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Abstract The highly organized spatial arrangement of sensory hair cells in the organ of Corti is
essential for inner ear function. Here, we report a new analytical pipeline, based on optical clearing
of tissue, for the construction of a single-cell resolution map of the organ of Corti. A sorbitol-based
optical clearing method enabled imaging of the entire cochlea at subcellular resolution. High-
fidelity detection and analysis of all hair cell positions along the entire longitudinal axis of the organ
of Corti were performed automatically by machine learningtbased pattern recognition. Application
of this method to samples from young, adult, and noise-exposed mice extracted essential
information regarding cellular pathology, including longitudinal and radial spatial characteristics of
cell loss, implying that multiple mechanisms underlie clustered cell loss. Our method of cellular
mapping is effective for system-level phenotyping of the organ of Corti under both physiological
and pathological conditions.

DOI: https://doi.org/10.7554/eLife.40946.001

Introduction

A complete understanding of auditory perception and transduction relies on an accurate reconstruc-
tion of the intact, three-dimensional structure of the cochlea. The spatial organization of the organ
of Corti, the mammalian auditory sensory epithelium, determines the cochlear tonotopic map, which
associates the positions of the inner hair cells (IHCs) in the cochlea with local characteristic frequen-
cies. The basic pattern of the tonotopic map is simple, with higher frequencies on the base of the
cochlear spiral and lower frequencies on the apex (von Bekésy and Peake, 1990 ). However, multi-
ple structural and cell biological factors influence the actual shape of the tonotopic map
(Temchin and Ruggero, 2014 ).

In humans, age-related (Chien and Lin, 2012 ) and noise-induced hearing loss (Nelson et al.,
2005) are prevalent health problems that require early prevention ( Cunningham and Tucci, 2017 ).
However, the field awaits the development of appropriate model animals that recapitulate human
pathology (Wang et al., 2002 ; Yamasoba et al., 1998 ; Zheng et al., 1999 ). Moreover, the complex-
ities of cochlear structure have prohibited a comprehensive cellular cartography, and current histo-
logical techniques are far from satisfactory for comprehensive analyses. Therefore, new methods
that enable simultaneous examination of molecular signatures and subcellular structures across the
entire cochlea would greatly accelerate the progress of research on auditory mechanisms.

Optical access to the properties of cells within highly complex tissues and organs is an important
technical goal of modern cell biology. Advancements in optical tissue clearing have enabled the
acquisition of structural and molecular information from large volumes of tissues and organs
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(Chung et al., 2013 ; Dodt et al., 2007 ; Hama et al., 2015 ; Renier et al.,, 2014 ; Susaki et al.,
2014). Recent reports showed that both organic solventt and hydrophilic solutiontbased clearing
methods could be optimized in clearing hard tissues that contain large proportions of extracellular
matrix (Berke et al., 2016 ; Cai et al., 2018 ; Calve et al.,, 2015 ; Greenbaum et al., 2017 ;
Jing et al., 2018 ; Tainaka et al., 2018 ; Treweek et al., 2015 ). The accumulating knowledge and
technologies should be helpful in development of effective clearing and labeling protocols for the
inner ear inside the temporal bone ( Nolte et al., 2017 ; Tinne et al.,, 2017 ). To date, however, an
integrated method of tissue processing, labeling, and imaging techniques with single cell resolution
has not yet been developed and optimized for the inner ear.

Here, we report an analytical pipeline for the construction of a single-cell resolution map of the
organ of Corti taken from C57BL/6J mice at postnatal day (PND) 5, 60, 120 and 360. The method is
based on optical tissue clearing technology and automatic cell detection using a machine learning
algorithm. In this method, a series of fixation, permeabilization, immunolabeling, and clearing pro-
cesses transform the inner ear into optically transparent samples suitable for volume imaging at sin-
gle-cell resolution. Automated high-fidelity recording and analysis of hair cell positions along the
entire length of the organ of Corti were achieved based on machine learningtbased cell detection.
Application of this method to pathological samples revealed distinct impacts of aging and noise on
spatial features of sensory hair cell pathology. Our method of cellular mapping is highly effective for
system-level phenotyping of the organ of Corti.

Results and discussion

Analytical pipeline for cellular cartography of the organ of Corti

Our analytical pipeline for sensory hair cell mapping in the cochlea followed three steps. First, the
mouse temporal bone was isolated at PND 60 and processed for clearing and immunolabeling of
the sensory hair cells FFigure 1A and Figure 1Dfigure supplement 1 ). Tissue clearing and immuno-
labeling were optimized for tissue transparency and antibody accessibility. After tissue preparation,
three-dimensional two-photon excitation microscopy generated image stacks covering the entire
structure of the organ of Corti, with an average size of 1200 1200 800 mm (Figure 1B). The
image data were processed by custom-made software to stitch and linearize the sensory epithelium,
followed by detection of cell positions ( Figure 1C). The software automatically generated a spatial
map of the total hair cells and estimated the positions of putative lost cells. The entire experimental
procedure could be completed within 5 days, with 4 days for tissue clearing and labeling, 4 hr for
image acquisition, and 30 min for automated analysis.

Optimization of imaging of the whole intact cochlea

The mouse inner ear forms complex and intricate structures inside the temporal bone. To achieve
deeper and clearer imaging of the organ of Corti, it was necessary to overcome two hurdles. First,
an inorganic component of the bone, mainly composed of calcium phosphate, had to be removed.
Second, refractive index (RI) matching had to be fine-tuned to decrease optical aberration induced
by heterogenous tissue components (Acar et al., 2015 ; Berke et al., 2016 ). The existence of multi-
ple methods for optical tissue clearing provided us with an opportunity to perform a side-by-side
comparison of their applicability to the organ of Corti. We tested five independent, well-established
clearing and labeling protocols (3DISCO (ErtuEk et al., 2012 ), iDISCO (Renier et al., 2014 ), CLAR-
ITY Chung et al., 2013 ), CUBIC (Susaki et al., 2014 ), and ScdeS (Hama et al., 2015 )) for their per-
formance in detection of total hair cells. Myosin 7a (MYO7A), specifically expressed in IHCs and
outer hair cells (OHCs), was utilized as a standard marker for hair cells. We found that performances
of different protocols were comparable when they were applied to adult mouse brains, but the effi-
ciencies for clearing the temporal bone were variable ( Figure 1D and Figure 1Bfigure supplement
1). We failed to detect MYO7A-immunopositive hair cells in samples processed by 3DISCO, iDISCO,
CLARITY, or CUBIC Figure 1D ). Microdissection of the membrane labyrinth of the iDISCO-proc-
essed samples confirmed the presence of MYO7A-immunopositive hair cells, suggesting that the
surrounding bone tissue prevented the detection of fluorescence ( Figure 1E). When CUBIC was
combined with decalcification, MYO7A fluorescence could be detected down to 180 nm from the
surface, but the combined method still did not enable imaging of the deeper part of the organ of
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Figure 1. Optical tissue clearing and whole-mount immunolabeling of the organ of Corti. ( A) Time course and individual steps of tissue clearing with or
without immunostaining. (B) Three-dimensional imaging of the organ of Corti within the temporal bone. Top view (left), lateral view (middle), and the
schematic presentation of the organ of Corti with its axis parallel to the modiolus. The size of the organ of Corti is indicated in the X, Y, and Z
coordinates. Scale bar, 500mm. (C) Computational processes of linearization, cell detection, and modeling. ( D) Side-by-side comparison of 3DISCO,
Figure 1 continued on next page
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Figure 1 continued

iDISCO, CLARITY, and CUBIC. Transmitted light images of samples before and after clearing, together with MYO7A staining. Scale bar, 500mm. (E)
Manual dissection of the iDISCO-processed sample confirmed MYO7A staining in the sensory epithelium. Scale bars, 500 nm (upper image) and 100
mm (lower image). (F) Lateral and horizontal views of the reconstructed three-dimensional images of the organ of Corti stained with anti-MYO7A. CUBIC
with decalcification and original ScaleS failed to detect the deepest part of the organ of Corti (green dotted lines). With modified Sca leS, the entire
structure of the organ of Corti could be visualized. Scale bar, 500 nm. (G) Modified ScaleS sample of the organ of Corti stained with anti-MYO7A
antibody, together with transmitted light images before (upper left) and after (upper right) treatment. Scale bar, 500 mm. (H) Three steps of the
modified ScaleS protocol. The initial decalcification step is followed by a clearing step, which mainly removes lipids from the extracellular matrix.
Finally, the RI of the sample is matched with mounting solution. (I) Preservation of GFP fluorescence after modified ScdeS treatment. Scale bar, 10mm.
(J) Preservation of rhodamine-phalloidin signal after modified ScaleS treatment, which includes sorbitol to stabilize cytoskeletal polymers. Scale bar, 10
mm. IHC, inner hair cell; OHC, outer hair cell; RI, refractive index.

DOI: https://doi.org/10.7554/eLife.40946.002

The following source data and figure supplements are available for figure 1:

Source data 1. Source data for Figure 1B, E and Figure 1Bfigure supplement 2
DOI: https://doi.org/10.7554/eLife.40946.005

Figure supplement 1. Protocol of modified Sca/eS.

DOI: https://doi.org/10.7554/eLife.40946.003

Figure supplement 2. Application of modified Sca leS to other tissues.

DOI: https://doi.org/10.7554/eLife.40946.004

Corti (Figure 1F ). Among the pre-existing tissue clearing methods, Sca leS combined with decalcifi-
cation yielded the best results (Figure 1F). However, this method still missed hair cells at the
cochlear base, more than 500 nm away from the bone surface.

By modifying the original ScaleS method, we achieved efficient in situ detection of all MYO7A-
positive hair cells in the organ of Corti ( Figure 1G and Figure 1bfigure supplement 1 ). In the new
protocol, we first decalcified the samples with EDTA ( Figure 1H ). In the subsequent clearing step, a
combination of a nonionic detergent (Triton X-100) and an ionic chaotropic reagent (guanidine) was
effective in increasing transparency. The ScadeS and CUBIC1 protocols use urea instead of guanidine
(Hama et al., 2015 ; Susaki et al., 2015 ), but high concentrations of urea can induce tissue expan-
sion (Tainaka et al., 2016 ). By contrast, our guanidine-based clearing solution did not induce detect-
able tissue expansion (Figure 1Bfigure supplement 1 ). Although guanidine treatment denatures
GFP and reduces its fluorescence intensity (Huang et al., 2007 ), this fluorescence quenching could
be reversed by incubation in phosphate-buffered saline (PBS). Finally, we tested the solutions with
RIs from 1.41 to 1.56 for their performance in tissue clearing by measuring the maximal depth of
detectable MYO7A-positive hair cells from the temporal bone surface ( Figure 1Bfigure supple-
ment 1). We found that a RI matching solution with a Rl of 1.47 was most effective for detecting
MYQO7A-positive hair cells away from the bone surface. This RI lies between that of bone matrix
(Rl = 1.56) and tissue with scarce extracellular matrix (Rl = 1.38). The new protocol for the in situ
detection of all MYO7A-positive hair cells in the organ of Corti could be completed within 4 to 6
days (Figure 1AH, and Figure 1bfigure supplement 1 ), and effectively detected GFP-based
reporter molecules and F-actin by rhodamine phalloidin ( Figure 11,J). The presence of sorbitol in the
clearing solution improved F-actin stabilization. The protocol could also be applied to detection of
cellular components in other types of bone-containing samples ( Figure 1Dfigure supplement 2 ).

