter plus putative Yap1-responsive regulatory elements cloned from genomic mouse DNA.
537 Simultaneously, as an internal control, cells were co-transfected with 40 ng pRL-TK containing Renilla
538 luciferase downstream of the HSV-thymidine kinase promoter. During Yap1 OE experiments, half of the
539 wells were transfected with 40 ng of a FLAG-Bio vector containing either Yap1, mutant Yap1 (Ser79Ala)
540 generated by site-directed mutagenesis via the NEBuilder HiFi DNA Assembly Kit (New England
541 Biolabs), or no insert downstream of the EF-1 α promoter. All transfections related to luciferase were
542 performed with Lipofectamine 3000 (Life Technologies). Cells were incubated for 16 hr before changing
543 the media, and luciferase activity was measured by the Dual-Glo[®] Luciferase Assay a total of 24 hr
544 after transfection System (Promega). Firefly luciferase signal was normalized to Renilla luciferase
545 signal, and then the signal of each regulatory element-containing construct was normalized to pGL3-
546 promoter. All regulatory element sequences tested are listed in Supplemental Table S2. The NEBuilder
547 HiFi DNA Assembly Kit was used to assemble the Bcl-2 tandem enhancer as well as the Mcl-1 distal
548 enhancer with Tead site deletion (using overlapping homology excluding the Tead binding motif).

549

550 **Mitochondrial priming and loss of membrane potential.** Mitochondrial membrane potential loss ($\Delta\psi$)
551 was measured as a change in the 525/570 nm ratio relative to the DMSO-treated control using the Cell
552 Meter™ JC-10 Mitochondrion Membrane Potential Assay Kit (AAT Bioquest) according to the
553 manufacturer's instructions after 12 hr of incubation with either BH3 mimetic or various timepoints of
554 differentiation (72 hr for -LIF and EpiLC, 48 hr for neural ectoderm and endoderm). BH3 mimetics ABT-
555 737 (Oltersdorf et al., 2005), Venetoclax/ABT-199 (Souers et al., 2013), A-1210477 (Leverson et al.,
556 2015), and A-1155463 (Tao et al., 2014) were applied to ESCs or dESCs (after 24 hr of differentiation)
557 at the concentrations indicated in the figure. Cell death was measured using the LDH assay as
558 described above after 24 hr of incubation with the BH3 mimetic (48 hr total after LIF withdrawal).

559

560 **siRNA knockdown.** MISSION® siRNA was purchased from Millipore Sigma. Duplexes targeting *Mcl1*
561 (NM_008562: SASI_Mm01_00048593, SASI_Mm02_00314161, SASI_Mm01_00048594) as well as
562 *Bcl2l1* (NM_009743: SASI_Mm02_00316924, SASI_Mm02_00316925, SASI_Mm02_00316926) were
563 ordered and resuspended at a concentration of 25 μ M in 5X siRNA buffer (Dharmacon) diluted to 1X
564 RNase-free water (Thermo Scientific). siRNA was reverse transfected into ESCs (6×10^5 cells/mL) at a
565 final concentration of 75 nM using INTERFERin® according to the manufacturer's protocol (Polyplus
566 Transfection). MISSION® siRNA Fluorescent Universal Negative Control #1 conjugated to 6-FAM was
567 used as both a transfection control and as a non-targeting siRNA control. After verifying KD at the
568 protein level by Western blot, the best two siRNAs were chosen for further experiments. All shRNA and
569 siRNA TRC/ID numbers, and shRNA sequences (or the target position where siRNA is predicted to
570 bind) are listed in supplemental table S3.

571

572 **Data, software, and code availability.** Yap1 ChIP-seq data generated in this study has been
573 uploaded to Gene Expression Omnibus under accession number GSE112606. Code used to analyze
574 raw sequencing files using the programs STAR, Bowtie2, MACS, and Homer is available in the code
575 file included with this manuscript (Source code file 1).

576

577 **Supplemental Information**

578 Supplemental Information includes six figures and three tables and can be found with this article.

579

580 **Conflict of Interests**

581 The authors declare no conflict of interests.

582

583 **Acknowledgements**

584 This study was supported by R01GM112722 (NIH) and the Preterm Birth Research Grant (Burroughs
585 Welcome Fund) to J.K., as well as the NSF GRFP and Hamilton Seed Grant to L.L. We thank the
586 Genome Sequencing and Analysis Facility (GSAF) and Texas Advanced Computing Center (TACC) at
587 UT Austin for ChIP-seq analysis as well as the Center for Biomedical Research Support at UT Austin
588 for flow cytometry and confocal microscopy.

589

590 **REFERENCES**

591

592 Bao, Q., and Shi, Y. (2006). Apoptosome: a platform for the activation of initiator caspases. *Cell Death And Differentiation* *14*, 56.

593

594 Bashamboo, A., Taylor, A.H., Samuel, K., Panthier, J.-J., Whetton, A.D., and Forrester, L.M. (2006).
595 The survival of differentiating embryonic stem cells is dependent on the SCF-KIT pathway. *Journal of Cell Science* *119*, 3039.

596

597 Belmokhtar, C.A., Hillion, J., and Ségal-Bendirdjian, E. (2001). Staurosporine induces apoptosis
598 through both caspase-dependent and caspase-independent mechanisms. *Oncogene* *20*, 3354.

599

600 Borowiak, M., Maehr, R., Chen, S., Chen, A.E., Tang, W., Fox, J.O., Schreiber, S.L., and Melton, D.A.
601 (2009). Small molecules efficiently direct endodermal differentiation of mouse and human embryonic
602 stem cells. *Cell stem cell* *4*, 348-358.

603

604 Brodowska, K., Al-Moujahed, A., Marmalidou, A., Meyer Zu Horste, M., Cichy, J., Miller, J.W.,
605 Gragoudas, E., and Vavvas, D.G. (2014). The clinically used photosensitizer Verteporfin (VP) inhibits
606 YAP-TEAD and human retinoblastoma cell growth in vitro without light activation. *Experimental eye
607 research* *124*, 67-73.

608

609 Buecker, C., Srinivasan, R., Wu, Z., Calo, E., Acampora, D., Faial, T., Simeone, A., Tan, M., Swigut, T.,
610 and Wysocka, J. (2014). Reorganization of Enhancer Patterns in Transition from Naive to Primed
611 Pluripotency. *Cell Stem Cell* *14*, 838-853.

612

613 Chen, L., Chan, S.W., Zhang, X., Walsh, M., Lim, C.J., Hong, W., and Song, H. (2010). Structural basis
614 of YAP recognition by TEAD4 in the hippo pathway. *Genes & development* *24*, 290-300.

615

616 Chen, L., Willis, S.N., Wei, A., Smith, B.J., Fletcher, J.I., Hinds, M.G., Colman, P.M., Day, C.L.,
617 Adams, J.M., and Huang, D.C.S. (2005). Differential Targeting of Prosurvival Bcl-2 Proteins by Their
618 BH3-Only Ligands Allows Complementary Apoptotic Function. *Molecular Cell* *17*, 393-403.

619

620 Chung, H., Lee, B.K., Uprety, N., Shen, W., Lee, J., and Kim, J. (2016). Yap1 is dispensable for self-
621 renewal but required for proper differentiation of mouse embryonic stem (ES) cells. *EMBO reports* *17*,
622 519-529.

623

624 Czabotar, Peter E., Westphal, D., Dewson, G., Ma, S., Hockings, C., Fairlie, W.D., Lee, Erinna F., Yao,
625 S., Robin, Adeline Y., Smith, Brian J., *et al.* (2012). Bax Crystal Structures Reveal How BH3 Domains
626 Activate Bax and Nucleate Its Oligomerization to Induce Apoptosis. *Cell* *152*, 519-531.

627

628 Dai, H., Meng, X.W., and Kaufmann, S.H. (2016). Mitochondrial apoptosis and BH3 mimetics.
629 F1000Research *5*, 2804.

630

631 Deng, J. (2017). How to unleash mitochondrial apoptotic blockades to kill cancers? *Acta Pharmaceutica
632 Sinica B* *7*, 18-26.

633

634 Dravid, G., Ye, Z., Hammond, H., Chen, G., Pyle, A., Donovan, P., Yu, X., and Cheng, L. (2005).
635 Defining the Role of Wnt/β-Catenin Signaling in the Survival, Proliferation, and Self-Renewal of
636 Human Embryonic Stem Cells. *STEM CELLS* *23*, 1489-1501.

637

638 Duval, D., Reinhardt, B., Kedinger, C., and Boeuf, H. (2000). Role of suppressors of cytokine signaling
639 (Socs) in leukemia inhibitory factor (LIF) -dependent embryonic stem cell survival. *The FASEB Journal*
640 *14*, 1577-1584.

641

642 Ehmer, U., and Sage, J. (2016). Control of Proliferation and Cancer Growth by the Hippo Signaling
643 Pathway. *Molecular Cancer Research* *14*, 127.

644

645 Fischer, U., Jänicke, R.U., and Schulze-Osthoff, K. (2003). Many cuts to ruin: a comprehensive update
646 of caspase substrates. *Cell Death And Differentiation* *10*, 76.

647

648 Francelin, C.V., Liana (2011). Apoptosis and the Developing T Cells. *Journal of Clinical & Cellular
649 Immunology*, S3-001.

636 Fuchs, Y., and Steller, H. (2011). Programmed Cell Death in Animal Development and Disease. *Cell*
637 *147*, 742-758.

638 Hansen, C.G., Moroishi, T., and Guan, K.-L. (2015). YAP and TAZ: a nexus for Hippo signaling and
639 beyond. *Trends in Cell Biology* *25*, 499-513.

640 Hao, Y., Chun, A., Cheung, K., Rashidi, B., and Yang, X. (2008). Tumor Suppressor LATS1 Is a
641 Negative Regulator of Oncogene YAP. *Journal of Biological Chemistry* *283*, 5496-5509.

642 Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S., and Saitou, M. (2011). Reconstitution of the Mouse
643 Germ Cell Specification Pathway in Culture by Pluripotent Stem Cells. *Cell* *146*, 519-532.

644 Hu, Q., Wu, D., Chen, W., Yan, Z., and Shi, Y. (2013). Proteolytic Processing of the Caspase-9
645 Zymogen Is Required for Apoptosome-mediated Activation of Caspase-9. *Journal of Biological*
646 *Chemistry* *288*, 15142-15147.

647 Huang, J., Wu, S., Barrera, J., Matthews, K., and Pan, D. (2005). The Hippo Signaling Pathway
648 Coordinately Regulates Cell Proliferation and Apoptosis by Inactivating Yorkie, the
649 Drosophila Homolog of YAP. *Cell* *122*, 421-434.

