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Abstract For image-based infection biology, accurate unbiased quantification of host–pathogen

interactions is essential, yet often performed manually or using limited enumeration employing

simple image analysis algorithms based on image segmentation. Host protein recruitment to

pathogens is often refractory to accurate automated assessment due to its heterogeneous nature.

An intuitive intelligent image analysis program to assess host protein recruitment within general

cellular pathogen defense is lacking. We present HRMAn (Host Response to Microbe Analysis), an

open-source image analysis platform based on machine learning algorithms and deep learning. We

show that HRMAn has the capacity to learn phenotypes from the data, without relying on

researcher-based assumptions. Using Toxoplasma gondii and Salmonella enterica Typhimurium we

demonstrate HRMAn’s capacity to recognize, classify and quantify pathogen killing, replication and

cellular defense responses. HRMAn thus presents the only intelligent solution operating at human

capacity suitable for both single image and high content image analysis.

Editorial note: This article has been through an editorial process in which the authors decide how

to respond to the issues raised during peer review. The Reviewing Editor’s assessment is that all

the issues have been addressed (see decision letter).

DOI: https://doi.org/10.7554/eLife.40560.001

Introduction
High content imaging (HCI) has revolutionized the field of host–pathogen interaction by allowing

researchers to perform image-based large-scale compound and host genome-wide depletion

screens in a high-throughput fashion (Brodin and Christophe, 2011; Mattiazzi Usaj et al., 2016).

The majority of these screens assess host–pathogen interactions using bulk colorimetric or auto-

mated enumeration of pathogen growth at the population level (Ang and Pethe, 2016;

Radke et al., 2018). Additionally, quantification of host–pathogen interaction (e.g. analysis of host

protein recruitment to the pathogen) in general is often performed manually. However, to meaning-

fully dissect cell-mediated pathogen control, it is imperative to quantify the host response and path-

ogen fate at the single-cell level. Many open-source, e.g. CellProfiler (Carpenter et al., 2006), and

proprietary, e.g. Perkin Elmer Harmony, analysis software packages have been developed and suc-

cessfully employed for this purpose (Eliceiri et al., 2012; Stöter et al., 2013; Smith et al., 2018). To

advance the state of the art in image analysis of host–pathogen interaction, incorporation of cutting-

edge machine intelligence algorithms (Simonyan and Zisserman, 2014; LeCun et al., 2015) to strat-

ify the image content without the requirement to program complex integrations is needed. HRMAn

relies on the same well-established image segmentation strategies as many other programs but
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offers an intuitive integration of deep learning for more complex image analysis. Solutions existing

to date can be split into two major categories: user-friendly turn-key GUI (TK-GUI)-based solutions

and scripts ensembles (SE) solutions. Due to the large support burden of the TK-GUI, these pro-

grams lack the implementations of the latest engineering advances. At the same time SE solutions

are easier to update but are far from user-friendly and are difficult to migrate between installations.

Deep neural network-based machine intelligence methods have brought about a revolutionary

advance in the field of computer vision, by allowing for learning of complex morphologies in a highly

generalized fashion (Krizhevsky et al., 2012; LeCun et al., 2015). To date, these methods have not

been adapted for the field of host–pathogen interaction. Typically, HCI based fluorescent imaging

data from a host–pathogen interaction experiment is analyzed by classical image segmentation

(Osaka et al., 2012; Schmutz et al., 2013; Kühbacher et al., 2015; Ovalle-Bracho et al., 2015).

Occasionally segmentation combined with machine learning based on calculated features has been

employed (Kreibich et al., 2015). Most of these analysis pipelines make use of open-source pro-

grams tailored with additional coding by the user to suit their specific needs and are not published

in their final form as a universal open-source solution. A major short-coming of these classical image

segmentation and machine learning analysis methods is that they fail at the level of quantifying host

protein recruitment to the pathogen. This is largely due to the fact that traditional algorithms quan-

tify phenotypes in a rule-based manner, using bulk statistical properties of microscopy images or

their segments. Conversely, deep neural networks make use of complex patterns (e.g. shapes) within

the dataset to learn phenotypes and their diversity. The neural network derives these patterns in an

automatic fashion from expert-labelled data. Thus, using pattern complexity to refine classification

(Krizhevsky et al., 2012), deep neural networks improve the biological relevance of the phenotypic

readouts.

While some proprietary solutions have been employed to extract host protein recruitment data,

these are impractical and insufficient for most researchers as they are tied to single and expensive

microscopes and do not operate at human capacity (Polajnar et al., 2017; Touquet et al., 2018).

To date, for the analysis of host protein recruitment to pathogens, artificial intelligence-driven auto-

mated analysis is neither available as an open-source nor as a commercial package. Thus, there

remains a need for an open-source, intuitive, flexible, and trainable host–pathogen interaction analy-

sis software that performs at the level of human analytic capacity (Russakovsky et al., 2015;

He et al., 2015; Haberl et al., 2018).

Here we present a high-throughput, high-content, single-cell image analysis pipeline that incorpo-

rates machine learning and a deep convolutional neural network (CNN) ensemble for Host Response

to Microbe Analysis (HRMAn; https://hrman.org/). To assure its broad applicability to infection biol-

ogy, HRMAn is based on the data integration environment KNIME Analytics Platform

(Berthold et al., 2008). The analysis relies on training of machine learning algorithms and deep neu-

ral networks that can be tailored to individual researchers’ needs.

Results

Architecture of the high-content image analysis pipeline for analyzing
host–pathogen interaction
The HRMAn pipeline (Figure 1), is designed to work with all file types acquired on any HCI platform

or fluorescence microscope. Plate maps including experimental layouts, sample groups and repli-

cates can be loaded, enabling HRMAn to automatically cluster results and perform error analysis.

Once fed into the HRMAn pipeline, images are automatically pre-processed and clustered based on

user-defined parameters (i.e. imaging specifications) and corrected for illumination. The subsequent

image analysis proceeds in two stages: in stage 1, HRMAn segments images into pathogen and host

cell features for single cell analysis. It then classifies these features using a decision tree learning

algorithm previously trained on an annotated dataset. In stage 2, HRMAn analyzes host cell features

associated with the pathogens using a CNN HRMAlexNet (derived from AlexNet architecture)

trained to distinguish complex phenotypic patterns of host-protein recruitment (Krizhevsky et al.,

2012). Robust classification is achieved by passing segmented regions of interest through multiple

non-linear convolutional filters to identify characteristic phenotypic details.
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Figure 1. Overview of the HRMAn pipeline. Following image acquisition, on a high-content imaging platform or any other fluorescence microscope,

the images can be loaded into the HRMAn software. First, the data is pre-processed and clustered based on user-defined parameters and provided

plate maps. Images then undergo illumination correction and automated segmentation using Huang algorithm. Segmented images are used by a deep

convolution neural network (CNN) and other machine learning based algorithms to analyze infection of cells with intracellular pathogens. Depicted is

Figure 1 continued on next page

Fisch et al. eLife 2019;8:e40560. DOI: https://doi.org/10.7554/eLife.40560 3 of 21

Research Communication Computational and Systems Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.40560


Finally, data are output as a single spreadsheet file providing the researcher with �15 quantitative

descriptions of a pathogen and its interaction with host factors at population and single cell levels

(Figure 1; Readouts). Importantly, by separating the analysis, HRMAn offers researchers the flexibil-

ity to perform fast, simple quantitative analysis of infection parameters using stage 1, without analyz-

ing host protein recruitment.