Machine learningtbased automated detection of sensory hair cells

To obtain information about hair cell distribution along the entire longitudinal axis of the organ of
Corti, we applied our optimized tissue clearing and labeling methods to samples from naé ke C57BL/
6J mice, and detected sensory hair cells with anti-MYO7A antibody. The combination of a widely
used marker of sensory hair cells (MYO7A) and a standard mouse line (C57BL/6J) should facilitate
replication of this protocol in other laboratories and comparative studies. Multiple image stacks that
cover the entire structure of the organ of Corti were obtained by two-photon microscopy with voxel
sizes of 0.99 0.99 1.0 nm for high-resolution imaging ( Figure 2A ). Spatially confined two-photon
excitation effectively decreased photobleaching after repetitive imaging. To adjust the local fluores-
cence intensity of MYO7A-immunopositive hair cells, we controlled both excitation laser power and
the cut-off range of pixel intensities.
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Figure 2. Computational analysis of hair cell distribution in the organ of Corti. ( A) Detection of single hair cells stained with anti-MYO7A. The border
between hair cells can be clearly detected. Scale bar, 10 nm. (B) Sequential steps in reconstruction of the linearized voxel image of the organ of Corti.
The linearized voxel image was generated using the row of IHCs as a structural reference of the longitudinal axis of the organ of Corti. Scale bar, 100
mm. (C) Plot of the total longitudinal length of the organ of Corti against the total number of IHCs. (D) Plot of radial distance of IHCs from the modiolus.
Figure 2 continued on next page
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Figure 2 continued

(E) Plot of hair cell positions along the vertical axis of the organ of Corti. ( F) Normalization of heterogeneity in hair cell positions. Before normalization,
both x and y axes represent physical positions of OHCs. After normalization, the coordinates are arbitrary units and are equalized in x and y axes. (G)
Transformation of the positions of hair cells to fit the standardized template. The template is a two-dimensional grid parallel to the surface of the
sensory epithelium (upper image). This transformation is useful for estimation of lost hair cells based on the calculation of cell-free space. The accuracy
of estimation by this method was comparable to the performance of manual estimation (lower plot). [n = 161 samples for each. Paired t-test; ns, not
significant (p > 0.05).] IHC, inner hair cell; OHC, outer hair cell; PND, postnatal day; RI, refractive index.

DOI: https://doi.org/10.7554/eLife.40946.006

The following source data and figure supplements are available for figure 2:

Source data 1. Source data for Figure 2D, E, G and Figure 2bfigure supplement 1

DOI: https://doi.org/10.7554/eLife.40946.009

Figure supplement 1. Manual counting of lost hair cells and auditory brainstem-evoked response (ABR) in mice with age-related and noise-induced
hearing loss.

DOI: https://doi.org/10.7554/eLife.40946.007

Figure supplement 2. Three-dimensional presentation of hair cell distribution projected to X-Y and Y-Z planes.

DOI: https://doi.org/10.7554/eLife.40946.008

To achieve automated detection of both IHCs and OHCs, we developed a series of custom-made
MATLAB scripts (Figure 2B and Table 1, also see Appendices 1 and 2). Because loss of IHCs is rare
even in pathological conditions, such as aging and noise exposure, the row of IHCs was used as a
guide for linearization of the spiral sensory epithelium. First, multiple image stacks containing por-
tions of the organ of Corti were assembled into a single image stack. Our image acquisition protocol
was designed to obtain image stacks covering the volume of the entire cochlea. We also designed
that the two adjacent imaged stacks always have the overlapping volume. With these image acquisi-
tion rules, the entire tissue volume containing the whole sensory epithelium could be easily recon-
structed. Second, the best-fit arcs of the single IHC row were calculated to create a spiral that could
be used as a structural reference for the entire organ of Corti. Third, a linearized voxel image was
reconstructed using the best-fit spiral and the normal vectors of the plane fitted to the segments of
the sensory epithelium. Finally, we employed machine learning models to perform an exhaustive
search of all hair cells and recorded their positions as Cartesian coordinates. The search process by
machine learning technique consists of two parts: the first step of signal-noise discrimination and the
second step for the recovery of false negatives. The details are provided in Table 1 and Appendix 2.
(LeCun et al., 1989 ; Friedman et al., 2000 ; Breiman, 2001 )

To test the ability of our automated cell detection protocol to reliably record hair cell positions,
we studied its performance by comparing its outputs with manually identified OHC positions in four
independent samples of the organ of Corti labeled with anti-MYO7A antibody. The automated
detection protocol recovered 98.8 +* 0.6% of manually identified hair cells. In turn, 99.7 * 0.2% of
hair cells identified by the algorithm were also scored as hair cells by human operators, with the
remaining 0.3% representing false positives (Table 2). The detection efficiency of our protocol was
much higher than a standard imaging processing protocol based on three-dimensional watershed
((Soille and Vincent, 1990 ; Table 2 and Appendix 2).

Automated detection of hair cells in samples with hair cell pathology
Pathological changes in the sensory epithelium associated with aging or noise exposure can impair
the hearing functions of the inner ear. Previous studies provided qualitative evidence showing that
the cellular changes associated with age-associated or noise-induced hearing loss partially overlap,
but also have distinct characteristics. C57BL/6J mice are widely used for aging research and exhibit
the classic pattern of age-related hearing loss, with the loss of both hair cells and neurons starting
from the base (Hunter and Willott, 1987 ). The increase in auditory brainstem+evoked response
(ABR) threshold starts at the age of 10 weeks (Ison et al., 2007 ). Manual counting of lost cells in
C57BL/6J mice at PND 5, 60, and 360 confirmed age-related cell loss (ACL) (Figure 2Bfigure sup-
plement 1 ). For the assessment of noise-induced cell loss (NCL), we applied acoustic overexposure
stimulus to C57BL/6J mice at PND 60 to induce a moderate threshold shift ( Figure 2bfigure sup-
plement 1), as previously reported (Mizushima et al., 2017 ; Tuerdi et al., 2017 ). The cellular
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Table 1. Details of machine learning models (related to Figure 2).
Models Type * Algorithm Configuration Use Predictor

IHC" 1 Binary Gentle Boost 300 classification trees Reduction of noise Area, barycentric coordinates,
maximum correlation coefficients,
maximum intensity,
same data set of the
nearest neighbor group
and relative position of
the nearest neighbor group

IHC" 2 Binary Random Forest 300 classification trees Detection of cells Adding to the above,
prediction score by IHC" 1'
of itself and that of adjacent
groups in six directions”,
relative position of the
adjacent groups,
and cropped image *

OHC
OHC

1 Binary Gentle Boost 300 classification trees Reduction of noise Same as "IHC1'
2 Binary Random Forest 300 classification trees Detection of cells Same as 'IHE2'

OHC® 3 Multiclass Convolutional Neural From the input, Estimation of belonging  Cropped image (39 69 pixels in width and
Network convolutional layer row height)
(filter size 5,
number 60), ReLJ layer,
fully connected layer,
Softmax Layer (three
classes),
and output.

OHC’ 4 Binary Convolutional Neural From the input, Detection of cells in Cropped image (39 69 pixels in width and
Network convolutional layer spaces height)
(filter size 5,
number 60),
ReLUF layer, convolutional
layer (filter size 5,
number 20), ReL layer,
fully connected layer,
Softmax Layer (two
classes),
and output.

*.IHC, inner hair cell.

2. OHC, outer hair cell.

3. Classification type.

8. Rectified Linear Unit.

1. Adjacent groups in direction of 0+60 £ 60+12(E 120+ 180 180+24(E 240+30(E 300+36(Ewith the y-axis as an initial line in the x-y plane.
2 |nitial image size is 21 69 pixels in width and height. The image is resized in 7 23 then reshaped in1  161.

DOI: https://doi.org/10.7554/eLife.40946.010

pathology varied from nearly normal appearance to severe hair cell damage in the basal end of the
cochlea, and exhaustive screening of hair cell loss in this context should be useful.

To appropriately interpret cell position data from samples harvested under physiological and
pathological conditions, it is necessary to evaluate variation in the morphology of the organ of Corti.
Variation may also exist among samples collected under identical experimental conditions, poten-
tially confounding data interpretation. To evaluate such variation in morphology, we performed the
following three types of measurements (Appendix 2). First, we measured the total longitudinal
length of the IHC row and the number of IHCs. The plot of IHC number vs. the length of the IHC
row for multiple samples is useful for evaluating the longitudinal sizes of the organ of Corti
(Figure 2C). The plot shows that data from young control samples (PND 30) scattered in the range
of 550650 IHCs, indicating the presence of physiological variation. Variation in the length and the
cell number did not show a specific trend between samples from different ages. However, the data
from noise-exposed mice exhibited a tendency of higher variation, potentially due to selective loss
of hair cells at the basal end in some NCL samples. Second, we projected the position of IHCs onto
a plane perpendicular to the modiolus and plotted the distance of IHCs from the modiolus

Urata et al. eLife 2019;8:e40946. DOI: https://doi.org/10.7554/eLife.40946 7 of 40
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Table 2. Detection efficiency of hair cells (related to Figure 2)."

Inner hair cell

Detect. (n) Undetect. (n)’ Err. detect. (n)® Recover Ratd Accuracy rate”
Our Method 576 + 33 13+ 12 2+2 0.979+ 0.021 0.997+ 0.003
3D Watershed 424 + 98 152+ 82 110+ 78 0.733+ 0.149 0.818+ 0.100

Outer hair cell

Detect. (n) Undetect. (n)’ Err. Detect. (n) Recover Raté Accuracy rate”
Our Method * 1989+ 133 24+ 13 6+4 0.988+ 0.006 0.997+ 0.002
Principle 1 Only§§ 1925+ 131 69+ 41 16+ 13 0.966+ 0.021 0.992+ 0.006
3D Watershed 1493+ 197 496+ 111 760+ 381 0.748% 0.064 0.682+ 0.103

*. Data from 10 samples (PND30: two sample, PND60: three sample, ACL: two sample, NCL: three sample). Déa are expressed as means* SD.

. Detection number.

. Undetected number.

8. Erroneous detection number.

1. Recover rate of manually identified hair cells by the automated detection algorithm (almost synonymous with recall).

22_The number of hair cells identified by both manual and automated detection divided by the number  of hair cells identified by automated detection
(almost synonymous with precision).

33 The proposed method in this study (principle 1 + principle 2).

88. The method using the first half of the proposed method. For details please see "Principles of auto -detection by machine learning' in Appendix 2.

DOI: https://doi.org/10.7554/eLife.40946.011

N

w

(Figure 2D ). This plot revealed small variation in IHC position among experimental groups. Third,
the positions of IHCs were projected onto the axis of the modiolus, and the relative positions of
every 25 IHCs were plotted (Figure 2E). The IHC distributions along the axis of the modiolus in all
samples were similar. In summary, these measurements confirmed that the overall spatial distribution
of IHCs can be maintained under pathological conditions ( Figure 2Bbfigure supplement 2 ). Hence,
we performed further analysis of the pattern of hair cell loss using a standardized template of cell
positions.

To simplify the treatment of hair cell position in the subsequent analysis, the Cartesian coordi-
nates of hair cell positions were transformed and normalized to match the standardized template,
which consisted of the normalized two-dimensional grids parallel to the surface of the sensory epi-
thelium (Figure 2F,G ). The first axis was defined by the line of detected IHCs, and the second was
set perpendicular to the first axis. This simplified presentation is useful for measuring the space
unoccupied by the hair cells. We hypothesized that the area of the unoccupied space reflects the
space previously occupied by hair cells that were subsequently lost. By dividing the areas that were
not occupied by existing OHCs by the average area of a single OHC, we could estimate the number
of OHCs lost. Comparison of the performances of trained operators and automated calculation con-
firmed that adequate estimation of hair cell loss could be achieved by automated calculation;
indeed, the two methods were similarly effective ( Figure 2G and Table 3). The total number of lost
OHCs was 26.3+ 6.3, 34.6 £ 5.1, 55.8 £ 4.5, and 49.3 + 17.3 (mean £SD) in wild-type C57BL/6J mice
at PND 30, 60, and 120, and PND 60 plus noise exposure. These data are consistent with previous
estimates of hair cell loss based on manual counting in rats and chinchillas (Hu et al., 2012 ;
Yang et al., 2004 ). Therefore, our protocol is suitable for quantitative analysis of IHCs and OHCs,
including detection and counting of lost hair cells.

Spatial characteristics of hair cell loss

Presentation of lost cell density in the form of two-dimensional grids facilitates side-by-side compari-
son of hair cell loss along the longitudinal axis of the organ of Corti ( Figure 3A and Figure 3bfigure
supplement 1 ). In samples from young mice not exposed to noise, small numbers of hair cells were
lost along both the longitudinal and radial axes ( Figure 3A and Figure 3bfigure supplement 1 ).
Samples of aged mice had a higher density of lost cells at both ends of the organ of Corti

Urata et al. eLife 2019;8:e40946. DOI: https://doi.org/10.7554/eLife.40946 8 of 40
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Table 3. Inter-operator percent match in void space detection (related to Experimental procedures).

