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Abstract Context-dependent changes in genetic interactions are an important feature of cellular

pathways and their varying responses under different environmental conditions. However,

methodological frameworks to investigate the plasticity of genetic interaction networks over time

or in response to external stresses are largely lacking. To analyze the plasticity of genetic

interactions, we performed a combinatorial RNAi screen in Drosophila cells at multiple time points

and after pharmacological inhibition of Ras signaling activity. Using an image-based morphology

assay to capture a broad range of phenotypes, we assessed the effect of 12768 pairwise RNAi

perturbations in six different conditions. We found that genetic interactions form in different

trajectories and developed an algorithm, termed MODIFI, to analyze how genetic interactions

rewire over time. Using this framework, we identified more statistically significant interactions

compared to end-point assays and further observed several examples of context-dependent

crosstalk between signaling pathways such as an interaction between Ras and Rel which is

dependent on MEK activity.

Editorial note: This article has been through an editorial process in which the authors decide how

to respond to the issues raised during peer review. The Reviewing Editor’s assessment is that all

the issues have been addressed (see decision letter).

DOI: https://doi.org/10.7554/eLife.40174.001

Introduction
Gene-gene interactions – the epistatic influences of one gene’s effect on the function of another

gene – have widespread effects on cellular and organismal phenotypes, ranging from fitness defects

in unicellular organisms to interactions between germline and somatic variants in cancer

(Baryshnikova et al., 2013; Billmann and Boutros, 2017; Boone et al., 2007; Burgess, 2016;

Carter et al., 2017; Ideker and Krogan, 2012; Mani et al., 2008; Phillips, 2008; Taylor and Ehren-

reich, 2015). In past studies, statistical genetic interactions (also simply referred to as genetic inter-

actions) have been defined as an unexpected phenotypic outcome observed upon simultaneous

perturbations (or knock-outs) of two genes that cannot be explained from the genes’ individual

effects (Beltrao et al., 2010; Fisher, 1930; Mani et al., 2008).

Genetic interactions can be discovered using pairwise perturbations of genes, a strategy which

has been experimentally used at large scale in yeast (Collins et al., 2007; Costanzo et al., 2010;

Fiedler et al., 2009; Tong et al., 2001), C. elegans (Lehner et al., 2006), Drosophila (Fischer et al.,

2015; Horn et al., 2011), E. coli (Babu et al., 2011) and human cells (Kampmann et al., 2013;

Laufer et al., 2013; Roguev et al., 2013; Shen et al., 2017). To create genetic interaction maps,
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these studies systematically identified alleviating (e.g. better fitness than expected) or aggravating

(e.g. worse fitness than expected) genetic interactions, which can then be used to generate ‘genetic

interaction profiles’ for each gene. Several studies have shown that genes involved in the same cellu-

lar processes have highly similar genetic interaction profiles, which therefore can be used to create

maps of cellular processes at a genome-wide scale (Costanzo et al., 2010; Costanzo et al., 2016;

Fischer et al., 2015; Pan et al., 2018; Rauscher et al., 2018; Tsherniak et al., 2017; Wang et al.,

2017; Yu et al., 2016).

In addition to univariate phenotypes, such as fitness and growth phenotypes of cells or organ-

isms, genetic interactions can be measured for a broader spectrum of phenotypes by microscopy

and image-analysis (Horn et al., 2011; Laufer et al., 2013; Roguev et al., 2013). Importantly, by

allowing to infer the direction of specific genetic interactions, multivariate phenotypes further

opened the possibility to predict a hierarchy of epistatic relationships of components in genetic net-

works (Fischer et al., 2015).

To date, most studies of genetic interactions focused on ‘static’ environmental conditions (e.g.

under optimal culture conditions), ignoring the impact of context-dependent changes. Recently, sev-

eral studies have more specifically analyzed the influence of environmental changes on genetic inter-

actions (Bandyopadhyay et al., 2010; Billmann and Boutros, 2017; Dı́az-Mejı́a et al., 2018;

Guénolé et al., 2013; Martin et al., 2015; St Onge et al., 2007; Wong et al., 2015). For example,

Bandyopadhyay et al. (2010) defined static, positive and negative differential interactions that vary

under changing environmental conditions. (Billmann and Boutros, 2017) used extrinsic and intrinsic

changes of Wnt signaling in cultured Drosophila cells to map differential genetic interactions using a

pathway-centric functional readout. These studies demonstrated that widespread changes in genetic

interactions occur upon changes in environmental conditions. RNA interference (RNAi) can be used

to perturb gene function with high efficiency and specificity to study gene function and map genetic

interactions in Drosophila tissue cell culture (Heigwer et al., 2018).

eLife digest Within a cell, communication routes that involve many different genes work to

control how the cell responds to the environment. Although different communication routes – so

called signaling pathways – control different cell activities, they do not work in isolation. Instead,

they form part of larger regulatory networks that maintain the cell in an appropriate state. As such,

changing the activity of one pathway may in turn affect another seemingly unrelated pathway.

The Ras signaling pathway helps to control when cells divide. When this signaling is not regulated

correctly, cells can start to divide uncontrollably, leading to cancer. Drugs that suppress the activity

of overactive Ras pathways could help to treat cancer. But how do the wider regulatory networks in

the cell rewire themselves over time in response to this treatment?

To investigate this question, Heigwer et al. used a method called RNA interference to alter the

activity of different pairs of 168 genes in fruit fly cells that had been grown in the laboratory. This

meant 12,768 gene interactions were examined in total. Some of the cells had been treated with a

drug that suppresses Ras signaling. By developing a new cell imaging and analysis system, Heigwer

et al. could examine how the cell’s regulatory networks were affected by the drug at three different

time points after treatment. The results show that housekeeping genes, which handle basic cell

duties, take more time to rewire their interactions than signaling pathways.

Heigwer et al. also developed a computational method – called MODIFI – to analyze how

environment and time affect how genes interact. This highlighted a number of signaling pathways

that are strongly affected by the suppression of Ras signaling, including an unexpected immune

signaling pathway.

In the future, more research will be needed to study the context-dependency of interactions

between genetic networks in different cell types and in living organisms. A better understanding of

this context-dependency will be important to understand how cancerous cells develop drug

resistance. The data collected by Heigwer et al. could also be used by other researchers to explain

any unexpected gene interactions that affect the signaling pathways they are studying.

DOI: https://doi.org/10.7554/eLife.40174.002
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Upon treatment, for example, with small molecules, genetic interactions change over time due to

time-dependent inhibition of components or other changes in the underlying composition of its

molecular constituents. To date, little is known about the trajectories genetic interaction networks

‘rewire’ over time and models for their analysis as well as proof-of-principle data sets are missing. In

this study, we devised an experimental and analytical approach to gain insights into higher order

(e.g. gene-gene-drug) interactions. To analyze how genetic interactions manifest over time, we used

a high-throughput, image-based, multivariate phenotypic readout. By combining combinatorial

RNAi with a MEK inhibitor or control treatment, we measured higher order chemo-genetic interac-

tions in Drosophila S2 cells to gain new insights into the wiring diagram of the Ras signaling

cascade.

Ras signaling is an important oncogenic pathway and Ras and EGFR family proteins are frequently

mutated in cancer (Rodriguez-Viciana et al., 2005). MEK1/2 (the ortholog of Drosophila Dsor1) acts

downstream of Ras and phosphorylates ERK1/2 (the ortholog of Drosophila rl), which phosphorylates

many other proteins (e.g. ETS-family transcription factors [Friedman et al., 2011]). The topology of

the Ras signaling pathway and its key components are widely conserved between human and Dro-

sophila (Kolch, 2005; Perrimon, 1994; Wassarman et al., 1995). In Drosophila, the Ras-pathway

has been implicated in early embryonic patterning, growth of wing imaginal discs, differentiation of

photoreceptors and blood cell proliferation (Asha et al., 2003; Prober and Edgar, 2000;

Wassarman et al., 1995).

In this study, we first performed a series of high-throughput image-based genome-wide RNAi

screens to identify a set of 168 genes with phenotypic profiles sensitive to MEK inhibition. To con-

struct the differential genetic interaction network, we then created a 168 � 76 double-perturbation

matrix and measured the effect of 12,768 gene-gene perturbations under differential time and treat-

ment conditions. These perturbations were characterized by 16 reproducible and non-redundant

phenotypic features. Notably, we assessed how each treatment-sensitive interaction changes over

time and used this information to construct maps of context-dependent biological modules. Con-

text-dependent interactions mapped the plasticity of Ras signaling and cross-talk to other signaling

pathways, such as Rel and Stat signaling. Our analyses help to better understand the principles of

interaction changes in higher order combinations of genetic perturbations.

Results

Time-dependent genetic interactions
Previous studies defined positive differential, negative differential and stable interactions between

two genes associated with changes in environmental conditions such as DNA-damage inducing

agents (Bandyopadhyay et al., 2010; St Onge et al., 2007). Positive differential interactions are

newly forming under stress conditions and mark resistance or other mechanisms counter-acting the

noxious stimulus (e.g. drug treatment). Negative differential interactions, on the contrary, mark con-

nections that are required for homeostasis under normal, unperturbed conditions but are either

obsolete or harmful under stress conditions. Within these studies, the wiring diagrams of genetic

interaction networks were studied at steady state conditions between two endpoints. The informa-

tion gained from observations of isolated gene-gene-drug interactions thus missed dynamic

responses of differential interactions (Bandyopadhyay et al., 2010; Ideker and Krogan, 2012;

Mani et al., 2008; Martin et al., 2015).

Based on the observation that the formation of measurable genetic interactions appears to be

time dependent (Figure 1A), our study aims to extend the previously established framework of dif-

ferential genetic interactions by adding a time component. Often, when genetic interactions such as

a synthetic sick or lethal interaction between two genes are quantified, different interactions-scores

(p) are found at different time points (Figure 1B). This indicates that, next to a perturbation by exter-

nal stresses (e.g. chemicals), also time influences the experimental outcome of genetic interaction

measurements systematically. We thus extended the theoretical concept of context-dependent inter-

actions by adding a temporal component and distinguished time-dependent from time-independent

interactions, treatment sensitive versus treatment insensitive and alleviating (rescuing) from aggra-

vating interactions (Figure 1C). By a systematic exploration of the time’s influence on stress-sensitive

genetic interactions, we can gain an understanding on the mechanisms that change genetic
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Figure 1. Genetic interactions rewire over time. (A) Schematic illustration of a synthetic lethal trajectory between two genes A and B. The co-

perturbation of A and B shows no unexpected combinatorial effect at early time points. At later time points, the combined perturbation of both genes

prohibits cells from growing and even leads to increased cell death. However, knockdown of A or B alone reduces fitness at either time point. Scale bar

is 50 mm. Greyscale image of tubulin (FITC-mAB). CTRL represents non-targeting RNAi. Early = 3 d after dsRNA transfections. Late = 5 d after dsRNA

transfection. (B) Interactions can be quantified for each condition by a multiplicative model of interaction as the deviation of the measured combined

phenotype from the expected combined phenotype. (C) Theoretical systematic of context-dependent genetic interactions. Interactions can potentially

be constant (I-III) or change over time (IV-VI). Interactions can be sensitive (III, VI) or resilient (I–II, IV–V) to an external treatment. Resilient interactions,

can be alleviating (II, V, positive p-scores) or aggravating (I, IV, negative p-scores). Sensitive interactions have alternating p-scores (III, VI).

DOI: https://doi.org/10.7554/eLife.40174.003
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interactions over time, and thus the possibility to map stress responsive interactions in greater depth

and the chance to assess the time dependence of stress response of specific biological processes

upon chemical perturbation of MEK. Thus, we asked: (i) What is the behavior of genetic interactions

over time and how can we describe it? (ii) What do we learn about the genetic interaction network in

response to a compound treatment when observed over time? (iii) What specific biological processes

underlie time-dependent and treatment-sensitive genetic interactions. (iv) Can we in turn reveal new

characteristics of the biological pathways under study, for example regulatory feedback loops in Ras

signaling in response to MEK inhibition?

A chemo-genetic screen identifies genes sensitive to small molecule
MEK inhibition
To recover a broad spectrum of cellular phenotypes upon MEK-inhibition, we used a cell morphol-

ogy assay and automated image analysis in Drosophila cells (Breinig et al., 2015; Fischer et al.,

2015; Horn et al., 2011). Willoughby et al. (2013) previously compared the effect of multiple small

molecule MEK inhibitors in vivo and in S2 cell culture and showed that all but one inhibitor signifi-

cantly reduced the levels of phosphorylated rl. In this assay, we perturbed cells by small molecule

treatment and genetic perturbagens before we arrested cellular morphology by fixation and stained

for DNA (visualizing the nucleus), actin (visualizing cell adhesion and cytoskeleton organization) and

a-tubulin (visualizing cell morphology and spindle apparatus). Using automated high-throughput

microscopy combined with a real-time image analysis framework we then recorded morphological

phenotypes on a single-cell level. The resulting multivariate phenotypic feature vectors describe the

quantitative phenotype resulting from the perturbations (Figure 2, Figure 2—figure supplement

1A, Materials and methods).

As combinatorial gene perturbation screens scale poorly with the number of genes, we first

sought to identify genes which phenotypes change in a MEK-inhibitor-sensitive manner. Previous

studies have found that genes involved in gene-gene interactions are enriched for genes that them-

selves display a phenotype distinguishable from the wild type (Deshpande et al., 2017; Koch et al.,

2017). Hence, the identification of genes showing a phenotype as a single knockdown will likely

enrich combinatorial screens for genes that form higher order interactions. To this end, we per-

formed multiple genome-wide RNAi screens under different environmental conditions (Figure 2—

figure supplement 1, Materials and methods, Appendix 1).

For the following gene-gene interaction analysis, we selected a set of 168 genes from the

genome-wide screens that showed: (i) high reproducibility between biological replicates, (ii) high

correlation between sequence-independent dsRNA reagents (Pearson’s correlation coefficient [PCC]

> 0.5), (iii) measurable effects that deviate from the negative controls, (iv) differential phenotypes

upon Dsor1 inhibition, and (v) are expressed in S2 cells (log normalized read count > 0, see

Supplementary file 1). We also prioritized genes that were largely uncharacterized (Materials and

methods, Appendix 1). The resulting gene list for gene-gene interaction screening includes 168 tar-

get genes that also cover a number of signaling pathways including Ras signaling, innate immunity,

Wnt signaling, mRNA splicing, protein translation, cell cycle regulation, Jak/STAT and Tor signaling

(see Supplementary file 2). The query gene set, a subset of the 168 target genes, contained 76

well-described genes to aid biological interpretability.

A time resolved co-RNAi screen to capture differential genetic
interactions
To quantitatively analyze treatment-sensitive genetic interactions in a time-dependent manner, we

set up an experimental design based on co-RNAi treatment and high-throughput microscopy

(Figure 2A). A combinatorial gene-gene matrix covering 168 target genes and 76 query genes was

used to measure 12768 genetic interactions under the different conditions. The library was screened

under MEK (Dsor1) inhibitor and control conditions at 48, 72 and 96 hr after compound addition.

The screen was performed using two sequence-independent dsRNA design replicates and in two

biological replicates for each condition. In total 4.4 Mio. fluorescent images were captured, and 155

image features measured the perturbation effects for every single cell in the experiment (Appendix

1). Following automated image analysis, we transformed the phenotypic features using the general-

ized logarithm, normalized, centered and scaled them (Materials and methods, Appendix 1). Plates
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Figure 2. An image-based co-RNAi screen maps time resolved genetic interactions. (A) Representation of the combinatorial RNAi (co-RNAi) screening

setup. 168 ‘target’ and 76 ‘query’ genes were combined to all pairwise combinations and arranged accordingly in 384-well plates. S2 cells were reverse

transfected with pre-spotted dsRNAs and incubated for 24 hr. Cells were treated either with small molecule (MEKi [PD-0325901], 1.5 nM) or DMSO

(solvent control, 0.5% DMSO) and incubated for additional 48, 72 or 96 hr. The assay was stopped by fixation and staining of cells. Phenotypes were

measured using automated microscopy and quantitative image analysis. Genetic interactions (p-scores) were called for 16 non-redundant phenotypic

features from the combinatorial knock downs, separately for each treatment and time point. MODIFI was applied to identify significant differential

genetic interactions. The model is defined as p[A,B,time,treatment] ~ s[A,B] * time + d[A,B] * treatment + e[A,B] with p being the measured interaction for a pair

of genes A and B at a given time and treatment. (B) Reproducibility of p-scores between biological replicates is high for the exemplary feature ‘cell

number’ (PCC = 0.76). (C) Example of genetic interactions observed over time and treatment. Interaction data for the inhibitor treated and control

condition are shown for eight selected target genes (y-axis) and 10 query genes (x-axis). Genetic interactions shown were calculated for the cell

eccentricity feature.

DOI: https://doi.org/10.7554/eLife.40174.004

The following figure supplements are available for figure 2:

Figure supplement 1. Measuring chemo-genetic interactions by high throughput imaging and RNAi.

DOI: https://doi.org/10.7554/eLife.40174.005

Figure supplement 2. A large proportion of phenotypic features deliver independent information.

DOI: https://doi.org/10.7554/eLife.40174.006

Figure supplement 3. Screening quality control.