Machine learning and a convolutional neural network drive classification
of pathogen replication and host defense
To train for detection and analysis of host–pathogen interactions, HRMAn was provided an anno-

tated dataset of host cells infected with an eGFP-expressing version of the parasite Toxoplasma

gondii (Tg) and stained for various host cell features (Figure 2A) (Seibenhener et al., 2004;

Clough et al., 2016). For stage one pathogen detection and enumeration training a simplistic ML

strategy – decision tree performed remarkably well. Over 35,000 Tg-vacuoles were analyzed by deci-

sion tree, gradient boosted tree, and random forest machine learning classification algorithms and

cross-validated (Figure 2B). As each performed equally, a simple decision tree with Minimum

Description Length (MDL) pruning, to limit overfitting, was employed for speed and accuracy of

pathogen detection (>99.5% for Tg). Using these parameters, in addition to the readouts from stage

1 (see Figure 1), HRMAn detected and quantified Tg-containing vacuoles harbouring 1, 2, 4 or >4

fluorescent Tg (Figure 2C).

For stage 2, host protein recruitment, the CNN was trained for ubiquitin and p62 recruitment

using segmented Tg vacuoles defined in Stage 1. Robust classification of host protein recruitment

was achieved by passing these regions of interest through multiple non-linear filters to identify and

differentiate between no recruitment, recruitment, and analysis artefacts (Figure 2D). Training over

80 epochs with negative log likelihood as a loss function, the deep CNN achieved 92.1% classifica-

tion accuracy confirmed by expert-based cross-validation. Precision for ‘no recruitment’, ‘recruit-

ment’, and ‘artefacts’ classes was 0.92, 0.92 and 0.71, while recall was 0.94, 0.89 and 1 respectively,

hence achieving the accuracy of a human operator and far exceeding human capacity (Figure 2E).

To assure that uninvaded Tg parasites do not skew the data, stringent synchronization of infection

by centrifugation and washing procedures were employed. In a pilot experiment (Figure 2—figure

supplement 1), staining with the Tg vacuole marker GRA2 (Figure 2—figure supplement 1A–B)

revealed that more than 98% of all parasites captured in the images have successfully invaded and

established a PV, irrespective of the Tg strain used for infection (Figure 2—figure supplement 1B).

Using a multiplicity of infection (MOI) of 3 for experiments resulted in up to 90% type I and 80%

type II Tg infected host cells (Figure 2—figure supplement 1C). In line with this, we often observed

that a single host cell can contain more than one PV.

HRMAn allows for accurate high-throughput analysis of the host
defense response to Toxoplasma
To demonstrate the ability of HRMAn and to expand how researchers define and classify host–path-

ogen interactions, the impact of IFNg on Tg replication and ubiquitin/p62 recruitment to Tg vacuoles

was analyzed (Figure 3).

Previous reports indicate that HeLa cells restrict the growth of Tg through ubiquitination of para-

sitophorous vacuoles and subsequent non-canonical, p62-dependent autophagy (Selleck et al.,

2015; Clough et al., 2016). HeLa cells infected with eGFP Tg ±IFNg were fixed 6 hr post-infection

(hpi) and stained with Hoechst (nuclei) and antibodies directed against ubiquitin and p62. A total of

Figure 1 continued

the CNN diagram representing two-dimensional convolutional filters with respective width, height and depth designated on filters facets. Respective

change of stride in the groups of hidden layers is depicted above the diagram, while respective activation functions below the diagram. Finally, the

data is written as a single file and will provide the researcher with more than 15 different readouts that describe the interaction between pathogen and

host cell during infection. HRMAn is based on the open-source data integration environment KNIME Analytics Platform making it modular and

adaptable to a researcher’s needs. The analysis is based on training of the machine learning algorithms generating high flexibility, which can be

tailored to the needs of the user.

DOI: https://doi.org/10.7554/eLife.40560.002
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1,350 4-colour images were acquired on an automated microscope and loaded into HRMAn for

analysis.

HRMAn automatically detected and analyzed more than 15,000 HeLa cells resulting in 15 quanti-

tative outputs of host–pathogen interaction (Figure 3). Population level readouts from stage one

indicated that IFNg treatment did not impact the percentage of infected cells but decreased the

number of vacuoles within host cells as well as the number of parasites per cell (Figure 3A). As

eGFP fluorescence is lost when parasites are killed, a reduction in the ratio between vacuoles and

host cells serves as an indirect measurement for parasite killing. At the single cell level, HRMAn

found that IFNg treatment resulted in a significant reduction of vacuoles per cell and a minor reduc-

tion in mean vacuole size, without impacting vacuole position (Figure 3B). Concomitant with this

reduction in vacuole size, both the percentage of replicating parasites, and the number of parasites

per vacuole were significantly reduced by IFNg treatment (Figure 3C). Thus, IFNg�mediated control
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Figure 2. Decision-tree and convolutional neural network training for pathogen replication and host defense protein recruitment analysis. (A) Example

images from one field of view. A composite image of all channels (blue: nuclei, green: Tg, red: Ubiquitin, grey: p62) and the single channel images are

shown. Scale bar indicates a distance of 30 mm. (B) Training and cross-validation of different machine learning classification algorithms to predict

parasite replication. (C) Example images of different vacuoles with the resulting classification of a trained decision tree classifier. Scale bar, 5 mm. (D)

Resulting classification of the trained deep convolution neural network (CNN) with example vacuoles. For the recruited classification a class activation

map (CAM) is depicted to illustrate the focus of the CNN. (E) Decrease of negative log likelihood (NLL) used as loss function during CNN training over

training cycles (epochs) for Toxoplasma gondii model (left) and confusion matrix of Toxoplasma gondii model validation illustrating classification

accuracy of labelled data unseen by the model, classification accuracy (0 to 1) during validation is colour-coded blue to red and indicated in the figure

(right).

DOI: https://doi.org/10.7554/eLife.40560.003

The following figure supplement is available for figure 2:

Figure supplement 1. Infection of HeLa cells with Toxoplasma gondii at 6 hr post-infection.

DOI: https://doi.org/10.7554/eLife.40560.004
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Figure 3. Analysis of Toxoplasma gondii infection in IFNg-treated HeLa cells. HeLa cells were stimulated with 100 IU/mL IFNg , infected with type I (RH)

Toxoplasma gondii (Tg) and analyzed 6 hr post-infection. (A) Infection parameters depicted as total percent of Tg infected cells, the ratio of Tg

vacuoles to cells and the ratio of parasites to cells. (B) Cellular readouts showing the proportion of cells that contain a varying numbers of parasite

vacuoles, the mean vacuole size of Tg and the vacuole position as the value of the mean Euclidian distance of Tg vacuoles to the host cell nucleus. (C)

Replication capacity of Tg shown as the proportion of replicating parasites and the distribution of replicating Tg. (D) Cellular response to infection with

Tg measured as the percentage of cells that decorate vacuoles and the average proportion of vacuoles per cell that are being decorated

simultaneously and the overall proportion of ubiquitin and/or p62 decorated Tg vacuoles. N shows the total number of vacuoles analyzed for each

condition, percentages are indicated in the legend. (E) Properties of the host protein coat on Tg vacuoles as the average coat distance for ubiquitin

and p62 to Tg and mean fluorescence intensity of ubiquitin and p62 at Tg vacuoles. (F) Fate of Tg vacuoles grouped based on host protein recruitment.