Inter-operator percent match Number of detected void space
Sample number AT Bf-C" Al CT Auto “ -HC” Both Auto “ -only HC™ -only
1 0.960 0.880 0.917 0.920 24 1 1
2 0.898 0.917 0.906 0.952 84 2 2
3 0.923 0.885 0.958 0.889 24 3 0
43 0.923 0.882 0.846 0.926 50 3 1
Overall 0.916 0.898 0.897 0.931 182 9 4

*, Sample 1, two months old, total loss rate of OHCs: 1.7%.

2. Sample 2, two months old with noise exposure, total loss rate of OHCs: 8.1%.
3. Sample 3, one month old, total loss rate of OHCs: 2.2%.

8. Sample 4, four months old, total loss rate of OHCs: 4.2%.

1. Skilled human operators (A, B, and C).

22 Auto, automated OHC loss counting program.

33, HC, human consensus.

DOI: https://doi.org/10.7554/eLife.40946.012

(Figure 3B). The difference between adult and aged mice was confirmed by comparison across
ages. In particular, the age-dependent increase in lost cell density was prominent at the apical end
(PND 60: 0.0596 + 0.0048, PND 120: 0.116 + 0.0150, Welch's t-test, p < 0.01, t = 3.59, df = 9.68). By
contrast, previous studies reported a higher rate of ACL in the basal portion, but failed to detect a
prominent increase in the proportion of lost cells in the apical region. This difference may be due to
the fact that our tissue clearing technique enabled complete visualization of hair cells at the helico-
trema (Figure 3C). ACL also had spatial features along the radial axis, with a higher density at posi-
tions distal to the modiolus ( Figure 3D ). This trend along the radial axis was already present in
cochleae at PND 60, indicating that ACL may represent acceleration of a pathology already present
in the early stage of life. In summary, the method we developed was well suited for comprehensive
analysis of ACL.

The cellular pathology of NCL was more complex than that of ACL, exhibiting a highly variable
pattern among samples. This may be inevitable in our paradigm of NCL, because this protocol is
expected to induce milder insults to the sensory epithelium ( Figure 3A and Figure 3bfigure sup-
plement 1 ). Our comprehensive analysis was useful in detecting higher variability of cell loss at the
basal end after noise exposure (position "a' against "e' in Figure 3 ; p < 0.001, F(6,9) = 15.5) and also
in aged mice, (position "a' against "e'in Figure 3 ; p < 0.05, F(8, 8)= 5.69), suggesting that vulnerabil-
ity at the basal end may be intrinsically variable. Principal component analysis applied to the spatial
pattern of cell loss was helpful in isolating ACL- and NCL-related parameters ( Figure 3bfigure sup-
plement 1), and the results revealed that NCL had a weaker impact in the apical portion. Thus, dis-
tinct mechanisms of cellular pathology may be responsible for ACL and NCL.

Model-based analysis of hair cell loss

The positions of putative lost cells revealed spatial clustering above the level that would be
expected by chance, regardless of age and the presence or absence of noise exposure ( Figure 4A).
To evaluate the spatial patterns of clustering, we constructed two distinct mechanistic models
(Figure 4B). In the first model, cell loss occurs stochastically, but the probability increases if adjacent
cells have been lost (neighborhood effect model). In the second model, the frequency of cell loss
depends on adverse factors localized along the longitudinal axis of the organ of Corti (position effect
model).

Fitting of the two models was comparable in samples from aged mice or after noise exposure
(Figure 4C), suggesting the complex relationship between lost cell clustering, various hair cell
pathologies, and the extent of cell loss. Therefore, we developed a two-component model in which
both the neighborhood effect and the position effect induced cell loss, but with different weights.
By controlling the weights of the two effects, it was possible to improve fitting to the experimental
data. The combinations of the two effects yielding the best fit to the experimental data were plotted
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Figure 3. Spatial pattern of hair cell loss. (A) Pseudo-color presentation of hair cell loss along the longitudinal axis of the organ of Corti (PND 30, 60,
and 120 and noise exposure at PND 60). Each row represents a single cochlear sample. Numbers of lost hair cells within 50rm segments along the
longitudinal axis were measured. For samples with higher cell loss in the basal portion, it was difficult to define the basal end of the sensory epithelium.
These samples with ambiguous starting points of the epithelium were marked by thin red lines in rows of noise-exposed samples. The raw fluorescence

Figure 3 continued on next page
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Figure 3 continued

image shows the definition of directions (distal and proximal, apex and base) relative to the sensory epithelium. ( B) Distribution of lost cells along the
longitudinal axis of the organ of Corti in three experimental groups. PND 60 and 120, and noise exposure at PND 60, exhibit distinct patterns of hair
cell loss (Kruskal+Wallis test with Steel+Dwass test)Q) Detection of hair cell loss at the helicotrema. Scale bar, 100 rm. (D) Distribution of lost cells
along the radial axis of the organ of Corti. Samples from PND 60 and 120 exhibit gradients of cell loss. (Paired t-test followed by Bonferroni's
correction, *p < 0.05; ***p < 0.001.) Number of samples; n = 10 (PND 30), 14 (PND 60), 9 (PND 120), and 10 (Noise), except for n = 7 in segment "a' of
Noise in (B). *p < 0.05; **p < 0.01; ***p < 0.001. PND, postnatal day.

DOI: https://doi.org/10.7554/eLife.40946.013

The following source data and figure supplement are available for figure 3:

Source data 1. Source data for Figure 3D and Figure 3Dfigure supplement 1

DOI: https://doi.org/10.7554/eLife.40946.015

Figure supplement 1. Longitudinal and radial distribution of hair cell loss in the organ of Corti.
DOI: https://doi.org/10.7554/eLife.40946.014

along with a color code for the extent of cell loss ( Figure 4D and Figure 4bfigure supplement 1 ).
The overall pattern of data distribution suggests a higher contribution of the neighborhood effect in
young and adult mice not exposed to noise ( Figure 4E). With age, the contribution of the position
effect increased, whereas noise exposure in adult mice resulted in a variable extent of damage; data
points were dispersed, with highly damaged sensory epithelium experiencing a greater contribution
from the position effect.

Automatic evaluation of cell damage and detection of multiple

intracellular components

Fluorescence-based detection of cytoskeletal components, such as F-actin, enabled us to obtain
information about the integrity of subcellular structure in hair cells. We evaluated F-actin integrity of
OHCs at multiple positions of the organ of Corti, specified by the extent of cell loss and clustering
of lost cells (Figure 5A ). This approach is useful for automatic evaluation of the extent of stereocilia
damage at multiple points of the organ of Corti. The reduction of F-actin content in hair cells near to
lost hair cells supports the neighborhood effect model of lost cell clustering, described above.

We also tried to image subcellular components in hair cells using specific antibodies against pre-
synaptic ribbons (C-terminal-binding protein 2, CtBP2) and synaptic vesicles (vesicular glutamate
transporter type 3, VGLUT3). Similar immunocytochemical approaches were applied to other com-
ponents of the organ of Corti, including axons immunopositive for hightmolecular weight neurofila-
ment protein (NF200) and supporting cells positive for SRY (sex determining region Y)-box 2 (SOX2)
immunoreactivity (Oesterle et al., 2008 ) (Figure 5B). These results suggest that this method can be
applicable to analysis of multiple cellular components in the cochlea. In this study we utilized a water
immersion objective with moderate numerical aperture (NA). In future, modification of our method
with an objective lens with higher NA may enable more precise imaging of intracellular structure in a
scale of the entire cochlea.

In this study, we developed a rapid method for optical tissue clearing, labeling, and automated
image analysis of the inner ear. Currently available tissue clearing and labeling technologies have
limited applicability to hard tissues, including bone, tooth, cartilage, and tendon. Effective removal
of fine hydroxyapatite crystals in hard tissues is a key to establishing clearing methods. Here, we
demonstrated that our modified Sca leS method represents a powerful approach for exhaustive anal-
ysis of expression profiles in hair cells along the entire organ of Corti, using multiple antibodies. This
technique can be directly applied to the characterization of genetic and environmental models of
hearing loss. In future, the analytical pipeline we developed will be integrated with active elimination
of bone mineral and organic components by physical principles ( Lee et al., 2016 ). To further
increase efficiency, the decalcification solution should be elaborated. Rapid decalcification can be
achieved by combining EDTA with formic or hydrochloric acid ( Treweek et al., 2015 ). A recent
report also examined multiple conditions of clearing hard tissues and recommended lowering pH of
the EDTA-containing decalcification solution ( Tainaka et al., 2018 ). However, prolonged sample
treatment with high concentrations of acid can reduce immunoreactivity and accelerate quenching
of fluorescent proteins. Future investigations should seek to establish clearing and labeling methods
optimized for a wide spectrum of hard tissue components.
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Figure 4. Model-based analysis of clustered cell loss. (A) Evaluation of the extent of clustered cell loss by comparison with the extent of clustering
based on a model of random cell loss. The extent of cell clustering in the experimental data was much higher than would have been expected from
random cell loss (99% confidence intervals within two lines) (Welch'st-test, ***p < 0.001). (B) Construction of two models of hair cell loss (upper:
neighborhood effect model; lower: position effect model). Virtual cell loss data were generated from the models and compared with the experimental

Figure 4 continued on next page
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Figure 4 continued

data (measured). C) Evaluation of the goodness-of-fit of the two models to the experimental data using the error score, which measures the extent of
deviation of the clustering properties generated by the models from those observed in real samples. ( D) Assessment of the relative contributions of the
two models (neighborhood effect and position effect) to achieve the best fit to the experimental data. The two models contribute differentially under
various conditions. The color code shows the proportion of lost OHCs against the total OHCs. ( E) Overall pattern of contribution from two models.

Note that the neighborhood effect makes a stronger contribution in young adult mice, whereas the position effect makes a stronger contribution in

aged mice (means = SD). Number of samples; n = 10 (PND 30), 14 (PND 60), 9 (PND 120), and 10 (Noise). PND, postnatal day.

DOI: https://doi.org/10.7554/eLife.40946.016

The following source data and figure supplement are available for figure 4:

Source data 1. Source data for Figure 4A, C, D and E .

DOI: https://doi.org/10.7554/eLife.40946.018

Figure supplement 1. Simulation analysis of clustered cell loss.
DOI: https://doi.org/10.7554/eLife.40946.017

System-level analysis of the organ of Corti is important for extracting the operating principles of
mechanosensory transduction. In parallel, generation of a variety of model mice harboring mutations
in genes involved in hearing function will facilitate functional studies. While the functional conse-
guences of gene mutation can be assessed using standardized protocols, such as ABR, at present
we have no widely approved format for the assessment of cellular pathology. The method we devel-
oped in this study may be useful for standardization of cell-based analysis. A recent study of in situ
two-photon imaging of the organ of Corti revealed the detailed architecture of the mechanical
framework in the sensory epithelium (Soons et al.,, 2015 ). The method described here could be
combined with information about mechanical characteristics. By integrating position-specific
mechanical property, fluid dynamics, and hair cell physiology, such an approach would be useful for
modeling of cochlear function ( Liu et al., 2015 ). Manual identification of more than 2500 hair cells
per sample and subsequent analysis of cell loss is not possible for large sets of cleared samples from
animals of different ages, genetic backgrounds, and experimental conditions. Accordingly, the ana-
lytical pipeline described here was designed to minimize manual processing. Objective comparison
of position-dependent cell pathology among multiple mouse models of hearing loss will facilitate
identification of critical molecular signatures associated with cochlear pathology.

Materials and methods
For detailed procedures, see Appendix 1 and 2.