DOI: https://doi.org/10.7554/eLife.40174.007

Figure supplement 4. Image derived phenotypes closely resemble those of preceeding screens.

DOI: https://doi.org/10.7554/eLife.40174.008

Figure supplement 5. Genetic interactions are reproducible, permutation agnostic and non-redundant.

DOI: https://doi.org/10.7554/eLife.40174.009

Figure 2 continued on next page
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failing technical quality control (Z’-factor between RasGAP1 RNAi and Diap1 RNAi <0.3 and biologi-

cal correlation <0.6 PCC for cell number) were masked in further analysis. Overall,<3% of all plates

were excluded according to these criteria. Most of the 155 features showed a high reproducibility

(80% having a PCC greater than 0.6, Figure 2—figure supplement 2A). The two features cell count

(relative cellular fitness) and actin eccentricity (morphology of cells) were among the features with

the highest replicate correlation (Figure 2—figure supplement 3A,B) and are highlighted as exem-

plary features in some of the following visualizations. All features that failed to meet a replicate cor-

relation of PCC >0.6 were removed, leaving 114 features for further analyses. In addition, 90% of

sequence-independent dsRNA pairs correlate with a PCC >0.6 with an average correlation of

PCC = 0.77 (Figure 2—figure supplement 3C).

Since many of the remaining 114 features provide redundant information (Figure 2—figure sup-

plement 2B), overlap was reduced by first clustering all features according to the pairwise PCC of

the genetic interactions. Second, we fixed the first feature (cell number) and removed all remaining

features that correlated with PCC >0.7. Third, we selected the next most reproducible and biologi-

cally interpretable feature and removed all highly correlated features; this scheme was iterated until

all features were passed. The remaining 16 features (see Supplementary file 3) were selected for

further analysis. As a confirmation, we verified that cell number and actin eccentricity show a weak

correlation (PCC = 0.48) and thus provide independent information (Figure 2—figure supplement

2C). An unbiased ‘information gain’ analysis by stability selection, as carried out in an earlier study

(Fischer et al., 2015), validated this approach showing that each of the chosen features also delivers

independent but reproducible information (Figure 2—figure supplement 2D). As they enrich bio-

logically interpretable and reproducibly measurable features, we however kept the features selected

by correlation-based analyses. An analysis of the multivariate Z’-factors between RasGAP1, a nega-

tive regulator of Ras signaling and Pvr, a positive regulator of Ras signaling (Zhang et al., 1999)

showed a multi-variate Z’ of 0.814, indicating high assay quality (Figure 2—figure supplement 3D).

In a first quality control step, we systematically analyzed whether: (i) p-score analysis recapitulates

earlier studies using a cell morphology readout in Drosophila, (ii) p-scores were reproducible

between biological replicates, (iii) the interaction profile changed considerably when target and

query genes switch roles and (iv) interaction profiles were independent for different features. To this

end, we compared gene-gene interactions that overlapped between this and previous studies of

genetic interactions in Drosophila S2 cell culture (Figure 2—figure supplement 4). We found signifi-

cant agreement between p-scores measured in various features in the different studies (FDR << 0.1,

for linear dependence between p-scores measured in different studies). We found, for example, that

the DNA texture feature we used, could also explain the phospho-histone H3 staining used in

Fischer et al. (2015).

Next, we confirmed a high correlation of interactions between biological replicates, as illustrated

on the phenotypic features ‘DNA eccentricity’ and ‘cell number’ (Figure 2B, Figure 2—figure sup-

plement 5A,A’). As the combinatorial matrix contained all query genes also in the target gene set,

we tested whether interaction phenotypes were in accordance regardless of the assignment of tar-

get and query. In theory, all interactions should be symmetric, and it should not matter which gene

was assigned as target and which as query. However, in practice target and query RNAi reagents

were added independently during the experiment which could skew symmetry. Our analysis demon-

strated that both combinatorial conditions highly correlate (Figure 2—figure supplement 5B,B’,

PCC = 0.76 for cell number; PCC = 0.75 for actin eccentricity). We furthermore confirmed that differ-

ent features provide independent information about genetic interactions as indicated by low

Figure 2 continued

Figure supplement 6. Dsor1 inhibiting effect of PD-0325901 shown by loss of rl phosphorylation, loss of viability and differential phenotypic responses.

DOI: https://doi.org/10.7554/eLife.40174.010

Figure supplement 7. Ability of the cell morphology assay to distinguish phenotypes produced by control dsRNA.

DOI: https://doi.org/10.7554/eLife.40174.011

Figure supplement 8. Measuring chemo-genetic interactions by high-throughput imaging and RNAi.

DOI: https://doi.org/10.7554/eLife.40174.012

Figure supplement 9. Full immunoblots.

DOI: https://doi.org/10.7554/eLife.40174.013
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correlation (PCC = �0.21 and 0.04, Figure 2—figure supplement 5C,C’). We also confirmed the

suitability of our cell-based assay to score compound induced phenotypes without the need to mea-

sure its biochemical effect, and determined the ED50 of the MEK-inhibitor PD-0325901 on S2 cells

(Figure 2—figure supplement 6). These experiments demonstrated that S2 cells show a sustained

phenotypic response toward PD-0325901. A high correlation (PCC = 0.81) between small molecule

and RNAi perturbation of MEK indicates high compound specificity. The most drastic phenotypic

changes among a number of features occurred in a concentration window around the drug’s ED50

(1.5 nM). Thus, we selected a concentration of 1.5 nM PD-0325901 as an optimal condition for the

co-RNAi screening experiments. This ranges within an order of magnitude of the ED50 known for

treatment of mammalian tissue cells cultures (Ciuffreda et al., 2009; Hatzivassiliou et al., 2013).

Under control conditions, phenotype vectors also reliably separated control RNAi treatments (Ras-

Gap1 [RASAL3] vs. drk [GRB2], Figure 2—figure supplement 7). In addition, the multi-variate Z’ fac-

tor is significantly higher than univariate Z’ using cell count only (Zhang et al., 1999). We also found

that the knockdown phenotypes of known Ras pathway components Dsor1 (MEK1/2) and drk

showed a high correlation (PCC = 0.91, Figure 2—figure supplement 8). Accordingly, knockdown

phenotypes of genes with antagonizing function like the negative regulator of Ras signaling Ras-

GAP1 and Dsor1 inversely correlate (PCC = �0.78). dsRNA targeting the same gene were also highly

reproducibly producing similar phenotypic vectors (e.g. PCCRasGAP1 = 0.88). Hierarchical clustering

of phenotypic profiles recapitulated known functional relationships of Ras pathway components,

whereas regulators of translation show distinct phenotypes. These experiments demonstrated that

the morphological assay captures meaningful phenotypes for MEK inhibition, robustly distinguishes

controls and groups functionally related genes into clusters of phenotypic similarity.

Following quality control, we calculated genetic interaction scores (p-scores) for each feature

under each condition using a multiplicative model as described previously by Horn et al.

(Horn et al., 2011, Materials and methods). Overall, we analyzed over 1.3 million gene-gene interac-

tions in two conditions, three time points and 16 cellular features. 72922 interactions showed a sig-

nificant deviation from the expected combinatorial phenotype. Only 9090 (12%) genetic interactions

are measured significantly (moderated t-test [limma], FDR < 0.1) for the cell number phenotype

underlining the value of the multiparametric analysis.

Robust linear modeling of differential genetic interactions across
multiple features
Figure 2C shows an excerpt of the genetic interaction matrices obtained for each treatment and

time condition. We found that our analyses recapitulated known genetic interactions. For example,

Ras signaling components showed negative interactions with the Jak/STAT pathway (e.g. Pvr, dos

and Sos show negative genetic interactions with dome and Stat92E (STAT5B), Baeg et al., 2005;

Li et al., 2003; Xu et al., 2011). The observed interactions become stronger over the three time

points measured, and interactions such as a negative interaction between Ras signaling components

and Rho1 are stronger upon MEK inhibitor treatment.

Next, we sought a suitable statistical framework to score significant context-dependent interac-

tions. Previous studies employed different statistical tests that score the significance of interaction

differences between endpoint measurements (B-Score, dS-Score, limma-based moderated t-test,

Bandyopadhyay et al., 2010; Bean and Ideker, 2012; Billmann and Boutros, 2017;

Guénolé et al., 2013). In a pooled genetic interaction screen in human cells, Shen et al. used the

time dependence of fitness defects to improve statistical power (Shen et al., 2017). Thus, we tested

whether we can also leverage a time- and treatment-dependent model (Materials and methods,

Figure 3A) to identify differential genetic interactions more sensitively than time-independent statis-

tical models (Figure 3B).

We found that a robust linear model of serial measurements (MODIFI, Figure 3A) identifies the

most differential interactions (4723 in total, 2.31% of all possible interactions, FDR < 0.1). When

using only end-point measurements, the robust statistic (rlm) is more sensitive than the moderated

t-test (limma, Billmann and Boutros, 2017; Fischer et al., 2015; Laufer et al., 2013) used in previ-

ous studies to score treatment-sensitive interactions and the two-tailed t-tests

(Bandyopadhyay et al., 2010; Guénolé et al., 2013) of each interaction between conditions (1907

vs 874 vs 21 interactions, respectively). We further found that MODIFI increased statistical power,

identifying 147% more differential interactions across all features when compared to the best
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Figure 3. Robust linear models describe the continuity of genetic interaction rewiring. (A) Derived measures from

the interaction model: the time dependence (s) of interaction development, treatment sensitivity (d) of response to

MEKi and average initial interaction difference. (B) Differential interactions detected depending on the used data

and model. Significant (FDR < 0.1) differential interactions were counted when analyzed using a linear model (lm),

a robust linear model (rlm), a moderated t-test (limma) or Welch’s t-test. End-point, sequential and randomized

data were compared. The analysis was carried out for all features and accumulated counts are shown. ‘none’

means that all time points were treated as replicates of the same measurement. ‘rand’ means that measurements

were assigned to random time points and 96 hr denotes the data treated as end-point measurements of the last

time point. All models tested the null hypothesis that there is no difference between treatments. A two-sided

Welch’s t-test was used. The robust linear model (rlm) coefficient’s significance was estimated using robust F-tests.

The significance of the linear model coefficient was tested by two-way ANOVA. (C) Measurement of sensitivity

toward MEKi. The treatment sensitivity was assessed by comparing d between biological processes. Significance

was tested by a two-sided Kolmogorov-Smirnov test of the sample against all measured interactions. Resulting

p-values are indicated. Upper-left p-value compares process specific d between translation and proteasome.

DOI: https://doi.org/10.7554/eLife.40174.014

The following figure supplement is available for figure 3:

Figure 3 continued on next page
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endpoint measurements (4723 vs 1907; 96 hr/rlm). We conclude that by employing robust statistics

MODIFI outperforms conventional models and more accurately estimates the parameters treatment

sensitivity d and the time dependence s. MODIFI between to genes i an j, is described by the follow-

ing equation:pij ¼ cij þ sij � timeþ dij � treatment þ "ij. There s estimates the rate by which interactions

change and d estimates the amplitude of interaction change between treatment conditions (Materi-

als and methods).

Robust linear models accurately describe the temporal dynamics of
genetic interactions
We next sought to test if the linear models are practical to describe time and treatment dependent

genetic interactions. To this end, we compared the unweighted residuals of each fit with the actual

experimental variance measured at each time point. If the model fails to fit the data appropriately

(e.g. the comparison does not behave monotonic, or the form of the input-curve is not linear) one

would expect that the residuals are unexpectedly greater than the variance. However, analyses of all

interactions for each phenotypic feature reveals that this is rarely the case (Figure 3—figure supple-

ment 1). In most models, remaining residuals of fit are explained by the variance between biological

replicates (avg. PCC = 0.96, R2 = 0.92). Interestingly, this is true for all features we assessed. By ini-

tial feature transformation, centering and scaling, systematic differences between features were

removed. During subsequent interaction calling, where only the residual of activity not explainable

by each single gene knockdown is kept as a phenotype, specific time-dependent behaviors of fea-

tures affecting each gene are removed as well (Diss and Lehner, 2018). We thus concluded that the

p-score dependence on time and treatment for each phenotypic feature can be reliably quantified

using linear model statistics.

Related genes share patterns of context-dependent interactions
Next, we quantified to what extent gene-gene interactions changed due to MEK inhibitor treatment

(d). d serves as a surrogate for the integrated area between the trajectories of the two treatments. If

d is close to zero, only little changes occur upon treatment and high d marks highly treatment-sensi-

tive interactions. We found that treatment-sensitive interactions were equally likely to be positively

or negatively shifted over all analyzed genes (Figure 3C, grey distribution). Of note, especially treat-

ment-sensitive interactions of Rel (NFKB1, a downstream effector of the Drosophila Imd signaling

pathway, Myllymäki et al., 2014), or Ras/Map and Jak/STAT related genes enriched as either nega-

tively shifted p-score or positively shifted p-scores because of MEK inhibition, respectively. This

implies that pathways which are positively regulated by MEK tend to form interactions that are less

aggravating under MEK inhibition. Interactions formed by Rel are negatively enhanced by MEK inhi-

bition. We further found no or little significant difference between housekeeping modules (such as

proteasome, translation machinery) and all genes (p>0.1, two-sided KS-test). Taken together, these

data suggest that components of the same pathway share differential interaction sensitivity and

directionality in response to Ras pathway inhibition.

Examples of context-dependent genetic interactions
Assessing all interactions for which MODIFI identified statistically significant hits (FDR < 0.1), we

identified four main types of time and treatment-dependent interactions that we expected would be

recovered by MODIFI (Materials and methods, Figure 1C III-VI). Interactions that are neither time-

dependent nor treatment-sensitive were not covered by MODIFI (see also Figure 1C I, II). Among

the time-dependent interactions, we observed alleviating treatment-insensitive interactions where

the p-score raised over time (Figure 4A). These interactions often involve core essential genes

whose influence on the phenotype (e.g. cell count) is not altered by MEK inhibition. This is for exam-

ple the case for mts knockdown (PP2CA, lethal by itself; Snaith et al., 1996) where the simultaneous

loss of the proteasomal subunit Prosbeta4 (PSMB2, Wójcik and DeMartino, 2002) dominates the

Figure 3 continued

Figure supplement 1. Robust linear models reliable quantify the differential interactions.

DOI: https://doi.org/10.7554/eLife.40174.015
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combinatorial phenotype that do not change further regardless of the treatment. In this case, a posi-

tive interaction that strengthens over time was measured (Figure 4A). Accordingly, we termed inter-

actions aggravating, treatment insensitive when the p-score declined over time and its trajectories

were indifferent between treatments (Figure 4B).

Aggravating treatment-insensitive interactions on cell count often include signaling transducers

where the loss of one only has a mild phenotype while the double perturbation disturbed homeosta-

sis which cannot be buffered buffer and a synthetic sick or lethal interaction is observed. For exam-

ple, ksr (KSR1) and rl (ERK1/2), two core members of the Ras signaling cascade (Morrison, 2001;

Wassarman et al., 1995), interact significantly (p=0.0017). This synthetic sick interaction is stable

upon MEK inhibition and thus appears independent of phospho-rl levels which hints toward a

kinase-independent function of rl in combination with its scaffolding protein ksr (Figure 4B).

We defined interactions as treatment sensitive when trajectories differed significantly between

treatments (FDR < 0.1, Materials and methods). If the p-score is lower under control than under

treatment conditions, we termed it a positive treatment-sensitive interaction (MEK inhibition lifts the

phenotype, Figure 4C) and negative treatment-sensitive interaction (MEK inhibition dampens the

interaction, Figure 4D) in the opposite situation. For instance, skd (MED13, an integral component

of the mediator complex; Janody et al., 2003) showed a positive differential interaction with

Stat92E (Drosophila ortholog of human STAT receptor; Bina and Zeidler, 2009) (Figure 4C). Under

control conditions skd knockdown aggravated the fitness loss induced by Stat92E knockdown to a

lethal phenotype. This aggravation was attenuated under MEK inhibition. Our data suggest that a

synthetic lethal relationship connects both genes when they are otherwise unperturbed. Only little is

known about the cooperative function of mediator and STAT or crosstalk toward Ras signaling
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Figure 4. Genetic interactions rewire over time. (A–D) Examples of time- and treatment-dependent genetic interactions: (A) alleviating treatment-

insensitive interaction of Prosbeta4 (proteasome) and mts (cytoskeleton), treatment invariant and increasing over time, (B) aggravating- treatment-

insensitive interaction of ksr and rl (both Ras signaling), treatment invariant and decreasing over time, (C) positive treatment-sensitive interaction of skd

(mediator complex) and Stat92E (STAT receptor), lifted from synthetic lethal to non-interacting by treatment, (D) negative treatment-sensitive

interaction of Rel (innate immunity) and pnt (Ras signaling), p-scores decreased by the treatment. (cell count, FDR < 0.1, robust f.test followed by

multiple testing correction after Benjamini Hochberg). Dashed lines are trendlines for each treatment group. (E) Interaction counts after MODIFI.

Interactions (FDR < 0.1) are counted for 16 features, grouped into cell count, shape, texture and intensity within cell and nucleus.

DOI: https://doi.org/10.7554/eLife.40174.016

The following figure supplement is available for figure 4:

Figure supplement 1. Time- and treatment-dependent interaction between skd and Stat92E.