The proportion of replicating parasites and the replication distribution based on recruitment status of the vacuole are shown. All data shown above

represent the mean of N = 3 experiments±SEM. Significance was determined using unpaired t-tests, n.s. = not significant, *p�0.05; **p�0.01,

***p�0.001, ****p�0.0001.

DOI: https://doi.org/10.7554/eLife.40560.005

The following figure supplements are available for figure 3:

Figure supplement 1. IFNg dose-dependent killing and replication-inhibition of Toxoplasma gondii in five human cell types at 24 hr post-infection.

DOI: https://doi.org/10.7554/eLife.40560.006

Figure supplement 2. IFNg dose-dependent replication-inhibition of Toxoplasma gondii in five human cell types analyzed as parasites per vacuole at

24 hr post-infection.

DOI: https://doi.org/10.7554/eLife.40560.007

Figure supplement 3. Systematic analysis of IFNg-dependent cellular control of Toxoplasma gondii infection of 5 human cell types at 6 hr post-

infection.

DOI: https://doi.org/10.7554/eLife.40560.008

Figure supplement 4. Systematic analysis of IFNg-dependent replication control of Toxoplasma gondii infection of 5 human cell types at 6 hr post-

infection.

DOI: https://doi.org/10.7554/eLife.40560.009

Figure supplement 5. Systematic analysis of IFNg-dependent replication control of Toxoplasma gondii infection of 5 human cell types at 6 hr post-

infection analyzed as parasites per vacuole.

Figure 3 continued on next page
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of Tg in HeLa cells involves both parasite-killing and restriction of Tg replication. Importantly,

HRMAn offers a wide range of readouts in stage 1 analysis allowing for more detailed information

on the dynamics of infection and clearance than typically seen with manual counting. To allow the

user to decide which readouts are best suited to answer their specific research question some redun-

dancy has been purposely built in (e.g. mean vacuole size vs. % Replicating). For example, here we

focused on parasites per vacuole and the proportion of infected cells, as opposed to the number of

individual vacuoles per host cell.

In stage 2, analysis of the >25,000 vacuoles identified in stage 1, showed that the number of host

cells with ubiquitin/p62-positive vacuoles and the percentage of ubiquitin/p62-positive vacuoles per

host cell increased with IFNg (Figure 3D). Distribution analysis indicated that in untreated cells, only

5.92% of vacuoles were decorated with ubiquitin, p62, or both. This number rose to 27.61% in IFNg-

treated cells, the majority of which (20.92%) were double-positive for ubiquitin/p62 (Figure 3D). By

quantifying the radial fluorescence intensity distribution of these host factors, HRMAn revealed that

ubiquitin was more closely associated with Tg vacuoles than p62 and that recruitment of both was

increased by IFNg treatment (Figure 3E). This is in agreement with the notion that p62 binds a ubiq-

uitinated vacuole substrate through its UBA domain (Seibenhener et al., 2004; Clough et al.,

2016). Finally, by analyzing vacuoles that recruit ubiquitin/p62, HRMAn indicated that restriction of

Tg replication occurs in vacuoles decorated with these host defense proteins (Figure 3F). Collec-

tively, this data indicates that in HeLa cells, IFNg drives both parasite killing as well as recruitment of

ubiquitin/p62 to Tg vacuoles, which acts to restrict parasite replication (Figure 3). The results dem-

onstrate the capacity of HRMAn to provide a quantitative, multi-parametric readout of host–patho-

gen interaction at population and single-cell levels.

As a high-throughput, high-content analysis program, HRMAn removes experimental size con-

straints imposed by manual quantification. To illustrate this, HRMAn was used to systematically ana-

lyze the impact of IFNg treatment on type I and type II Toxoplasma strains in five human cell lines:

HeLa (cervical carcinoma epithelial), PMA-differentiated THP-1 (macrophage-like), A549 (lung carci-

noma epithelia), HFF (primary fibroblasts), and HUVEC (primary endothelial cells) (Figure 3—figure

supplements 1–7).

First, stage 1 HRMAn was used to ascertain the impact of varying concentrations of IFNg (50–500

IU/ml) on Tg infection, killing, and replication. (Figure 3—figure supplement 1). For each host cell

line (Figure 3—figure supplement 1A), a dose-dependent reduction in Tg infection was seen (Fig-

ure 3—figure supplement 1B). Assessment of the vacuole:cell ratio and mean vacuole size indicated

that THP-1s, HFFs, and HUVECs limit infection by IFNg-dependent Tg killing, while HeLas and A549s

do so by restricting replication (Figure 3—figure supplement 1C–D). Quantification of the number

of parasites per vacuole indicated that HeLas and A549s acutely restrict type I and type II Tg replica-

tion at all concentrations of IFNg (Figure 3—figure supplement 2B–C), while THP-1s, HFFs, and

HUVECs are far more limited in this capacity (Figure 3—figure supplement 2A,D–E).

Next, HRMAn was employed on all 5 cell lines infected with either type I and type II Tg ±100 IU/

ml IFNg and immuno-stained for ubiquitin and p62. Figure 3—figure supplement 3–7 display the

15 quantitative readouts compiled by HRMAn of 9000 fields of view (~90 GB) and >175,000 vacuoles

identified in stage 1. Taking advantage of the large-scale capabilities of HRMAn, we found that all

host cell types can mediate IFNg-dependent type I and II Tg killing (Figure 3—figure supplement

3B–C), and growth restriction (Figure 3—figure supplement 4A–B) to similar levels. Tg vacuoles

show strain-dependent (A549, HUVEC), and strain-independent (HFFs) IFNg-stimulated movement

towards the nucleus (Figure 3—figure supplement 4C). HRMAn revealed that type II Tg grew

slower than type I Tg in each host cell line and that their growth decreased more upon treatment

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.40560.010

Figure supplement 6. Ubiquitin and p62 host protein recruitment to Toxoplasma gondii type I and II vacuoles in 5 IFNg-treated human cell lines at 6 hr

post-infection.

DOI: https://doi.org/10.7554/eLife.40560.011

Figure supplement 7. Characterization of the effect of host protein coating of Toxoplasma gondii type I and II vacuoles in 5 IFNg-treated human cell

lines at 6 hr post-infection.

DOI: https://doi.org/10.7554/eLife.40560.012
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with IFNg (Figure 3—figure supplement 5A–B). Consistent with this, stage 2 HRMAn showed that

all cell types could recruit ubiquitin and/or p62 equally well (Figure 3—figure supplement 6A),

while a greater percentage of type II vacuoles per cell were decorated in response to IFNg-priming

(Figure 3—figure supplement 6B). The exception to this were THP-1 cells, which did not mount a

strain-specific response (Figure 3—figure supplement 6B). Distribution analysis further indicated

that THP-1s display a higher intrinsic capacity to decorate Tg vacuoles than other cell lines, even in

the absence of IFNg (Figure 3—figure supplement 6C). While no cell-type dependent differences in

ubiquitin or p62 coat distance were observed (Figure 3—figure supplement 7A), THP-1s not only

decorate vacuoles with more ubiquitin upon IFNg stimulation, they also appear to recruit p62 in an

IFNg-independent fashion (Figure 3—figure supplement 7B). Decorated vacuoles in all host cell

types displayed a greater ability to restrict the growth of type II versus type I Tg upon IFNg treat-

ment (Figure 3—figure supplement 7C–D). These results highlight the ability of HRMAn to provide

high-throughput and quantitative single-cell analysis of host–pathogen interactions at a scale not

achievable by automated bulk or manual quantification.