Key resources table

Reagent type Additional
(species) or resource Designation Source or reference Identifiers information
Genetic C57BL/6J Sankyo Lab (JAPAN) PRID:MGI:5658686
reagent
(M. musculus)
Genetic CBA/Ca Sankyo Lab (JAPAN) PRID:MGI:2159826
reagent
(M. musculus)
Genetic Thyl-GFP line-M Jackson Lab PRID:MGI:
reagent 3766828
(M. musculus)
Genetic GO-Ateam PMID: 19720993 Dr. M Yamamoto
reagent (Kyoto University,
(M. musculus) Japan)
Antibody Rabbit Proteus Biosciences cat# 256790 IHC (1:100)
polyclonal anti- PRID:AB_10013626
Myosin Vlla

Continued on next page
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Figure 5. Efficient mapping of subcellular pathology and multiple cellular components. ( A) Automated detection of areas with variable degrees of hair
cell loss, combined with evaluation of subcellular pathology. All sites of hair cell loss (white squares) were selected, and changes in the F-actin content
were evaluated (upper image). White squares with dotted lines are representative analysis areas, and are enlarged at lower left. Hair cells surrounded
by intact hair cells (crosses) or next to lost cells (asterisks) were compared for their F-actin content (lower right). The graph reveals loss of F-actin in hair
cells adjacent to lost cells. Scale bars, 100mm (upper) and 10 mm (lower). [n = 108 (PND 60) and 103 (Noise), paired t-test for comparison within the
group, Welch's t-test with Bonferroni's correction for comparison of cell groups between different experimental conditions, ***p < 0.001; ns, not
significant, p > 0.05.] (B) Modified ScaleS technique can be adapted to multiple immunohistochemistry of cellular and subcellular components at PND
5. Antibodies against CtBP2, VGLUT3, NF200, and SOX2 were used to detect multiple components in situ. Scale bars, 10mm. HC, hair cell; IHC, inner
hair cell; OHC, outer hair cell; PND, postnatal day.

DOI: https://doi.org/10.7554/eLife.40946.019

The following source data is available for figure 5:

Source data 1. Source data for Figure 5A .
DOI: https://doi.org/10.7554/eLife.40946.020
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Neuroscience

Continued

Reagent type Additional

(species) or resource Designation Source or reference Identifiers information

Antibody Mouse SIGMA cat# N5389 IHC (1:100)
monoclonal PRID:AB_260781
anti-
Neurofilament 200

Antibody Mouse EMD Millipore cat# MAB4343 IHC (1:200)
monoclonal anti-SOX-2 PRID:AB_827493

Antibody Mouse BD Bioscience cat# 612044 IHC (1:100)
monoclonal anti-CTBP2 PRID:AB_399431

Antibody Guinea pig PMID: 20034056 IHC (1:500), Dr. H
polyclonal anti- Hioki (Juntendo
VGLUT3 University, Japan)

Antibody Alexa Fluor 488-conjugated eBioscience cat# 16-1441-81 IHC (1:500)
mouse monoclonal PRID:AB_15604224
anti-VE cadherin

Chemical Rhodamine phalloidin Invitrogen cat# R415 IHC (1:500)

compound, drug

Chemical Triton X-100 Nakalai-tesque cat# 12967+45

compound, drug

Chemical Urea SIGMA cat# U0631-1KG

compound, drug

Chemical N,N,N',N'-Tetrakis (2- TCI cat# TO781

compound, drug eydroxypropyl) ethylendiamine

Chemical D-sucrose Wako cat# 196+00015

compound, drug

Chemical 2,2',2"-nitrilotriethanol Wako cat# 145+05605

compound, drug

Chemical Dichloromethane SIGMA cat# 270997+100 ML

compound, drug

Chemical Tetrahydrofuran SIGMA cat# 186562+100 ML

compound, drug

Chemical Dibenzyl Ether Wako cat# 022+01466

compound, drug

Chemical Methanol Wako cat# 132+06471

compound, drug

Chemical D-glucose SIGMA cat# G8270-100G

compound, drug

Chemical D-sorbitol SIGMA cat# S1816-1KG

compound, drug

Chemical Thiodiethanol Wako cat# 205+00936

compound, drug

Chemical Acrylamide Wako cat# 011+08015

compound, drug

Chemical Bis-acrylamide SIGMA cat# 146072+100G

compound, drug

Chemical VA-044 initiator Wako cat# 225+02111

compound, drug

Chemical Sodium dodecyl TCI cat# 10352

compound, drug sulfate

Chemical FocusClear CelExplorer Labs cat# F101-KIT

compound, drug

Chemical Glycerol Wako cat# 075+00616

compound, drug

Chemical Dimethyl sulfoxide Wako cat# 043+07216

compound, drug

Continued on next page
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Continued
Reagent type Additional
(species) or resource Designation Source or reference Identifiers information
Chemical N-acetyl-L-hydroxyproline TCI cat# A2265
compound, drug
Chemical Methyl-b-cyclodextrin TCI cat# M1356
compound, drug
Chemical g-cyclodextrin TCI cat# C0869
compound, drug
Chemical Tween-20 Wako cat# 167+11515
compound, drug
Software, ImageJ NIH PRID: SCR_003070
algorithm
Software, GraphPad Prism 6 GraphPad Software PRID: SCR_002798
algorithm
Software, MATLAB MathWorks PRID: SCR_001622
algorithm
Software, Microsoft Excel Microsoft PRID: SCR_016137
algorithm
Software, Adobe Adobe PRID: SCR_010279
algorithm lllustrator
Software, Signal Nihon Kouden Neuropack MEB2208
algorithm processor
Other MATLAB codes This paper https://github
.com/okabe-
lab/cochlea-
analyzer
Other 25x water- Nikon N25X-APO-MP
immersion objective lens
Other 25x water- Olympus XPLN25XWMP
immersion objective lens
Other Sound speaker TOA HDF-261+8
Other Power amplifier TOA IP-600D
Other Condenser microphone RION UC-31 and UN14
Other Sound calibrator RION NC-74
Other Noise generator RION AA-61B
Other Dual channel NF corporation 3624
programmable
filter

Tissue acquisition

After euthanasia, mice were perfused transcardially with 4% paraformaldehyde in PBS. Osteochon-
dral samples (cochlea embedded in temporal bones and femurs) and other soft tissues (brain, heart,
stomach, lung, liver, kidney, intestine, and spleen) were isolated by standard dissection techniques.

Decalcification

Samples were washed for 30 to 180 min in PBS containing 0.1% Triton X-100 with continuous rocking
at 40 rpm. Decalcification was performed by incubating samples for 48 to 120 hr in 500 mM EDTA in
PBS at 37@, and terminated by washing samples several times with PBS.

Tissue extraction

Samples were placed in a solution containing 3 M guanidinium chloride, 35% (w/v) D-sorbitol, 15%
(w/v) D-glucose, and 4% (w/v) Triton X-100 in PBS (pH 6.0+8.0) and incubated at 37[E for 2 to 12 hr.
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Labeling with antibodies and small molecules

After tissue extraction, samples were washed with PBS containing 0.1% Triton X-100 for 30 min with
continuous rocking at 40 rpm. Samples were incubated for 2 to 48 hr in a solution containing primary
antibodies or small molecules (details provided in Appendix 1) with appropriate dilutions at 37 [E.
Unbound antibodies or small molecules were removed by washing for 30 min with PBS containing
0.1% Triton X-100, with continuous rocking at 40 rpm. Primary antibodies were detected by incuba-
tion for 12 to 48 hr with a solution containing secondary antibodies at 37 [E, followed by washing as
described for removal of primary antibodies. Duration of antibody incubation was adjusted depend-
ing on the size of the sample and the affinity and specificity of the antibodies.

Adjustment of RI

For the adjustment of tissue RI, samples were incubated for 15 min to 2 hr at 37 [ in a RI matching
solution. The duration of this step was adjusted depending on the size and properties of the sample.
Our optimized RI matching solution (Rl = 1.47) contained 3 M guanidinium chloride (or 4 M urea),
60% (w/v) D-sorbitol, and 0.1% (w/v) Triton X-100 in PBS (pH 7.1). For the optimization of RI, we
tested multiple Rl matching solutions with their RIs ranging from 1.41 to 1.56. The RI matching solu-
tions with their RI lower than 1.47 were made by diluting the Rl matching solution with Rl = 1.47
with water. The final RIs were confirmed by a refractometer. The RI matching solutions with
RI = 1.52 and 1.57 were thiodiethanol and dibenzyl ether, respectively. After Rl adjustment, samples
were placed in a chamber with the same RI matching solution, covered by a coverslip, and imaged
by a two-photon microscope. The same cochlear sample was imaged repetitively in the RI matching
solutions with increasing Rls. The maximal image depth was determined by measuring the distance
from the bone surface to the deepest position where fluorescence signal of MYO7A-positive hair
cells can be detected (Figure 1Bfigure supplement 1 ). In total, five independent cochlear prepara-
tions were imaged.

Microscopy and image acquisition

Imaging of IHCs and OHCs of the organ of Corti was performed on a two-photon microscope (Nikon
A1MP) equipped with a mode-locked Ti:sapphire laser (Mai Tai Deep See, Spectra Physics) operated
at 800 nm with a 25  water immersion objective lens (NA = 1.10). A chamber containing the sample
was filled with the RI matching solution, covered by a glass coverslip, and placed under the objective
lens. The size of single horizontal images was set to 512 512, with pixel sizes of 0.99  0.99 nm
and z-spacing of 1 nm. Images were successively acquired with 10+40% overlap. Image processing
was performed using the ImageJ software (National Institute of Health), and three-dimensional rota-
tion was performed using Imaris (Bitplane), FluoRender (Version 2.18, the University of Utah), and
NIS-Element AR (Version 4.51, Nikon). Adjustment of fluorescence intensity along the longitudinal
axis of the organ of Corti was performed using a MATLAB script written in-house (MathWorks).

Automated cell-count and three-dimensional morphology analysis

Hair cell detection and analysis were performed automatically using custom MATLAB scripts
(R2017b, MathWorks); details are provided in Appendix 2. MATLAB source code is available on
GitHub (lida, 2018a; copy archived at https://github.com/elifesciences-publications/cochlea-
analyzer).

Step 1: Stitching of multiple image stacks into a single stack

Multiple image stacks containing portions of the organ of Corti were assembled into a single image
stack. Shifts of coordinates between image stacks were calculated based on cross-correlation (MAT-
LAB “normxcorr2' function). After image stitching, a blending algorithm ( Rankov et al., 2005 ) was
applied to remove sharp intensity changes in the zone of overlap.

Step 2: Reconstruction of linearized image

Hair cells in each image stack were detected as local intensity peaks (MATLAB “imregionalmax' func-
tion). Single-linkage clustering (maximal distance of connection, 25 nmm) was effective for eliminating
or reducing the number of false positives. A stretch of local peaks corresponding to the entire row
of hair cells were divided into segments of 200300 mm in length. In each segment, the best-fit plane
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was calculated (MATLAB “pca’ function), together with the best-fit arc along the rows of hair cells.
The multiple best-fit arcs were stitched into a continuous curve ( Figure 2B). A voxel image contain-
ing the entire straightened row of hair cells was reconstructed from the image stacks, based on the
stitched-fit curve and the normal vectors of the fit planes.

Step 3: Automated detection of IHCs

First, local correlation between the hair cell template and the voxel image of linearized epithelium
was calculated by template matching (MATLAB “normxcorr2' function), and the peaks of the correla-
tion were detected. Pixels corresponding to detected peaks were grouped according to the physical
size of the IHCs via connected-component labeling. These connected pixel groups (hereinafter called
“cell candidates’) were used as a first approximation of IHC positions linked to other attributes,
including correlation values and local intensity distributions.

The cell candidates were further evaluated to eliminate false positives using two successive
machine learning models. The first ensemble learning method created the model for selection with
predictor data consisting of areas, barycentric coordinates, correlation values, the intensities of the
peaks, and the corresponding values of nearby cell candidates (MATLAB ‘fitensemble' function with
“GentleBoost' method) ( Friedman et al., 2000 ). The model was trained to calculate posterior proba-
bility (prediction score), and cell candidates with a high prediction score ( ~1000 candidates out of
initial ~50,000) were selected and further analyzed by the second ensemble learning method (MAT-
LAB ‘“fitensemble' function with "Bag’ method) ( Breiman, 2001 ). This method was based on
expanded predictors (the prediction score from the first step of the candidate and nearby candi-
dates, and the local intensity distribution centered on the barycentric coordinates of the peaks). The
cell candidates after the second selection were connected sequentially, subject to the physical con-
straint that the IHCs must form a single row with roughly constant intervals of more than 6 mm. The
resulting putative positions of IHCs were used for fine readjustment of image linearization and
three-dimensional structural analysis.