650 Huskey, Noelle E., Guo, T., Evasion, Kimberley J., Momcilovic, O., Pardo, D., Creasman, Katelyn J.,
651 Judson, Robert L., Blelloch, R., Oakes, Scott A., Hebrok, M., *et al.* (2015). CDK1 Inhibition Targets the
652 p53-NOXA-MCL1 Axis, Selectively Kills Embryonic Stem Cells, and Prevents Teratoma Formation.
653 *Stem Cell Reports* *4*, 374-389.

654 Jaeger, A., Fröhlich, M., Klum, S., Lantow, M., Viergutz, T., Weiss, D.G., and Kriehuber, R. (2015).
655 Characterization of Apoptosis Signaling Cascades During the Differentiation Process of Human Neural
656 ReNcell VM Progenitor Cells In Vitro. *Cellular and Molecular Neurobiology* *35*, 1203-1216.

657 Kim, M., Kim, T., Johnson, Randy L., and Lim, D.-S. (2015). Transcriptional Co-repressor Function of
658 the Hippo Pathway Transducers YAP and TAZ. *Cell Reports* *11*, 270-282.

659 Leverson, J.D., Zhang, H., Chen, J., Tahir, S.K., Phillips, D.C., Xue, J., Nimmer, P., Jin, S., Smith, M.,
660 Xiao, Y., *et al.* (2015). Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target
661 cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). *Cell Death
& Disease* *6*, e1590.

662 Lin, L., Sarnis, A.J., Chan, E., Olivas, V., Cade, L., Pazarentzos, E., Asthana, S., Neel, D., Yan, J.J., Lu,
663 X., *et al.* (2015). The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer
664 therapies. *Nature Genetics* *47*, 250.

665 Meier, P., Finch, A., and Evan, G. (2000). Apoptosis in development. *Nature* *407*, 796.

666 Morin-Kensicki, E.M., Boone, B.N., Howell, M., Stonebraker, J.R., Teed, J., Alb, J.G., Magnuson, T.R.,
667 O'Neal, W., and Milgram, S.L. (2006). Defects in Yolk Sac Vasculogenesis, Chorioallantoic Fusion, and
668 Embryonic Axis Elongation in Mice with Targeted Disruption of Yap65. *Molecular and Cellular
669 Biology* *26*, 77-87.

670 Nemazee, D. (2017). Mechanisms of central tolerance for B cells. *Nature Reviews Immunology* *17*, 281.

671 Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Belli, B.A., Bruncko, M.,
672 Deckwerth, T.L., Dinges, J., Hajduk, P.J., *et al.* (2005). An inhibitor of Bcl-2 family proteins induces
673 regression of solid tumours. *Nature* *435*, 677.

674 Opferman, J.T. (2007). Apoptosis in the development of the immune system. *Cell Death And
675 Differentiation* *15*, 234.

676 Preta, G., and Fadeel, B. (2012). Scythe cleavage during Fas (APO-1)-and staurosporine-mediated
677 apoptosis. *FEBS Letters* *586*, 747-752.

678 Rosenbluh, J., Nijhawan, D., Cox, Andrew G., Li, X., Neal, James T., Schafer, Eric J., Zack, Travis I.,
679 Wang, X., Tsherniak, A., Schinzel, Anna C., *et al.* (2012). β -Catenin-Driven Cancers Require a YAP1
680 Transcriptional Complex for Survival and Tumorigenesis. *Cell* *151*, 1457-1473.

681

682 Sarosiek, K.A., Ni Chonghaile, T., and Letai, A. (2013). Mitochondria: gatekeepers of response to
683 chemotherapy. *Trends in Cell Biology* 23, 612-619.

684 Schlegelmilch, K., Mohseni, M., Kirak, O., Pruszak, J., Rodriguez, J.R., Zhou, D., Kreger, Bridget T.,
685 Vasioukhin, V., Avruch, J., Brummelkamp, Thijn R., *et al.* (2011). Yap1 Acts Downstream of α -Catenin
686 to Control Epidermal Proliferation. *Cell* 144, 782-795.

687 Song, S., Honjo, S., Jin, J., Chang, S.-S., Scott, A.W., Chen, Q., Kalhor, N., Correa, A.M., Hofstetter,
688 W.L., Albarracin, C.T., *et al.* (2015). The Hippo coactivator YAP1 mediates EGFR overexpression and
689 confers chemo-resistance in esophageal cancer. *Clinical cancer research : an official journal of the*
690 *American Association for Cancer Research* 21, 2580-2590.

691 Souers, A.J., Leverson, J.D., Boghaert, E.R., Ackler, S.L., Catron, N.D., Chen, J., Dayton, B.D., Ding,
692 H., Enschede, S.H., Fairbrother, W.J., *et al.* (2013). ABT-199, a potent and selective BCL-2 inhibitor,
693 achieves antitumor activity while sparing platelets. *Nature Medicine* 19, 202.

694 Stein, C., Bardet, A., Roma, G., Bergling, S., Clay, I., Ruchti, A., Agarinis, C., Schmelzle, T.,
695 Bouwmeester, T., Schübel, D., *et al.* (2015). YAP1 Exerts Its Transcriptional Control via TEAD-
696 Mediated Activation of Enhancers. *PLOS Genetics* 11, e1005465.

697 Tao, Z.-F., Hasvold, L., Wang, L., Wang, X., Petros, A.M., Park, C.H., Boghaert, E.R., Catron, N.D.,
698 Chen, J., Colman, P.M., *et al.* (2014). Discovery of a Potent and Selective BCL-XL Inhibitor with in
699 Vivo Activity. *ACS Medicinal Chemistry Letters* 5, 1088-1093.

700 Wang, Eric S., Reyes, Nichole A., Melton, C., Huskey, Noelle E., Momcilovic, O., Goga, A., Blelloch,
701 R., and Oakes, Scott A. (2015). Fas-Activated Mitochondrial Apoptosis Culls Stalled Embryonic Stem
702 Cells to Promote Differentiation. *Current Biology* 25, 3110-3118.

703 Xu, W., Jing, L., Wang, Q., Lin, C.-C., Chen, X., Diao, J., Liu, Y., and Sun, X. (2015). Bax-PGAM5L-
704 Drp1 complex is required for intrinsic apoptosis execution. *Oncotarget* 6, 30017-30034.

705 Yamane, T., Dylla, S.J., Muijtjens, M., and Weissman, I.L. (2005). Enforced Bcl-2 expression overrides
706 serum and feeder cell requirements for mouse embryonic stem cell self-renewal. *Proceedings of the*
707 *National Academy of Sciences of the United States of America* 102, 3312-3317.

708 Zhao, J., Li, X., Yang, Y., Zhu, D., Zhang, C., Liu, D., Wu, K., and Zhao, S. (2016). Effect of YAP1
709 silencing on esophageal cancer. *OncoTargets and therapy* 9, 3137-3146.

710
711

712 **FIGURE LEGENDS**

713

714 **Figure 1. Loss of Yap1 substantially increases apoptosis during ESC differentiation.**

715 (A) Lactate dehydrogenase (LDH) assay of WT and Yap1 KO ESCs in \pm LIF. Cells were treated with
716 either Z-VAD-FMK (Z-VAD), necrostatin-1, DMSO, or no treatment. Values were normalized to wells
717 that had been lysed completely. (B) LDH assay measuring cell death after Yap1 KO in 3 different ESC
718 lines during differentiation (72 hr) or self-renewal. (C) LDH assay measuring cell death in Yap1 KO, WT,
719 and 3 different stable FLAG-Bio (FB) Yap1 overexpression cell lines during differentiation (72 hr). (D)
720 Representative brightfield and fluorescence microscopy images of WT and Yap1 KO ESCs incubated
721 with NucView 488 Casp3 substrate at the indicated times after LIF withdrawal. (E) Representative flow
722 cytometry density plots of WT and Yap1 KO ESCs detecting fluorescent signal from annexin-V
723 (conjugated to CF594) and NucView 488 reagent during differentiation (60 hr). (F) Fold enrichment of
724 annexin-V and active Casp3-positive Yap1 KO vs. WT ESCs according to flow cytometry. (G)
725 Immunoblot of Casp9, Casp8, Casp3, cleaved Casp3, and cleaved Parp1 in WT and Yap1 KO cells
726 during differentiation. β -actin was used as a loading control. (H) Luminescent assay of caspase activity
727 in Yap1 KO vs. WT ESCs in \pm LIF media. (I) LDH assay of WT and Yap1 KO cells \pm KD of Casp9 during
728 differentiation (72 hr).

729 All data are expressed as mean \pm standard deviation (n = 4 independent samples for LDH assays and
730 n = 3 for other experiments). Two sample two-tailed t-test compared to WT or whatever is specified on
731 the y-axis: * = 0.05 > P > 0.01. ** = 0.01 > P > 0.001. *** = 0.001 \geq P.

732

733 **Figure 1-figure supplement 1. Yap1 expression in KO/KD/OE cell lines, STS sensitivity, and**
734 **caspase expression during ES cell differentiation.**

735 (A) Immunoblot of Yap1 to verify knockout in Yap1 KO cells. β -actin was used as a loading control. (B)
736 Representative brightfield microscopy images of WT and Yap1 KO ES cells in \pm LIF. Scale bar, 200 μ m.
737 (C) Immunoblot of Yap1 to verify knockout of Yap1 in 3 different ESC lines (J1, E14, and CJ7). β -actin
738 was used as a loading control. J1 clone #5 was used as a positive control for knockout. (D) RT-qPCR
739 measuring the expression of Yap1 after lentiviral shRNA-mediated Yap1 KD in differentiating WT ESCs
740 (-LIF 72 hr). (E) LDH assay measuring cell death of Yap1 KD vs. control KD cells during differentiation
741 (-LIF 72 hr). (F) Immunoblot of Yap1 to verify stable overexpression (OE) of FLAG-Bio-Yap1 in three
742 different clones compared to WT ESCs. β -actin was used as a loading control. (G) Immunoblot of
743 cleaved Casp3 and cleaved Parp1 in WT and Yap1 KO cells that had been treated with 1 μ M STS for

744 the indicated number of hours during differentiation (treatment started 43-48 hrs after withdrawal of LIF
745 depending on the length of STS treatment). (H) RT-qPCR measuring the expression of Casp9 upon
746 shRNA-mediated lentiviral KD in WT and Yap1 KO cells during differentiation (72 hr) relative to empty
747 vector KD. (I) RT-qPCR measuring the expression of Casp2, Casp3, Casp6, Casp7, Casp8, and Casp9
748 in Yap1 KO cells compared to WT cells in \pm LIF.