HRMAn can be adapted for bacteria-host interaction analysis
To demonstrate its flexibility, HRMAn was trained to recognize the bacterium Salmonella enterica

Typhimurium (STm) - a pathogen 16x smaller than Tg (0.5 mm vs. 8 mm) - and then set to analyze the

impact of IFNg on bacterial killing, replication, and ubiquitin recruitment. Stage 1 outputs showed

that similar to Tg (Figure 3), IFNg treatment in HeLa cells reduced the ratio of STm vacuoles/cell and

the bacterial load, without impacting the percent of infected host cells (Figure 4A). At the single cell

level, HRMAn found a significant reduction in the number of STm vacuoles/cell, consistent with a

reduction in vacuole size, percent of replicating bacteria, and reduced numbers of STm/vacuole

(Figure 4B–C). These results demonstrate that HeLa cells can control infection with STm through

IFNg�dependent bacterial killing and growth restriction.

For stage 2, we used the Tg recruitment model as input to retrain HRMAn for quantification of

ubiquitin recruitment to STm (Figure 4D). This allowed us to achieve 69.9% classification accuracy,

confirmed by expert-based cross-validation, in just 40 epochs using 10-fold less non-augmented

image data (Figure 4D). It’s known that HeLa cells restrict STm growth by maintaining vacuole integ-

rity; the small percentage of bacteria that escape vacuoles are decorated with ubiquitin and subse-

quently cleared by autophagy (Noad et al., 2017; van Wijk et al., 2017). Interestingly, stage 2

HRMAn showed that the percent of host cells which recruit ubiquitin to STm doubles upon IFNg

treatment, while the percent of decorated vacuoles/cell increases only slightly (Figure 4E). As seen

with Tg (Figure 3E, Figure 3—figure supplement 7A), IFNg does not impact the distance of the

ubiquitin coat to STm but increases its thickness (Figure 4F). This indicates that more ubiquitin is

recruited to cytosolic STm in the presence of IFNg and growth of decorated bacteria was restricted

(Figure 4G). Consequently, although IFNg treatment increases the number of host cells that recruit

ubiquitin to STm and the intensity of that recruitment, at the single-cell level HeLa cells appear to

have reached their capacity for detection and autophagy-mediated clearance of cytosolic/ubiquiti-

nated STm independent of IFNg treatment (Figure 4E–G).

HRMANs versatility allows for rapid adaption to study pathogen
biology
To illustrate the versatility of HRMAn and the advantage of the modular architecture combined with

the accessible user interface that comes with the KNIME Analytics platform, we performed experi-

ments to stress HRMAn’s applicability and adaptability to study pathogen-driven parameters of

infection. Using transgenic Tg lines expressing different parasite virulence factors, we were able to

reproduce and expand upon published data (Virreira Winter et al., 2011). We confirmed that

expression of ROP16 from type I Tg or lack of GRA15 in otherwise isogenic type II parasites (PruA7)

reduces the recruitment of murine guanylate binding proteins (Gbps) to the vacuoles. Similarly,

expression of type I ROP18 in type III parasites (CEP) also reduced recruitment of murine Gbps 1, 2

and 5 compared to isogenic type III parasites (Figure 5A). This analysis shows that HRMAn can be

used to study effects of pathogen effector proteins on an established host phenotype.

Next, we asked whether HRMAn can accurately measure parasite effector proteins targeted else-

where within infected host cells. Tg is known to secret multiple effector proteins upon invasion and
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Figure 4. Analysis of Salmonella enterica Typhimurium infection in IFNg-treated HeLa cells. HeLa cells were stimulated with 100 IU/mL IFNg , infected

with Salmonella enterica Typhimurium (STm) and analyzed 2 hr post-infection. (A–C) Stage one infection analysis parameters. (A) Infection parameters

depicted as total percent of STm infected cells, the ratio of STm vacuoles to cells and the ratio of bacteria to cells. (B) Cellular readouts showing the

proportion of cells that contain a certain number of bacteria vacuoles, the mean vacuole size of STm and the vacuole position as the value of the mean

Figure 4 continued on next page
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during replication. Examples include the parasite proteins GRA16, GRA24 and TgIST, that are

secreted beyond the boundaries of its PV and subsequently translocated to the host cell nucleus

(Bougdour et al., 2013; Braun et al., 2013; Gay et al., 2016). Using HRMAn, we were able to visu-

alize accumulation of these three Tg effector proteins (tagged with an HA-tag) in the nucleus of the

host cell. HRMAn, further indicated that the levels of nuclear accumulation correlated to the number

of parasites contained within the infected cell (Figure 5B). Thus, HRMAn can be employed to ana-

lyze both host and parasite parameters during infection in an unbiased, accurate and high content

manner.

Discussion
Recent advances have made deep CNNs a powerful image analysis method (Simonyan and Zisser-

man, 2014; He et al., 2015; Ioffe and Szegedy, 2015; LeCun et al., 2015; Russakovsky et al.,

2015; Haberl et al., 2018). Inspired by abstraction of animal visual cortex architecture, CNNs are

able to generalize patterns independent of minor phenotypic differences (Hubel and Wiesel, 1968;

Matsugu et al., 2003). Combining automated image segmentation, machine learning and a deep

CNN in an ensemble, HRMAn is a powerful open-source, user-friendly software for the analysis of

host–pathogen interaction at the single-cell level. We based HRMAn on the KNIME Analytics Plat-

form (Berthold et al., 2008). Being highly modular, GUI-based and user-friendly, HRMAn can rapidly

be updated with latest technological advances, yet remains transparent for the average user. Fur-

thermore, the ready-to-use DL4J library modules we employed allow for incorporation of the latest

advances in the field of artificial intelligence in a click-through manner with zero coding. To date,

HRMAn represents the only open-source CNN-driven host-pathogen analysis solution for fluorescent

images. While HRMAlexNet is a rather simple architecture, more complex architectures can be easily

implemented through recently introduced KNIME-Keras integration (Chollet, 2015), which may facil-

itate improvement in the classification accuracy. This is important, as it moves the phenotype of host

defense protein recognition of pathogens into the realm of HCI at the level of artificial intelligence

and thus human accuracy and capacity. Many automated image analysis programs, some of which

incorporate machine learning elements, have been developed and are successfully used for classical

image segmentation (Supplementary File 1). However, when presented with the problem of classi-

fying host protein recruitment to a pathogen, inaccurate classical image segmentation could lead to

erroneous results. Employing an artificial intelligence algorithm, HRMAn circumvents these problems

and delivers user-defined automated and unbiased enumeration of this subset of the host-pathogen

interplay.