Step 4: Automated detection of OHCs

The image processing applied for IHCs in Step 3 was also applied to OHCs. Detection accuracy was
improved by two additional evaluations based on machine learning. First, physical constraints of
OHC alignment were introduced into three rows. A multiclass classification model, based on the
convolutional neural network method [Neural Network Toolbox of MATLAB ( LeCun et al., 1989 )],
sorted cell candidates into respective rows using input images each containing three rows of four or
five OHCs. If the distance between two adjacent cell candidates in the same row exceeded 1.5 times
the average distance, the presence of additional cells in the gap was assessed by the fourth model
based on the convolutional neural network method. Input images for machine learning were sam-
pled by placing small rectangular areas at equal distances from one another within the gap. If the
model predicted the existence of additional cells in the gap, the nearest peaks of the correlation
coefficient from the first template matching were recovered.

Frameworks of machine learning models

Details of the models used in the detection are shown in Table 1 and Table 4 (Sokolova and
Lapalme, 2009 ). Ensemble learning methods were applied to a one-dimensional predictor data set,
and the convolutional neural network method was applied to a two-dimensional predictor data set
(images). For the first ensemble learning in Steps 3 and 4, the GentleBoost algorithm was selected
because of its superior training performance on large data sets relative to the Random Forest algo-
rithm [GentleBoost, MATLAB “fitensemble' function with "GentleBoost' method ( Friedman et al.,
2000); Random Forest, ‘Bag' method in MATLAB (Breiman, 2001 )].

Evaluation of automated detection system for hair cells

The detection efficiency of the system is shown in Table 2. The models used in the system were
trained on ten cochleae as described above, and the efficiency of the trained system was evaluated
on ten other cochleae. The results of auto-detection were compared against a reference created by
independent manual counting by three human operators. The reference contains fluorescent objects
judged to be hair cells by at least two operators.
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Table 4. Number of training and test dataset, and performance evaluation of machine learning models (related to ~ Figure 2).

Training Test
Model Total (n) Positive labels (n) Total (n) Positive labels (n) Recall Precision F score
IHC* 1 607,954 5906 578,851 5741 0.961 0.941 0.951
IHC* 2 37,576 11,977 18,104 5753 0.977 0.986 0.981
OHC® 1 1,112,659 20,576 1,099,519 19,959 0.978 0.914 0.945
OHC® 2 28,702 20,576 27,185 19,959 0.959 0.979 0.969
OHC’ 3 20,416 Rowl: 6706 19,594 Rowl: 6421 0.993 0.993 0.993
Row2: 6745 Row2: 6450
Row3: 6965 Row3: 6723
OHC’ 4 4114 1365 2990 905 0.920 0.946 0.933

* IHC, inner hair cell.

2. OHC, outer hair cell.

3. Calculated by micro-average of recall and precision (Sokolova M and Lapalme G, 2009)
DOI: https://doi.org/10.7554/eLife.40946.021

Analysis of spatial distribution of OHCs

Loss of OHCs results in formation of spatial gaps. To evaluate the extent of cell loss, conventional
manual counting estimates the number of lost cells based on the sizes of spatial gaps. In this study,
a method that can directly and systematically evaluate the sizes of holes without assuming horizontal
rows of hair cells was introduced. The first step of this method was equalization of the coordinates
of detected cells throughout the cochlear. Cell positions were adjusted to normalize the average
intercellular distance both horizontally and vertically, and to normalize the intercellular distances
along the entire organ of Corti. Subsequent placement of square areas with positions matched to
the normalized coordinates of detected hair cells left connected pixel groups corresponding to the
spaces of putative lost cells. Details of these analyses are provided in Appendix 2.

Principal component analysis on OHC loss frequency

Principal component analysis was performed on the OHC loss frequency along the longitudinal and
radial axes of NCL and ACL samples. Variables were the frequency of OHC loss in specific spatial
segments. These spatial segments were 13 longitudinal and 15 radial segments that equally divide
the total area. A singular value decomposition algorithm was utilized for the calculation of coeffi-
cients for the first and second principal components (‘svd' option of MATLAB “pca’ function).

Analysis of the three-dimensional structure of the cochlea

The spiral structure of the cochlea was analyzed based on the three-dimensional spatial distribution
of IHCs because these cells formed a row that was rarely disturbed. Details of these analyses are

provided in Appendix 2.

Simulation analysis of clustered cell loss

It was observed that lost OHCs tended to be clustered. Simulation analysis was performed to evalu-
ate two independent factors that could be responsible for such clustering. (1) A lost cell increases
the probability that neighboring cells will be lost (Model 1; neighborhood effect). (2) Cell loss takes
place with a probability that is a function of the local environment of the sensory epithelium (Model
2; position effect). The simulation was performed on each cochlea sample, using the measured ratio
of cell loss, the number of clusters, and the cluster sizes. The simulation was performed on two

matrices, the “cell matrix' and “probability matrix', with sizes of 3 rows

600 columns corresponding

to the distribution of OHCs ( Figure 4bfigure supplement 1 ). The cell matrix recorded the positions
of cell loss, and the probability matrix recorded the probabilities of cell loss in each step of the

simulation.

Each operation started with a cell matrix with no lost cells and a probability matrix with or without
an initial position effect. In each step, a single cell was selected for removal with a probability given
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by the probability matrix, and the position was recorded in the cell matrix. The operation was
stopped when the total number of lost cells reached the number of cells lost in a given sample.

The neighborhood effect was created by adding an additional weight to the adjacent probability
matrix elements. To introduce the position effect, random numbers were generated according to a
power-law distribution calculated by the following function.

Pxt~ 01 p X?*tOtprh

where p is the parameter controlling the shape of distribution. The values along the row of the prob-
ability matrix were obtained from the function P(x), with input x drawn from a uniform distribution
between 0 and 1. Values in the same column were set to be identical. Gaussian filtering was applied
to the probability matrix to broaden the peak width.

A panel of 16 simulated histograms was created for each sample by changing the relative weights
of two effects (neighborhood and position effects) ( Figure 4bfigure supplement 1 ). The operation
was repeated 500 times for each parameter set. A histogram of cluster size was constructed, and
similarity to the measured data was evaluated ( Figure 4bfigure supplement 1 ). The extent of histo-
gram dissimilarity between measured and simulation results was calculated by the sum of squared
errors (error score), and a two-dimensional heat map was created ( Figure 4bfigure supplement 1 ).
The weighted average of the top three combinations of weights was calculated and taken to repre-
sent the relative contribution of two factors to cell loss events.
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Supplemental materials and methods

Animals

Mouse husbandry, anesthesia, and euthanasia conformed to related regulations of the
government and the institutional guidelines. Protocols related to animal handling were
approved by the Animal Care and Use Committee of the Graduate School of Medicine, the
University of Tokyo. Male or female wild type C57BL/6J, ICR, and CBA/Ca mice at ages of
PND 0 to 360 were used for application of modified Sca/eS with or without antibody labeling.
For the detection of fluorescent protein signals, Thy1l-GFP M line and a transgenic line
expressing a fluorescence resonance energy transfer (FRET)-based indicators (GO-ATeam
mouse line) (Imamura et al., 2009 ; Nakano et al., 2011 ) were used at ages of PND 0 to 120.

Tissue acquisition

After euthanasia, mice were perfused transcardially with 4% paraformaldehyde (PFA) in
phosphate buffered saline (PBS). Osteochondral samples (cochlea embedded in temporal
bones and femurs) and other soft tissues (brain, heart, stomach, lung, liver, kidney, intestine,
and spleen) were isolated by standard dissection techniques. For mice younger than PND 5,
the step of transcardial perfusion was omitted. The isolated tissues were placed in the same
fixative (4% PFA in PBS) for 10 to 24 hr. Fixed brain samples were sectioned into 100 mm to 2
mm thick sections using a vibratome.

Tissue clearing methods
iDISCO; iDISCO was performed according to the published protocol ( Renier et al., 2014 ).
Fixed samples were treated with methanol with increasing concentrations, bleached with 5%
H,0,, and rehydrated by decreasing concentration of methanol in PBS. Anti-MYO7A staining
was performed after 0.3 M glycine treatment and blocking with 6% normal goat serum. Tissue
clearing was achieved by treatment with increasing concentration of tetrahydrofuran/H >0 up
to 80% (v/v), subsequent transfer to dichloromethane, and final incubation with dibenzyl ether.
3DISCO; 3DISCO was performed according to the published protocols ( Acar et al., 2015 ;
Ertuik et al., 2012 ; Yokomizo et al., 2012 ). Fixed samples were blocked with normal goat
serum and then reacted with primary and secondary antibodies. After immunolabeling,
samples were treated with increasing concentration of tetrahydrofuran/H ,O up to 80% (v/V),
subsequent transfer to dichloromethane, and final incubation with dibenzyl ether.

CLARITY; CLARITY was performed according to the published protocols ( Chung et al.,
2013; Tomer et al., 2014 ). Briefly, animals were fixed by perfusion with a solution containing
4% paraformaldehyde, 4% acrylamide, 0.05% bis-acrylamide, 0.25% VA-044 initiator in PBS,
followed by induction of hydrogel tissue embedding by raising temperature to 37  [E for 3 hr.
After electrophoretic tissue clearing in a chamber containing 200 mM boric acid and 4%
sodium dodecy! sulfate with 20 V applied across the sample at 37 [E for 72 hr, samples were
blocked with normal goat serum, reacted with primary and secondary antibodies. After
washing, the samples were placed in FocusClear (CelExplorer Labs) medium.

CUBIC; CUBIC was performed according to the published protocols ( Susaki et al., 2014 ;
Susaki et al., 2015 ; Tainaka et al., 2014 ). Briefly, fixed samples were placed in ScaleCUBIC-1
(25% urea, 25% N,N,N',N'-tetrakis (2-hydroxypropyl) ethylenediamine, 15% Triton X-100) at
37|i_-3 for 24 hr, followed by brief washing and incubation with Sca leCUBIC-2 (50% sucrose,
25% urea, 10% 2,2',2"-nitrilotriethanol) for 2 hr. After brief washing, samples were placed in
ScdeCUBIC-2.
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CB-perfusion ; CB-perfusion was performed according to the published protocols
(Tainaka et al., 2014 ). Briefly, animals were first treated with perfusion of an excess amount of
4% paraformaldehyde in PBS, followed by sequential perfusion with PBS and 50% of
ScdeCUBIC-1. The target organs were excised and immersed in ScaleCUBIC-1 for 5 days.
After this step, samples were transferred to Sca leCUBIC-2 and incubated for 2+3 days. After
brief washing, samples were placed in ScaleCUBIC-2.

ScaleS; ScdeS was performed according to the published protocols ( Hama et al., 2015 ).
Briefly, inner ear was isolated by a standard dissection procedure. Cochleae were isolated and
4% paraformaldehyde in PBS was perfused from the oval window. ScaleS0 (20% sorbitol, 5%
glycerol, 3% dimethylsulfocide, 1% N-acetyl-L-hydroxyproline, 1 nM methyl- b-cyclodextrin, 1
mM g-cyclodextrin), ScaleA2 (10% glycerol, 4 M urea, 0.1% Triton-X-100), ScdeB4(0) (8 M
urea), and ScdeA2 were applied sequentially for permeabilization and tissue clearing. After
samples were returned to PBS, immunolabeling was performed. Samples were rinsed by
AbScale solution (0.33M urea, 0.1+0.5% Triton X-100 in PBS) and AbScde rinse solution (2.5%
BSA, 0.05% Tween-20in 0.1 PBS). Finally, samples were placed in Sc&eS4 (40% sorbitol,
10% glycerol, 4 M urea, 0.2% Triton X-100, 15+25% dimethylsulfoxide).

Antibodies
Antibodies used in this study were as follows:

MYQO7A (rabbit polyclonal, Proteus Bioscience), 200 kDa subunit of neurofilament protein
(anti-NF200, mouse monoclonal, clone NE14, Sigma Aldrich), SOX2 (rabbit polyclonal, EMD
Millipore), CtBP2 (mouse monoclonal, clone 16/CTBP2, BD Biosciences), VGLUT3 (guinea pig
polyclonal, kindly gifted from Dr. Hioki), Alexa Fluor 488 goat anti-rabbit IgG (H + L) (Life
Technologies), Alexa Fluor 546 goat anti-mouse 1gG (H + L) (Life Technologies), Alexa Fluor
647 goat anti-mouse 1gG (H + L) (Life Technologies), and Alexa Fluor 488-conjugated VE
cadherin (mouse monoclonal, clone BV13, eBioscience). Concentration of antibodies should be
adjusted depending on the sample size. Rhodamine phalloidin (Thermo Fisher) was used for
labeling F-actin.