DOI: https://doi.org/10.7554/eLife.40174.017
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(Bina and Zeidler, 2009). Interestingly, under control conditions, the loss of fitness phenotypes of

Stat92E and skd single knock down are not time dependent, while the interaction is strongly time

and treatment dependent. This is indicative of a longer-term transcriptional response when coopera-

tive action of skd and Stat92E is disturbed (Figure 4—figure supplement 1).

In contrast, a negative differential interaction occurred between Rel and pnt. While Rel knock-

down rescued the fitness-defect induced by pnt knockdown under normal conditions, it aggravated

the pnt knockdown phenotype after MEK inhibition (Figure 4D). Thus, we hypothesize that both,

the aggravating interaction between skd and Stat92E and the alleviating interaction of Rel and pnt

depend on the proper function of Dsor1. Mixed forms, such as interactions that deviate strongly in

the beginning experiment and converge later or interactions that were almost time independent but

treatment sensitive, were also observed.

Different phenotypic features capture distinct cellular reactions
To assess whether different features (which we grouped into meta features, such as cell shape or

nuclear texture) or pathways show enrichments in one or the other interaction type, we analyzed

enrichment of interaction counts over a random distribution. We found considerably more treat-

ment-insensitive than treatment-sensitive interactions for all feature (18468 vs. 4723, 16 phenotypic

features, Figure 4E). While, as expected, the distribution of negative and positive interactions over

all features was symmetric, specific phenotypic features capture surprisingly high numbers of alleviat-

ing (nuclear shape) or aggravating (nuclear texture) treatment-insensitive interactions. This indicates

that different phenotypic features identify specific biological reactions of cells toward double gene

perturbations. A possible explanation would be that different biological processes influence different

cellular features, for example perturbations of the cytoskeleton organization mostly influence shape

features while perturbation of nuclear factor alters mostly nuclear texture. The direction of interac-

tions then follows the genes that are involved and so do the different features enrich distinct interac-

tion types. Core essential housekeeping genes, for example, show exceptionally high numbers of

alleviating interactions on cell shape but simultaneously display mostly aggravated phenotypes on

their nuclear texture. These observations indicate a complex interdependence between specific

genes under investigation and the phenotypic features that are used to assess them.

Differential genetic interactions enrich in stress responsive genes and
pathways
Additionally, we found that treatment-sensitive interactions, compared to treatment-insensitive inter-

actions, enriched in specific signaling pathways related to MEK inhibition. While, for example, ribo-

some or spliceosome-related genes formed mostly alleviating and treatment-insensitive interactions

(Figure 5A), the JNK pathway was enriched for alleviating treatment-insensitive and negative treat-

ment-sensitive interactions (Figure 5B). Other pathways, such as Ras signaling, Rel, Mediator signal-

ing or Jak/STAT signaling were equally overrepresented in treatment-sensitive and treatment-

insensitive interactions. Among the pathways tested, the enrichment of treatment-insensitive interac-

tions highlights pathways with large impact on the interaction network controlling cell viability. The

enrichment of differential interactions highlights mainly signaling pathways that are sensitive to MEK

inhibition.

Differential genetic interactions are not equally distributed over all genes that were tested. Jak/

STAT signaling components (Stat92E, dome, upd3) alongside Ras signaling members (drk, rl, dos,

Sos, pnt) and, interestingly, Imd signaling (Rel) showed specific enrichment of differential interactions

(cell count feature, Figure 5C). Specifically, pnt forms many positive differential interactions (allevi-

ated upon MEK inhibition) while Pvr is involved in many negative differential interactions (aggravated

by MEK inhibition). This could be attributed to pnt acting as a terminal transcriptional effector of the

signal triggered by the activated receptor Pvr. We also found that genes, which form more treat-

ment-insensitive genetic interactions also enrich treatment-sensitive interactions (compare linear

trendline, Figure 5D). However, some particular genes are involved in unexpectedly many differen-

tial interactions. This indicates that a rather specific response to the treatment is reflected in the dif-

ferential interactions. These data demonstrate that time-dependent modeling of interaction scores

sensitively detects treatment differential interactions which enrich in and thus highlight Ras-sensitive

biological processes.
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Signaling pathways rewire with different time dependencies
MODIFI estimates the time dependence (s) of each treatment-sensitive interaction. This term can be

interpreted as the slope by which an interaction changes (e.g. strengthens or weakens) over time.

Depending on the initial difference (compare Figure 3A), p-scores increase or decrease over time,

diverge or converge. The most abundant interaction in this study describes a treatment-insensitive

interaction that could not be measured initially but forms over the course of the experiment (78% of

all significant interactions, FDR < 0.1).

In the following analyses, we use genetic interactions based on cell count as an example to test

whether genes or pathways react at different specific rates. For example, from 48 hr to 96 hr after

compound addition, genetic interactions with Rel remained stable, whereas interactions of Jak/STAT
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Figure 5. Drug sensitive genetic interactions are enriched for stress responsive signaling pathways (A–B)

Distribution of aggravating/alleviating treatment-insensitive (A) and positive/negative treatment-sensitive (B)

interactions among molecular pathways. Binomial testing estimated if counts were expected by chance

(*=FDR < 0.1). (C) Gene-level interaction counts. Counts of significant, unique negative treatment-sensitive

interactions compared to counts of positive treatment-sensitive interactions. Dots are colored by functional

groups. Pathways with the most treatment-sensitive interactions (Tor, Ras, Rel and Jak/STAT signaling) are

highlighted. (D) Counts of treatment-insensitive interactions are plotted against treatment differential interaction

counts. A trendline indicates a general linear dependency between treatment-insensitive and treatment-sensitive

interaction counts. (A–D) Count data are based on cell number feature, significant (FDR < 0.3), MODIFI modelled

interactions.
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or Ras signaling-related genes changed significantly over time. Interactions with housekeeping-

related genes (proteasomal or ribosomal subunits) show phenotypes of an exceptionally high time

dependence (Figure 6A). These data indicate that interactions of the different biological processes

rewire at different rates after perturbation.

We also hypothesized that the difference of interaction scores and their time dependence could

inform about the influence of MEK inhibition on different biological modules or phenotypic features.

Cell fitness-based interactions formed by proteasome related genes show the strongest phenotypic

differences between treatments at the initial and last measured time point (Figure 6B). This suggests

that proteasome-related genes are involved in particularly strong treatment-sensitive interactions

upon MEK inhibition. These interactions interfere with cell proliferation early on during our
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Figure 6. Timing and initial difference of interactions depend on the biological process and feature. (A) Time dependence (s) of interactions stratified

by biological process. Boxplots show the median (black bar), the 25th and 75th percentile (box) ±1.5 times the interquartile range (whiskers). Points

outside that range are plotted individually. Significance is tested by a two-sided welch t-test (***: p<<0.001, NS: p>0.05). Data is shown based on

significant (FDR < 0.1) cell-count-based interactions involving genes belonging to this process. (B) Median p-score differences stratified by pathway

annotation of affected genes. All significant (FDR < 0.1) time-dependent interactions based on cell count feature are summarized by median.

Interactions formed by genes that are proteasome associated show the highest initial difference and steepest increase over time. (C) Initial difference of

interaction scores 48 hr after treatment stratified by feature. Boxplots show the median (black bar), the 25th and 75th percentile (box) ±1.5 times the

interquartile range (whiskers). Points outside that range are plotted individually. All features (except nucleus texture) show significantly (p<<0.001, two-

sided student’s t-test) higher initial differences than cell count based interactions. (D) Median p-score differences for the first and the last measured

time point. Trajectories for all features are shown over all genes that showed a significantly time-dependent interaction (FDR < 0.1). Features are

highlighted by their feature group. All features except nucleus eccentricity measure interaction differences that become more profound over time.
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experiment and also become stronger over time. This supports reports of synergistic effects

between proteasome and MEK inhibition on perturbing cell viability (Chang-Yew Leow et al.,

2013).

Next, we hypothesized that phenotypic features measure different initial interaction differences

and analyzed initial p-score differences between phenotypic features. Especially, cell morphology

features (nucleus/cell eccentricity) and their variance within the population of cells show initial differ-

ences that are significantly higher than those measured by cell count (p<0.0001, Figure 6C). Of

note, nuclear eccentricity and its variance among the population of cells (nucleus eccentricity sd) are

also the only initially different features that are masked later on. All other phenotypes show an

increased interaction difference over time (Figure 6D). Surprisingly, cell count as the traditional

readout for fitness after gene-gene perturbation shows the smallest interaction differences between

the treatments in general, irrespective of the time point. Together, these analyses demonstrate that

the time dependence of genetic interactions is specific to certain biological process. It further high-

lights that phenotypes beyond cell viability excel to capture early treatment-sensitive interactions.

A correlation network of treatment-sensitive interactions maps genes
into functional modules
Next, we analyzed whether interaction networks formed by different biological modules or core sig-

naling pathways change systematically over time and treatment. In the following examples, we used

cell eccentricity as an exemplary feature which we found to capture early cellular responses.

Figure 7A shows how an interaction sub-network including Jak/STAT signaling, Ras/Map signaling

components and spliceosome related genes rewires over time in reaction to MEK inhibition. Core

housekeeping modules (ribosome, spliceosome or proteasome) were highly interconnected by allevi-

ating treatment-insensitive interactions. In contrast, components of the Ras signaling, Jak/STAT sig-

naling or Tor signaling cascade showed aggravating interactions with housekeeping modules. We

observed that (i) alleviating interactions (p > 0) dominate early time points, (ii) many initially alleviat-

ing interactions reverse over time (p > 0 fi p < 0), (iii) differences attributed to the compound treat-

ment become more profound over time. Lastly, we noted that genes in proximity tend to have

similar interaction patterns coherently changing over time and treatment (Figure 7—source data 1).

Previous studies implied that similarities of treatment sensitive genetic interaction profiles can iden-

tify functionally related genes (Bean and Ideker, 2012). Thus, interactions of related genes change

coherently upon network perturbation. Hence, we defined treatment-insensitive interaction profiles

for each target gene. We used the modeled interaction difference between treatments over time (d)

to quantify interaction change due to Dsor1 inhibition. For every target, we calculated d with every

query gene in a vector comprising 76 measurements for cell eccentricity.

Correlations between profiles (Figure 7B) confirmed known functional relationships of genes, as

for example the profiles of the genes Stat92E and dome, members of the Drosophila Jak/STAT path-

way, were similar (PCC 0.73) confirming that both genes share biological function upon perturbation

of Ras signaling (Xu et al., 2011). Furthermore, our analysis showed a correlation of treatment-sensi-

tive genetic interactions for all features between Stat92E, dome and Ras signaling. Interestingly, the

profile of Rel was similar to negative regulators of Ras signaling (RasGAP1, PCC 0.38), but was anti

correlated with positive regulators (pnt, PCC �0.37) indicating a potential crosstalk between the two

pathways.

We expected that a correlation-based network drawn from treatment-sensitive interaction profiles

across all phenotypic features reveals modules of functionally related genes. Thus, we calculated the

pairwise correlation coefficients (PCC) of treatment-sensitive interaction profiles (interactions with 76

query genes) including all 16 cellular features of all 176 target genes. We visualized resulting positive

correlations in a network graph highlighting biological processes and candidate genes (Figure 7C,

Supplementary file 2). This revealed that correlations of treatment-sensitive interaction profiles clus-

tered genes into known pathway modules. Of note, Rel and Fur1 (FURIN) and swm (RBM26) showed

unexpected correlations with members of the Ras signaling cascade (Figure 7B).

It is expected that genes with similar functions irrespective of the treatment show similar interac-

tion profiles between and within conditions. In contrast, genes with a treatment-dependent function

should lose or gain correlations to other genes when compared between treatments (Billmann and

Boutros, 2017). To test this, we defined profiles of all interactions across all cellular features and

time points and correlated them between genes and between conditions. Most interaction profile
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Figure 7. A correlation network of treatment-sensitive interactions maps pathways modules. (A) Network of genetic interactions between selected

genes. The networks include all candidate Ras-signaling (blue), Jak/STAT-signaling (white), Tor-signaling (pink), proteasome (red), translation (orange)

and splicing (purple) related genes. Significant (FDR < 0.1) alleviating interactions are shown in yellow. Significant (FDR < 0.1) aggravating interactions

Figure 7 continued on next page
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correlations did not differ significantly between conditions, compared to within conditions (Fig-

ure 7—figure supplement 1). Specifically affected gene pairs were mostly Ras signaling compo-

nents. Interestingly, also profile correlations of Jak/STAT signaling components (Stat92E, dome) as

well as of the two genes Fur1 and swm differed between and within conditions. This provides further

clues that Fur1 and swm are implicated Ras signaling. Only few, weak interaction profile correlations

were higher between than within conditions.

Rel and pnt act in a MEK-dependent negative feedback loop
We have shown that the treatment-sensitive interaction profiles of Rel and pnt were negatively corre-

lated, whereas Rel profiles were positively correlated with RasGAP1, a negative regulator of Ras

(Figure 7B). This suggested that Rel itself might function as a negative regulator of Ras signaling.

We observed that Rel depletion alone had little impact on cell growth, as compared to pnt, but

showed a cell length (major axis) phenotype (Figure 8A, Figure 8—figure supplement 1). Co-deple-

tion of pnt and Rel altered both cell number and cell length. Under control conditions, depletion of

Rel alleviated the loss of viability and cell length phenotypes after pnt knockdown (Figure 8A). This

interaction was attenuated under MEK inhibition (Figure 8B) when co-depletion of Rel and pnt led

to a synthetic lethal phenotype (FDR < 0.1, Figure 8C,C’). These interactions were observed for

both dsRNA designs (PCC = 0.88 and 0.96 for Rel and pnt, Figure 8—figure supplement 2).

Pvf2 (orthologue of human VEGF) is upregulated in the absence of Rel (log2fold-change = 1.5)

(Boutros et al., 2002). The data presented here indicate that a knockdown of Rel induced a re-acti-

vation of the Ras pathway which is dependent on Dsor1 activity (Figure 8A–C). We hypothesized

that Rel negatively regulates Ras signaling by repressing the expression of Pvf2, the ligand activating

the Pvr-Ras-phl-Dsor1-rl-pnt signaling cascade after binding to Pvr (PDGFR). To test this hypothesis,

we performed qPCR analysis of pnt, Rel, Pvf2, sty (SPRY2) and RasGAP1 expression levels

(Figure 8D,E). We first confirmed the upregulation of Rel after depletion of Ras (Figure 8D) and

showed that upregulation of Rel was suppressed by pnt co-RNAi. Pvr knockdown, as a control for

loss-of-Ras signaling activity, led to a downregulation of pnt and RasGAP1. Pvr knockdown also

induced a strong upregulation of Rel expression. Finally, co-RNAi of Rel and pnt induced a signifi-

cant increase in Pvf2 expression, not observed by depletion of either gene alone (Figure 8E). The

Rel/pnt co-RNAi also induced upregulation of negative regulators of Ras signaling sprouty (sty)

(Casci et al., 1999) and RasGAP1 (Feldmann et al., 1999) (Figure 8E), thereby providing a mecha-

nistic explanation how Rel could negatively regulate Ras signaling.

We hypothesized that this regulatory loop is mediated by the transcriptional regulation of Pvf2

and requires Dsor1-mediated Ras signaling activity, as summarized in Figure 8F. These changes

were observed both at 48 hr and 96 hr time-points (Figure 8—figure supplements 3 and 4). Interest-

ingly, protein levels of rl were down regulated by pnt-or rl-RNAi and rescued by Rel co-RNAi

Figure 7 continued

are shown in blue. All interactions are based on the cell eccentricity feature. Interactions become more abundant and stronger over time, more

alleviating interactions can be observed under MEK inhibition. Ras and Jak/STAT related genes are mostly connected by aggravating interactions. (B)

Correlations of treatment-sensitive interaction profiles between known regulators and candidate genes. Profiles of all d-scores along cell eccentricity

and 76 query genes were constructed for 168 target genes and pairwise correlations were calculated. Shown is the Pearson correlation coefficient (PCC)

and asymptotic p-value as implemented in the R package Hmisc. All correlations shown are significant with an p-value < 0.01. Jak/STAT and Ras

components show high correlations as expected. Rel appears as negative, Fur1 and swm as positive regulators of Ras signaling. (C) Pairwise correlation

network of treatment-sensitive interaction profiles across all 16 features. Shown are all genes with at least one edge. Edges are drawn if two gene’s d-

profiles correlate with PCC > 0.5. Nodes are ordered by force directed spring embedded layout. A high degree of clustering of known pathways

indicates meaningful correlations.

DOI: https://doi.org/10.7554/eLife.40174.020

The following source data and figure supplement are available for figure 7:

Source data 1. Cytoscape session file to reproduce Figure 7A.

DOI: https://doi.org/10.7554/eLife.40174.021

Source data 2. Cytoscape session file to reproduce Figure 7C.

DOI: https://doi.org/10.7554/eLife.40174.022

Figure supplement 1. Differential correlation analysis reveals that Fur1 and swm rewire coherently to Ras signaling components.