Using Tg and STm infection models, we demonstrate that HRMAn is capable of detecting and

quantifying multiple pathogen and host parameters. Importantly, we show that HRMAn can be

adapted easily to two entirely different pathogens, that not only differ in size by a magnitude, but

also display distinct growth rates and infection dynamics. The easy adaption of HRMAn for different

pathogens and research questions will prove useful for any lab working in image-based infection

biology. Designed for biologists, HRMAn requires no coding or specialized computer science knowl-

edge. Its modular architecture and the use of KNIME, which provides a graphical representation of

Figure 4 continued

euclidian distance of STm vacuoles to the host cell nucleus. (C) Replication capacity of STm shown as the proportion of replicating bacteria and the

distribution of replicating STm. (D) Training of the deep convolution neural network (CNN) to analyze host protein recruitment to STm vacuoles and

bacteria. Left: Example images showing the difference of no recruitment versus ubiquitin (magenta) recruitment to STm. Middle: Decrease of negative

log likelihood (NLL) used as loss function during CNN training over training cycles (epochs) for STm model. Right: Confusion matrix of STm model

validation, classification accuracy (0 to 1) during validation is colour-coded blue to red and indicated in the figure. (E) Cellular response to infection with

STm measured through the percentage of cells that decorate vacuoles and the average proportion of vacuoles per cell that are being decorated

simultaneously and the overall proportion of ubiquitin decorated STm vacuoles. N shows the total number of vacuoles analyzed for each condition,

percentages are indicated in the legend. (F) Properties of the host protein coat on STm vacuoles as the average coat distance for ubiquitin to STm and

mean fluorescence intensity of ubiquitin. (G) Fate of STm grouped based on host protein recruitment. Shown is the proportion of replicating bacteria

and the replication distribution based on recruitment status of the vacuole. All data shown above represent the mean of N = 3 experiments±SEM.

Significance was determined using unpaired t-tests, n.s. = not significant, *p�0.05; **p�0.01, ***p�0.001, ****p�0.0001.
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Figure 5. HRMAn can be adapted to study pathogen biology. (A) HRMAn-based quantification of Gbp recruitment to Tg vacuoles. Red lines show

mean ± SEM of N = 3 experiments. (B) Quantification of Tg protein secretion and translocation to the host cell nucleus. HFF cells were infected with

type I Tg expressing GRA16-HA or GRA24-HA or with type II Tg expressing TgIST-HA and fixed after 18 hr. Secreted proteins were visualized by

staining with anti-HA (magenta) and Tg was stained with anti-SAG1 (green). Scale bar, 20 mm. Fluorescence signal in the host cell nucleus was

quantified, correlated to the number of parasites per cell and normalized to the signal of uninfected cells. Overall number of analyzed cells are

indicated in the graphs. Data represented as mean ± SEM of N = 3 experiments. Significance from one-way ANOVA comparing to the respective WT,

n.s. = not significant, *p�0.05; **p�0.01, ***p�0.001, ****p�0.0001.
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the analysis pipeline, allows users to tailor experimental outputs to their own datasets and questions.

As the models we have generated can be used as primers to lower the training dataset size, compu-

tation power and training time requirements, HRMAn can be rapidly applied to similar large-scale,

image-based experimental setups. As such, HRMAn will allow a broad range of researchers to

extend into the realm of high-throughput, unbiased, quantitative single-cell analysis of host–patho-

gen interaction.

Materials and methods

Code and image availability
All open-source KNIME workflows used in this publication can be found at: https://github.com/

HRMAn-Org/HRMAn and on the homepage https://hrman.org/ under GPLv3 open-source software

license to allow for rapid and open dissemination and free availability for the research community.

The models and their respective weights obtained through training will be deposited on GitHub and

the homepage as well.

All images used to train the neural networks and other machine learning algorithms in this study

are available upon request.

Image acquisition
For simple infection analysis (stage 1), 96-well plates (see Microscopy sample generation) were

imaged on an ArrayScan VtI Live High Content Imaging Platform (Thermo Scientific) using 20x mag-

nification and depending on the experiment, 15–20 fields of view per well.

For recruitment analysis to Toxoplasma gondii (Tg) vacuoles, glass-bottom 96-well plates were

imaged on an ArrayScan VtI Live High Content Imaging Platform but using 40x magnification and

depending on the experiment, 50 fields of view per well. In both cases, following image acquisition,

the images were exported from HCS Studio Cell Analysis Software as single channel 16-bit tiff files

before they were fed into the HRMAn analysis pipeline.

For recruitment analysis to Salmonella enterica Typhimurium (STm) vacuoles, images of coverslips

were acquired on a Ti-E Nikon microscope equipped with an LED-illumination and an Orca-Flash4

camera using a 60x magnification. 75 fields of view per coverslip were acquired using multi-position

acquisition. Images were exported as single channel 16-bit tiff files with Nikon NIS Elements soft-

ware before they were fed into the HRMAn analysis pipeline.

Generally, HRMAn can work with any common image file format, but the use of uncompressed,

lossless formats like tiff (or png) is recommended. Furthermore, HRMAn can work with images

acquired on any type of fluorescence microscope and is truly platform independent.

Image analysis using HRMAn
Following image acquisition, the images were loaded into the HRMAn pipeline. Images can be in

any common file format, preferably as single-channel tiff files. The used image reader loads images

from all file formats supported by SCIFIO (more information can be found here: http://scif.io). If the

images were not acquired on a high-content imaging platform, they can be renamed with HRMAn to

mimic the file names and the plate format. This is needed to cluster the output data and perform

error calculation. Furthermore, the OME-XML-metadata is loaded and information on the image is

extracted (e.g. image size, type and origin). While the images are loaded into KNIME, the user is

asked to provide some basic information on the image acquisition and the type of analysis to be per-

formed. This includes the used magnification, type of analysis, channel number and order and pro-

viding a plate map to cluster the data.

HRMAn then pre-processes the images, metadata and provided information and lets the user

inspect the input images arranged into a grid and sorted by the field of view. Next the input images

undergo illumination correction by dividing the background as a mean image of all acquired images

in a channel-wise fashion. Following this step, the individual channels are segmented to detect the

Nuclei, the pathogens and the cells:

1. Nuclei are detected using Otsu’s method thresholding (Otsu, 1979), a watershed and con-
nected component analysis. Fields of view containing insufficient numbers of nuclei (i.e. empty
fields) are excluded from the following analysis.
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2. The pathogens (or vacuoles) are detected after image normalization and filtering through
thresholding using Otsu’s method. Incomplete labels are corrected by filling holes and patho-
gen vacuoles are separated through water-shedding. Labels are created with a connected
component analysis.

3. Cell labels are created using Huang thresholding (Huang et al., 2004) and a Voronoi segmen-
tation using the nuclei labels as starting points. Optionally the images can be enhanced using
Contrast Limited Adaptive histogram equalization (CLAHE) to improve the segmentation accu-
racy. All cell labels touching the border of an image are excluded from the analysis.

Furthermore, the created labels are filtered based on their size and the user-defined parameters

such as magnification and detector size. The filter values for STm and Tg were empirically deter-

mined using thousands of images from different experiments. Based on which pathogen type is cho-

sen by the user, HRMAn will adjust the filters automatically. Using labelling arithmetic, pathogen

labels that are not contained within a cell label are removed from the dataset, as they represent

extracellular pathogens. The created labels can then be inspected by the user through an interactive

label viewer displaying the original image next to the labels.