Confocal microscopy

For samples labeled with multiple antibodies shown in Figure 5B, images were obtained by a
FV1000 laser scanning microscope (Olympus) with a 25 objective lens (NA = 1.05).
Fluorophores were excited by 488, 564, and 635 nm lines of diode lasers. The sizes of single
horizontal images were set to 512 512, with pixel sizes of 0.43  0.43 mm and z-spacing of
0.75 or 2 nm.

Measurement of fluorescence intensity of F-actin.

In double-labeling (anti-MYO7A antibody and rhodamine phalloidin) samples, fluorescence
intensity of rhodamine phalloidin was measured as follows. First, MYO7A positive cells were
automatically detected by the custom-made program. The space without MYO7A staining was
simultaneously detected as a putative position of cell loss. Second, rhodamine phalloidin
fluorescence intensity was measured using ImageJ software. OHCs surrounded by intact OHCs
and nearby OHCs next to the cell loss positions were selected. Finally, the rhodamine
phalloidin intensities between different positions of the organ of Corti were normalized by the
intensity of OHCs surrounded by intact OHCs ( Figure 5A ).

Measurement of tissue transparency and size change

Tissue transparency was measured according to the methods described by Hama et al

(Hama et al., 2015 ). Light transmitted through 100 mm-thick mouse brain sections before and
after clearing was captured with a CCD camera and quantitated. Transparency was normalized
to the samples without clearing treatments. Increase in tissue size was determined by
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measuring the area of brain sections before and after clearing. The extent of size increase was
expressed as a ratio against the pre-cleared area (Figure 1bfigure supplement 1 ).

Imaging depth quantification

To assess the imaging depth of bony tissue, 20 ng of Alexa Fluor 488-conjugated anti-mouse
VE cadherin antibody was administered into tail vein followed by tissue fixation. The
metaphysis of the tubular bone was analyzed. Imaging depth was measured from the surface
and the position at which specific fluorescence signal of the vasculature over the background
could no longer be detected was taken as the limit of the imaging depth ( Figure 1Bfigure
supplement 2 ).

Noise exposure

Mice were placed within steel wire cages (20cm 12 cm 7 cm) in a ventilated sound
exposure chamber. The acoustic stimulus was an octave band noise with a center of 4 kHz at
121 dB sound pressure level (SPL) for 4 hr. The sound-delivery speakers (HFD-261+8, TOA)
were driven by a power amplifier (IP-600D, TOA) attached to a noise generator (AA-61B,
RION) through a programmable filter (3624, NF Corporation). Sound levels were measured
(UC-31 and UN14, RION) at multiple locations within the sound chamber and calibrated (NC-
74, RION) to ensure uniformity and stability of the stimulus.

Auditory Brainstem Response (ABR) tests

ABRs were recorded before and 7 days after noise exposure. Mice were anesthetized with
ketamine hydrochloride (50 mg/kg, i.p.) and xylazine hydrochloride (10 mg/kg, i.p.). Before the
ABR test, the tympanic membranes were confirmed to be normal. ABRs were evoked with
tone-bursts (§ ms duration at 4, 8, 16, and 31.25 kHz) and measured by a recording system
(Neuropack  MEB2208, Nihon Kohden). Needle electrodes were placed subcutaneously at
the vertex of the skull, under the ear exposed to noise, and under the opposite ear for
ground. A speaker was placed 10 cm from the tragus of the stimulated ear. ABRs from 500
trials were averaged at each sound intensity. ABR thresholds were estimated by changing the
intensity in 5 bB steps and finding the lowest sound intensity where reliable response peaks
were detected

Statistical analysis

C57BL/6J (PND 5: four samples, PND 30: 10 samples, PND 60: 14 samples, PND 120: nine
samples, PND 360: four samples, and PND 60 with noise: 10 samples) mice and CBA/Ca (PND
60: five samples) mice were analyzed. Statistical analysis was performed by paired t-test
(Figure 2G ), Kruskal-Wallis test with Steel-Dwass multiple comparison test (Figure 3B ), paired
t-test followed by Bonferroni's correction ( Figure 3D ), Welch's t-test (Figure 4A ), paired t-test
with Bonferroni's correction and Welch's t-test with Bonferroni's correction ( Figure 5), one-
way ANOVA followed by Bonferroni's post hoc test ( Figure 1Bbfigure supplement 1 and
Figure 2bfigure supplement 1A ), or a two-tailed unpaired t-test (Figure 1Bfigure
supplement 2A and Figure 2bfigure supplement 1B,C ). Data are presented as

means * standard errors of the mean (SEM) except standard deviation (SD) in Figure 4E . The
p-values are as follows: *p < 0.05, **p < 0.01, ***p < 0.001.

The auto cell-count and three-dimensional morphology analysis

The outline of the protocol, including stitching of multiple image stacks into a single stack,
reconstruction of linearized image, automated detection of IHCs, and automated detection of
OHCs, was described in the main text. Full description of the algorithm is in Appendix 2.
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Frameworks of machine learning models
The outline of the framework was described in the main text. Full description of the models is
in Appendix 2.

Validation of the automated OHC loss detection and counting

To evaluate the performance of automated OHC loss counting program, three skilled human
operators (A, B, and C) initially detected empty spaces in the same set of the images (n = 4). A
human consensus (HC) was established for the presence of empty spaces when more than two
operators agreed. The match rates among human operators (A-B, B-C, and A-C) and between
the program and HC were comparable (A-B: 91.6, B-C: 89.8, A-C: 89.7, Auto-HC: 93.1,

Table 3). The numbers of lost cells in individual empty spaces were then estimated by both
the human operators and the program using 161 empty spaces ( Figure 2G ). The differences
between the human operators and the program were defined as absolute errors, and the
errors were averaged (mean absolute error) and compared between the program and the
human operator (Auto-M1, Auto-M2, and Auto-M3) or between the human operators (M1-M2,
M2-M3, and M1-M3).

Analysis of lost cell distribution in the organ of Corti

The longitudinal pattern of cell loss was analyzed among five segments (‘a’, 'b', ¢, 'd’, and "e)
along the longitudinal axis (x-axis). The two segments from the basal end with their lengths of
800 mm (‘a’ and "b'), two segments from the apical end with their lengths of 800 nm (e’ and
“d") were defined, and the middle remaining segment was defined as "¢’ ( Figure 3B). The
radial axis (y-axis) was divided into 15 successive zones from the proximal to the distal,
covering the width of three rows of OHCs ( Figure 3D ).
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Supplemental materials and methods for data processing
MATLAB source code is available on GitHub (https://github.com/okabe-lab/cochlea-analyzer.
git).

Datasets for automated detection and analyses

For automated detection and analyses of hair cells, we examined 43 sets of images from 43
samples (PND 30: 10 samples, PND 60: 14 samples, PND 120: nine samples, noise exposure at
PND 60: 10 samples). The samples immunostained with MYO7A were imaged with a two-
photon microscope. To cover the entire longitudinal length of the organ of Corti, multiple
image stacks with overlapping volumes should be obtained. Single image stack consists of 2D
images with their pixel sizes of 512 512, with image numbers in the range of 36+459 along
the z-axis. Large differences in the stack sizes were due to changes in the height of the
fluorescent objects along the spiral of the cochlea. The image data set for a single cochlea
sample contains 11+16 image stacks, which follow the spiral organization of the organ of Corti
from an apical end toward the hook portion. There were 10+40% of overlap in length between
adjacent image stacks. Physical longitudinal lengths of the organ of Corti were relatively
uniform across samples Figure 2C in the main text). The voxel sizes in x, y, and z directions
were 0.99, 0.99, and 1.0 mm, respectively.

Outline of automated cell detection and analyses
The scripts written for computational detection and analysis of hair cells consist of the
following steps:

Step 1: Stitching of multiple image stacks into a single stack

Step 2: Reconstruction of linearized image

Step 3; Automated detection of IHCs

Step 4; Automated detection of OHCs

Step 1: Stitching of multiple image stacks into a single stack

Multiple image stacks containing parts of the organ of Corti were assembled into a single
image stack (Rankov et al., 2005 ). The cross-correlation method was used to image stitching.
For rough estimation of the relative positions of two adjacent image stacks, we used recorded
positions of the microscope stage and the overall distribution of fluorescent signals derived
from the organ of Corti after appropriate image thresholding. Relative positions of two
adjacent images were determined by searching best cross-correlation of images at the
putative region of overlap (MATLAB “normxcorr2").

Overlapped images were blended with gradient mixing of intensities. To simplify the
explanation, the following protocol is for two-dimensional blending. Blending of image stacks
could be performed with similar principles by setting blending gradient in three dimensions.
The mixing ratio of the two images was calculated using a sigmoid function as:

1
R~ —— -
1 11:61(»(,

RZA 1 Ry;

where R; and R, denote mixing ratios of the first and the second images, respectively. The
value x was set to reflect the relative distance of each pixel from the line running through the
points with equal distance from two image centers (the center line). The normalized distance
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was measured from the center line, where both R; and R, were 0.5. R; reaches ~1 as x moves
toward the center of the first image, while R, reaches ~0. Because the blending process ends
at the pixel position within the image overlap that has the largest distance from the center

line, value x was normalized to be 1 at this largest distance ( Appendix 2Bfigure 1 ).

Appendix 2bfigure 1.  First the line passing through the centers of two images were gener-
ated, and the line passing through the center of the image overlap and perpendicular to the first
line was created (the center line). Distance of each pixel to the center line was defined as x. The
pixel that has the largest distance was selected and its x value was normalized to be 1.

DOI: https://doi.org/10.7554/eLife.40946.025

Step 2: Reconstruction of linearized images

After Image processing by a median filter (MATLAB “medfilt3', neighborhood size: 3-by-3-by-
3), local intensity peaks were automatically detected (MATLAB ‘imregionalmax, 26-connected
neighborhoods). Candidate anti-MYO7A-derived signals were selected from the local intensity
peaks by eliminating those with their intensities below the threshold value a determined by
the following formula.

a”~ 1 5s;

where and s denote the mean and the standard deviation of image intensities in the
background. Otsu's method was used to determine the background thresholds (MATLAB
‘multithresh’, number of threshold values: 2, lower value was used) (Otsu, 1979). To further
eliminate the intensity peaks derived from non-specific fluorescence, single-linkage clustering
was performed (maximal distance of connection, 25 m). This procedure was effective in
identifying clustered intensity peaks corresponding to the organ of Corti as the largest
assembly of linked intensity peaks.

The stretch of these intensity peaks corresponded to the entire row of hair cells. In the next
step of the analysis, more precise determination of the structural parameters for the sensory
epithelium is required. For this purpose, the spiral of the hair cell rows should be divided into
segments of 200+300 nm in length. Because the sensory epithelium is curved in each original
image stack and the spatial distribution of the intensity peaks roughly follows the shape of the
sensory epithelium, principal component analysis [PCA (MATLAB “pca’)] was effective in
extracting the direction and distance in both longitudinal and radial axes of the organ of Corti
(Appendix 2bfigure 2 ). Intensity peaks within a single image stack were divided into two
equal halves along the first principal component axis, which were generally 200£300 mm in
length. Both were projected onto PCA plane defined by the first and second principal
component axes, and the best-fit arcs were calculated. The center and the radius of the arc
were determined to minimize the mean square error (MATLAB “fminsearch'). Repetition of this
procedure for all the original image stacks gave rise to a collection of the sensory epithelium
segments, that encompassed the entire spiral of the organ of Corti.
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Appendix 2DFigure 2.  Distribution of intensity peaks within the plane of the first and second
principal components. The first principal component matched the longitudinal axis, while the
second matched the radial axis.

DOI: https://doi.org/10.7554/eLife.40946.026

The multiple best-fit arcs were stitched into a continuous curve. The nearest-neighbor
points of two adjacent arcs were detected ( Appendix 2Dfigure 3 ). Starting from these
nearest-neighbor points, both of the arcs were converted to the connection of points with
regular intervals of 50 nm. For the calculation of a spline curve that fits two adjacent arcs, the
points along each arc were divided into two groups at the position of the nearest-neighbor
point and the groups of points that belong to the main portion of the sensory epithelium were
selected and combined into a single group. The nearest-neighbor points themselves were
excluded from the combined group. The combined points were interpolated by using the
spline interpolation method (MATLAB “interpl', method: “spline') and principal normal vectors
were calculated (hereinafter just called "'normal vectors').