749 All data are expressed as mean \pm standard deviation (n = 3 independent samples). Two sample two-
750 tailed t-test compared to WT or whatever is specified on the y-axis: * = 0.05 > P > 0.01. ** = 0.01 > P >
751 0.001. *** = 0.001 \geq P.

752

753 **Figure 2. Loss of Yap1 augments apoptosis in several differentiation conditions, but its role is**
754 **largely restricted to the exit from self-renewal.**

755 (A) Schematic of 3 differentiation protocols (ectoderm, endoderm, and epiblast) used in Figures 2, 3,
756 and 5. (B) LDH assay of WT and Yap1 KO ESCs in N2B27 with or without 2i and Z-VAD. (C) LDH
757 assay of WT and Yap1 KO ESCs in low serum DMEM supplemented with IDE1 \pm Z-VAD (48 hr). (D)
758 LDH assay of ESC towards EpiLC conversion in WT and Yap1 KO ESCs (72 hr). (E) Schematic of
759 verteporfin (vert) treatment timings during late and early differentiation in WT ESCs in -LIF. (F)
760 Timecourse LDH assay of verteporfin-treated dESCs at the indicated timepoints along with positive
761 controls (treatment with verteporfin just after -LIF as well as untreated Yap1 KO ESCs, the latter of
762 which are n = 8).

763 All data are expressed as mean \pm standard deviation (n = 4 independent samples unless otherwise
764 stated). Two sample two-tailed t-test compared to WT or whatever is specified on the y-axis: * = 0.05 >
765 P > 0.01. ** = 0.01 > P > 0.001. *** = 0.001 \geq P.

766

767 **Figure 2-figure supplement 1. Lineage marker expression during various differentiation**
768 **methods.**

769 (A) RT-qPCR measuring the expression of neural ectoderm markers Nes, Otx2, and Gbx2, as well as
770 pluripotency marker Nanog, in cells that had been differentiating in N2B27 neural differentiation media
771 for 48 hrs. Expression was normalized to ESCs grown in 2i. (B) RT-qPCR measuring the expression of
772 endoderm markers Gata4, Gata6, and Sox17, as well as pluripotency marker Nanog, in cells that had
773 been differentiating in low serum DMEM supplemented with 5 μ M IDE1 for 48 hrs. Expression was
774 normalized to ESCs grown in 2i. (C) RT-qPCR measuring the expression of epiblast markers Fgf5,

775 Wnt3, and Dnmt3b, as well as pluripotency marker Nanog, in cells that had been differentiating in
776 EpiLC conditions for 48 hrs. Expression was normalized to ESCs grown in 2i.
777 All data are expressed as mean \pm standard deviation (n = 3 independent samples).

778

779 **Figure 3. Loss of Yap1 leads to abnormal expression of apoptosis-related genes.**

780 (A) Immunoblot of Bcl-2, Bcl-xL, and Mcl-1 in WT and Yap1 KO cells in -LIF after 72 hr of differentiation.
781 (B) RT-qPCR measuring the expression of anti-apoptotic (blue) and pro-apoptotic (red) genes in WT
782 ESCs cultured in the indicated differentiation conditions (all at 48 hr) normalized to their respective self-
783 renewal conditions. (C) RT-qPCR measuring the expression of anti- and pro-apoptotic genes in Yap1
784 KO vs. WT cells (\log_2) in various differentiation conditions (all at 48 hr). (D) RT-qPCR measuring the
785 expression of Bcl-2, Bcl-xL, and Mcl-1 in Yap1 KO cells vs. WT cells during differentiation (timecourse).
786 (E) RT-qPCR measuring the expression of Bcl-2 in WT and Yap1 KO cells during differentiation
787 (timecourse) relative to +LIF.

788 All data are expressed as mean \pm standard deviation (n = 3 independent samples unless otherwise
789 stated). Two sample two-tailed t-test compared to WT or whatever is specified on the y-axis: * = 0.05 >
790 P > 0.01. ** = 0.01 > P > 0.001. *** = 0.001 \geq P.

791

792 **Figure 3-figure supplement 1. Depletion or loss of Yap1 leads to dysregulation of apoptosis-
793 related genes.**

794 (A) Representative confocal images (63X oil objective) of immunocytochemistry of WT and Yap1 KO
795 ESCs in -LIF (72 hrs). Blue represents the nucleus, red represents Bcl-2 (top 6) or Mcl-1 (bottom 6),
796 and yellow represents mitochondria. White squares indicate location of zoom images. Scale bar, 20 μ m.
797 (B) Quantification of fluorescence corresponding to Bcl-2, Mcl-1, and mitochondria using ImageJ,
798 normalized to the number of nuclei in each view as stained by NucBlue. (C) RT-qPCR of WT ESCs with
799 transient OE of Yap1 (48 hr) in -LIF (72 hr) normalized to empty vector. Blue indicates anti-apoptotic
800 genes, red indicates pro-apoptotic genes. (D) Boxplots of expression of pro-apoptotic genes and anti-
801 apoptotic genes in Yap1 OE cells versus BirA cells (\log_2) in +LIF. Plus symbols represent the average
802 and middle red bands represent the median. Outliers are represented by hollow circles. Significance
803 stars indicate p-values from paired t-test. (E) Boxplots of expression of pro- and anti-apoptotic genes in
804 Yap1 KD and empty KD in -LIF relative to +LIF (\log_2). Plus symbols represent the average and middle
805 red bands represent the median. Outliers are represented by hollow circles. Significance stars indicate
806 p-values from paired t-test.

807 All data are expressed as mean \pm standard deviation (n = 3 independent samples unless otherwise
808 stated). Two sample two-tailed t-test (unless otherwise specified) compared to WT or whatever is
809 specified on the y-axis: * = 0.05 > P > 0.01. ** = 0.01 > P > 0.001. *** = 0.001 \geq P.

810

811 **Figure 4. Yap1 directly regulates target apoptotic genes during differentiation.**

812 (A) RNA-seq heatmap (Yap1 KD/empty vector KD, in both undifferentiated and differentiating ESCs)
813 and line graph depicting Yap1 peak score, normalized to BirA, calculated using a moving window
814 average (window = 150). Color bar indicates extent of upregulation (red) or downregulation (green)
815 upon Yap1 KD. (B) ChIP-seq peak heatmaps using coordinates centered on the top Yap1 peaks (p-
816 value cutoff, 1e-5) in dESCs (-LIF), which are shown in the second heatmap from the left. The other
817 heatmaps represent occupancy of Yap1 in ESCs (first) or p300 in ESCs (third) or dESCs (fourth)
818 corresponding to Yap1 dESC peak centers \pm 3 kb (bin size = 100). (C) Signal tracks of Yap1 (red) and
819 p300 (blue) occupancy on apoptosis-related genes in dESCs and EpiLCs, respectively. (E and F) Dual
820 luciferase assay of Yap1-occupied cis-regulatory elements from anti- and pro-apoptotic genes in (E)
821 Yap1 KO and WT cells \pm LIF (48 hr) or (F) WT cells with Yap1 or empty OE (in -LIF, 48 hr), relative to
822 pGL3-promoter, 24 hr after transfection. (G) Dual luciferase assay of Bcl-2 and Mcl-1 regulatory
823 elements in Yap1 KO cells after transfection of empty vector or vectors containing FLAG-Bio Yap1 with
824 or without a Ser79Ala mutation. (H) Dual luciferase assay of Mcl-1 with a deletion of its Tead binding
825 motif (GGAAT on the reverse strand) in WT ESCs \pm Yap1 OE.

826 All data are expressed as mean \pm standard deviation (n = 3 independent samples unless otherwise
827 stated). Two sample two-tailed t-test compared to WT or whatever is specified on the y-axis: * = 0.05 >
828 P > 0.01. ** = 0.01 > P > 0.001. *** = 0.001 \geq P.

829

830 **Figure 4-figure supplement 1. Yap1 binds to distal regulatory elements, primarily through Tead
831 factors.**

832 (A) Gene feature analysis of Yap1 ChIP-seq quantifying the proportion of Yap1 peaks in promoter,
833 intergenic, upstream, intron, or exon regions. (B) Co-IP followed by immunoblot of Tead4 and p300
834 after pull-down using magnetic streptavidin beads in Yap1 FB cells during differentiation (72 hrs). (C)
835 Known motif analysis of Yap1 ChIP-seq peaks using BirA ES cells as a background control. Top five
836 motifs with the lowest P values corresponding to known factors are presented. (D) Peak-centered
837 histogram of Yap1 ChIP-seq peaks indicating the presence of the motifs of Tead4, Zic3, and AP-1
838 complex members JunB and Fra1 (Fosl1). Esrrb is presented as a negative control, as known motif

839 analysis in (C) showed no significant enrichment of the Esrrb motif. Input represents 0.03% of total
840 protein lysate. (E) Peak-centered histogram of Yap1 ChIP-seq peaks indicating p300 occupancy and
841 H3K27 presence in ESCs maintained in 2i and EpiLCs, which represent dESCs. (F) Gene ontology
842 (GO) analysis of genes bound by Yap1 that are also upregulated (white) or downregulated (black) after
843 Yap1 KD in -LIF (96 hrs). (G) Schematic of dual luciferase essay using putative Yap1-responsive *cis*-
844 regulatory elements. (H) Schematic of tandem Bcl-2 enhancer creation showing the location of both
845 Yap1-occupied elements that were combined into the same construct. (I) Correlation heatmap of YAP1
846 occupancy on apoptosis-related genes in SF268 glioblastoma cells, NCI-H2052 lung mesothelioma
847 cells, IMR90 lung fibroblasts, and MDA-MB-231 triple negative breast cancer cells. Genes that were not
848 occupied by any factor were removed from the analysis to reduce noise. (J) Signal tracks of YAP1
849 occupancy on MCL-1, BCL-2, and BCL2L1 (BCL-XL) in the cell types described in (I). (K) Correlation
850 heatmap of occupancy of Yap1 in mouse dES cells (from this study), Tead1 in pre-B progenitor cells,
851 Tead2 in Py2T breast cancer cells, and Tead4 in hemogenic epithelium, all on apoptosis-related genes.
852 Genes that were not occupied by any factor were removed from the analysis to reduce noise. (L) Signal
853 tracks of Yap1 (red), Tead1, Tead2, and Tead4 (all in blue) on Mcl-1, Bcl-2, and Bcl2l1 (Bcl-xL) in the
854 cell types described in (I).