Using the created labels, the infection readouts for stage 1 are created: First, cell numbers NCells

and vacuole numbers NVacuoles are determined by counting the numbers of respective labels in all

acquired fields per well (=replicate). Using these values, the vacuole to cell ratio is calculated:

Vacuole:Cells ¼
NVacuoles

NCells

Next, the dependencies between the cell labels and vacuole labels are used to calculate the pro-

portion of infected cells and the infection levels of the cells. The label dependencies determine

which vacuole labels V1, V2, . . ., Vi are contained by which cell label C1, C2, . . ., Cj. If a cell label C

contains at least one vacuole label V, the cell is considered as infected cell Cinf. This is used to calcu-

late the proportion of infected cells:

%Infected cells ¼ NCinf

NCells
, with NCinf as the number of infected cells Cinf

To determine the more precise distribution describing how many vacuoles are contained by which

proportion of cells (=Infection levels) the cells C are split into subgroups according to the number of

vacuoles they contain (no vacuoles or uninfected = C0, 1 vacuole = C1, . . ., 5 or more vacuoles per

cell = C�5) and then the proportion is calculated:

0 vacuoles per cell (uninfected): uninfected ¼ NC0

NCells

1 vacuole per cell: 1 vac= cell ¼ NC1

NCells

. . .

5 or more vacuoles per cell: >5 vac= cell ¼ NC�5

NCells

Also based on the dependencies, the mean euclidean distance d between the centroid of the vac-

uole labels (with coordinates XV and YV) within a cell and its nucleus’ centroid (with coordinates XN

and YN) is determined as the position of the vacuole:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XV �XNð Þ2þ YV �YNð Þ2

q

Using the vacuole labels, of vacuoles contained within cells, and working on the original images

the properties of the vacuoles are measured as mean values for each well. These include mean vacu-

ole size, shape descriptors (Circularity, Perimeter, Convexity, Extent, Diameter) and fluorescence

properties (Minimum, Mean and Maximum Fluorescence).

Using the above determined values as attributes, a decision-tree machine learning algorithm

determines good classifiers and employs them to classify each vacuole label Vi based on how many

individual pathogens PVi it contains. This step requires providing an annotated dataset.

Based on this classification the vacuoles can be divided into individual groups for the number of

pathogens they contain (1/ vac = V1Vac, 2/ vac = V2Vac, 4/ vac = V4Vac and four or more/vac = V�4Vac)

and the number of vacuoles in each group is counted (e.g. number of vacuoles that contain just one

pathogen = NV1Vac). To calculate the proportion of replicating pathogens, the number of vacuoles

that contain at least two pathogens is divided by the total number of vacuoles:
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%Replicating ¼
NV2Vac þNV4Vac þNV�4Vac

NVacuoles

Similarly, the individual proportions of the vacuole groups are calculated to illustrate pathogen

replication distribution:

1 pathogen per vacuole: 1= vac ¼ NV1Vac

NVacuoles

2 pathogens per vacuole: 2= vac ¼ NV2Vac

NVacuoles

. . .

4 or more pathogens per vacuole: >4= vac ¼ NV�4Vac

NVacuoles

Combining the information on the number of vacuoles and the number of pathogens PVi each

individual vacuole Vi contains, the total number of pathogens NPathogens is calculated:

NPathogens ¼
X

Vi �PVi

This can be used to determine the Pathogen load by normalization to the cell number:

Pathogen Load ¼
NPathogens

NCells

This concludes stage 1 infection analysis performed by HRMAn. In the end of the analysis, the val-

ues calculated for each well or replicate is combined with the values for the other wells belonging to

the same sample group based on the user-provided plate map and error calculation is performed. If

the user decides to perform only stage 1 infection analysis the HRMAn image analysis pipeline will

stop here, if host protein recruitment analysis is to be performed the data will be fed into the second

stage for which the implemented deep Convolutional Neural Network (CNN) has to be created and

trained first.

Deep learning setup and neural network architecture
To classify pathogen recruitment, we employed a deep Convolutional Neural Network (CNN) HRMA-

lexNet (Figure 1) inspired by published AlexNet (Krizhevsky et al., 2012). Our architecture con-

sisted of a total of 5 convolutional layers, where the first two were immediately followed by local

response normalization layers and max pooling layers. The last three convolutional layers were fol-

lowed by one max pooling layer connected to a fully connected layer. All these layers used rectified

linear unit (ReLU) as activation function (Nair and Hinton, 2010). To ensure our neural network can

be implemented by other researchers with no coding, it was based on the open source DeepLear-

ning4J library implementation in KNIME Analytics Platform. Changes to the original AlexNet archi-

tecture were partially introduced by the KNIME AG team and partially by us in the process of

optimizing the architecture to the fluorescence microscopy data. Here further improvements in archi-

tectures may be made through recently introduced KNIME-Keras integration (Chollet, 2015).

While having the same number of convolutional layers as AlexNet, as introduced by the KNIME

team, their dimensions are different. HRMAlexNet has two fully connected layers instead of three,

which pushes the fitting burden more to the convolutional layers (Figure 1).

We have changed the input layer dimensions to fit the multichannel fluorescence microscopy

data, since our input two channels, rather than the standard RGB dimension of three. Hence, unlike

the original AlexNet, HRMAlexNet was suited to take 100 by 100 by two pixels images as input and

designed to run on a single graphic processing unit (GPU).

Furthermore, we have modified the SoftMax (Bishop, 2006) output layer of the architecture to fit

our dataset and classification problem. While optimizing the network’s hyperparameters, we found

that learning rate updating algorithm proposed by default in the KNIME architecture, as well as in

Krizhevsky et al. - Stochastic Gradient Descent (SGD) with Nesterov momentum - was failing to con-

verge on our fluorescence microscopy data (Krizhevsky et al., 2012). Therefore, we have substi-

tuted this algorithm for the more advanced learning rate update algorithm ADAM (Kingma and Ba,

2014) with both mean and Variance decay parameters, which proved to converge well on various

data and initial learning rate ranges.
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The choice of DeepLearning4J as a deep learning library allowed us to use 16-bit microscopy

images directly, preventing information loss upon conversion of scientific imaging data. Our deep

learning hardware was based on a single Nvidia 1080 Ti GPU set up in Intel Core i7 4790K system

equipped with 32 Gb of RAM and a SSD.

Neural network training and hyperparameters optimization
Our neural networks were trained using SGD based backpropagation (using ADAM updater with

ADAM Mean Decay of 0.9 and ADAM Variance Decay of 0.999 (Kingma and Ba, 2014)) on the aug-

mented original data over at least 80 epochs. To fully utilize the GPU capacity, training was per-

formed in mini-batches of 200. We employed the Xavier algorithm for the weight initialization

strategy and negative log likelihood (NLL) as our loss function (Kingma and Ba, 2014). We used

learning rates between 0.001 and 0.01 adjusted accordingly to ensure the optimal loss curve decay

during training. Together with the weights initialization strategy and the updater choice these were

the main hyperparameters optimized in multiple iterations to ensure good training process.

To visualize the attention of the trained HRMAlexNet, we have created a class activation map

(CAM) based on a test image from ‘recruitment’ class (Figure 2). Since HRMAlexNet architecture

does not have a Global Average Pooling layer to visualize the CAM we have used the occlusion tech-

nique (Zeiler and Fergus, 2013).