DOI: https://doi.org/10.7554/eLife.40174.023
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Figure 8. Crosstalk of NF-kB and Ras signaling through Rel and pnt. (A) Upon Rel or Rel/pnt knockdown cells behave normally, growth is inhibited

upon pnt knockdown alone. (B) Dsor1 inhibitor treatment attenuated this alleviating interaction. Scale bar = 30 mm. Images are pseudo colored, DNA/

DAPI = blue, FITC/a-tubulin = green. (C) Quantified negative treatment-sensitive interaction between Rel and pnt. The trajectory of the MEK inhibitor

treatment is lower than the solvent control condition for cell count interaction indicating synthetic lethality under MEK inhibition. (C’) Actin major axis

shows a strong positive interaction (cells are enlarged like under pnt knockdown). Error of fit is shown as 95% confidence interval. Dashed lines show

trendlines of a treatment wise model fit. (D, E) Expression of candidate and marker genes assessed by qPCR (3 days RNAi treatment, n = 3, log2

foldRLUC, mean ±s.e.m., t-test) on S2 cells. (D) pnt expression is reduced upon pnt and Pvr knockdown. Rel knockdown does not rescue pnt expression.

Rel expression is increased upon pnt and Pvr knockdown and decreased upon Rel knockdown. Upon pnt and Rel knock down, Rel expression is

rescued to normal levels. (E) Pvf2 expression is induced only upon Rel/pnt double knockdown. This leads to increased expression of sty and RasGAP1.

RasGAP1 knockdown increases sty expression and decreases RasGAP1 expression. (D–E) *=p < 0.05, **=p < 0.01. (F) A model summarizes the qPCR

results in context of the Ras signaling cascade. Dashed lines are transcriptional interactions, solid lines are protein-protein interactions. All black

interactions are known, while the green interaction is inferred from the data. Blue arrows indicate that Pvf2, sty and RasGAP1 were upregulated upon

Rel/pnt co-knockdown and by that Ras pathway activity was restored. A similar pattern could be observed upon RasGAP1 knockdown, which causes

intrinsic hyper-activation of Ras signaling by constitutive Ras activation (measured by upregulation of sty, red arrows).

DOI: https://doi.org/10.7554/eLife.40174.024

The following figure supplements are available for figure 8:

Figure supplement 1. Genetic interactions were summarized under the multiplicative model.

DOI: https://doi.org/10.7554/eLife.40174.025

Figure supplement 2. Rel and pnt show high phenotypic aggreement between sequence-independent dsRNA designs.

Figure 8 continued on next page
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(Figure 8—figure supplement 4F,G). Overall, these experiments provide a mechanistic basis how

Rel acts as a negative regulator of Ras signaling in a context-dependent manner.

Discussion
To better understand context-dependent differences in genetic networks upon changes in environ-

mental conditions is a current frontier in genetics (Rancati et al., 2018). Many biological processes

rely on context-dependent changes in genetic requirements, from robustness of cell differentiation

during development to responses of cancer cells to chemotherapeutic treatments. However, only

few studies on selected phenotypes have systematically analyzed how environmental changes impact

genetic interaction networks. Previous studies have analyzed genetic networks after activation of the

DNA damage response signaling in yeast or changes in Wnt signaling activity in Drosophila cells

(Bandyopadhyay et al., 2010; Billmann and Boutros, 2017; Dı́az-Mejı́a et al., 2018). In these stud-

ies, positive and negative treatment-sensitive, and treatment-insensitive interactions have been

determined based on fitness phenotypes or pathway reporter activity in static end-point assays. Aim

of the present study was to analyze changes in genetic networks that impact a broad spectrum of

phenotypes by imaging and multiparametric image analysis and to determine how treatment-sensi-

tive interactions change over time after small molecule perturbation of the Ras signaling pathway.

In this study, we established a high-throughput image-based assay which enabled us to reproduc-

ibly measure many phenotypes including cell proliferation and cell morphology which are influenced

by many cellular processes (Breinig et al., 2015; Fuchs et al., 2010; Horn et al., 2011). We used

this assay to measure genetic interactions between differential treatment conditions over the course

of three time points. To this end, we assessed the phenotypes of 76608 di-genic interactions in Dro-

sophila hemocyte-like cells. Each interaction was characterized by a vector of 16 non-redundant and

quantitatively reproducible phenotypic features. Further, we developed MODIFI, a two-factor robust

linear model to quantitatively describe the time and treatment-dependent changes of genetic inter-

actions. MODIFI also allowed us to describe whether an interaction is treatment sensitive (treatment

could predict p-score) or time dependent (time predicted the p-score). Using MODIFI we found, for

example, treatment-insensitive interactions within the Ras signaling cascade (rl-ksr interaction,

Figure 4B) as well as treatment-sensitive crosstalk between Mediator, STAT and Ras signaling

(Figure 4C). Discovery of such interactions can lead to new treatment options in cases where the

pharmacologic inhibition of MEK had no effect and an inhibition of the ERK (rl) -KSR (ksr) interaction

becomes an interesting target (Roy et al., 2002; Yu et al., 1998). Regarding the example of a sig-

naling axis between Ras, STAT and Mediator signaling, some evidence indicates that mediator and

STAT signaling engage in cooperative transcriptional regulation dependent on the phosphorylation

status of Stat92E (Kuuluvainen et al., 2014; Wienerroither et al., 2015). Additionally, evidence

exists on mutual crosstalk between phosphorylation-dependent Ras signaling and Stat92E (Li et al.,

2002). Hence, our data suggests that these pathways could be interconnected and Stat92E and

Mediator only show cooperative action when Ras signaling is active and Stat92E phosphorylation is

not impaired.

Our analysis showed that we detected treatment sensitive interactions more sensitively as com-

pared to endpoint measurements or single time point replicates (see examples in Figure 4C,D &

Figure 8C,C’). Enrichment of treatment-sensitive interactions among stress-responsive pathways and

genes underlines their biological relevance. Using this approach, we also analyzed the treatment (d)

Figure 8 continued

DOI: https://doi.org/10.7554/eLife.40174.026

Figure supplement 3. pnt knockdown strongly induces rl phosphorylation and reduces rl levels after 96 hr.

DOI: https://doi.org/10.7554/eLife.40174.027

Figure supplement 4. Instead of phosphorylation, total expression of rolled is altered by Relish knockdown.

DOI: https://doi.org/10.7554/eLife.40174.028

Figure supplement 5. Full immunoblots.

DOI: https://doi.org/10.7554/eLife.40174.029

Figure supplement 6. Full immunoblots.

DOI: https://doi.org/10.7554/eLife.40174.030
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and time (s) dependency of interactions of specific genes and pathways. Overall, measuring pheno-

types resulting from genetic interactions increased our ability to detect treatment-sensitive interac-

tions. Furthermore, the measurement of multiple phenotypic features simultaneously enabled more

detailed characterization of the observed treatment-sensitive interaction. We also tested whether

the establishment of phenotypes is dependent on a gene’s expression level but found no correlation

of high gene expression and high time dependency (data not shown). Our data further suggests that

s is influenced by the general resilience of a pathway or signaling module to perturbations. For

example, housekeeping genes, widely believed to form extremely time and condition stable regula-

tory networks took the most time to rewire their interactions. This makes it unlikely that the stability

or turnover of a single gene product is a major driver of time-dependent establishment of genetic

interactions. We found, for example, that genetic interactions of ‘core’ (or housekeeping) modules

such as the translation machinery, proteasome and others induce phenotypes that are much stronger

at later time-points. In contrast, other cellular modules such as signaling and innate immunity ‘rewire’

early in the experiment. We could also show that while single perturbation phenotypes in some

instances do not change over time interactions still do, hinting toward a time-dependent combinato-

rial effect. Our analysis classified genes into categories of genetic interactions that are (i) signaling

modules central to the cells’ physiological role, (ii) signaling modules required for maintaining

homeostasis and (iii) resilient ‘core’ modules whose network hubs form interactions on a longer time-

scale. We also found that measuring different phenotypes provided more information about the

development of interaction differences over varying time scales and demonstrate a number of exam-

ple treatment-sensitive interactions that could not have been found in end-point assays. While the

cell count (comparable to yeast colony size) as a phenotype captures cellular reactions rather late in

the experiment, other phenotypes, such as nuclear morphology or cytoskeleton texture, enabled to

measure immediate cellular reactions.

In the gene-drug interaction experiments, we found that pathways interacting with Ras signaling

reacted strongest to the Dsor1/MEK inhibition. This observation was translated to map signaling

modules that react similarly toward Ras signal perturbation and we correlated d-profiles along all

features between all target genes. By this means, genes whose interactions change coherently upon

Dsor1 inhibition are grouped into highly interconnected modules. Consequently, this correlation net-

work clusters genes of similar functions in proximity with each other. Each module is also character-

ized by a coherent reaction towards Dsor1 perturbation. Interestingly, rolled (rl), Dsor1 and pole

hole (phl) (ERK1/2, MEK1/2 and Raf) were not connected to the rest of Ras-signaling-related genes

in the correlation network. In contrast, they correlated with Ras when using interaction profiles of

the control treatment. This indicates that the chemico-genetic analysis identified ‘responsive’ factors

that can be uncoupled upon environmental modulation of specific signaling modules.

Our analysis also revealed three genes that unexpectedly connected to Ras signaling: Fur1, a ser-

ine-type endopeptidase (Kim et al., 2015), swm, involved in mitotic checkpoint regulation and

hedgehog signaling (Casso et al., 2008; Dong et al., 1997) and Rel (Foley and O’Farrell, 2004).

The correlation of Fur1 and swm with positive regulators of Ras signaling indicates that they respond

similarly towards Dsor1 inhibition as Ras pathway members. In addition, we identified Rel (NF-kB) as

a strong treatment-sensitive genetic interactor, suggesting that mitogenic Ras signaling and innate

immune pathways depend on each other. Once Rel is lost, cells become more dependent on Ras sig-

naling; a phenotype that can be blocked by perturbing Dsor1 activity chemically or genetically.

Already at a low dose, both perturbations result in a synthetic lethal phenotype that kills Drosophila

hemocyte-like cells. Conversely, it was previously shown that Ras signaling influences Rel activity by

regulation of its negative transcriptional regulator pirk (Ragab et al., 2011). We hypothesize that

this mutual negative feedback regulation could be the basis for a ‘fight’ or ‘flight’ response of the

immune cells; balancing an immune and proliferative response in the same cell.

Large-scale studies on gene essentiality have challenged the concept of a static repertoire of

essential genes. In contrast, loss-of-function screens in different genetic background of cancer cells

identified ‘core’ and ‘genotype’-dependent sets of essential genes. This indicates that essentiality is

modulated in a context-dependent manner (Hart et al., 2015; McDonald et al., 2017;

Rauscher et al., 2018). At this point, our study is the largest exploration of gene-gene-drug interac-

tions based on multiparametric, non-essential phenotypes. We demonstrate how different vulnerabil-

ities for a diverse set of automatically scored phenotypes change upon time and environmental

conditions. Our modeling approach increases the confidence to call treatment sensitive interactions
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upon changes of environmental conditions. This allows to map a correlation network of cellular mod-

ules that react coherently toward the external stimulus. We expect that, when further studies of con-

text-dependent genetic interactions will become available, a comparative analysis will provide

fundamental insights into how different cellular networks react to environmental stimuli with implica-

tions for therapy resistance and timing of drug treatments. In future studies, MODIFI could be fur-

ther expanded to include terms assessing the influence of the treatment on the behavior over time

(rate of interaction change). This will, for example, aid to understand the qualitative relationships

between different treatment trajectories beyond the current analysis and sets the basis for further

experiments. This study introduced an experimental and analysis framework to explore time-depen-

dent rewiring of genetic networks which can be used to dissect the complexity of biological net-

works in model organisms and human cells.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Cell line
(D. melanogaster)

Dmel-2; S2 cells;
Schneider S2 cells

ATCC CRL1963 from
ThermoFisher, Waltham, MA,
used in PMID:21378980;
PMID: 26912791;
PMID:25748138;

ATCC Cat# CRL-1963;
RRID: CVCL_Z232

Antibody alpha-tubulin-FITC mAB,
tubulin antibody, mouse
monoclonal clone DM1A

Sigma-Aldrich
Cat# F2168

Sigma-Aldrich Cat# F2168,
RRID: AB_476967

(1:1500)

Peptide,
recombinant
protein

Phalloidin-TRITC antibody Sigma-Aldrich
Cat# P1951

Sigma-Aldrich Cat# P1951,
RRID: AB_2315148

(1:6000), TRITC
conjugate,
C62H72N12O12S4

Chemical compound,
drug

Hoechst 33342 Thermo Fisher
Scientific Cat# H1399

Thermo Fisher Scientific
Cat# H1399

(1:4000) from 1 mg/ml

Chemical compound,
drug

DMSO Sigma-Aldrich
Cat# 276855

Sigma-Aldrich Cat# 276855 0.05%

Chemical compound,
drug

PD-0325901; MEKi;
MEK inhibitor

Cayman Chemical
Cat# 13034

Cayman Chemical Cat# 13034;
CAS: 391210-10-9

1.5 nM

Sequence-based
reagent

HD3 dsRNA library;
dsRNAs for combinatorial
library

other; PMID: 26912791 in house synthesized
dsRNA library

Software, algorithm R https://cran.r-project.org/;
R Project for Statistical
Computing

nif-0000–10474;
OMICS_01147;
RRID: SCR_001905

Software, algorithm custom R code this paper;
https://github.com/boutroslab/
Supplemental-Material/tree/
master/Heigwer_2018

Software, algorithm Perl http://www.cpan.org;
Comprehensive Perl
Archive Network

nif-0000–30267;
RRID: SCR_007253

Other source data; well-wise
feature data

this paper;
https://doi.org/10.6084/
m9.figshare.6819557

Other Flybase gene
annotation database

http://flybase.org/;
PMID: 30364959

RRID:SCR_006549

Cell line
All cells used in this project were from the same culture of the, serum-free medium adapted, Dro-

sophila melanogaster S2 cell line (S2) and will be referred to as S2 cells (Schneider’s Drosophila Line

2 [D. Mel. (2), SL2] (ATCC CRL1963) from ThermoFisher (Waltham, MA, Billmann et al., 2018;

Horn et al., 2011; Fischer et al., 2015).
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Genome-wide RNAi library
We used a genome-wide D. melanogaster dsRNA library (HD3-dsRNA library) in this study, as previ-

ously described (Billmann and Boutros, 2017; Horn et al., 2011). The library contains 28941 dsRNA

reagents targeting 14242 unique gene IDs in the D. melanogaster genome and contains two

sequence independent reagents targeting 13617 IDs twice and the remaining genes once. The

reagents were optimized for the BDGP5 mRNA annotations in D. melanogaster by for example

avoiding CAN repeats and non-unique sequences (off-targets). 250 ng dsRNA, synthesized as

described previously, were aliquoted to 384 Greiner mClear plates prior to the image-based assay at

a mass of 250 ng/well. A table containing all sequences that were used in the genome-wide RNAi

screen can be found in Supplementary file 4. Another table containing sequence IDs (HD3) that

were used in the combinatorial RNAi screen can be found in Supplementary file 5.

Image-based RNAi screening
dsRNA reagents dissolved in water were spotted into barcoded 384-well microscopy plates (Greiner

mClear, black, flat-transparent-bottom, Ref: 781092, Greiner Bio One International GmbH, Fricken-

hausen, Germany) to reach a final mass of 250 ng dsRNA per well (5 ml of a 50 ng/ml solution).

Express V medium (Gibco, Ref: 10486–025, Life Technologies GmbH, Darmstadt, Germany) with

10% Glutamax (Gibco, Ref: 35050–061) was pre-warmed to 25˚C and 30 ml were dispensed on top

of the spotted dsRNA using a MultiDrop Combi dispenser and standard cassette (Thermo Fisher Sci-

entific, Ref: 5840400, Life Technologies GmbH, Darmstadt, Germany).

10 ml of pre-diluted S2 cell suspension were seeded to a final concentration of 9000 cells/well into

the prepared assay plates using MultiDrop Combi dispensing under constant stirring of the suspen-

sion in a sterile spinner flask (Corning, Ref: CLS4500500, Kaiserslautern, Germany). After cell addi-

tion, the assay plates were heat sealed using a PlateLoc (peelable seal, 2.3 s at 180˚C, Agilent

Technologies Deutschland GmbH and Co. KG, Waldbronn, Germany) and centrifuged at 140x g for

60 s. Cells were incubated for 24 hr at 25˚C without CO2 adjustment.

After 24 hr incubation, plates with growing cells were opened and small molecule treatment was

performed. The concentration of applied compound is outlined with the separate experiments in the

following paragraphs. Per well 5 ml of a solution containing 5% DMSO (Sigma Aldrich, Ref: 41644–1

l, Merck KGaA, Darmstadt, Germany) in medium, or the MEK-inhibitor PD-0325901 (Cayman chemi-

cal, Ref: CAY-13034–5, Biomol GmbH, Germany) dissolved in 5% DMSO in medium, were added to

achieve a final assay concentration of 0.5% DMSO and varying small molecule concentrations. After

compound addition, plates were sealed again and incubated at 25˚C without CO2 adjustment for 48

hr, 72 hr or 96 hr depending on the experiment.