855

856 **Figure 5. Yap1 regulates mitochondrial priming and addiction to anti-apoptotic proteins.**

857 (A) JC-10 mitochondrial membrane potential assay in WT and Yap1 KO cells during various forms of
858 differentiation (72 hr for Pan and EpiLC, 48 hr for Neural and Endo) and self-renewal (maintained for an
859 equal amount of time). Values (525/570 nm ratio, n = 6) corresponding to loss in $\Delta\psi$ (mitochondrial
860 membrane potential) in Yap1 KO cells were normalized to WT cells. (A) JC-10 assay in WT and Yap1
861 KO cells in \pm LIF after 12 hr of treatment with BH3 mimetics ABT-737, Venetoclax, A-1210477, and
862 A1155463 (total differentiation time: 36 hr). Values (525/570 nm ratio) corresponding to loss in $\Delta\psi$ were
863 normalized to DMSO as a control. (C) LDH assays of BH3 mimetic dose response curves after 24 hr of
864 treatment in WT and Yap1 KO cells in \pm LIF (48 hr differentiation). (D) LDH assay of WT and Yap1 KO
865 cells after KD of Bmf or Puma in -LIF conditions (72 hr). (E) LDH assay of inducible Bmf and Puma OE
866 (\pm Dox, 48 hr, 500 ng/mL) in WT and Yap1 KO cells in \pm LIF (48 hr differentiation). (F) Immunoblot of
867 cleaved Casp3, cleaved Parp1, and Mcl-1 in WT and Yap1 KO dESCs (28 hr) after 4 hr of treatment
868 with BH3 mimetics A-1210477 (Mcl-1 inhibitor) and ABT-737 (inhibitor of Bcl-2, Bcl-xL, and Bcl-w). β -
869 actin was used as a loading control.

870 All data are expressed as mean \pm standard deviation (n = 4 independent samples unless otherwise
871 stated). Two sample two-tailed t-test compared to WT or whatever is specified on the y-axis: * = 0.05 >
872 P > 0.01. ** = 0.01 > P > 0.001. *** = 0.001 \geq P.

873

874 **Figure 5-figure supplement 1. Verification of KD and OE of pro-apoptotic factors Bmf and Puma.**
875 (A) RT-qPCR measuring the expression of Bmf and Puma in Yap1 KO cells during differentiation (48
876 hrs) relative to empty vector KD (n = 3). (B) Immunoblot of Bmf and Puma after KD in Yap1 KO cells
877 during differentiation (48 hr) relative to empty vector KD. β -actin was used as a loading control. (C) RT-
878 qPCR measuring the expression of Bmf and Puma in WT and Yap1 KO ESCs \pm Dox (24 hr) in +LIF (n =
879 2). (D) Immunoblot of Bmf and Puma after OE in WT ESCs in +LIF. β -actin was used as a loading
880 control.

881

882 **Figure 6. Overexpression of Taz or individual anti-apoptotic proteins fully rescues the survival**
883 **defect in the absence of Yap1.**

884 (A) LDH assay of WT, Yap1 KO, and Yap1 KO constitutively overexpressing Bcl-xL or Yap1 in -LIF (72
885 hr). (B) LDH assay of inducible Bcl-2 (\pm Dox, 48 hr, 500 ng/mL) in WT and Yap1 KO cells -LIF (72 hr).
886 (C) LDH assay of inducible Taz (\pm Dox, 48 hr, 500 ng/mL) in WT and Yap1 KO cells \pm LIF (72 hr
887 differentiation). (D) Immunoblot of cleaved Parp1, cleaved Casp3, Bcl-xL, and Mcl-1 in Yap1 KO cells
888 inducibly overexpressing Taz (\pm Dox, 48 hr, 500 ng/mL) in -LIF (72 hr). (E) LDH assay of WT ESCs
889 during differentiation (72 hr) after 48 hr KD of Bcl-xL or Mcl-1. (F) LDH assay of WT ESCs \pm LIF (72 hr)
890 \pm KD of Bcl-2. (G) RT-qPCR measuring the expression of lineage markers (trophectoderm: Cdx2 and
891 Gata3, ectoderm: Nes and Otx2, endoderm: Gata4, mesoderm: Gsc and T) in WT and Yap1 KO cells in
892 -LIF (72 hr, n = 3). Expression is indicated as a fold change in +Dox samples relative to -Dox. (H)
893 Model proposing roles for Yap1 specific to the exit from self-renewal. Yap1-Tead co-activates anti-
894 apoptotic genes and mildly co-represses pro-apoptotic genes to dampen mitochondrial priming, which
895 thus prevents hyperactivation of the apoptotic cascade through Casp9.

896 All data are expressed as mean \pm standard deviation (n = 4 independent samples unless otherwise
897 stated). Two sample two-tailed t-test compared to WT or whatever is specified on the y-axis: * = 0.05 >
898 P > 0.01. ** = 0.01 > P > 0.001. *** = 0.001 \geq P.

899

900 **Figure 6-figure supplement 1. Modulation of the expression of individual anti- or pro-apoptotic genes**
901 **influences cell death during differentiation.**

902 (A) Immunoblot of Yap1 and Bcl-xL after OE in Yap1 KO cells relative to WT or empty vector Yap1 KO
903 in +LIF. β -actin was used as a loading control. (B) Representative brightfield and fluorescent
904 microscopy images of Yap1 KO cells showing ZsGreen fluorescence \pm Dox. Scale bar, 400 μ m. (C) RT-
905 qPCR measuring the expression of Bcl-2 in WT and Yap1 KO cells during differentiation (72 hrs) \pm Dox
906 (48 hr, 500 ng/mL). (D) Immunoblot of Bcl-2 in Yap1 KO cells \pm Dox (48 hr, 500 ng/mL) in +LIF. (E)
907 Immunoblot of Taz in WT and Yap1 KO cells \pm Dox (48 hr, 500 ng/mL) in +LIF. (F) Immunoblot of Bcl-xL
908 and Mcl-1 after siRNA KD in WT cells in -LIF (48 hrs). (G) Immunoblot of Bcl-2 after shRNA KD in -LIF
909 (72 hr). (H) Quantification of fold increase in cell death from Figure 6E and F observed upon KD of Bcl-
910 xL, Mcl-1, or Bcl-2, relative to control KD, in -LIF (72 hr). (I) RT-qPCR measuring the expression of
911 lineage markers in WT cells transfected with siRNA against Bcl-xL or Mcl-1 in -LIF (72 hrs). Expression
912 is indicated as a fold change compared to control siRNA. (J) RT-qPCR measuring the induction of
913 lineage markers in WT cells transduced with shRNA against Bcl-2 in -LIF relative to +LIF (72 hr).
914 All data are expressed as mean \pm standard deviation (n = 3 independent samples). Two sample two-
915 tailed t-test compared to WT or whatever is specified on the y-axis: * = 0.05 > P > 0.01. ** = 0.01 > P >
916 0.001. *** = 0.001 \geq P.

917

918

919 **SUPPLEMENTARY FILE 1**

920

921 **Supplementary Table S1.**

922 Table of RT-qPCR primers used for qPCR gene expression assays in this study. Primers were
923 designed using Primer3 and verified by melt curve analysis.

924

925 **Supplementary Table S2.**

926 Table of cloning primers used for dual luciferase assay including chromosome coordinates (using mm9)
927 and regulatory element length.

928

929 **Supplementary Table S3.**

930 Table of shRNA and siRNA used in KD experiments including target, ID, and sequence or target
931 position.

932

933

934 **SOURCE DATA**

935

936 **Figure 3-source data 1**

937 Data used in Figure 3-figure supplement 1D and E.

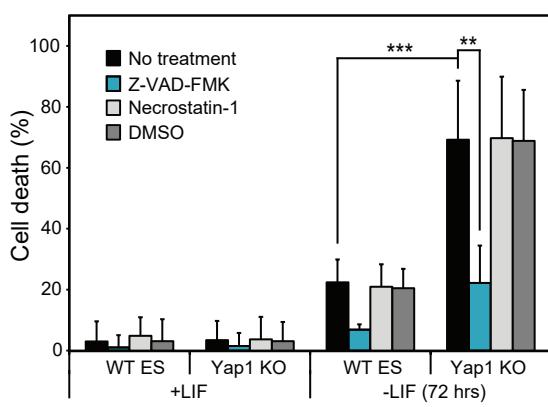
938

939 **Figure 4-source data 1**

940 Data used in Figure 4A, Figure 4-figure supplement 1A, C, D, E, I and K.

941

942 **SOURCE CODEI**


943

944 **Source code file 1**

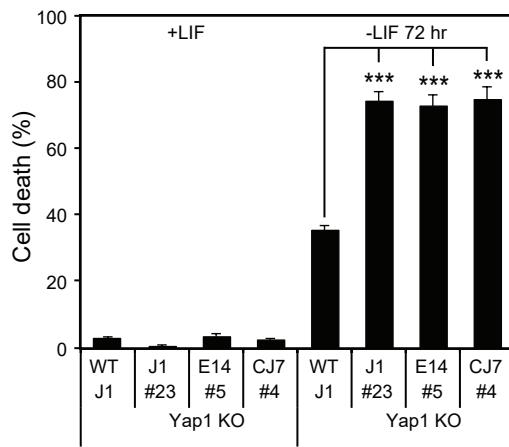
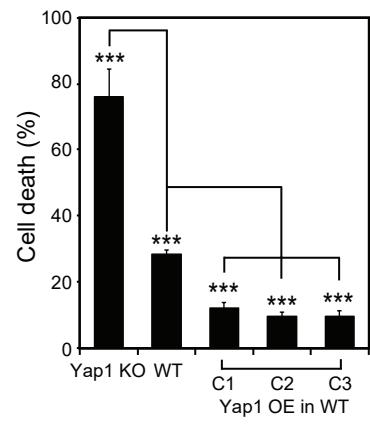
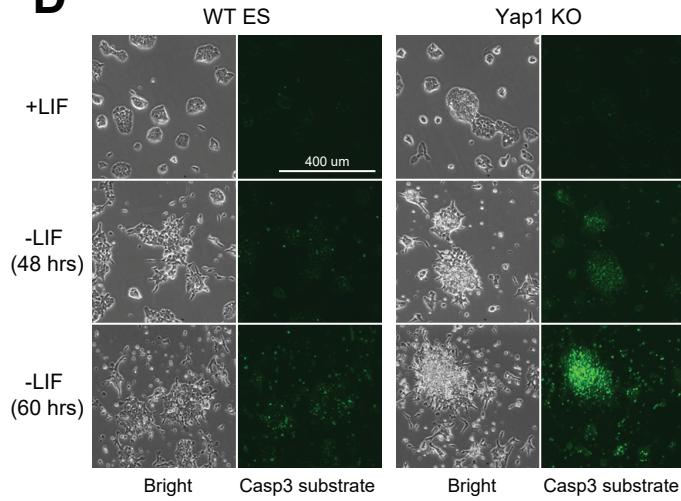
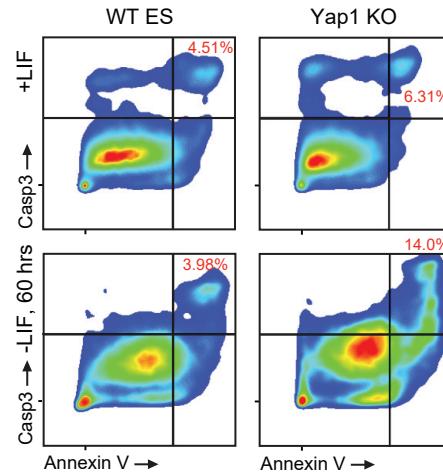
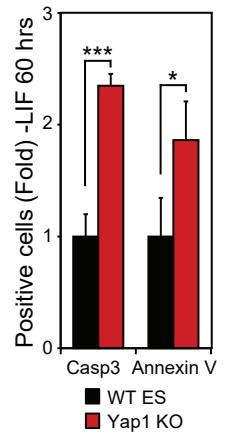