Data preparation, Augmentation and Model Validation
Vacuole images used for creation of our deep learning model were segmented from large field of

view micrographs obtained from high-content imaging. To ensure the dimension of the images are

uniform, we padded all vacuole with zero-value padding to a uniform 100 by 100 pixels size. Next,

we manually labelled the segmented vacuoles into recruited, non-recruited and artefactual (in case

of erroneous segmentation of the vacuole). This labelled dataset was then split into the training and

test datasets.

To ensure our neural network has sufficiently diverse learning data, upon splitting the original

labelled dataset into training and test subsets we performed data augmentation using a custom

developed macro for ImageJ. During the augmentation processing, the original labelled dataset was

concatenated with a modified version of it. The modifications included various rotations, image

reflecting, image translation within the field of view. As microscopy data are typically rotation-, trans-

lation- or reflection-invariant, such modification allowed us to create a better dataset aiming at a

more generalized model.

Model validation was performed using the non-augmented test fraction of the labelled dataset

previously unseen by the model. For this, we used the trained model as first input and passed the

labelled test data through the classifier in the second input. The classification accuracy was assessed

by accuracy score, numbers of true positive, false positive, true negative and false negative, as well

as Cohen’s kappa values. A direct summary of the accuracy was visualized in a confusion matrix illus-

trating a mismatch between original label (Ground Truth) and the class assigned by the classifier

(Figure 2).

Host protein recruitment analysis in HRMAn
For recruitment analysis, the vacuole labels created in stage 1 of the analysis are dilated over 20 iter-

ations to create non-overlapping regions of interest (ROIs) around them. Simultaneously, the fluores-

cence images of the pathogen and the respective channel with fluorescence signal of the host

protein are merged into a dual channel image. The created ROIs are used to crop the dual channel

images, which creates images of the pathogen and its surrounding stained host protein. The images

are clipped to 100 by 100 pixel and fed into a feedforward predictor (classification) which uses the

provided and trained deep convolution neural network (CNN) to classify the pathogens vacuoles

based on their coating.

Once the vacuoles are separated into two groups, they are analyzed with the above described

methods of stage one infection analysis but additionally comparing recruited versus non-recruited

vacuoles. Thus, in addition to the overall infection parameters from stage one the user is provided

with the same parameters but further layered for the cellular response.
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In the case of co-recruitment analysis, two images of each vacuole are created with both contain-

ing the pathogen signal, but each containing a different second channel, representing the different

stainings. After classification with the CNN, the vacuoles can be compared for recruitment or co-

recruitment and all the above described parameters are calculated for them individually. Using the

previously determined label dependencies of vacuoles Vi and cells Ci and the classification of the

vacuoles Vi by the CNN, HRMAn can furthermore calculate the proportion of cells that do respond

to infection by decorating at least one vacuole and the proportion of vacuoles decorated per cell, if

a single cell contains more than one pathogen vacuole.

Furthermore, working only on the decorated vacuoles, we used a custom-made Fiji code to cre-

ate a pixel-wise radial intensity profile starting from the pathogen centroid. The distance of the max-

imum fluorescence intensity is then used to define the distance of the coat from the pathogen

centre. Moreover, the mean fluorescence intensity of the coat is determined and can be used as a

readout for the amount of protein recruited to each pathogen vacuole.

Finally, all mean values and errors for the replicate conditions, as defined by the user’s plate map,

are calculated and written into a single spreadsheet file. Before this, the user can also define a scal-

ing factor between pixel and actual metric values which will adjust the output values from pixel (px)

to mm or to mm2 respectively.

Cell culture and cell lines
THP-1 (TIB202, ATCC; RRID:CVCL_0006) were maintained in RPMI with GlutaMAX (Gibco) supple-

mented with 10% FBS (Sigma), at 37 ˚C in 5% CO2. THP-1s were differentiated with 50 ng/mL phor-

bol 12-myristate 13-acetate (PMA, P1585, Sigma) for 3 days and then rested for 2 days by replacing

the differentiation medium with complete medium without PMA. Cells were not used beyond pas-

sage 20. Human Umbilical Vein Endothelial cells, HUVECs, (C12203, Promocell), were maintained in

M199 medium (Gibco) supplemented with 30 mg/mL endothelial cell growth supplement (ECGS, 02–

102, Upstate), 10 units/mL heparin (H-3149, Sigma) and 20% FBS (Sigma). Cells were grown on

plates, pre-coated with 1% (w/v) porcine gelatin (G1890, Sigma) and cultured at 37 ˚C in 5% CO2.

HUVEC were not used beyond passage 6. HeLa (ECACC, Sigma; RRID:CVCL_0030), A549 (CCL-185,

ATCC; RRID:CVCL_0023), mouse embryonic fibroblasts (MEF) and human foreskin fibroblasts, HFFs

(SCRC-1041, ATCC; RRID:CVCL_3285), were cultured in DMEM with GlutaMAX (Gibco) supple-

mented with 10% FBS (Sigma), at 37 ˚C in 5% CO2. HeLa and A549 cells were not used beyond pas-

sage 25 and HFFs were not used beyond passage 15. All cell cultures were performed without

addition of antibiotics and the cells were regularly tested for mycoplasma contamination by immuno-

fluorescence, PCR and agar test and found to be mycoplasma-negative.

Interferon stimulation of cells
All five cell lines used in this publication were stimulated for 16 hr in complete medium at 37 ˚C with

addition of 100 IU/mL human IFNg (285-IF, R&D Systems) prior to infection, if not indicated

otherwise.

Parasite culture
Tg expressing luciferase/eGFP (type I RH, type II Prugniaud (Pru) and type III CEP), type II PruA7

(Kim et al., 2007), type II PruA7 + ROP16I, type II PruA7 DGRA15 and type II CEP + ROP18I (all

from Virreira Winter et al., 2011) were maintained in vitro by serial passage on monolayers of HFF

cells, cultured in DMEM with GlutaMAX (Gibco) supplemented with 10% FBS (Sigma), at 37 ˚C in 5%

CO2. Type II Tg expressing TgIST-HA-Flag (Pru DKU80 + TgIST HF), type I Tg expressing GRA16-HA

(RH DKU80 + GRA16 HA) and type I Tg expressing GRA24-HA-Flag (Pru DKU80 + GRA24 HF) were

a gift from Mohamed-Ali Hakimi (Bougdour et al., 2013; Braun et al., 2013; Gay et al., 2016).

Toxoplasma gondii infection
Parasites were always passaged the day before infection onto new HFFs to obtain parasites with a

high viability for infection. Tg were prepared from freshly 25G syringe-lysed HFF cultures in 10% FBS

by centrifugation at 50 x g for 3 min and transferring the cleared supernatant into a new tube and

subsequent centrifugation at 500 x g for 7 min and re-suspension of the pelleted parasites into fresh

complete medium. Then, the parasites were added to the experimental cells at a MOI of 3 for both
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type I and type II strains. The cell cultures with added Tg were then centrifuged at 500 x g for 5 min

to synchronize the infection. Two hours post-infection, the cultures were thoroughly washed two

times with warm PBS (806552, Sigma) to remove any uninvaded parasites and fresh complete

medium was added prior to culturing at 37 ˚C, 5% CO2 for the required time.