Assays were stopped after the second incubation period by fixation using a robotics procedure

on a CyBioWell vario (384-well pipetting head, Analytic Jena AG, Jena, Germany). The supernatant

was removed, and cells were washed with 50 ml PBS (Sigma Aldrich, Ref: P3813-10PAK) per well.

After addition of 40 ml Fix-Perm solution (4% Para-formaldehyde (Roth, Ref: 0335.3, Karlsruhe, Ger-

many); 0,3% Triton X-100 (Sigma Aldrich, Ref: T8787-250ml); 0,1% Tween20 (Sigma Aldrich, Ref:

P1379-100ML); 1% BSA (GERBU Biotechnik GmbH, Ref: 1507.0100, Heidelberg, Germany)), plates

were incubated for 60 min at RT and then washed twice with 50 ml of PBS. 50 ml of PBS were added

again and plates were stored at 4˚C before staining. For staining, remaining PBS was removed and

fixed cells were first blocked by adding 30 ml of blocking solution (4% BSA; 0,1% Triton X-100, 0, 1%

Tween20) and incubated for 30 min at RT. Next, the blocking buffer was removed and 10 ml of stain-

ing solution (1:4000 Hoechst (Thermo Scientific, Ref: H1399, Life Technologies GmbH, Darmstadt,

Germany), 1:1500 primary FITC labelled anti a-tubulin antibody (Sigma Aldrich, P1951), 1:6000 Phal-

loidin-TRITC conjugate (Sigma Aldrich, F2168-.5ml) in 1x blocking buffer) were added. After addition

of the staining solution plates were incubated for 60 min at RT in the dark. After staining, 30 ml of

PBS were added and the staining solution was removed. After two additional washing steps with 50

ml PBS another 50 ml of fresh PBS were added per well and stored at 4˚C until imaging.

Genome-wide drug-gene interaction screening
We performed genome-wide RNAi screens in combination with drug and solvent control treatment

to verify dsRNA reagent efficiency, identify candidate genes for combinatorial screening and to find

which genes react most differentially to the Dsor1 inhibitor (PD-0325901) treatment. Four sets of 88
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� 384 well Greiner mClear plates were spotted with the HD3 library, 5 ml of 50 ng/ml dsRNA in each

well. The HD3 library is arrayed to target one gene with one dsRNA design per well. Two additional

plates, containing only controls were added to control assay reproducibility, robustness and effect

size. Controls were chosen to spread over the complete dynamic range of cell fitness. dsRNAs

against RLUC and GFP expressing plasmids serve as non-targeting negative controls, such that we

could control for unspecific dsRNA induced phenotypes. dsRNA containing plates were thawed,

seeded with cells and left for 24 hr at 25˚C without CO2 adjustment for incubation prior to drug

treatment. Plates were opened and 5 ml of 15 nM PD-0325901 in 5% DMSO were added resulting in

a final assay concentration of 1.5 nM PD-0325901 in 0.5% DMSO in medium. Cells were left to incu-

bate for another 72 hr at 25˚C without CO2 adjustment prior to fixation, staining and imaging.

Images were acquired using the standard protocol described below with low illumination timings

(DAPI: 100 ms, Cy3: 200 ms, FITC: 300 ms). The resulting images were analyzed in line with the

acquisition using the standard image analysis pipeline and progress was monitored using our auto-

mated analysis pipeline as described below.

Combinatorial RNAi screening under differential time and treatment
conditions
The design of the library for combinatorial screening is described in a separate paragraph. 168

genes were chosen for design of a combinatorial RNAi library. The dsRNA sequences that were used

in the combinatorial library can be found in Supplementary file 4 and 5. All used labware and

reagents, which are not further detailed here have been the same as in previous experiments. The

library contained 12 batches for screening, each comprising 80 � 384 well Greiner mClear plates

spotted with 250 ng dsRNA/well dissolved in 5 ml of DNase, RNase-free water. dsRNAs were

obtained from the HD3-library templates and synthesized accordingly. To avoid contaminations, all

dsRNAs were sterile filtered using Steriflips-0.22mm (Merck Millipore, Ref: SCGP00525, Darmstadt,

Germany) for the query dsRNAs and MultiScreenHTS-GV 0.22 mm filter plates (Merck Millipore, Ref:

MSGVN2250) for the target dsRNAs. Genes were divided into target and query genes based on

prior knowledge on key pathway components and screened a matrix of 76 genes combined with

168 genes. All query genes were included in the list of target genes. We screened each target gene

in two sequence independent designs and each query gene in one design. This way, we screened

25536 dsRNA combinations (12768 gene pairs) in each batch. Combinatorial dsRNA spotting was

achieved with combining the query and target master plates such that 2.5 ml of each query dsRNA

were spotted onto 2.5 ml target dsRNA using a Beckman FX robotic liquid handling station (Beckman

Coulter, Krefeld, Germany). In order to control for RNAi induced phenotypes and per-plate batch

effects control dsRNAs against Dsor1, drk, Diap1, RasGAP1, Pten, pnt, Pvr, Rho1 and RLUC express-

ing plasmid were spotted on each plate and not paired with a second query dsRNA perturbation.

Two control plates containing only the target gene dsRNA reagents with 250 ng dsRNA per well

complete one screening batch of 80 plates and controlled for screening batch effects. To achieve

differential treatment and time resolution, 12 screening batches were prepared. They were divided

into two groups of six batches, which then were treated under different conditions in duplicate. six

library batches are needed to screen two conditions (1.5 nM PD-0325901% and 0.5% DMSO) at

three time points (fixation 48 hr, 72 hr, 96 hr after small molecule addition), all in all comprising 480

screened plates. The entire experiment was repeated twice. This way we screened 960 � 384 well

plates.

The assay workflow followed the same procedures as outlined above. Briefly, 9000 cells per well

were seeded onto 384-well Greiner mClear plates for microscopy, which were pre-spotted with a

combinatorial dsRNA library. After centrifugation, plates were sealed and left to incubate for 24 hr

at 25˚C prior to compound addition. Therefore, a PD-0325901 dilution (15 nM in medium with 5%

DMSO), and a 5% DMSO-only dilution in medium were prepared and added to the opened plates.

This resulted in either 1.5 nM PD-0325901 or 0.5% DMSO in-assay concentrations. Plates were

sealed again using a heat sealer and left to incubate until the experiment was stopped by fixation

after 48 hr, 72 hr and 96 hr, respectively. Stained plates were imaged using an InCell Analyzer 2200

automated fluorescence microscope according to the protocol described above with 20x magnifica-

tion, three channels per field and four fields per well. Resulting images were analyzed using the R/

EBImage based pipeline described below.
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Imaging
All plates were imaged using the same protocol. There, an InCell-Analyzer 2200 automated fluores-

cence microscope (GE Healthcare GmbH, Solingen, Germany) with a Nikon SAC 20x objective

(NA = 0.45) was used. The microscope was adjusted to scan Greiner mClear plates by setting the

bottom height to 2850 mm and the bottom thickness to 200 mm and the laser autofocus function was

applied to identify the well bottoms with attached cells. This Z-position was used for image acquisi-

tion in three fluorescence channels: Hoechst (excitation: 390 ± 18 nm, emission: 435 ± 48 nm) at 400

ms exposure (100 ms in dose response experiments and genome wide screens), Cy3 (excitation:

475 ± 28 nm, emission: 511 ± 2 nm 3) at 300 ms exposure (200 ms in dose response experiments

and genome wide screens) and FITC (excitation: 542 ± 27 nm, emission: 597 ± 45 nm) at 300 ms

exposure (300 ms in dose response experiments and genome wide screens). Four fields of view were

imaged per well at 20x magnification each representing a 665.60 mm x 665.60 mm area covered

(approximately 20% of total well area) by 2048 � 2048 pixels. For plate handling, the microscope

was equipped with a KinedX robotic arm (PAA Scara, Peak Analysis and Automation Ltd, Hampshire,

UK) allowing a fully automated image acquisition.

Automated image processing and high-throughput image analysis
Plates were imaged and analyzed in batches of 40 plates and a custom pipeline allowed parallel

image processing and analysis by bundling images of fields and channels of several wells. During

imaging an automated pipeline scheduled the processing of image files for each field of view

through the following analysis workflow, here described representatively for one field. Raw images

of three channels with a size of 8.4 MB (16-Bit grey scale, 2048 � 2048 pixels) per image were cap-

tured with the InCell Analyzer 2200 software and saved as TIFF files on a server cluster for image

processing and analysis. The image processing- and analysis pipeline covered two main blocks, first

a sequence of pre-processing steps which was followed by extraction of phenotypic features from

single cells. First, the images were read in and each channel was assigned to the subcellular structure

that was selectively stained with the above described assay (Hoechst: DNA, Phalloidin-Cy3: F-actin,

a-tubulin-FITC: tubulin). To identify cell and nuclei boundaries, a duplicate image of each channel is

ln transformed, scaled between 0 to 1 and smoothened by a Gaussian filter using a sigma of one.

This reduced optical noise, improved the dynamic range and smoothened the image gradients for

further segmentation by thresholding. For segmentation, the normalized actin and tubulin images

were binarized by global thresholding. Second, the cell nuclei were identified by applying a local

adaptive average threshold to binarize the DNA channel nuclei image and assigning objects. The

resulting binary image was then subjected to morphological operations of opening and hull filling

such that filled objects with smoothly roundish outlines result. Offsets for segmentation were varied

if the channels surpassed certain thresholds. If more than 30 nuclei were counted per field, the

objects were subjected to further propagation of nuclei objects into the an á priori defined cell body

mask. Starting from the nucleus objects as seed regions, the cell bodies are segmented by propa-

gating the nuclei objects into foreground area (Carpenter et al., 2006). This strategy allowed to

identify single cells and corresponding nuclei as objects. Using the segmented object outlines as

masks, features on each object and channel were calculated on the original image using the R/Bio-

conductor package EBImage (Pau et al., 2010).

Specifically, numeric descriptors for five feature classes are defined in the computeFeatures func-

tion from EBImage (Supplementary fle 6): (i) shape features which quantify the shape of cells and

nuclei, (ii) basic features that describe the summary statistics, such as 5% quantiles, of pixel intensity

within the borders of the object, (iii) moment features that describe the spatial orientation of the

objects, (iv) Haralick features derived from a pixel intensity co-occurrence matrix as texture descrip-

tors (Haralick et al., 1973) and (v) social features such as distance to the first 20 nearest neighboring

cells. Social features are derived by a k-nearest-neighbor search based on the geometric center

points of single cells. Single-cell data were stored and aggregated to well averaged data by calculat-

ing the trimmed mean (q = 0.01) of all cells belonging to all fields of one well and its standard

deviation.
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Data processing and normalization
For the analysis of the genome-wide drug-gene interaction screens the following analysis strategy

was pursued: feature data was collected in a data frame containing per-well aggregated values as

trimmed mean and standard deviation. This data frame was then reformatted to a 4-dimensional

data cube featuring the dimensions: feature, plate, well, screen. Per feature, the feature’s minimum

value was added to each value prior to logn(x + 1) transformation to approach the features’ histo-

gram to normal distribution. Following transformation, each plate in each screen was normalized

separately for each feature by B-Score normalization (Ljosa et al., 2013; Mpindi et al., 2015). The

B-Score normalization centers and scales the data to be the residuals of the median polish divided

by the median absolute deviation (mad) across all values of the plate and thus be symmetrically cen-

tered around zero and scaled in units of the mad. Here, 38 representative features were chosen

based on their biological significance (our ability to refer them back to cellular phenotypes) and their

biological reproducibility between the two mock (DMSO) treated replicate screens and their infor-

mation content, as measured by added variance (Supplementary file 6).

For the combinatorial screens, the obtained data frame containing rows for each well and col-

umns for each feature. In addition, we added well, plate and batch identifiers as annotation columns.

Data acquired from single cells was aggregated by calculating the trimmed mean (q = 0.01) for each

feature extracted in the respective well together with its standard deviation. This way, outliers, pro-

duced by over or under segmentation of cells, were mostly excluded from further analysis. Data was

normalized by dividing each feature in each plate by the median of the non-targeting control wells

(if that was not zero). Further, the values of each feature were transformed on a logarithmic scale

using the generalized logarithm with c being the 3% quantile of the features value distribution over

all values (Caicedo et al., 2017; Fischer et al., 2015). For each feature, data was subsequently

scaled and centered around 0 by using the robust Z-transformation, where the feature median is

subtracted from each value and the result was divided by the median absolute deviation (x’=(x-

median(x))/mad(x)). After that, all features were in normalized units of median absolute deviation

from the median of that feature and normalized per plate. The normalized feature vector provided

the basis to all further analyses.

Candidate selection for combinatorial RNAi screening
The metrics used for judging the quality of dsRNA reagents and to assess the gene’s suitability for

the combinatorial screen are summarized in Supplementary file 1. For this purpose, several metrics

have been deployed. Summarized, the applied metrics were used to assesses for each individual

gene in the genome-wide HD3 library (i) the quality of the RNAi reagent, (ii) the effect size of the

induced phenotypes under solvent control treatment as well as the differential effect size of the

treatment-sensitive phenotype between small molecule treatment and control conditions, (iii) the

quality of the target gene as a candidate for gene-gene-drug combinatorial screening. Effect size

was quantified using the Euclidean distance (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1

xi � yið Þ2
q

) between sample and control measure-

ments under different conditions. Quality of dsRNAs was assessed by calculating Pearson correlation

coefficients between phenotypic profiles of biological and dsRNA design replicates. The quality of

genes as screening candidates was assessed by gene expression analysis and literature analysis. The

Q1 metric shows the strength of a knockdown induced profile when compared to the non-targeting

control knockdown (here: GFP). This was calculated as the Z-Score normalized Euclidean distance of

the genes profile to the control profile and can be used to inform if a phenotype of a gene is excep-

tionally strong or weak. In general, strong phenotypes (Q2) were preferred since they were more

robust to experimental noise and are likely to engage in many genetic interactions (Costanzo et al.,

2010). Q3 gives to what extent the phenotypic profile of those genes’ knockdown changes upon

drug treatment. An ideal candidate for drug gene interaction screening shows a high value in this

metric. Q4 and Q5 allow inferring the reproducibility of the measured phenotype by comparing the

correlation of two sequence-independent dsRNA designs targeting one gene and the correlation of

one design across screen replicates, respectively. There, 7957 genes were targeted by designs

whose feature vectors correlate with PCC >0.5 while 17263 designs were reproducible between

screens (PCC >0.5). Q6 was used to infer if the respective gene is expressed under the screened

conditions (S2 cells, 4 days in culture in Express-V medium). 12567 genes (88% of all genes screened)

had a log2 normalized read count greater than 0. In contrast, the knowledge sum in Q7 was used to
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avoid over enrichment of well-characterized genes in the final combinatorial library. The ‘unknown’

was defined by means of assigning each gene a score describing how well it has been studied and

characterized. Therefor the Gene Ontology terms associated to each Drosophila gene were down-

loaded from Flybase. In Flybase, each ontology term is annotated with evidence codes as provided

by the gene ontology consortium (Ashburner et al., 2000). Each of these codes was then used to

assign weights to the ontology terms for each gene (Supplementary file 7). Ontology terms derived

from experimental evidence, such as genetic interactions, direct assays or physical interactions were

assigned the highest weight while computational annotations were weighted the lowest. For each

gene, the sum of ontology terms was computed and used as a proxy for the current state of its func-

tional characterization. For example, the cell fate determining receptor Notch is the most well stud-

ied gene with a score of 973, while all genes have an average score of 34.7 and the third quartile

ends at 41. This means that only a minor fraction of genes is as well studied as Notch and most

genes can be accounted as uncharacterized if their score is beneath 100 (90 % quantile). An example

for such a gene is tzn with a knowledge sum of 14. Only known fact about tzn is its function as

Hydroxyacylglutathione hydrolase in response to hypoxia (Neely et al., 2010; Jha et al., 2016). For

screening, genes with a low knowledge sum were preferentially chosen.

Modeling of genetic interactions
The data frame with normalized feature data per well was reformatted into a five-dimensional data

cube representing the experimental design. The dimensions are: target dsRNA (two entries for each

gene), query gene, time, treatment and feature. The data cube was further subjected to genetic

interaction analysis following the protocol established by Bernd Fischer (Fischer et al., 2015;

Horn et al., 2011; Laufer et al., 2013). There, genetic interactions are defined as the residuals of a

modified median polish over the double perturbation matrix of one replicate, feature, treatment and

time point. The median polish presents a robust linear fit (Mij ¼ mi þ nj þ pij þ ") that lifts the main

effects (m, n) of each query such that it resembles the value of a single gene knockdown. The resid-

uals of this fit scaled by their median absolute deviation are defined as p-scores. p-scores further

provide us with a quantitative measure of genetic interaction following the multiplicative model plus

some error term (e) estimating the experimental noise. There, the interaction of two genes is defined

as the deviation of the measured combined phenotype (Mij) from the expected phenotype for a tar-

get-query gene pair i and j. The expected phenotype is defined as the product of the two indepen-

dent single knockdown phenotypes. The resulting p-scores are then collected for all replicates

(dsRNA and experimental, each interaction is measured four times). The significance of their mean

over all measured scores is estimated by a moderated students t-test as is implemented in the

R-package limma. There, the t-test is adapted for situations where a small amount of observations is

tested in many tests, normally causing large test variability, using an empirical Bayes variance estima-

tor. p-values were adjusted using the methods of Benjamini Hochberg (Benjamini and Hochberg,

1995). From there on, adjusted p-values can be treated as false discovery rates. The FDR estimates

the chance that the finding was observed by random chance given the entire dataset. This described

procedure was applied to quantitatively calculate genetic interactions for each phenotypic feature.