945 Code used to analyze raw sequencing files using the programs STAR, Bowtie2, MACS, and Homer.

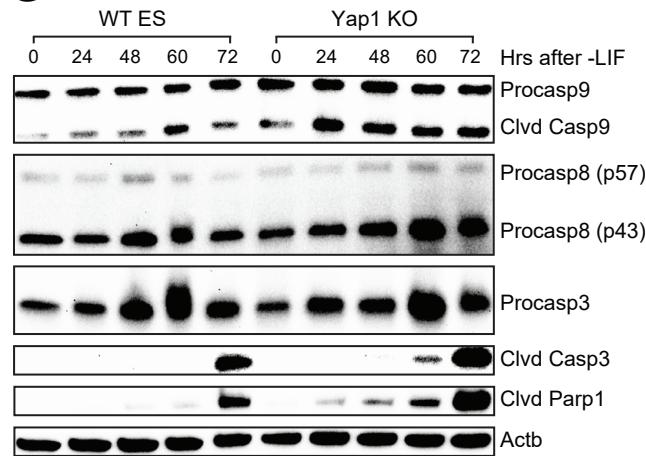
Figure 1

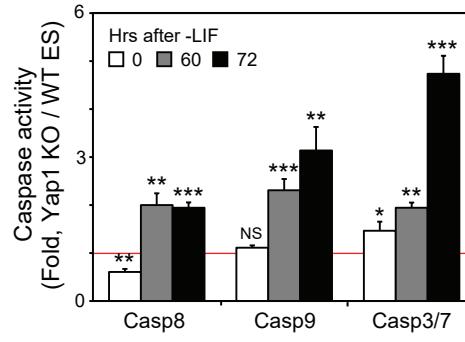

A


B


C


D


E


F

G

H

I

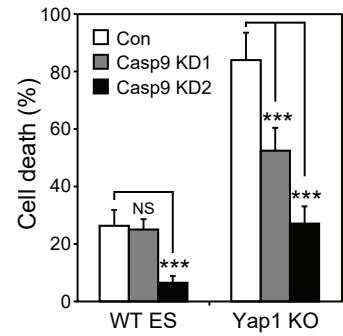