Appendix 2DFigure 3.  The method of stitching two arcs. Among the dots on the two arcs, the
open dots were removed and the closed dots were fitted with a spline curve.
DOI: https://doi.org/10.7554/eLife.40946.027

A voxel image containing the entire straightened rows of hair cells was reconstructed based
on the stitched fit curve and the normal vectors. The horizontal center line (x axis) of the
reconstructed image was set to match the fit curve. The y axis of the reconstructed image
corresponds to the normal vector of the fit curve. The sizes of a voxel along the x, y, and z
axes in the reconstructed image were all set to 1.0 mm. As each voxel in the linearized image
does not show one-to-one correspondence to the original voxel image, interpolation was
necessary to estimate the voxel intensity. In general, when a single voxel in the first image was
projected to the second image, it was possible to define 2 2 2 voxels in the second image
enclosing the volume projected from the first image. Therefore, the intensity of a voxel in the
linearized image was estimated by the trilinear interpolation method using the corresponding
2 2 2voxelin the original voxel image. More precise linearization was performed using a
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fit curve of IHCs detected by the procedure described in the next section. The voxel values are
set to zero when the corresponding voxels are outside the original images.

Step 3; Automated detection of IHCs

Template matching was performed with a template image of an IHC (MATLAB “normxcorr2’,
template image size: 11 11 pixels). This process puts a correlation coefficient to each
element of a three dimensional matrix, which reflects the degree of matching to the template.
By conducting two-dimensional peak detection on this matrix (MATLAB “imregionalmax’),
candidate voxels for IHC positions were selected. The connected-component labeling was
then carried out on the binary matrix of candidate IHCs (26-connectivity based). These
connected pixel groups (hereinafter called “cell candidates’, Appendix 2bfigure 4 ) were used
as the first approximation of IHC positions linked to other attributes, including correlation
values and local intensity distributions. The cell candidates were further evaluated to eliminate
false positives using two successive machine learning models (the overview of our method
related to machine learning is described in “Principles of auto-detection with machine learning'
section below).

Appendix 2bfigure 4.  Extraction of cell candidates by template matching. Left; Template
matching with the small template image (upper left) was performed for individual x-y images
within the image stack. Right; Detection and labeling of correlation peaks distributed within
three-dimensional matrix generated by calculation of cross-correlation. Cell candidates were
assemblies of correlation peaks grouped by connected-component labeling.

DOI: https://doi.org/10.7554/eLife.40946.028

In the first step, the cell candidates were narrowed down to the number approximately
twice larger than the expected number of IHCs. Specifically, the typical initial number of cell
candidates was ~50,000 per one linearized image and they were narrowed down to ~ 1000 in
this step. An ensemble learning method was employed to create the model for this selection
(MATLAB ‘fitensemble', method: “GentleBoost') ( Friedman et al., 2000 ). The predictor data
was composed of the area, barycentric coordinates, correlation values, peak intensities, and
those of nearby cell candidates. The model was trained to calculate posterior probability
(prediction score) that the cell candidates corresponds to IHCs. The cell candidates with high
prediction scores were selected for the next step.

In the second step, further selection of the cell candidates was performed by another
machine learning model with expanded predictor data. The model was built based on an
ensemble learning method (MATLAB “fitensemble' function with "Bag' method)

(Breiman, 2001 ). The expanded predictor data was composed of the prediction score from
the first step of the cell candidates and nearby cell candidates, and a small intensity image
centered on the barycentric coordinates of the cell candidate.

Finally, the cell candidates were connected sequentially using physical constraints that the
IHCs form a single row with roughly constant intervals of more than 6 nm along the x-axis. The
obtained coordinates of estimated cells were used for fine readjustment of image linearization
and the three dimensional structural analysis of the whole cochlea.
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Step 4; Automated detection of OHCs

The first several steps of cell detection protocol were similar to those for IHCs described
above. In short, template matching was performed with a small template image of OHCs
(image size: 7 7 pixels) to create the matrix of correlation coefficients. The connected-
component labeling was carried out on the binary matrix for the positions of the correlation
peaks. The groups of peaks were taken as the cell candidates and narrowed down through
two steps of prediction by two machine learning models. Ensemble learning methods were
employed to build these models with similar predictors as described above.

For accuracy improvement, several steps were added after the second prediction step. As
OHCs are typically distributed in three rows, the selected cell candidates were classified into
three rows by a multiclass classification model (Appendix 2bfigure 5 ). The model was built
based on the convolutional neural network method (Neural Network Toolbox of MATLAB)
(LeCun et al., 1989 ). The input of the model was a small image centered on the estimated
cells. To reduce the chance of missing OHCs, regularity of distances between adjacent cell
candidates in row was investigated. If the distance between two adjacent cell candidates in
the same row exceeds 1.5 times of average distance, presence of additional cells in the gap
was judged by the fourth model.

Appendix 2bfigure 5. Functions of the third and fourth machine learning models. Cell
candidates detected by the first and the second machine learning models were further
categorized into three rows by the third model (cells marked by dots with different colors
correspond to the three rows.). The spaces between detected OHCs (asterisks) were detected
and evaluated the possible presence of OHCs escaped in the previous detection processes.
DOI: https://doi.org/10.7554/eLife.40946.029

To evaluate the missing cells in the space, the forth model was used. This model is also
built based on the convolutional neural network method and uses small images as an input.
Input small images for machine learning were sampled by placing small rectangular areas as
region of interest (ROI) with equal distance from each other within the gap between
preexisting cell candidates. The number of ROI per space was set to be equal to the integer
portion of the quotient with the gap length as a numerator and the average distance of
adjacent cells as a denominator. In the case that the model predicted the existence of a cell at
the space, the nearest peak of correlation coefficient by the first template matching was
added to the list of estimated cells. The obtained coordinates of estimated cells were used for
the analysis of cell loss.

Remarks on principles and realization of data processing

Comparison of detection efficiency with standard image processing

method
Performance of our automated cell detection system (Step 3 and 4) was compared with a
classical image processing method, a three-dimensional watershed method, with optimized
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parameters, such as threshold values for intensity and volume. The accuracy (F score)

was ~ 70% on average, corresponding to ~ 600 false positives and ~ 600 false negatives in a
linearized image containing 2500 hair cells (Appendix 2bfigure 6 , Table 2). This performance
is not adequate for practical use. The details of the watershed technique are described below
(CAuto-detection with three-dimensional watershed algorithm' section).

Appendix 2bfigure 6. Comparison of detection efficiencies between a standard image proc-
essing method and our method (Paired t-test, both p < 0.0001, n = 10 linearized whole cochlear
images).

DOI: https://doi.org/10.7554/eLife.40946.030

The poor performance of the standard watershed method may be derived from several
reasons (Appendix 2bfigure 7 ). First, hair cells were often counted more than once, because
of multiple intensity peaks within a single hair cell. The watershed method typically selects
seeds from peaks of intensity in the image. Reduction of peaks can be done by image
smoothing with a Gaussian filter before the watershed method. However, optimization of
Gaussian filter size was difficult, as hair cell shapes are highly heterogenous at different
positions of the cochlea. The second reason was false detection of nonspecific signals of anti-
MYQO7A antibody and background noise. This error can be reduced by a volume, intensity or
morphological filtering, but optimization of filter settings was again difficult for heterogeneous
hair cells along the longitudinal axis of the sensory epithelium.

Appendix 2bfigure 7.  Comparison of 3D watershed and our machine learning based method.
There are many duplicate count and false detection with 3D watershed method.
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To achieve practical accuracy for cell detection in a large data set of whole cochlear image,
we designed the method based on multiple pattern recognition techniques. We overcome the
first problem, duplicated cell counting, with template matching technique ( Appendix 2D
figure 4 ). The second problem, noise filtering, was addressed by machine learning models as
described in the next section. To further improve the accuracy of detection, we also added a
step of recovering false negatives based also on machine learning that detected three-row
arrangement of outer hair cells.

Principles of auto-detection with machine learning

Our machine learning based auto-detection system utilizes two principles. The first principle is
sorting hair cells from background noise. The models were trained with labeled dataset
containing multiple feature values of cell candidates, such as volume, signal intensity, similarity
with template image, coordinates, and relative position from neighboring candidates

(Table 1). As morphology of hair cells and imaging conditions vary from place to place within
the image, it was almost impossible to find the single or a few feature values that could
efficiently distinguish cells from background noise. The approach with machine learning
models, however, dramatically improved the accuracy of cell detection ( Appendix 2Dfigure

6). Incorporation of excessive feature values may introduce a risk of overfitting. It is important
to select machine learning algorithms resistant to the overfitting problem. After evaluation of
available supervised learning algorithms in MATLAB (" Statistics and Machine Learning
Toolbox' in MATLAB R2017b; Decision trees, Discriminant analysis, Nearest neighbors, Nadve
Bayes, Support vector machines, and Classification ensembles), we chose classification
ensembles (Gentle AdaBoost and Random forest algorithms) because of their high
generalization abilities and processing speeds. Training dataset from ten cochlear samples and
test dataset from other four samples were used.

The second principle is recovery of false negatives based on auto-recognition of three-row
arrangement of outer hair cells (Appendix 2bfigure 5 ). Although the detection based on the
first principle shows high specificity of hair cell detection, it sometimes misses cells with
atypical morphology or features. The first step of the false negative recovery is grouping of
each cell candidate into one of three rows. Then, spatial gaps are detected by checking
irregularity of intervals of cell candidates within each row. Finally, the gaps were evaluated
whether there were overlooking cells or not by another model. This step of false negative
recovery was realized by a convolutional neural network algorithm. The advantage is that it
only requires an image as an input without any additional feature extraction. We expected the
complementary effect by combining the first and second principles. Indeed, the recovery rate
of the detection was further improved by adding the second process ( Table 2, Paired t-test,
p <0.005, t =3.94, df = 9).

Auto-detection with three-dimensional watershed algorithm

We tested another auto-detection method for linearized image implemented in “Classic
Watershed' plugin for Fiji ( Soille and Vincent, 1990 ). Several settings should be configured
for this approach. First, a threshold value for voxel intensity should be provided. With lower
threshold, more cells will be detected, but false positives will also increase. A threshold value
for volume of the segmented region is also required for reducing false positives. In addition,
inner and outer hair cells were distinguished based on their center coordinates along the
radial axis in the linearized image. We optimized these parameters by grid search on the test
samples for maximizing the detection efficiency (F score). Fiji macro and MATLAB source code
of this method is available on GitHub ( lida, 2018b ; copy archived at https://github.com/
elifesciences-publications/Watershed ).
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Training of machine learning models

The models were trained with the dataset obtained from ten cochleae with manual labeling
(PND60: two samples, ACL: five samples, NCL: three samples). The numbers of observations
of the training datasets are shown in Table 4. Details of the predictors of datasets are shown
in Table 1. The datasets for the models IHC1 and OHCL include all the peak groups obtained
from the ten linearized images with template matching ( Appendix 2Bbfigure 4 ). These models
are based on a GentleBoost algorithm. To deal with the imbalance between positives and
negatives, we set the cost matrix when training IHC1 and OHC1 (100 times and 50 times
higher costs for false negatives than false positives, respectively). The hyperparameter was
optimized by five-fold cross validation with a Bayesian optimization method on the training
dataset (number of the trees, learn rate; "OptimizeHyperparameters' option for “fitcensemble’
function of MATLAB).

A subgroup of cell candidates was selected for further processing with the models ICH2
and OHC2, based on their higher posterior probability computed by IHC1 and OHC1. The
fraction of this subgroup over the total sample population was fixed. The models ICH2 and
OHC2 were based on a Random Forest algorithm. We set the cost matrix to deal with the
imbalance of the dataset when training IHC2 and OHC2 (2 times and 0.4 times costs for false
negatives, respectively). The hyperparameter was optimized as with IHC1 and OHCL1.