Modeling of treatment-sensitive interactions
To identify a hit-list of condition-sensitive gene-gene interactions, we tested whether the changes of

genetic interactions over time and between different conditions could be quantitatively described

by a multi factorial linear model. This would provide the possibility to (i) quantify the time depen-

dence of an interaction and (ii) to measure the phenotypic difference between treatment conditions

with high confidence. For every gene-gene combination [i, j] screened across time and chemical

treatment, we used a two-factor robust linear model, which we termed model of differential interac-

tions (MODIFI), to estimate the predictive strength and influence of time and differential compound

treatment on the p-score (pij ¼ cij þ sij � timeþ dij � treatment þ "ij). Therein, the coefficient sij mod-

els the time dependence, dijmodels the quantitative offset between treatments, c estimates the

intercept and the residual eij, estimates the error of fit for each combination of the target gene i and

the query gene j. s and dare thus parameter estimates that uniquely describe the behavior of each

gene-gene interaction. A separate model was fitted for every feature and every gene-gene combina-

tion using the “rlm” function of the R/MASS package. A p-value denoting the predictive power of
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each covariate (time, treatment) on the p-score was estimated by a robust F-test as implemented in

the function f.robftest function from the R/sfsmisc package. For statistical assessment the difference

in interaction strength is used, as opposed to the interaction in a single condition. This way MODIFI

identifies a great number of treatment sensitive interactions where the interaction score in each iso-

lated condition is small, but the difference between conditions is significant. This resulted in a data

frame that, for each gene-gene combination and each feature, contains a p-value for each covariate

and its estimate. The p-value was multiple testing corrected by FDR analysis (Benjamini and Hoch-

berg, 1995). Interactions with an FDR<0.1 in either term (time, treatment or both) were called signifi-

cant. The FDR threshold also served as the basis for classifying context-dependent interactions into

the different classes (Figure 1C). Interactions are time dependent if the adjusted p-value for the

time term is below 0.1, treatment sensitive when the adjusted p-value for the treatment term is

below 0.1, and context-independent else. Interactions are aggravating when the p-score is negative

and alleviating if it is positive.

qPCR analysis
Quantitative real-time PCR (qPCR) was used to analyze the transcriptional response following Rel/

pnt co-RNAi. To this end, as 5*105 cells / well were seeded in 630 ml ExpressFive (Gibco) culture

medium and reverse transfected with 14 mg dsRNA. All dsRNAs denoted with #2 were used in three

biological replicates and combinatorial RNAi was achieved by mixing 7 mg of dsRNA targeting each

gene (Supplementary file 8). After 72 hr incubation (25˚C, no CO2 adjustment), cells were washed

once in 750 ml PBS (Gibco) and lysed in 350 ml RLT buffer shipped with the RNAeasy-mini Kit (Qia-

gen). RNA was then purified from all samples according to manufacturer’s standard instructions for

spin column purification. An optional DNase digestion step was performed using the RNase-Free

DNase Set (Qiagen). Samples were prepared for qPCR by reverse transcription of 1 mg of RNA using

RevertAid H minus First strand cDNA Synthesis kit (Thermo scientific) according to the manufac-

turer’s standard protocol. A qPCR reaction was prepared using PrimaQuant 2x qPCR-Mastermix

(Steinbrenner) by mixing 5 ml of sample (1:10 diluted cDNA) with 5 ml of Mastermix (including 0,3 mM

of forward and reverse primer, Supplementary file 9) on a 384-well qPCR plate (LightCycler 480

Multiwell Plate 384, white, Roche). The plate was then centrifuged (2 min, 2000 rpm) and processed

for qPCR in a Roche 480 LightCycler using the following PCR program: (i) 10 min at 95˚C, (ii) 15 s at

95˚C, (iii) 60 s at 60˚C, repeat step ii) and iii) 40 times and measure fluorescence at 494 nm-521 nm

during step iii). Melting curve analysis of each sample was performed to assess reaction quality. Rela-

tive expression of each gene in each sample (normalized to rps7 expression) was analysis as log2-

foldchange over RLUC dsRNA-treated samples (Nolan et al., 2006; Schmittgen and Livak, 2008).

qPCR primers were designed using the GETprime web service (Gubelmann et al., 2011).

For analysis, all genes in the combinatorial library were annotated manually using FlyBase and lit-

erature annotations (Marygold et al., 2013).

A more detailed description of all methods including those for supplementary materials can be

found in Appendix 1.

All code used for the analysis presented in this study is available for download at: https://github.

com/boutroslab/Supplemental-Material/tree/master/Heigwer_2018 (Heigwer, 2018; also forked at

https://github.com/elifesciences-publications/Supplemental-Material/tree/master/Heigwer_2018).

All raw data is available at: https://doi.org/10.6084/m9.figshare.6819557
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Data availability

MODIFI data has been uploaded to figshare (https://doi.org/10.6084/m9.figshare.6819557). A code

package (Florian Heigwer, 2018) is available via GitHub (https://github.com/boutroslab/Supplemen-

tal-Material/tree/master/Heigwer_2018; copy archived at https://github.com/elifesciences-publica-

tions/Supplemental-Material/tree/master/Heigwer_2018).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Heigwer F, Schee-
der C, Miersch T,
Schmitt B, Blass C,
Pour-Jamnani MV,
Boutros M

2018 MODIFI data: from Time-resolved
mapping of genetic interactions to
model rewiring of signaling
pathways

https://doi.org/10.6084/
m9.figshare.6819557

figshare, 10.6084/m9.
figshare.6819557
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dependent kinase 8 module expression profiling reveals requirement of mediator subunits 12 and 13 for
transcription of Serpent-dependent innate immunity genes in Drosophila. Journal of Biological Chemistry 289:
16252–16261. DOI: https://doi.org/10.1074/jbc.M113.541904, PMID: 24778181

Laufer C, Fischer B, Billmann M, Huber W, Boutros M. 2013. Mapping genetic interactions in human cancer cells
with RNAi and multiparametric phenotyping. Nature Methods 10:427–431. DOI: https://doi.org/10.1038/
nmeth.2436, PMID: 23563794

Lehner B, Crombie C, Tischler J, Fortunato A, Fraser AG. 2006. Systematic mapping of genetic interactions in
Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nature Genetics 38:896–
903. DOI: https://doi.org/10.1038/ng1844, PMID: 16845399

Li WX, Agaisse H, Mathey-Prevot B, Perrimon N. 2002. Differential requirement for STAT by gain-of-function and
wild-type receptor tyrosine kinase Torso in Drosophila. Development 129:4241–4248. PMID: 12183376

Li J, Xia F, Li WX. 2003. Coactivation of STAT and Ras is required for germ cell proliferation and invasive
migration in Drosophila. Developmental Cell 5:787–798. DOI: https://doi.org/10.1016/S1534-5807(03)00328-9,
PMID: 14602078

Ljosa V, Caie PD, Ter Horst R, Sokolnicki KL, Jenkins EL, Daya S, Roberts ME, Jones TR, Singh S, Genovesio A,
Clemons PA, Carragher NO, Carpenter AE. 2013. Comparison of methods for image-based profiling of cellular
morphological responses to small-molecule treatment. Journal of Biomolecular Screening 18:1321–1329.
DOI: https://doi.org/10.1177/1087057113503553, PMID: 24045582

Love MI, Anders S, Kim V, Huber W. 2015. RNA-Seq workflow: gene-level exploratory analysis and differential
expression. F1000Research 4:1070. DOI: https://doi.org/10.12688/f1000research.7035.1, PMID: 26674615

Mani R, St Onge RP, Hartman JL, Giaever G, Roth FP. 2008. Defining genetic interaction. PNAS 105:3461–3466.
DOI: https://doi.org/10.1073/pnas.0712255105, PMID: 18305163

Heigwer et al. eLife 2018;7:e40174. DOI: https://doi.org/10.7554/eLife.40174 31 of 43

Research Communication Computational and Systems Biology Genetics and Genomics

https://doi.org/10.1093/database/bar040
http://www.ncbi.nlm.nih.gov/pubmed/21917859
https://doi.org/10.1016/j.molcel.2012.11.023
http://www.ncbi.nlm.nih.gov/pubmed/23273983
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1016/j.cell.2015.11.015
http://www.ncbi.nlm.nih.gov/pubmed/26627737
https://doi.org/10.1038/nature12441
http://www.ncbi.nlm.nih.gov/pubmed/23934108
https://doi.org/10.1534/genetics.117.300077
http://www.ncbi.nlm.nih.gov/pubmed/29487145
https://github.com/boutroslab/Supplemental-Material/tree/master/Heigwer_2018
https://doi.org/10.1186/gb-2010-11-6-r61
http://www.ncbi.nlm.nih.gov/pubmed/20550664
https://doi.org/10.1038/nmeth.1581
https://doi.org/10.1038/nmeth.1581
http://www.ncbi.nlm.nih.gov/pubmed/21378980
https://doi.org/10.1038/msb.2011.99
https://doi.org/10.1038/msb.2011.99
http://www.ncbi.nlm.nih.gov/pubmed/22252388
https://doi.org/10.1242/dev.00607
http://www.ncbi.nlm.nih.gov/pubmed/12835386
https://doi.org/10.1093/molbev/msv248
http://www.ncbi.nlm.nih.gov/pubmed/26576852
https://doi.org/10.1073/pnas.1307002110
https://doi.org/10.1073/pnas.1307002110
http://www.ncbi.nlm.nih.gov/pubmed/23739767
https://doi.org/10.1371/journal.pgen.1004988
https://doi.org/10.1371/journal.pgen.1004988
http://www.ncbi.nlm.nih.gov/pubmed/25723514
https://doi.org/10.1101/112326
https://doi.org/10.1038/nrm1743
http://www.ncbi.nlm.nih.gov/pubmed/16227978
https://doi.org/10.1074/jbc.M113.541904
http://www.ncbi.nlm.nih.gov/pubmed/24778181
https://doi.org/10.1038/nmeth.2436
https://doi.org/10.1038/nmeth.2436
http://www.ncbi.nlm.nih.gov/pubmed/23563794
https://doi.org/10.1038/ng1844
http://www.ncbi.nlm.nih.gov/pubmed/16845399
http://www.ncbi.nlm.nih.gov/pubmed/12183376
https://doi.org/10.1016/S1534-5807(03)00328-9
http://www.ncbi.nlm.nih.gov/pubmed/14602078
https://doi.org/10.1177/1087057113503553
http://www.ncbi.nlm.nih.gov/pubmed/24045582
https://doi.org/10.12688/f1000research.7035.1
http://www.ncbi.nlm.nih.gov/pubmed/26674615
https://doi.org/10.1073/pnas.0712255105
http://www.ncbi.nlm.nih.gov/pubmed/18305163
https://doi.org/10.7554/eLife.40174
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Appendix 1

DOI: https://doi.org/10.7554/eLife.40174.041

Detailed methods

Testing the sensitivity of S2 cells to the MEK inhibitor PD-0325901
(PD)
Prior to large scale RNAi screening and RNA-Seq the sensitivity of S2 cells towards small

molecule MEK inhibitor PD-0325901 (Cayman chemical, Ref: CAY-13034–5, Biomol GmbH,

Germany) was tested under three different conditions: (i) normal treatment regimen, (ii)

recovery after drug wash-out, (iii) treatment with used drug medium. All cells used in this

project were from the same culture of the, serum free medium adapted, Drosophila

melanogaster S2 cell line (S2) and will be referred to as cells (Schneider’s Drosophila Line 2 [D.

Mel. (2), SL2] (ATCC CRL1963) from ThermoFisher (Waltham, MA).

Experimental setup and drug treatment regimen
Cells were seeded in 2 Greiner mClear plates (Ref: 781073, Greiner Bio One International

GmbH, Frickenhausen, Germany), pre-spotted with 250 ng/well anti-GFP dsRNA and left to

incubate for 24 hr at 25˚C. After incubation, the cells were treated with a gradient of PD-

0325901 in medium (Express V, serum free cell culture medium +10% Glutamax, Gibco, Ref:

10486–025 and Ref: 35050–061, Life Technologies GmbH, Darmstadt, Germany) using robotic

liquid handling. The gradient was pipetted as a 2-fold serial dilution in 100% DMSO from a 10

mM stock of PD-0325901 using a Beckmann NX-P pipetting robot (Beckman Coulter, Brea,

California, USA). The prepared gradient was then diluted in 384 well format 1:20 in medium

reaching a pre-assay concentration of 5% DMSO in medium. Addition of 5 ml gradient dilution

mix to the cell culture adds another 1:10 dilution step yielding an in-assay concentration

gradient ranging from 50 mM to 0.024 nM PD-0325901 in 0.5% DMSO in medium. Thus, each

column was treated with one concentration of PD-0325901. Column 1 and 24 were left mock

treated with 0.5% DMSO. Plates were sealed again and incubated at 25˚C for 96 hr. After

completed incubation one plate was subjected to fixation and staining while the medium of

the other plate was carefully removed and dispensed on a plate containing cells freshly

seeded 24 hr in advance. 50 ml of fresh medium was then added to the emptied plate. Both,

the plate with fresh medium and the plate with fresh cells and used medium were then

incubated for additional 72 hr prior to fixation and staining. This results in three dose response

analyses. (1) with normal assay protocol, (2) where the cells could recover from the treatment

to test if the phenotypes are temporal and (3) where the remaining activity of PD-0325901 was

tested after 96 hr of incubation on cells. All experiments in this setup have been replicated

twice.

Data normalization
All plates were subjected to standard fixation, staining and imaging protocols and analyzed

using automated image analysis as described in the main methods. Data were triaged by

removing NA value containing wells and single cell data was aggregated by calculating the

mean per field of view. The data were scaled per feature on a scale from 0 to 1 and subjected

to dose-response modelling.

Dose-Response modeling and statistical analysis
Dose-response-modelling was carried out using the drm function for dose response models

from R package drc. For modelling, the replicates and fields per well were used as

independent measurements to inform the model. Dose response data was fitted to a four-

parameter log-logistic function estimating the parameters slope, lower limit, upper limit and

ED50. We used this model to accurately estimate the ED50 concentration of cell growth

inhibition. There the model provided us with a fixed value plus and minus a confidence interval

in which the coefficient was estimated. The resulting model was assessed via plotting the dose
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response curves for different features, including all measured points with their mean and s.

e.m. and the ED50 was further used in all subsequent experiments.

Western Blot analysis of in vitro PD-0325901 activity
Inhibition of Dsor1 kinase activity by PD-0325901 was tested by assaying levels of

phosphorylated rl. Therefore, S2 cells were seeded as 4.5 � 105 cells per well in a 24-well cell

Culture plate (Greiner, Ref: 2511, Greiner Bio One International GmbH, Frickenhausen,

Germany) in 700 ml Express Five cell culture medium (Gibco, Ref: 10486–025, Life

Technologies GmbH, Darmstadt, Germany) supplemented with 10% Glutamax (Gibco) in four

identical wells. Cells were incubated at 25˚C for 24 hr prior to compound addition (150 nM

PD-0325901, 0.5% in assay) in well A. After another 24 hr, well B was treated. This procedure

was repeated for well C and D. After additional 24 hr of incubation, cells in all wells were lysed

and western-blot analysis was carried out as follows. After washing the cells once with 500 ml

PBS (Life Technologies, Ref: 10010015, Gibco), 50 ml of ice-cold RIPA-lysis buffer (50 mM Tris

HCl, pH 8.0, 150 mM NaCl, 1 % NP-40, 2 mM EDTA,1 x Protease Inhibitor, 2% Phosphatase

inhibitor cocktail II and III, Sigma, Merck KGaA, Darmstadt, Germany) were added and cells

left to lyse for 30 s on ice. The lysate was collected in fresh 1.5 ml tubes (Eppendorf,

Eppendorf AG, Hamburg, Germany) and samples were centrifuged (21000 rpm, 5 min, 4˚C).
20 ml of supernatant were mixed with 5 ml 5x Laemmli buffer and incubated 10 min at 95˚C.
Another 2 ml of each sample were used to measure protein content after manufacturer’s

instructions for BCA assays 96-well plates (Pierce, Ref: 10741395, Thermo Scientific, Ref:

H1399, Life Technologies GmbH, Darmstadt, Germany). Samples were then loaded on a 12-

well NuPAGE 4–12% Bis-Tris Gel (Novex, Ref: NP0323BOX, Life Technologies GmbH,

Darmstadt, Germany) and left for electrophoresis for 30 min at 80 V constant voltage followed

by 60 min at 120 V constant voltage in 1 � 3-(N-morpholino) propanesulfonic acid (MOPS)

buffer (40 mM MOPS, 10 mM NaAc, 1 mM EDTA). Following electrophoresis, proteins were

transferred onto a methanol activated PVDF-membrane (Immobilon-P, Millipore, Ref:

IPVH00010, Merck KGaA, Darmstadt, Germany) by tank-blotting in 1 x Transfer buffer (25 mM

Tris base, 192 mM glycine, 10% methanol) at 35 V for 90 min. After transfer, the membrane

was shortly washed in 1 x TBST (137 mM NaCl, 2.7 mM KCl, 19 mM Tris Base) and incubated

for 60 min with constant shaking at room temperature (RT) in 5% skimmed milk (Sigma, Ref:

70166–500G, Merck KGaA, Darmstadt, Germany). After washing the membrane 5 times 5 min

at RT with 1 X TBST, the membrane was incubated overnight in a 1:2000 dilution of anti pp-

p44/42 rabbit monoclonal antibody (Cell-Signaling, Ref: 4370, Cell Signaling Technology,

Frankfurt, Germany) in 5% BSA (Sigma, Ref: A9085-25G). Following washing the membrane

five times, 5 min in 1 x TBST it was incubated 60 min in 1:10000 anti-rabbit IgG-HRP conjugate

(from Donkey) (Amersham ECL igG-HRP Conjugate, GE Healthcare). After an additional

washing step, the membrane was developed on Hyperfilm ECL (Sigma Aldrich, Ref: GE28-

9068-36) using Immobilon ECL substrate (Merck Millipore, Ref: WBKLS0100). The membrane

was then stripped in 1 x Re-Blot Plus strong (Merck Millipore, Ref: 2504) for 15 min, RT

followed by washing once 5 min in 1 x TBST. The membrane was again blocked 60 min in 5%

skimmed milk in TBST, stained with 1:1000 anti p44/42 rabbit monoclonal antibody (Cell-

Signaling, Ref: 4695), developed the same way as with the first antibody and stripped again.