Figure 2

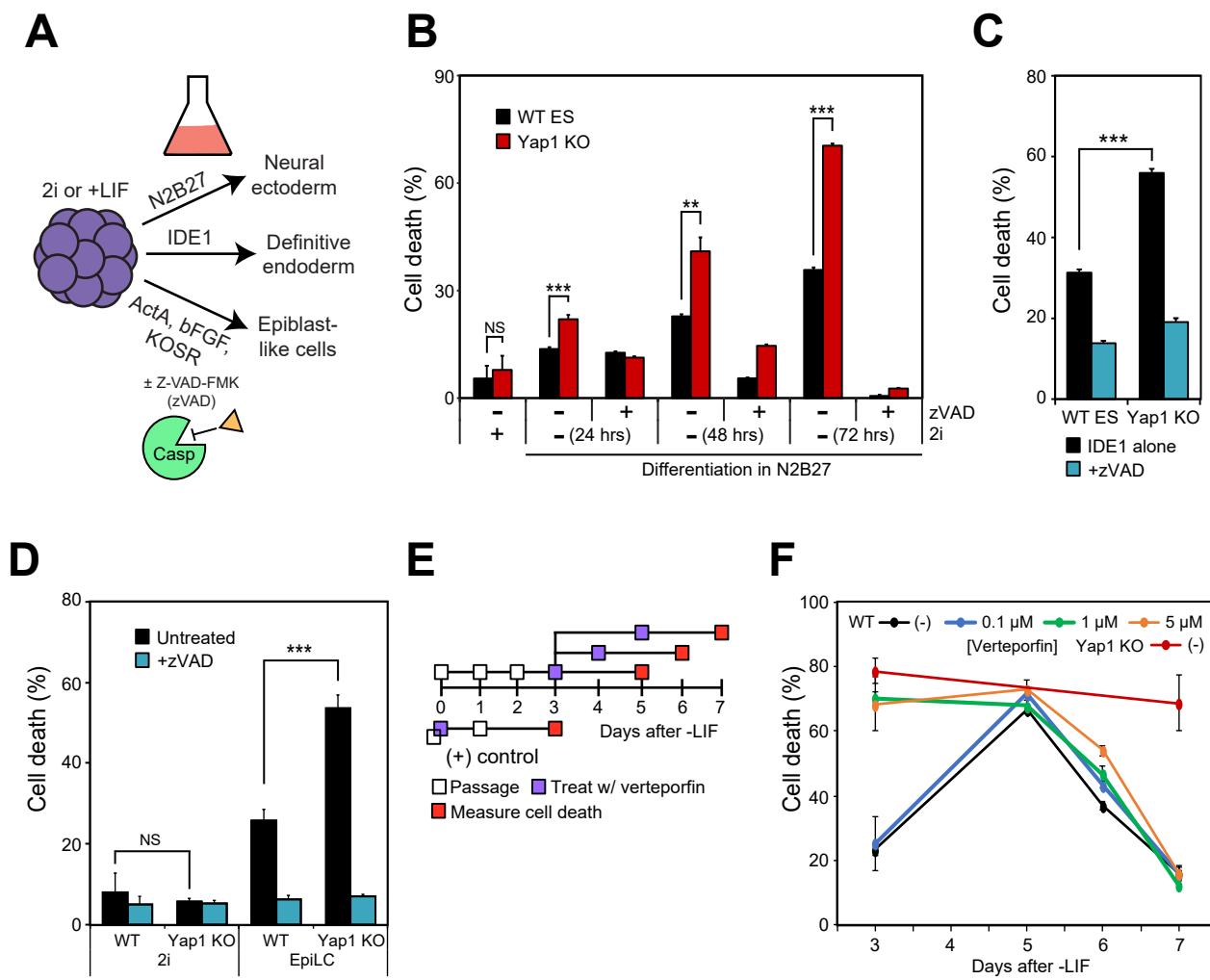


Figure 3

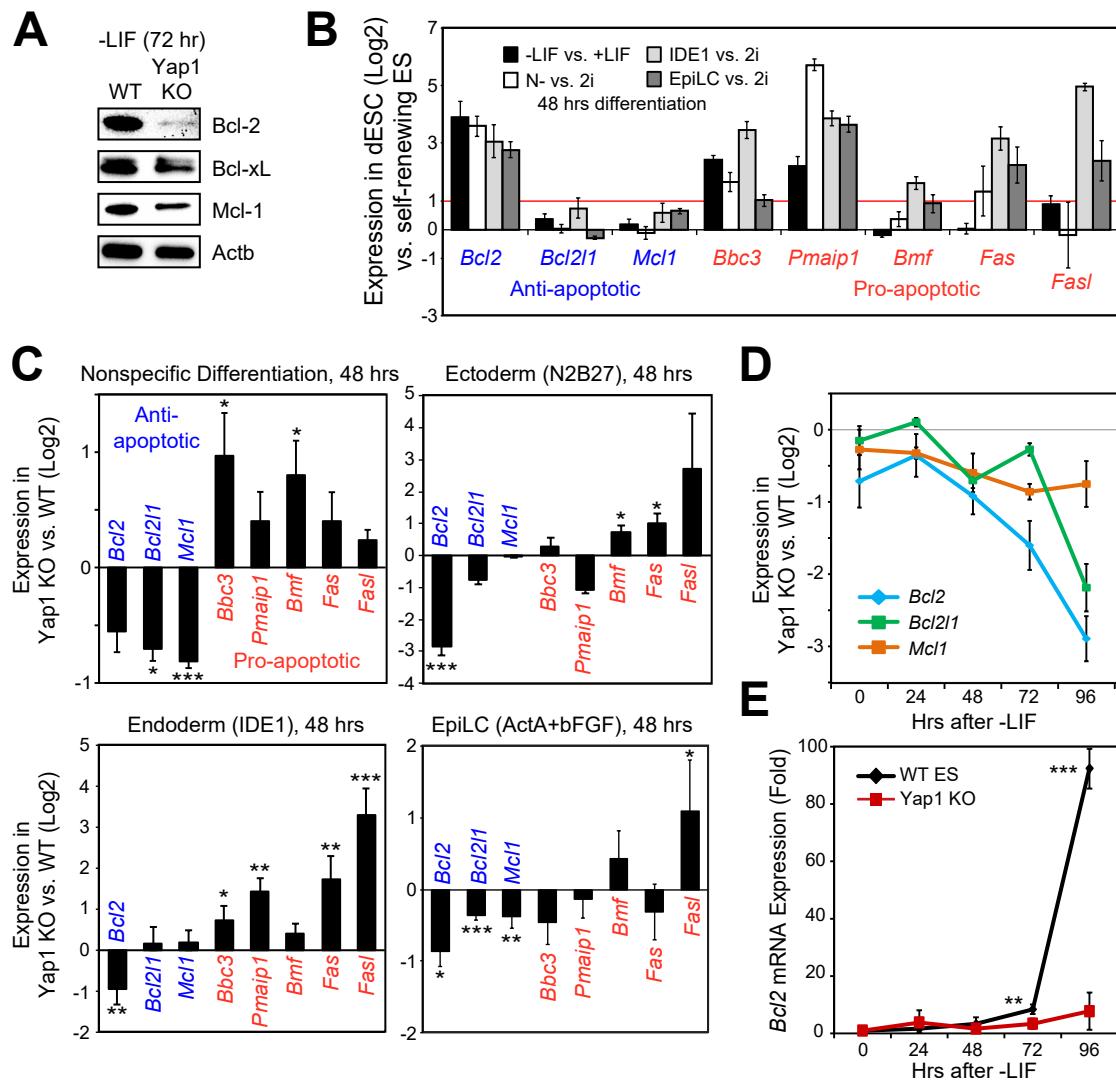


Figure 4

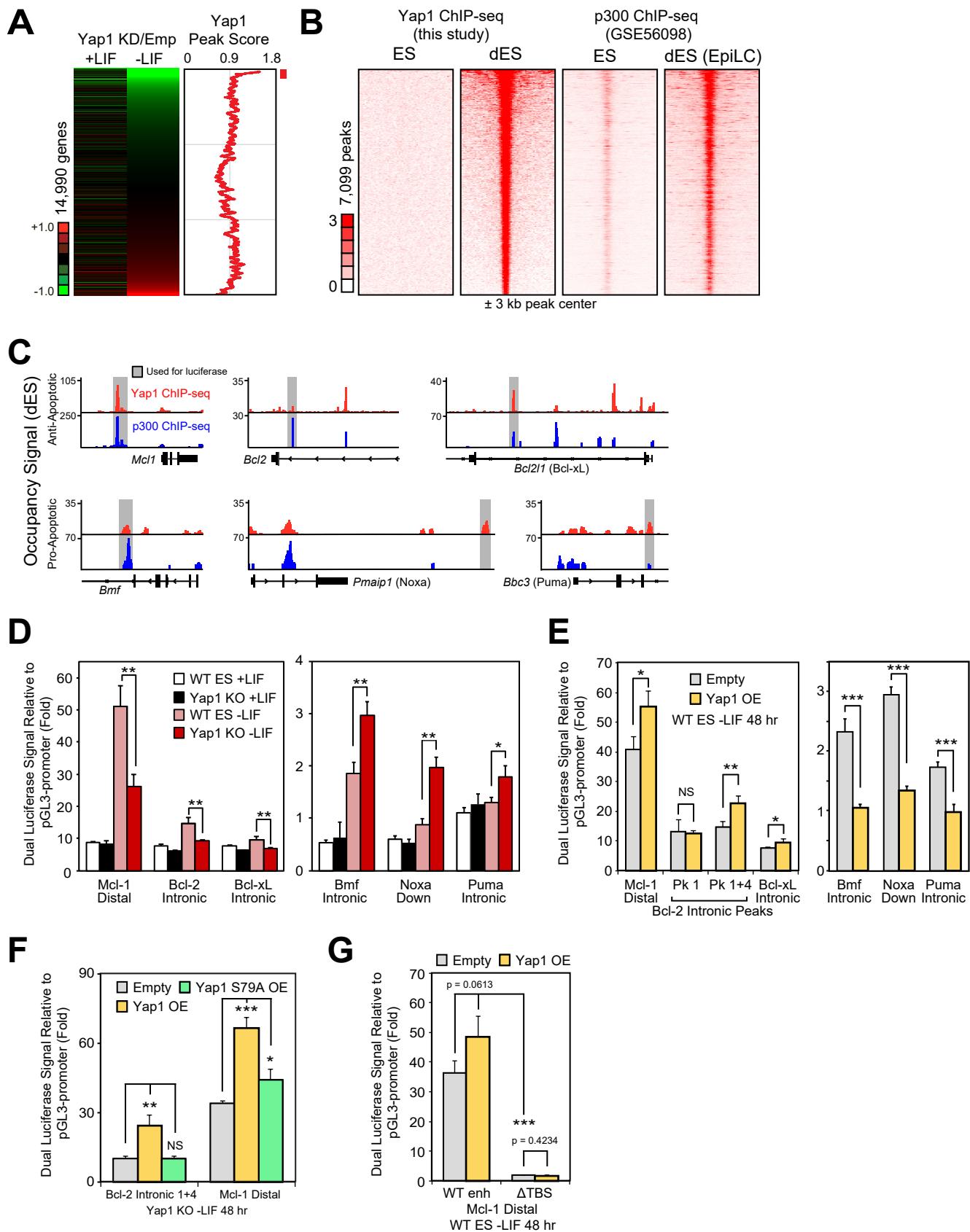


Figure 5

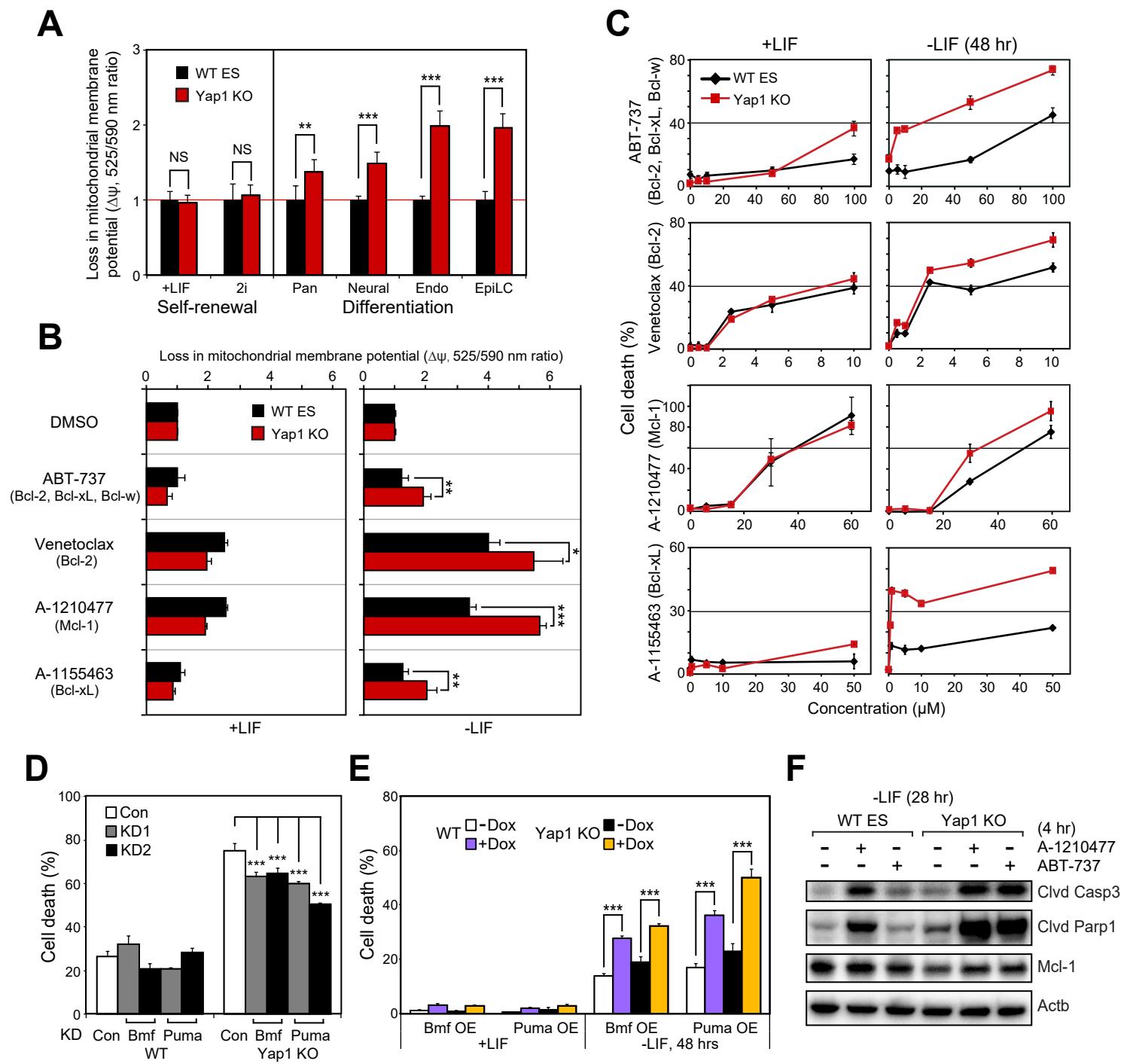


Figure 6

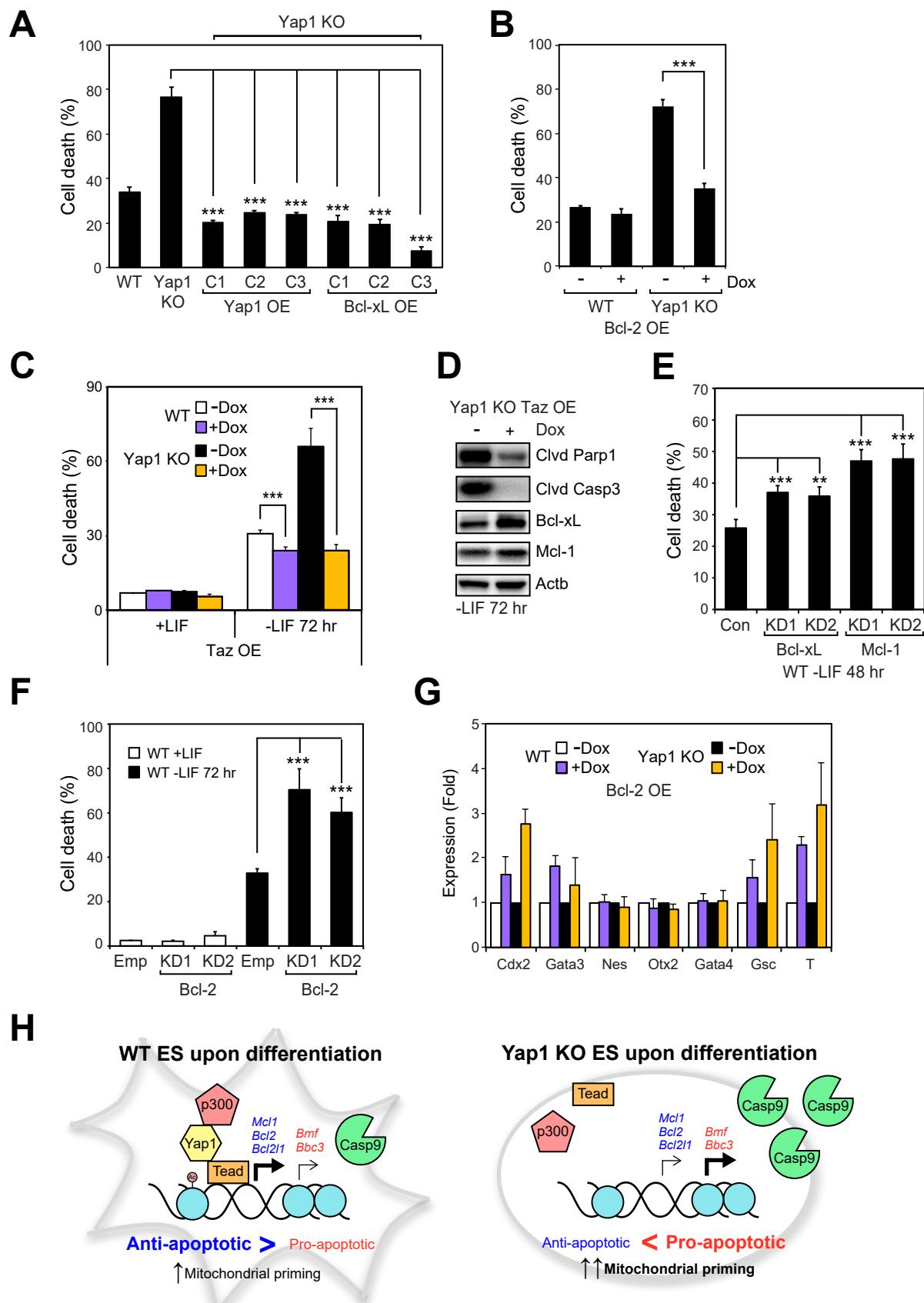


Figure S1