Bacterial culture and infection
Salmonella enterica Typhimurium 12023 strain containing the plasmid pFVP25.1, carrying gfpmut3A

under the control of the rpsM constitutive promoter (Valdivia and Falkow, 1996) were grown in

Luria Bertani (LB) medium supplemented with 50 mg/ml ampicillin (11593027, Gibco). Prior to infec-

tion, bacteria were grown to induce SPI-1 T3SS expression: cultures of STm were grown at 37˚C in

LB, diluted 1:50 into fresh LB containing 300 mM NaCl (746398, Sigma) the next morning and incu-

bated shaking at 200 rpm until OD600 = 0.9–1.0 was reached. Bacteria were washed in medium

without FBS before use. Cells were infected at a MOI of 50 and infections were synchronized by

centrifuging bacteria onto the cells at 750 x g for 10 min. 15 min post infection, the cells were thor-

oughly washed three times with warm PBS to remove extracellular bacteria and medium containing

100 ug/mL Gentamicin (15750060, Gibco) was added for 30 min. Then, Gentamicin concentration

was reduced to 10 mg/mL and cells were incubated further at 37˚C, 5% CO2 for the appropriate

amount of time.

Antibodies
Antibodies used in this study were rabbit pAb anti-p62 (#PM045, MBL; RRID:AB_1279301), mouse

mAb anti-GRA2 (A1298, Biovision) mouse mAb anti-ubiquitin FK2 (PW8810, Enzo Lifesciences; RRID:

AB_10541840), mouse mAb anti-SAG1 (home-made) and rat mAb anti-HA (11867423001, Sigma).

Secondary antibodies used were Alexa Fluor 647-conjugated goat anti-rabbit (A-21245, Invitrogen;

RRID:AB_141775), anti-rat (A-21247, Invitrogen; RRID:AB_141778) or anti-mouse (A-21236, Invitro-

gen; RRID:AB_141725), Alexa Fluor 488-conjugated goat anti-mouse (A-11001, Invitrogen; RRID:AB_

2534069) and Alexa Fluor 568-conjugated goat anti-mouse (A-11004, Invitrogen; RRID:AB_141371).

Microscopy sample generation
Simple infection analysis
For simple infection analysis, 30,000 THP-1s per well were seeded 5 days prior to IFNg treatment

and differentiated with 50 ng/mL PMA for three days and then rested for 2 days in complete

medium. HFFs were harvested by washing a confluent monolayer with PBS and subsequent lifting of

the cells with 0.05% Trypsin-EDTA (Gibco). Cells were centrifuged at 250 x g for five mins, re-sus-

pended in fresh DMEM plus 10% FBS and 20,000 HFFs per well were seeded the day before IFNg

treatment. Similarly, HUVECs were harvested and 15,000 cells per well were seeded in complete

medium the day before IFNg treatment. A549s and HeLa cells were harvested in the same way and

8,000 cells per well were seeded the morning before IFNg treatment. All cells were seeded on 1%

(w/v) porcine gelatin (G1890, Sigma) pre-coated black-wall, clear bottom 96-well plates (Thermo Sci-

entific). In the evening, all cells were treated with 100 IU/mL IFNg or medium and left at 37˚C, 5%
CO2 overnight. The next morning the cells were infected with either Tg or STm as described above.

After the appropriate infection duration, the infected cells were again thoroughly washed with warm

PBS to remove as many uninvaded pathogens as possible and subsequently fixed with 4% methanol-

free paraformaldehyde (28906, Thermo Scientific). Fixed specimens were permeabilized with Perm-

Quench buffer (0.2% (w/v) BSA and 0.02% (w/v) saponin in PBS) for 30 min at room temperature.

Then PermQuench buffer containing 1 mg/mL Hoechst 33342 (H3570, Invitrogen) and 2 mg/mL Cell-

Mask Deep Red plasma membrane stain (C10046, Invitrogen) were added and samples were incu-

bated at room temperature for 1 hr. After staining, the specimens were washed with PBS five times

and kept in 200 mL PBS per well for imaging.

Recruitment analysis
For recruitment analysis, the cells were prepared as described above, but they were seeded on 1%

(w/v) porcine gelatin pre-coated black-wall, glass bottom 96-well imaging plates CG 1.0 (130-098-

264, MACS Miltenyi) to allow higher resolution imaging. After fixation, cells were permeabilized

identically and then stained with primary antibody diluted in PermQuench buffer for 1 hr at room
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temperature. After three washes with PBS, cells were incubated with the appropriated secondary

antibody and 1 mg/mL Hoechst 33342 diluted in PermQuench buffer for another hour at room tem-

perature. Then, the specimens were washed with PBS five times and kept in 200 mL PBS per well for

imaging.

In the case of recruitment analysis to STm vacuoles, the cells were seeded on 1% (w/v) porcine

gelatin pre-coated 9 mm coverslips in 24-well plates. After fixation and identical staining procedure,

the coverslips were mounted using 5 mL ProLong Gold Antifade Mountant (P36930, Invitrogen).

Data handling and statistical measurements
Data was plotted using Prism 7.0e (GraphPad Inc.) and presented with error bars as standard error

of the mean (SEM). Significance of results was determined by non-parametric one-way ANOVA or

unpaired t-test as indicated in the figure legends. Correction for multiple comparisons was per-

formed by controlling the False Discovery Rate with Two-Stage step-up method after Benjamini,

Krieger and Yekutieli.
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Eliceiri KW, Berthold MR, Goldberg IG, Ibáñez L, Manjunath BS, Martone ME, Murphy RF, Peng H, Plant AL,
Roysam B, Stuurman N, Stuurmann N, Swedlow JR, Tomancak P, Carpenter AE. 2012. Biological imaging
software tools. Nature Methods 9:697–710. DOI: https://doi.org/10.1038/nmeth.2084, PMID: 22743775

Gay G, Braun L, Brenier-Pinchart MP, Vollaire J, Josserand V, Bertini RL, Varesano A, Touquet B, De Bock PJ,
Coute Y, Tardieux I, Bougdour A, Hakimi MA. 2016. Toxoplasma gondii TgIST co-opts host chromatin
repressors dampening STAT1-dependent gene regulation and IFN-g-mediated host defenses. The Journal of
Experimental Medicine 213:1779–1798. DOI: https://doi.org/10.1084/jem.20160340, PMID: 27503074

Haberl MG, Churas C, Tindall L, Boassa D, Phan S, Bushong EA, Madany M, Akay R, Deerinck TJ, Peltier ST,
Ellisman MH. 2018. CDeep3M-Plug-and-Play cloud-based deep learning for image segmentation. Nature
Methods 15:677–680. DOI: https://doi.org/10.1038/s41592-018-0106-z, PMID: 30171236

He K, Zhang X, Ren S, Sun J. 2015. Deep residual learning for image recognition. Arxiv. https://arxiv.org/abs/
1512.03385.

Huang J, Wang Y, Tan T, Cui J. 2004. A new iris segmentation method for recognition. Proceedings of the 17th
International Conference on Pattern Recognition. ICPR 2004 IEEE 554– 557. DOI: https://doi.org/10.1109/
ICPR.2004.1334589

Hubel DH, Wiesel TN. 1968. Receptive fields and functional architecture of monkey striate cortex. The Journal of
Physiology 195:215–243. DOI: https://doi.org/10.1113/jphysiol.1968.sp008455, PMID: 4966457

Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T,
Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J, Obenchain V, Oleś AK,
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