The same procedure was repeated using a 1:2000 dilution of anti a-tubulin monoclonal rabbit

antibody (Cell-Signaling Ref: 2144).

Transcriptional Profiling of S2 cells
RNAi most effectively induces a visible phenotype when targeting highly expressed genes.

Thus, prior to image based screening and to gain information about ongoing cellular

processes, differential expression analysis was performed under different treatment conditions

using conventional bulk RNA-seq analysis.

dsRNA preparation
10 � 96-well plates (cell culture grade, flat bottom, transparent, Greiner, Ref: 655083) were

prepared by dispensing 18 ml of a 50 ng/ml solution (equaling ~900 ng dsRNA per well) of anti-
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RLUC dsRNA in culture medium (Express V, serum free cell culture medium +10% Glutamax,

both Gibco) into each well using a multichannel manual pipette. Additional 95 ml pre-warmed

(25˚C) medium were added to each plate using a MultiDrop dispenser (Thermo Scientific, low

speed, 96-well standard plate, full plate, 20 ml pre-dispense and 16 mm offset). All further

MultiDrop dispensing steps have been carried out using the same settings if not denoted

different. The same cell culture medium was used in all the following experiments and is

referred to as medium. All cells used in this project were from the same culture of the, serum

free medium adapted, Drosophila melanogaster S2 cell line (S2) and will be referred to as

cells.

Cell culture
S2 cells (at passage 21, counted via a Nexcelom Cellometer Auto 1000 for 90% viability, Ref:

CETHT4SD100002, Cenibra GmbH) were seeded in all plates at 40000 cells/well in 35 ml

medium using a MultiDrop dispenser. Plates were sealed using a heat plate sealer (PlateLoc,

Agilent Technologies Deutschland GmbH and Co. KG, Waldbronn, Germany) and centrifuged

at 140 g for 60 s. Cells were left to incubate for 24 hr at 25˚C in a cell culture incubator with

no CO2 adjustment. After incubation, plates were opened and 15 ml of 150 nM solution of PD-

0325901 (MEK1/2 inhibitor, CAS: 391210-10-9, Cayman Chemical, 15 nM in assay) dissolved in

medium with 5% DMSO (Sigma Aldrich, Ref: 41644–1 l, Merck KGaA, Darmstadt, Germany) or

5% DMSO in medium were added using MultiDrop dispensing. Column 1–6 of each plate

were filled with the DMSO control medium and columns 7–12 of each plate were treated with

the inhibitor solution. Plates were heat sealed again and left to incubate for an additional 48

hr, 72 hr and 96 hr at 25˚C without CO2 adjustments prior to cell lysis and RNA extraction.

Cell lysis and RNA extraction
Cell lysis of 3 plates from each time point was carried out after 48 hr, 72 hr and 96 hr on a

Beckman FX pipetting robot using a custom protocol with reagents supplied from the

Agencourt RNAdvance tissue kit (Beckman Coulter, Ref: A32649). RNA extraction was

performed on a Beckman NX-P robot with a custom protocol using lab ware and the reagents

from an Agencourt RNAdvance tissue kit. In brief, medium was removed and the cells were

washed carefully using 200 ml PBS before 50 ml freshly prepared lysis buffer were added (5%

Proteinase K in 30 ml of lysis buffer). Lysis was left to incubate for 30 min at room temperature

(RT). The solution was then mixed, transferred to a new plate and stored at �20˚C. Cell lysates
were mixed vigorously in a 1:1 mass ratio with the magnetic bead solution (320 ml 70% 2-

Propanol + 80 ml magnetic beads) and incubated for 5 min at RT prior to 5 min of incubation

at RT on a plate magnet. The supernatant was removed and the plate removed from the

magnet. The samples were re-suspended in 800 ml of washing buffer before another 4 min of

incubation at RT on the magnet. The remaining supernatant was removed, the plate removed

from the magnet and the samples dissolved in 800 ml of 70% ethanol. After gentle mixing of

the solution, samples were left to incubate for 4 min at RT on the magnet and the supernatant

was removed. Prior to addition of 100 ml DNase mix (80 ml H2O, 10 ml DNase buffer, 10 ml

DNase) sample were incubated for 5 min at 37˚C on a pre-warmed heating block. Samples

with DNase were then incubated another 15 min at 37˚C on the heating block before 500 ml of

washing buffer were added and the samples were mixed gently by pipetting. Samples were

left to rest for 4 min at RT before the plate was transferred to the magnet and incubated for 4

min at RT. The supernatant was discarded and the samples washed three times with 200 ml

70% ethanol. The supernatant was removed and the samples allowed to dry 5 min at 37˚C
before they were vigorously re-suspended in 30 ml RNase, DNase free water. RNA was allowed

to dissolve from the beads by incubating the mixture 5 min at RT before the plate was

transferred to the magnet. After 30 s, the DNase treated total RNA containing eluate was

transferred to a fresh plate, pooled per sample and stored in conventional Eppendorf tubes at

�20˚C.

Sample preparation and sequencing
Sample preparation and sequencing were carried out by the DKFZ high throughput

sequencing core facility using standard protocols. Sample libraries were prepared using an
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Illumina RNA TruSeq protocol and sequenced on a HiSeq V4 using 125 bp paired end mode.

All samples passed quality controls and provided on average 10 million reads to be mapped.

Fixation, staining and imaging of a plate for visual inspection
A plate for visual inspection of experimental outcome was prepared by fixation and

fluorescent staining of cells after 72 hr of post treatment incubation. All steps were carried out

manually. The cell culture medium was discarded and the cells were washed twice with 100 ml

1xPBS. The PBS was removed and 100 ml fixation buffer (4% PFA (Roth, Ref: 0335.3, Carl Roth

GmbH +Co. KG, Karlsruhe, Germany), 0.3% Triton-X (Sigma Aldrich, Ref: T8787-250ml), 0.1%

Tween20 (Sigma Aldrich, Ref: P1379-100ML), 1% BSA (GERBU, Ref: 1507.0100, GERBU

Biotechnik Biotechnik GmbH, Heidelberg, Germany) in 1xPBS were added prior to incubation

for 45 min at RT in the dark. Prior to another washing with 100 ml PBS, the fixation buffer was

removed and after washing the plate was stored filled with 100 ml of PBS. For staining the PBS

was removed and the cells blocked by incubating 20 min at RT with 100 ml blocking solution

(0.3% Triton-X, 0.1% Tween 20, 4% BSA in 1xPBS). After blocking, the blocking solution was

removed and the samples were incubated 30 min at RT in the dark in 50 ml the staining

solution (1:4000 Hoechst (Thermo Scientific, Ref: H1399, Life Technologies GmbH, Darmstadt,

Germany), 1:1500 primary FITC labelled anti a-tubulin antibody (Sigma, F2168-.5ml), 1:6000

Phalloidin-TRITC conjugate (Sigma, P1951) in 1x blocking solution). The stained cells were

washed twice in 50 ml PBS and stored in 50 ml PBS at 4˚C. The plate was imaged on an

IncellAnalyzer 2200 (GE Healthcare GmbH, Solingen, Germany) automated microscope

(Channels: DAPI (ex/em: 390/435) at 400 ms, Cy3 (ex/em: 542/597) at 400 ms, FITC (ex/em:

475/511) at 300 ms). Images were analyzed using the same R/Bioconductor pipeline as is

described below.

Data analysis and statistical testing
Data were analyzed using the DeSeq2 R/Bioconductor package. In short, reads were

subjected to FASTQC based quality assessment and all samples with good quality were

mapped against the BDGP6 Drosophila melanogaster reference genome using the RNA-STAR

aligner with pre-set default parameters for paired end RNA sequences. Resulting BAM files

were then subjected to normalized feature counting using htseq-tool by Love et al., 2015.

DeSeq2 was used for normalization of count data and statistical testing of differential

expression between different conditions. During the statistical analysis default parameters

were chosen as supposed in the methods of Love et al., 2015. Quality was assessed by

replicate correlation using spearman rank correlation. Fold changes of read counts between

conditions were calculated as log2 normalized ratio of quantile normalized read counts

between two conditions. Significance of differential expression was assessed using linear

mixed effect modelling and corrected for multiple testing by p-value adjustment after

Benjamini Hochberg (FDR). Cut-off for significantly dysregulated genes was an FDR of 10%.

Genome wide HD3 dsRNA library
The HD3 genome wide Drosophila dsRNA library was previously described in Horn et al.

(2010) and Billmann et al. (2018). It contains 28941 sequence unique dsRNA reagents

targeting 14242 unique gene IDs and comprising two sequence independent reagents

targeting each gene, where possible. The reagents were optimized for efficient targeting of

the most recent (BDGP5) mRNA annotations in Drosophila melanogaster by for example

avoiding CAN repeats and non-unique sequences (off-targets). Target genes in the library are

organized into the categories of chromatin biology, human homologs, non-human homologs,

human homologs II and non-human homologs II. The library contains primer pairs against

exonic regions of target genes that are amplified by PCR and processed to double stranded

RNA by in vitro transcription (IVT) the following way. Starting from purified genomic DNA of

S2 cells, a first PCR (0.28 mM fwd./rev. primer, H2O, 10x Buffer (Qiagen, Ref: 203209, Qiagen

GmbH, Hilden, Germnay), 0,28 mM dNTPs (Fermentas, Ref: R0182, Life Technologies), 0.03 U

Hotstar Taq (Qiagen), 2 ng genomic DNA) with genomic sequence specific primers was

performed, which also adds four different TAGs for later re-amplification of the product. Using

Heigwer et al. eLife 2018;7:e40174. DOI: https://doi.org/10.7554/eLife.40174 37 of 43

Research Communication Computational and Systems Biology Genetics and Genomics

https://doi.org/10.7554/eLife.40174


TAG specific primers, a second PCR (same conditions as first one) was performed adding an

additional T7-promotor sequence to either end of the resulting amplicon. A list of primers can

be found at Supplementary file 4. The product of this reaction was then input for in vitro

transcription at 37˚C, incubated overnight (10 ml buffer (200 mM Tris-HCl, 100 mM MgCl2, 50

mM DTT, 10 mM Spermidine), 20 ml NTPs (Sigma), 5 ml Isopentenyl pyrophosphate (IPP,

Sigma), 0,25 ml RNA lock (40 U/ml, Fermentas), 5 ml T7 Polymerase (20 U/ml)). The IVT product

(dsRNA) was normalized to 250 ng/ml and diluted to a final concentration of 50 ng/ml in

DNase, RNase free water. All products were subjected to E-GEL (E-Gel 96 2% 8-PAK, Life

Technologies) quality control using the QIAXEL automated gel electrophoresis (Qiagen).

Samples, which did not pass quality control (no band, band of the wrong size or smear) were

processed again or flagged in the annotation. The final solution was stored in 384-well stock

plates and aliquoted to 384 Greiner m-clear plates prior to the screening assay at a mass of

250 ng/well. A table containing all HD3 library IDs that were used in the combinatorial RNAi

screen can be found in Supplementary file 5.

Measuring RNAi and/or drug induced phenotypes by high-content
imaging
All the following experiments have been carried out using the same protocols for cell culture,

fixation, staining, imaging and image analysis. All reagents were from the same vendors,

though LOTs may vary and treatment and incubation times were subject to experimental

design. Thus, the general workflow for automated assaying of cellular reactions by a high-

content readout will be introduced first followed by a detailed description of the different

experiments that were performed.

dsRNA pre-spotting for high-throughput screens
dsRNA reagents dissolved in water were spotted into barcoded 384-well plates for

microscopy (Greiner mClear, black, flat-transparent-bottom, Ref: 781073) to reach a final mass

of 250 ng dsRNA in each well (5 ml of a 50 ng/ml solution). Express V medium (Gibco, Ref:

10486–025) with 10% Glutamax (Gibco, Ref: 35050–061) were pre-warmed to 25˚C and 30 ml

dispensed on top of the spotted dsRNA using a MultiDrop dispenser (high speed, 384-well

standard plate, full plate, 20 ml pre-disp. and 16 mm offset).

Cell seeding and culturing conditions
Cultured S2 cells were detached from cell culture flasks (T175, Greiner, Ref: 12668) by rough

rinsing with pre-warmed medium and counted via a Nexcelom Cellometer Auto 1000 using

Trypan blue viability staining. 10 ml of pre-diluted S2 cell solution were then seeded to a final

concentration of 9000 cells/well into the prepared medium using MultiDrop dispensing (low

speed) under constant steering in a sterile Corning spinner flask (half maximal power on

Variomag Biosystem magnet stirrer). Cell containing plates were heat sealed using the

PlateLoc (Agilent, 2.5 s, 182˚C) and centrifuged at 140 g for 60 s. Cells were then left to

incubate for 24 hr at 25˚C without CO2 adjustment in a Binder cell culture incubator. A culture

was kept in stock for maintenance (60 � 106 cells in 20 ml ExpressFive +10% Glutamax,

splitted every 4 days and expanded for assays if needed).

Compound treatment
After 24 hr of incubation, plates with growing cells were opened again and small molecule

treatment was added. The concentration of applied compound is outlined with the separate

experiments. Each time 5 ml of a solution containing 5% DMSO (Sigma) in medium, or PD-

0325901 dissolved in 5% DMSO in medium, was added to an assay concentration of 0.5%

DMSO and varying concentrations of compound. After compound addition, plates were

closed again using heat sealing (2.5 s, 182˚C) and incubated for another 48 hr to 96 hr

depending on the experiment at 25˚C without CO2 surveillance.
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Fixation and staining of cells
After treatment, cells were subjected to fixation using a robotics procedure on a CyBiWell

Vario with 384-pipette head (Analytic Jena AG, Jena, Germany). There, medium was removed

and cells were washed with 50 ml PBS (Sigma Aldrich, Ref: P3813-10PAK). After addition of 40

ml of Fix-Perm solution (4% Para-formaldehyde (Roth, Ref: 0335.3); 0,3% Triton X-100 (Sigma

Aldrich, Ref: T8787-250ml); 0,1% Tween20 (Sigma Aldrich, P1379-100ML; 1% BSA (GERBU,

Ref: 1507.0100)), plates were left to incubate for 60 min at RT and then washed twice with 50

ml of PBS. 50 ml of PBS were added again and plates could be stored at 4˚C prior to staining.

Fixed cells were first blocked by adding 30 ml of blocking solution (4% BSA; 0,1% Triton X-100,

0,1% Tween20) and incubated for 30 min at RT. Next, the blocking buffer was removed and 10

ml of staining solution (1:4000 Hoechst (Invitrogen, H1399), 1:1500 primary FITC labelled anti

a-tubulin antibody (Sigma, P1951), 1:6000 Phalloidin-TRITC conjugate (Sigma, F2168-.5ml) in

1x blocking buffer) were added. The plates were left for staining for 60 min at RT. After

staining, 30 ml of PBS were added and the staining solution was removed. After two additional

washing steps in 50 ml PBS, the plates were filled with 50 ml of fresh PBS and stored until

imaging.

Imaging of high-throughput plates on an InCell-Analyzer 2200
All plates were imaged using the same protocol. There, the InCell-Analyzer 2200 (GE-

healthcare, hereof short InCell) was calibrated to scan Greiner mClear plates setting the

bottom height to 2850 mm and the bottom thickness to 200 mm so that the laser autofocus

function can find the bottom of the cells at 10% laser power. This function measures the

refraction peaks of the laser while moving the focus in Z-direction. Two peaks are detected,

where the second peak marks the position where the focal plane hits the inner side of the well

bottom. This Z-position was used for image acquisition in three channels: DAPI (excitation:

390 ± 18, emission: 435 ± 48) at 400 ms exposure (100 ms in dose response experiments and

genome wide screens), Cy3 (ex: 475 ± 28, em: 511 ± 23) at 300 ms exposure (200 ms in dose

response experiments and genome wide screens) and FITC (ex: 542 ± 27, em: 597 ± 45) at 300

ms exposure (300 ms in dose response experiments and genome wide screens). Four tiles per

well were imaged as fields of view each representing a 665.60 mm x 665.60 mm area covered

by 2048 � 2048 pixels. The fields were centered around the well’s center in a layout touching

each other’s margins. A KinedX robot (PAA Scara, Peak Analysis and Automation Ltd,

Hampshire, UK) was used to automate feeding of plates into the microscope. For efficient

data handling, the microscope’s workstation was directly connected to a server cluster storage

node via X520 optical fiber network adapter (Intel).