The training dataset for the model OHC3 includes small images centered on each outer
hair cell extracted from ten linearized images. This model is based on a CNN algorithm. We
used a shallow network with typical settings for training. Details of the layer configuration
(filter size and number of convolutional layer) were optimized by five-fold cross validation with
a Bayesian optimization method on the training dataset. We trained the network with
stochastic gradient descent with momentum algorithm, with the maximum number of epochs
of 15, and the initial learning rate of 0.001 ( Murphy, 2012 ). We used the default settings of
“trainingOptions' function of MATLAB for the other training options.

The dataset for the model OHC4 includes small images of gaps between cell candidates
within each row of outer hair cells (Appendix 2Bfigure 5 ). The model was based on a shallow
CNN with typical settings for training. We optimized the details of the layer configuration of
the model and trained it in the same way as OHC3.

Evaluation of machine learning models

The models were tested by ten cochleae that were not used in the training (PND30: two
sample, PND60: three sample, ACL: two sample, NCL: three sample). The way of making the
test datasets was the same as the training dataset. The numbers of the test dataset of each
model are shown in Table 4. The indices of the performance were obtained as follows:

TP
Recall ———;
el TprFp’
Precision” HLE
TPt FN’

F score® 2 Precision Recall
Precisiort Recall

where TP, FP and FN mean True Positive, False Positive and False Negative, respectively.
For multiclass classification, the micro-averages of recall and precision were calculated
(Sokolova and Lapalme, 2009 ).
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Details of procedures for the analysis of cochlear structure and hair
cell position

Analysis of three-dimensional structure of cochlea

Spiral structures of the organ of Corti were analyzed using three dimensional spatial
distribution of IHCs. The distribution of IHCs was used because they form a row with little cell
loss. The coordinates of IHCs in the linearized image were transformed inversely into the
original three dimensional coordinates based on the fit curve and the normal vectors which
were also used in the forward linearization.

A cylindrical coordinate system of each sample was set for registration and comparison
between samples. In this system, the position of the i th IHC along the organ of Corti is
expressed as the combination of the longitudinal coordinate ( p;), the azimuth (' i), and the
radial coordinate ( ;). Please note that here we refer the direction of the modiolus from the
apex to the base as the longitudinal axis. In the previous description of the protocol, we refer
the direction along the long axis of the sensory epithelium as @longitudinal®.

The strategy of the initial search for the longitudinal axis was to find the arguments of the
minimum for the function that gives smaller values when a line (longitudinal axis) is set to
provide the spiral fitting better to the distribution of IHCs. The longitudinal axis | of the
coordinate system was chosen as follows:

I” argminf.li ;t
li2L
where L~ fly;l5;..g is a set of lines in three-dimensional Euclidean space and f.l; is the
objective function as:
X 2
f.li T "min J' af b ]' ;
ab2R 1

where IHCs in a sample were numbered in the order of distance from the apical end along the
organ of Corti, and n denotes the total number of IHCs. Values J' and ' J' denote the radial
coordinate and the azimuth respectively, for the j-th IHC in a coordinate system with a given
longitudinal axis l;. The azimuth ' | for the first IHC located at the apical end was set to 0 and
the others were set to satisfy the condition:

s a2
The objective function f.l, iheans the goodness of fit (the minimum sum of squared errors)

of IHCs' locations to a curve defined by the equation:
T af b

where s the radial coordinate, ' is the azimuth (Appendix 2bfigure 8 and
Appendix 2Bfigure 9 ). Parameter optimization was performed by using the 'fminseach’
function of MATLAB. The longitudinal axis | that provides the arguments of the minimum was
considered as the modiolus in this protocol. The distance and the cell number from the basal
end of the IHC row along the spiral connecting IHCs was measured ('Distance from Base' and
‘Cell Number' in Figure 2 of the main text).
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Appendix 2bfigure 8.  An example of fitting the increasing distance between IHCs and the
modiolus to a smooth spiral. The line with the minimum sum of squared errors was chosen to
be the longitudinal axis of the cylindrical coordinate system.

DOI: https://doi.org/10.7554/eLife.40946.032

Appendix 2bfigure 9.  An example of inner hair cell locations (black dots) viewed from the axial
direction. The angle (' ) was measured from the line (red line) connecting the center of the spiral
and the inner hair cell located at the end of the apex (green dot).

DOI: https://doi.org/10.7554/eLife.40946.033

Registration of samples based on 3D structure

In the previous section, the longitudinal axis (modiolus axis) was set for each sample and
utilized for the presentation of the IHC spiral in the cylindrical coordinate system. Registration
of multiple samples were performed using these parameters. To reduce sampling bias in the
alignment process of multiple samples, we followed the strategy of first creating a generic
template of the IHC spiral by averaging all the available samples. After this step, alignment of
individual samples to the generic template was performed. Nevertheless, in both cases we
utilized the common protocol for alignment. To simplify the following explanation, we refer
two spirals to be aligned as spirals A and B (Appendix 2Bfigure 10 ).

Appendix 2bfigure 10.  Evaluation of the extent of correlation between two curves in the plane
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of ' -p. Within this plane, the positions of spiral A and B were aligned. First, the shift in
adjusted (middle). Subsequently, the shift in p was adjusted (right).
DOI: https://doi.org/10.7554/eLife.40946.034

was

We first performed alignment between spirals A and B by rotating objects around the
longitudinal axis. This can be mathematically achieved by shifting the value ' of one spiral
against the other. To estimate the amount of shiftin ' , a two-dimensional plot of
pagainst ' was created and overlaid for spirals A and B. By evaluating the extent of correlation
between two curves in the plane of ' -p, the optimized shiftin ' can be estimated. To calculate
the extent of correlation, two curves were converted to series of points with their angular
intervals of 0.1 rad and their cross-correlation was calculated (MATLAB 2normxcorr2°). The
shiftin ' that gives the highest cross-correlation was selected and the rotational shift between
two curves A and B were corrected.

The last step of alignment between spiral A and B was translation along the longitudinal
axis. To this end, the spiral A was fixed and the origin of the second spiral B was shifted along
the longitudinal axis. Comparison of the two spirals was based on the search for the minimum
sum of the squared distances along the longitudinal axis between points from two spirals.
These points were selected within the region of overlapping azimuth for the two spirals. Two
corresponding points on different spirals share the same ' . The origin of the second spiral was
determined by finding the arguments of the minimum for the function of squared distance
between corresponding points for two spirals projected to the longitudinal axis as follows:

X
0" argmin .2.. tz.. ft
pi2P' 2F

where P~ fpg;py;..0 is a set of positions on the longitudinal axis |, and F is a set of
azimuth ' shared by the points of comparison between spirals A and B. The function z.:. t
denotes an axial coordinate of the point on the spiral A. The function z.!. tlenotes an axial
coordinate of the point on the spiral B when the origin of the spiral was set at the position  p.
The values 'Distance from Base ( m)' (Figure 2 and Figure 3 in the main text) and 'Cell
Number' (Figure 2 in the main text) were also plotted after alignment at the midpoint of the
spiral segments.

Analysis of spatial distribution of OHCs

The outline of the procedure was described in the main text. Loss of OHCs results in the
formation of empty spaces in the epithelium. Conventionally, the lost cell number was
estimated by the size of the empty space. This method is not reliable when the empty space is
large, the rows of OHCs are difficult to define, or cell-to-cell distances vary in different
epithelial positions (Appendix 2bfigure 11 ).

Appendix 2bfigure 11.  Representative examples of hair cell images where manual estimation
of cell loss was difficult. The number of lost cells is difficult to estimate when the size of cell-
negative area increases in the basal turn (left). Disorganized rows of OHCs were frequently
observed in the apical turn (right). Identification of lost cell positions is difficult when cell

density is not high enough to estimate the rows (left) or cells are not aligned as horizontal

rows (right). Scale bars, 10 nm.

DOI: https://doi.org/10.7554/eLife.40946.035
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In this study, we evaluated the space where cells were lost without assuming OHC rows.
First, the x and y coordinates of the centers of detected cells (hereinafter called “cell centers")
were measured in the linearized image and created a scatter plot. Second, we obtained
parameters necessary for radial alignment (along y-axis) of cell centers. For this purpose, we
searched the longitudinal positions (along x-axis) along the organ of Corti, where a zone with
the width of 8 nmm (a gray zone in Appendix 2Bbfigure 12 ) contained more than two cell
centers (three black points within the gray zone in Appendix 2bfigure 12 ). When the zone
was found, two values, the averaged x coordinates (red circle in Appendix 2Bfigure 12 ) and
the largest and smallest y coordinates (red line in Appendix 2bfigure 12 ) of cell centers,
were calculated for this zone. The former value was used as a reference of the center position
of the epithelium and the latter value as a reference of its width ( Wy). The vertical widths
(subtraction of the largest and smallest y coordinates) were interpolated linearly along the
x-axis and used for normalizing the y coordinates of cell centers. Third, we obtained
parameters necessary for longitudinal alignment (along x-axis) of cell centers. For this purpose,
we searched all the cell centers and created rectangles with their edge lengths of 24 mm along
the x-axis and 8 nm along the y-axis with their centers aligned with the cell centers (a red
point and a gray rectangle in Appendix 2bfigure 13 ). Distances between the original cell
center and the center of the nearest cell within the rectangle along x-axis were calculated
(Wx). The averages were calculated with 100 nm intervals along the x-axis and interpolated
linearly. Fourth, the coordinates of the cell centers were normalized using averaged Wx and
Wy values to equalize the horizontal and vertical distances and to keep the distances uniform
along the organ of Corti ( Figure 2F in the main text).

Appendix 2bfigure 12.  Procedures of obtaining parameters necessary for radial alignment
(along y-axis) of cell centers. Calculation of an averaged y position of the cell group (a red circle)
and a vertical spread of the cell group (a red vertical line). These two parameters were
calculated in the area (colored in gray) containing more than two “cell centers'. Black dots
indicate the positions of “cell centers', and the variable x ¢ indicates the x-coordinate of the
averaged cell center within the gray area.

DOI: https://doi.org/10.7554/eLife.40946.036
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Appendix 2bfigure 13.  Procedures of obtaining parameters necessary for longitudinal align-
ment (along x-axis) of cell centers. Calculation of the horizontal distance between adjacent cells
(red horizontal line). The nearest cell in the rectangular area (colored in gray) was selected for
the calculation. The variables xo and yg are the coordinates of the parental cell center (red

dot).

DOI: https://doi.org/10.7554/eL ife.40946.037

A binary image of the normalized epithelium was created based on the equalized
coordinates of cell centers (Figure 2G in the main text). The coordinates projected onto an
image were adjusted to have the average distances between neighbors in x and y as five
pixels. The horizontal center line of the image was set to be on the line y = 0. The height of
image was set to 15 pixels and the width was adjusted to the range of x coordinates. Then
squares of 5 5 pixels centered on each cell point were drawn on the image. Small holes
were removed by a morphological closing operation. The empty spaces in the image were
considered to be the putative cell loss sites.

The estimated amount of cell loss in the entire organ of Corti or in specific areas was shown
as either the number of pixels in the empty spaces ( Figure 3D and Figure 3bfigure
supplement 1B ) or the cell number obtained by the formula n~ 5z, where n is the estimated
number of cell loss and v is the area of each connected region. The estimated number of cell
loss was rounded off to the nearest integer ( Figure 3A,B and Figure 3bfigure supplement
1A,C). For the simulation analysis of cell loss models, the same formula was used for the
estimated number of cell loss (Figure 4 and Figure 4bfigure supplement1 ).

In case of transferring to other programming language

The MATLAB scripts can be viewed on the website of GitHub without installation of MATLAB
environment. The scripts have modular architecture, and the inputs and outputs of each
module are annotated in the scripts. It would be relatively easy to transfer to the language
which can preserve the architecture, such as C/C ++ or Python, by transferring the modules
one by one. As there are several built-in functions specific to MATLAB (ex. “findpeaks'),
however, alternative means would be needed in some cases. Please refer to the website of
MathWorks for the syntax and built-in functions of MATLAB in such cases ( https:// iwww.
mathworks.com). In our scripts, the names of modules we made are written in upper camel
case. The variables are written in lower camel case, and the constants in all capital letters. The
names of built-in functions are written in lower case. Regarding how to train machine learning
models, please refer to the "Training of machine learning models' section above. Feel free to
contact the corresponding author in case you have questions regarding the contents of the
code. We would consider the transfer to other programming languages as needed.
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