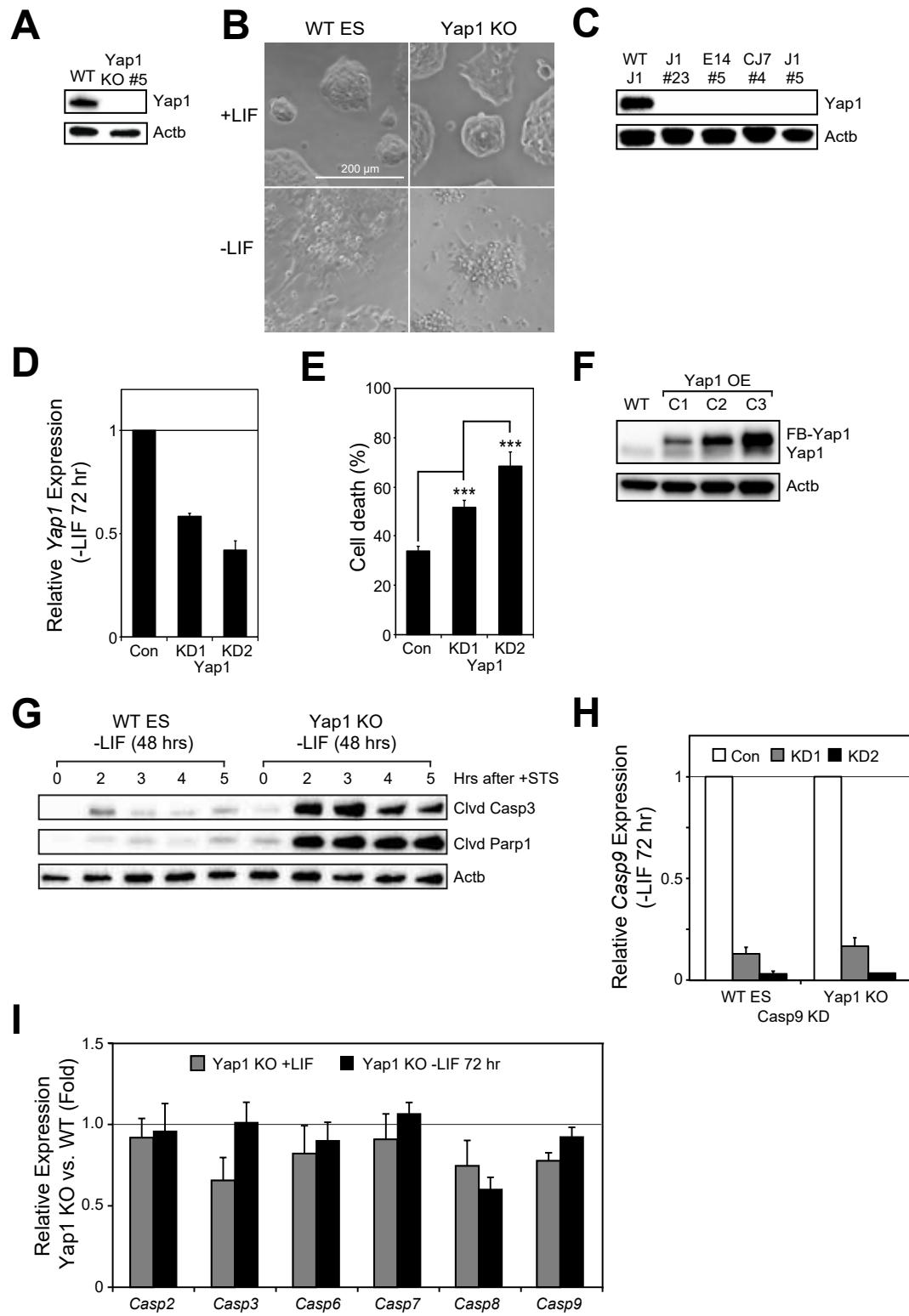


Figure S2

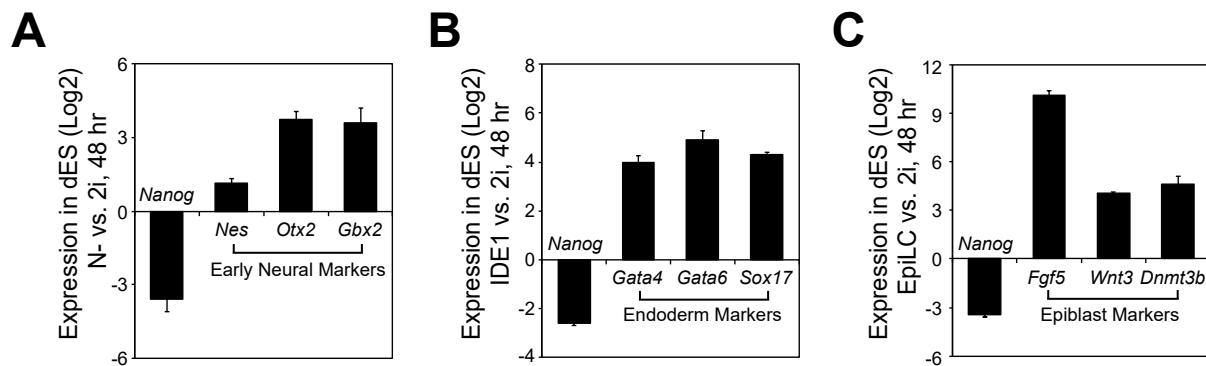
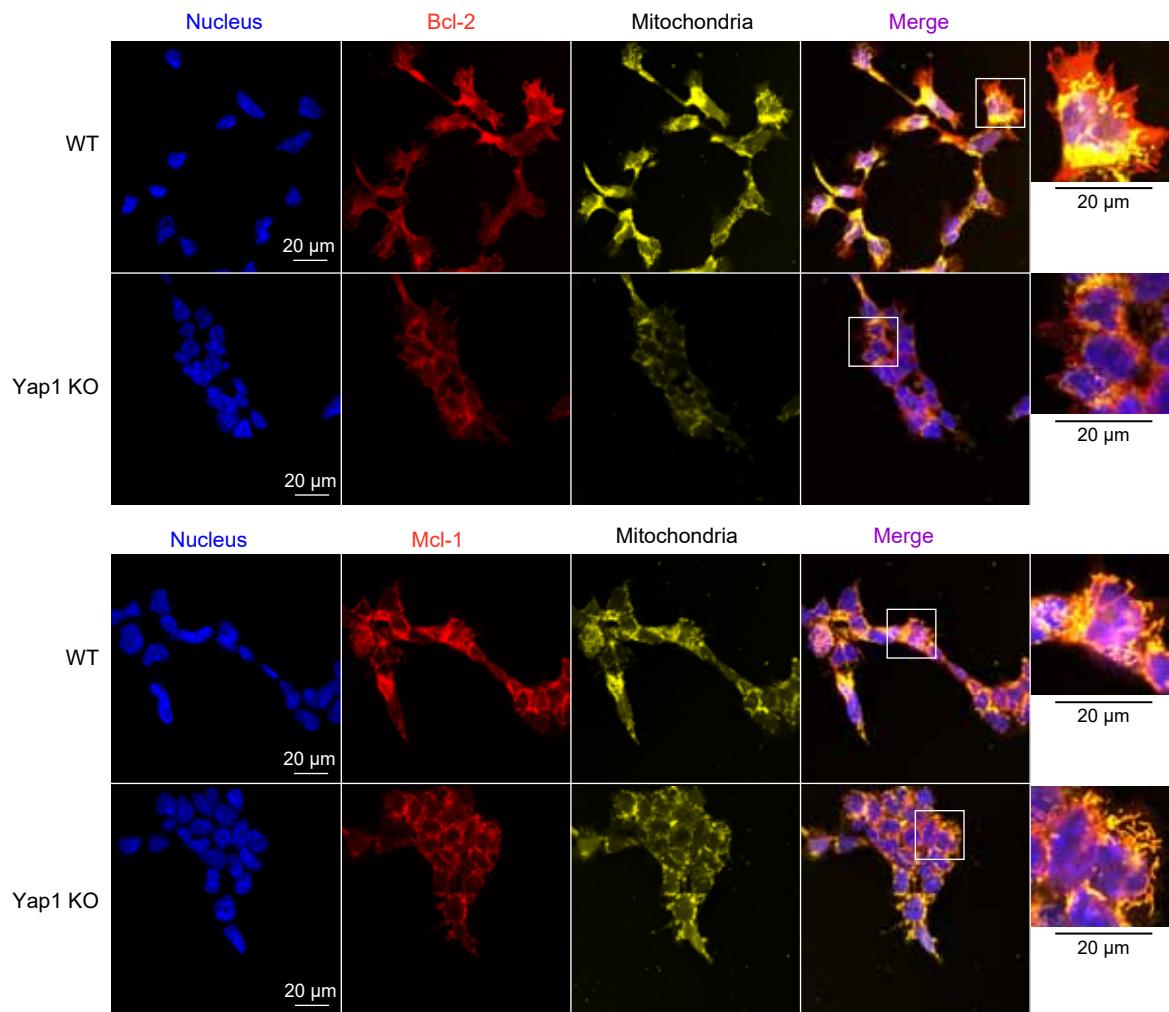
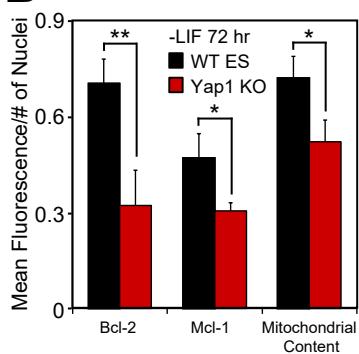
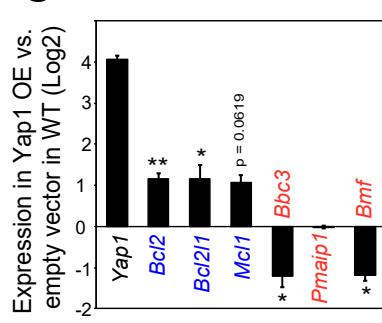
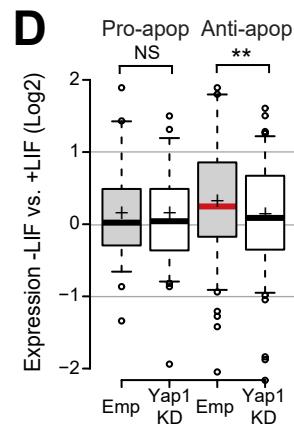