Image processing and feature extraction
On a 96 CPU server cluster, a script scheduled the automated processing of image files

through the following analysis workflow, representative for each field of each well on each

plate. First, the images were read in and, before each image is duplicated, each dye was

assigned to the cell organelle it is supposed to stain (DAPI: DNA, Cy3: actin, FITC: a-tubulin).

The duplicate image was log2 transformed, scaled from 0 to 1 and smoothened by a Gaussian

filter using a sigma of one and a radius of 7 pixels. This reduces optical noise and smoothens

the image gradients for further segmentation by thresholding. Afterwards the normalized actin

and tubulin images were binarized by global thresholding (thresholds of 0.2 and 0.35,

respectively). If the tubulin channel was bright enough (diff (range (raw image tubulin)) > 0.1)

the binary cell body mask was defined as the sum of the actin and tubulin binary masks, else

the tubulin was left out of the cell body segmentation. Second, the cell nuclei were identified

by applying a local adaptive average threshold to binarize the nuclei image and assigning

objects after morphological smoothing of the binary image. Each normalized and smoothened

DAPI channel image was binarized using an average thresholding method with a 21 � 21 pixel

wide filter. Every Pixel above the local average plus the given offset is defined as foreground

and every other pixel is defined as background. The resulting binary image was then subjected

to morphological operations of opening and hull filling such that filled objects with smoothly

roundish outlines result. The function bwlabel numbers each area of connected foreground

pixels to be an object (here nuclei). Offsets for segmentation were varied if the channels
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surpassed certain thresholds. If more than 30 nuclei were counted per field, the objects were

subjected to further propagation of nuclei objects into the á priori defined cell body mask.

Starting from the nucleus objects as seed regions, the cell bodies are segmented by

propagating the nuclei objects into foreground area. Allowed foreground area is defined by

the cell body binary mask. The direction of propagation is defined by the image gradient of

the normalized actin channel image, together with the lambda factor. The extend of lambda

defines how strong the image gradient is considered. If lambda is one the half distance

between two nuclei defines the cell border and the cell bodies equal a Voronoi map between

the nuclei. Here a relatively small lambda was chosen to allow also for cell shapes other than

roundish cells. There, the lambda factor defines to which extend the propagation algorithm

follows the image gradient of the normalized actin image while the body binary provides the

borders of the propagation. Using the segmented object outlines as masks on the original

image, cell features have been extracted using EBImage’s computeFeatures function on each

object and original non-normalized channel of the image. Specifically numeric descriptors for

four feature classes are defined in this function (Supplementary file 6): (i) shape features

describing how the object outline forms, (ii) basic features that describe pixel intensity based

summary statistics, such as 5% quantiles, of pixel intensity within the borders of the object, (iii)

moment features that describe the spatial orientation of the objects, (iv) Haralick features

derived from a pixel intensity co-occurrence matrix as texture descriptors and (v) social

features such as distance to the first 20 nearest neighboring cells. Cell body shape and

moment features (dependent on the cell outlines) were only computed once using the actin

channel. The tubulin channel, because of having the same outlines as the actin channel, was

only measured for basic, intensity and texture features. All categories giving the nuclear

shape, moment, intensity and texture features were measured in the DAPI channel. Social

features were derived by a k-nearest-neighbor search based on the geometric centers of

segmented nuclei. Taken together, we extracted 78 features for every single cell. Single cell

data were stored and aggregated to well averaged data by calculating the trimmed mean

(q = 0.01) of all cells belonging to all fields of one well and its standard deviation.

Genome-wide chemo-genetic interaction screen
We performed genome-wide RNAi screens in combination with differential drug treatment to

test dsRNA reagents, identify interesting candidates for combinatorial screening and to find

which genes react most differentially as resistance mediators or sensitizers to the MEK

inhibitor (PD-0325901) treatment.

Genome wide high content RNAi vs drug screen
Four sets of 88 � 384 well Greiner mClear plates were spotted with the HD3 library, 5 ml of 50

ng/ml dsRNA in each well. This library targets one gene with one dsRNA per well. Most genes

were targeted with two separate designs per gene, where possible. Each plate contained the

same controls. Two additional plates, containing only controls were added for controlling

assay stability. Controls were chosen to spread over the complete dynamic range of cell

fitness. dsRNAs against RLUC and GFP expressing plasmids serve as non-targeting negative

controls, such that we could control for unspecific dsRNA induced phenotypes.

Assay workflow
Briefly, dsRNA containing plates were thawed, seeded with cells and left 24 hr for incubation

prior to drug treatment. Plates were opened and 5 ml of 15 nM PD-0325901 in 5% DMSO

were added resulting in a final concentration of 1.5 nM PD-0325901 in 0.5% DMSO in medium

using a MultiDrop dispenser. The cells were left to incubate for another 72 hr at 25˚C prior to

fixation, staining and imaging. Images were acquired using the standard protocol with low

illumination timings (DAPI: 100 ms, Cy3: 200 ms, FITC: 300 ms). The resulting images were

analyzed in line with the acquisition using the standard image analysis pipeline.

Data analysis workflow
Resulting data were collected to a data frame containing feature values aggregated per well

as trimmed mean and standard deviation. This data frame was then reformatted to a 4-
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dimensional data cube featuring the dimensions: feature, plate, well, screen. Each feature’s

minimum was added to the feature prior to logn(x + 1) transforming to adjust each feature’s

histogram to a more normal distribution. Following transformation, each plate in each screen

was normalized separately for each feature by B-Score normalization. There, a median polish

was performed across the plate to remove spatial column and row biases from the plate.

Additionally, the B-Score normalization centers and scales the data to be the residuals of the

median polish divided by the median absolute deviation (mad) across all values of the plate

and thus be symmetrically centered around zero and scaled in units of mad. An artifact

resulting from the dispensing pattern of the MultiDrop dispenser is a Chess-board like pattern

biasing all values spatially. Under the assumption that the values of the black panels and the

white panels should both follow the same distribution, we performed the following

normalization. We subtract the absolute difference of the means of the two groups from the

group with the higher mean, thus equaling the two group means

(Xhigh;1 ¼ Xhigh;0 � jmean Xhigh

� �

� mean Xlowð ÞjÞ:This ensures that all features, plates and

screens are on the same normal scale and can thus be compared statistically. Here, 38

representative features were chosen manually based on their biological significance (our ability

to refer them back to cellular phenotypes) and their technical reproducibility between the two

mock (DMSO) treated replicate screens and their information content, as measured by added

variance (Supplementary file 6). From the screening data, we derived metrics to judge

whether a gene is a suitable candidate for gene-gene-drug combinatorial screening. For this

purpose, several metrics have been deployed based on the Euclidean distances (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

xi � yið Þ2
s

)

between samples and controls under different conditions, Pearson correlation coefficients

between independent design replicates and effect size compared to control. They are

described comprehensively in the methods part and further summarized in

Supplementary file 1.

Combinatorial RNAi screening under differential time and
treatment conditions
During this work, we conducted an experiment were genes were knocked down in a pairwise

manner and under differential treatment conditions. After treatment, the process of

phenotype development was followed over time. All lab ware and reagents, which are not

further detailed here, were equivalent to previous experiments. The dsRNA sequences that

were used in the combinatorial library can be found in Supplementary file 5.

Gene combinatorial library design and synthesis
168 genes were chosen for combinatorial library design. The library contained 12 batches for

screening, each comprising 80 384-well Greiner m-clear plates spotted with 250 ng dsRNA/

well dissolved in 5 ml of DNase, RNase free water. dsRNAs were obtained from the HD3-

library templates and synthesized accordingly. To avoid contaminations, all dsRNAs were

sterile filtered using Steriflips-0.22mm for the query dsRNAs and MultiScreenHTS-GV 0.22 mm

filter plates for the target dsRNAs. Here, genes were divided into target and query genes and

screened a matrix of 76 genes combined with 168 genes. We defined the larger group as

target genes and chose 76 of them to be the query genes. We screened each target gene in

two sequence independent designs and each query gene in one design. This way, we

screened 25536 dsRNA combinations (12768 gene pairs) in each batch. Combinatorial dsRNA

spotting was achieved with combining the query and target master plates such that 2.5 ml of

each query dsRNA were spotted onto 2.5 ml target dsRNA by a Beckman FX liquid handling

robot using a 384-well pipetting head. This results in 76 � 384 well plates where each well,

except the control wells in column 12 and 13, contains 250 ng of dsRNA targeting two

different genes. Controls in columns 12 and 13 contained only 125 ng of dsRNA in the same

volume of water. Control plates containing the uncombined target gene dsRNA matrix with

250 ng dsRNA per well complete one screening batch of 80 plates. To achieve differential

treatment and time resolution, 12 screening batches were prepared. They were divided into

two groups of six batches, which then were treated under different conditions in duplicate. six

Heigwer et al. eLife 2018;7:e40174. DOI: https://doi.org/10.7554/eLife.40174 41 of 43

Research Communication Computational and Systems Biology Genetics and Genomics

https://doi.org/10.7554/eLife.40174


library batches are needed to screen two conditions (1.5 nM PD-0325901% and 0.5% DMSO)

at three time points (48 hr, 72 hr, 96 hr), all in all comprising 480 screened plates. The entire

experiment was repeated twice and we screened 960 � 384 well plates.

Assay workflow
The assay workflow follows the same procedures as outlined above. Briefly, 9000 cells per well

were seeded onto 384-well Greiner mClear plates for microscopy, which were pre-spotted with

a combinatorial dsRNA library. After centrifugation, plates were sealed and left to incubate for

24 hr at 25˚C prior to compound addition. Therefore, a PD-0325901 solution, (15 nM in

medium with 5% DMSO), and a 5% DMSO only dilution in medium were prepared and added

to the opened plates. This resulted in either 1.5 nM PD-0325901 or 0.5% DMSO in-assay

concentrations. Plates were closed again by heat sealing and left to incubate until the

experiment was stopped by fixation after 48 hr, 72 hr and 96 hr, respectively. Fixation with 4%

PFA and staining with Hoechst, Phalloidin-TRITC and anti-a-tubulin-FITC conjugate antibody

were carried out using standard protocols on a CybiWell Vario liquid handling workstation.

Stained plates were imaged on an InCell Analyzer 2200 automated high-throughput

microscope according to the protocol above with 20x magnification, three channels per field

and four fields per well.

Data analysis workflow
Resulting images were analyzed using the R/EBImage based pipeline described above. As a

result, we obtained a data frame containing one row for each well that was screened and

columns containing the measured features and well, plate and batch identifier for later trace

back. The resulting raw data contained 368640 rows and 164 columns. To this end, data

acquired from single cells was aggregated by calculating the trimmed mean (q = 0.01) for

each feature extracted in the respective well together with its standard deviation. This way,

outliers, produced by over or under segmentation of cells, should be excluded from further

analysis. Here, data were either kept as a table or transformed into a multidimensional data

cube depending on the analysis. Data were normalized by dividing each feature in each plate

by the median of the negative control wells (if that was not zero). Further, the values of each

feature were glog transformed with c being the 3% quantile of the features value distribution

over all values. Glog transformation works effectively in smoothening the histogram of each

feature without the anomaly observed by conventional log transformation. For each feature,

data were then scaled and centered around 0 by using the robust Z-transform, where the

feature median is subtracted from each value and the result was divided by the median

absolute deviation (x=(x-med(x))/mad(x)). After that, all feature data were in normalized units

of median absolute deviation from the median of that feature normalized to each plate. The

normalized feature vector provides the basis to all further analyses. Screening quality was

assessed per plate such that plates with a replicate Pearson correlation smaller than 0.6 and a

Z’-factor (between Diap1 and RasGAP1) smaller than 0.3 were masked by the NA_real_

constant, so all experimental dimensions remain complete while the values are masked from

downstream analyses.

Statistical Methods
From normalized features per well, the data frame is reformatted to fit the experimental

design into a 5-dimensional data cube. The dimensions are: target dsRNA (two entries for

each gene), query gene, time, treatment and feature. The data cube is further subjected to

genetic interaction inference following the protocol established by Fischer et al., 2015. There,

genetic interactions are defined as the residuals of a modified median polish over the double

perturbation matrix of one replicate, feature, treatment and time point. In the median polish a

robust linear fit (dij ¼ mi þ nj þ pij þ ") is used to lift the main effect (m, n) of each query such

that it resembles the value of a single gene knockdown. The residuals of this fit scaled by their

median absolute deviation are then defined as p-scores. p-scores further provide us with a

quantitative measure of genetic interaction following the multiplicative model plus an error

term (") estimating the experimental noise. There, the interaction of two genes is defined as

the deviation of the measured combined phenotype (d) from the expected. The expected
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phenotype would then be a multiple of the two independent single knockdowns. The resulting

p-scores were collected for all replicates (dsRNA and experimental) and the significance of

their mean over all measured scores was estimated by a moderated students t-test as is

implemented in the R-package limma. There, the t-test was adapted for situations where a

small amount of observations was tested in many tests, normally causing large test variability,

using an empirical Bayes variance estimator. P-values were adjusted for multiple testing using

the methods of Benjamini Hochberg method. From there on, adjusted p-values were used to

control false discovery rates. The FDR estimates the chance that the finding was observed by

chance given the entire dataset.

qPCR analysis
Quantitative real time PCR (qPCR) was used to analyze the transcriptional response following

Rel/pnt co-RNAi. To this end, as 5*105 cells / well were seeded in 630 ml ExpressFive (Gibco)

culture medium (supplemented with 10% Glutamax, Gibco) and reverse transfected with 14 mg

dsRNA (0,2 mg/ml solution in sterile DNase/RNase free water), at the time of seeding, without

transfection reagents. For this experiment, all dsRNAs denoted with #2 were used in three

biological replicates. Combinatorial RNAi was achieved by mixing 7 mg of dsRNA targeting

each gene (Supplementary file 8). After 72 hr incubation at (25˚C), cells were washed once in

750 ml PBS (Gibco) and lysed in 350 ml RLT buffer shipped with the RNAeasy-mini Kit (Qiagen).

RNA was then purified from all samples according to manufacturer’s standard instructions for

spin column purification. An optional DNase digestion step was performed using the RNase-

Free DNase Set (Qiagen). RNA was diluted from the spin columns using 40 ml RNase/DNase-

free water. The concentration was measured using a NanaDrop spectrometer (Thermo

scientific). Samples were prepared for qPCR by reverse transcription of 1 mg of RNA using

RevertAid H minus First strand cDNA Synthesis kit (Thermo scientific) according the

manufactures standard protocol. A qPCR reaction was prepared using PrimaQuant 2x qPCR-

Mastermix (Steinbrenner, Steinbrenner Laborsysteme GmbH, Wiesenbach, Germany) by

mixing 5 ml of sample (1:10 diluted cDNA) with 5 ml of Mastermix (including 0,3 mM of forward

and reverse primer) on a 384-well qPCR plate (LightCycler 480 Multiwell Plate 384, white,

Roche, Ref: 4729749001, Roche Molecular Systems Inc., Pleasanton, California, USA). The

plate was then centrifuged (2 min, 2000 rpm) and processed for qPCR in a Roche 480

LightCycler using the following PCR program: (i) 10 min at 95˚C, (ii) 15 s at 95˚C, (iii) 60 s at

60˚C, repeat step ii and iii 40 times and measure fluorescence at 494 nm-521 nm during step.

Melting curve analysis of each sample was performed to assess reaction quality. Relative

expression of each gene in each sample (normalized to rps7 expression) was analyzed as log2-

foldchange over RLUC dsRNA treated samples. qPCR primers were designed using the

GETprime web service (Supplementary file 9).

qPCR and Western Blot analysis of Rel/pnt crosstalk
Since phosphorylation levels of rl were already equalized after 96 hr of different dsRNA

treatments (Sos k.d., MEK inhibition and rl k.d. showed no or little reduction in pp-rl, data not

shown) we examined the molecular response also 48 hr after dsRNA transfection. To this end,

we seeded 1*106 S2 cells per well into a 12-well cell culture plate (Greiner) and transfected

them with 28 mg of each dsRNA (14 mg + 14 mg in case of co-RNAi). Cells were then harvested

after 48 hr and proceeded to qPCR analysis as outlined above. In this experiment sequence,

independent dsRNAs targeting each gene were used (#1 and #2 of each gene) as replicates.

Phenotypic analysis during image-based screenings confirmed high reproducibility (PCC >0.8)

between either dsRNA reagents targeting the same gene. Another replicate of these same

samples was proceeded to Western Blot analysis of pp-rl levels according to the same

protocol as outlined previously.
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