Figure S3


A


B

C

D

E

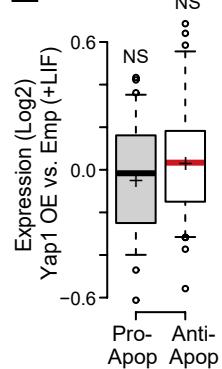


Figure S4

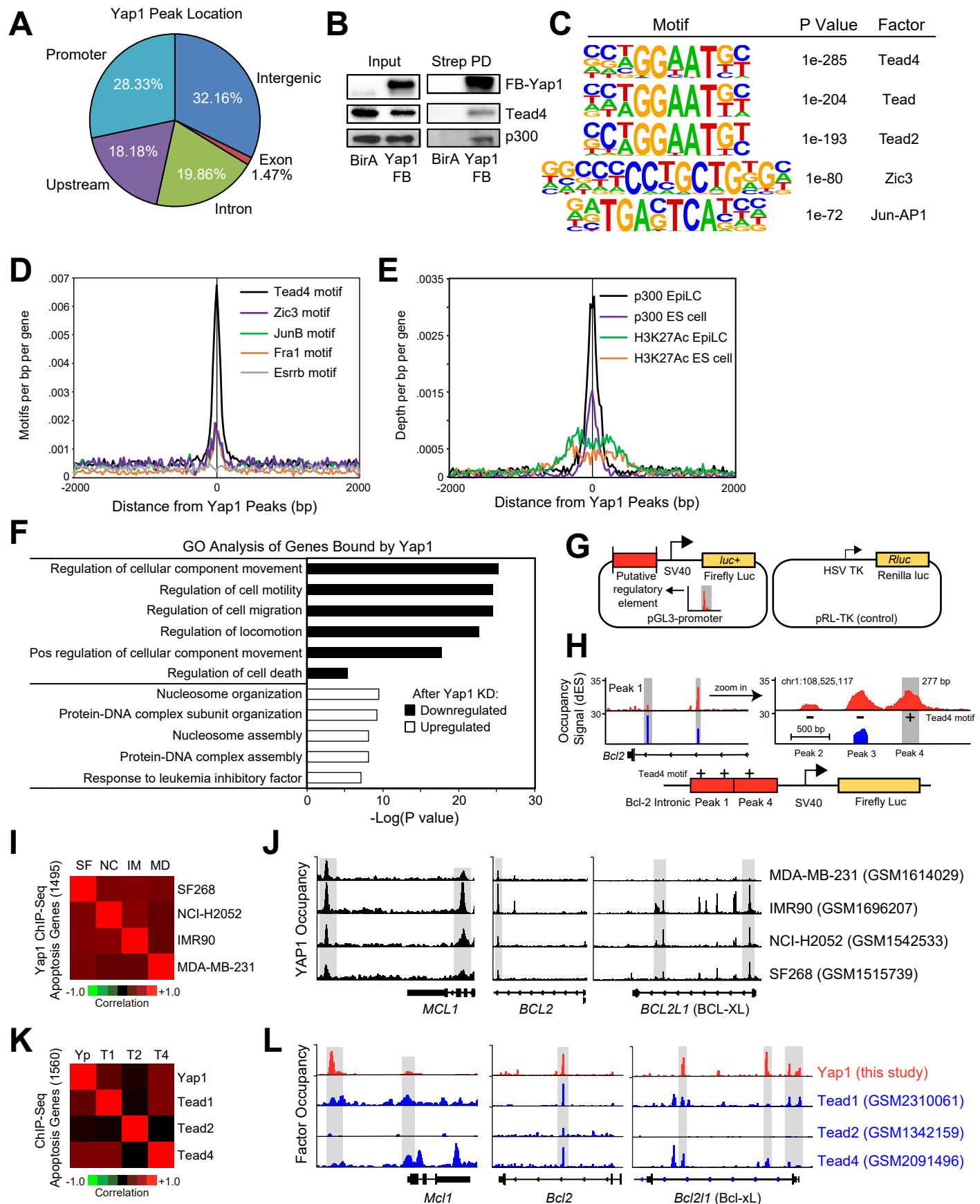


Figure S5

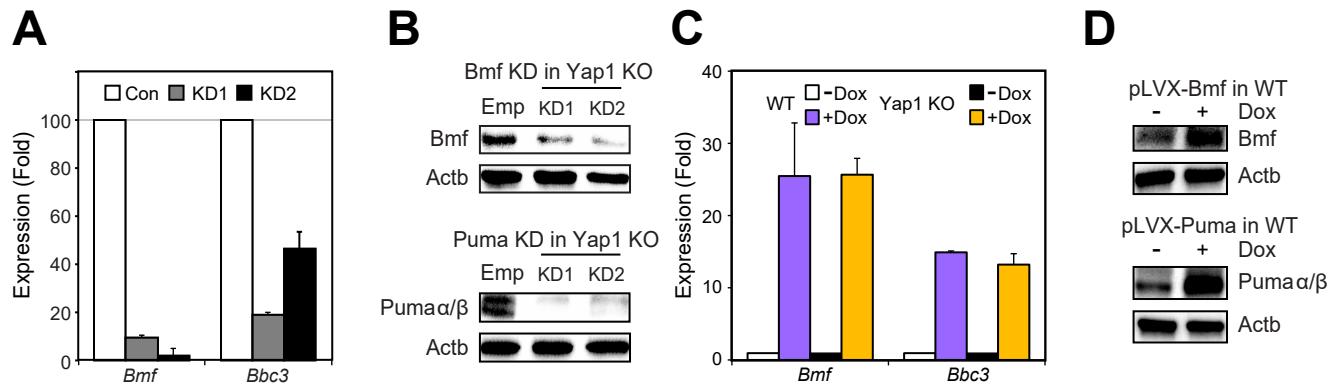
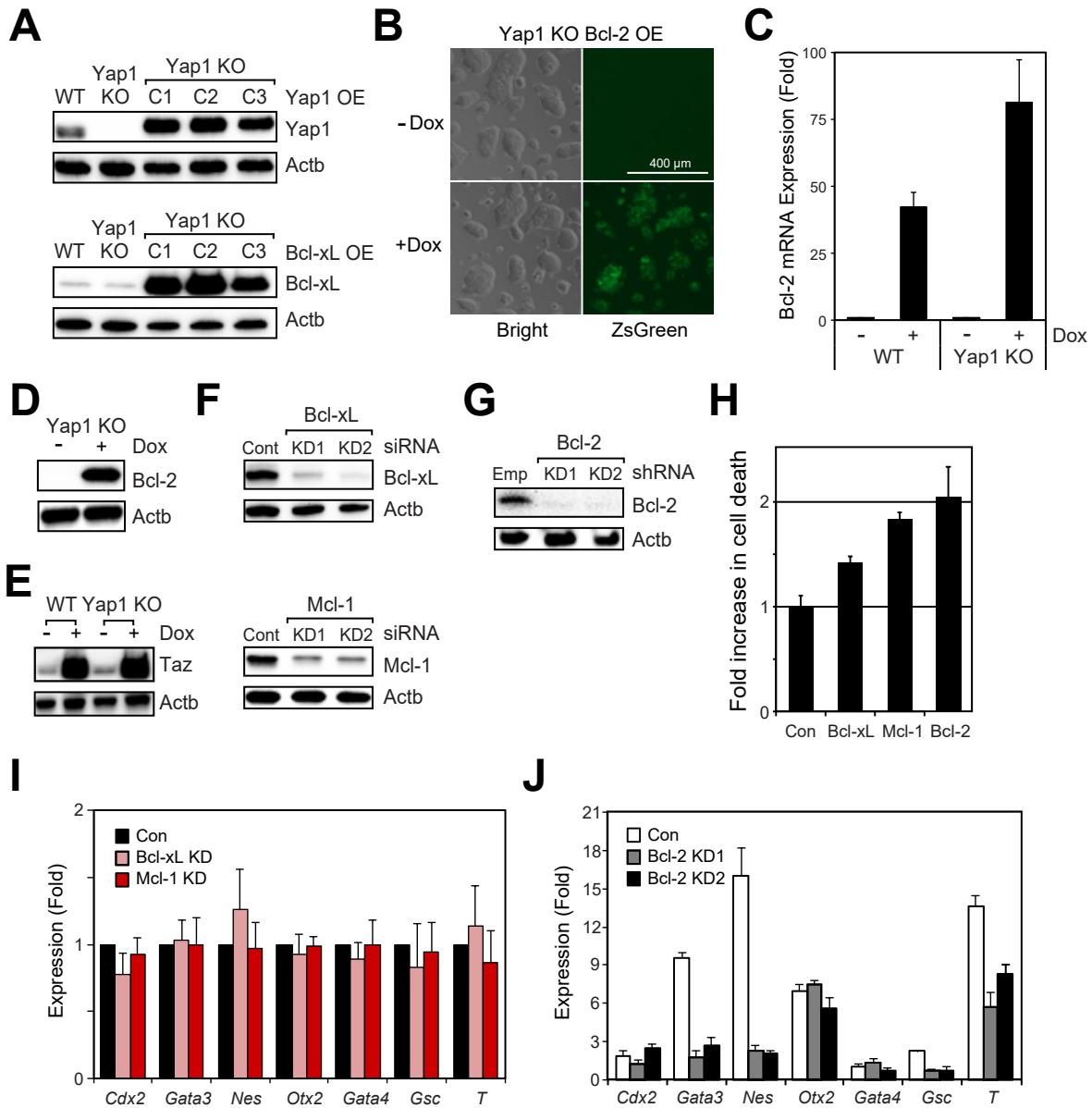



Figure S6

