

1 SCIENCE FORUM

2 **The Brazilian Reproducibility Initiative**

3
4 Most efforts to estimate the reproducibility of published findings have focused on specific areas of
5 research, even though science is usually assessed and funded on a regional or national basis.

6 Here we describe a project to assess the reproducibility of findings in biomedical science published
7 by researchers based in Brazil. The Brazilian Reproducibility Initiative is a systematic, multi-center
8 effort to repeat between 60 and 100 experiments: the project will focus on a set of common
9 laboratory methods, repeating each experiment in three different laboratories. The results, due in
10 2021, will allow us to estimate the level of reproducibility of biomedical science in Brazil, and to
11 investigate what the published literature can tell us about the reproducibility of research in a given
12 area.

13
14
15 Olavo B Amaral*, Kleber Neves, Ana P Wasilewska-Sampaio, Clarissa FD Carneiro

16 *Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de
17 Janeiro, Brazil*

18 Corresponding author: olavo@bioqmed.ufrj.br

20 **Introduction**

21 Concerns about the reproducibility of published results in certain areas of biomedical research
22 were initially raised by theoretical models (Ioannidis, 2005a), systematic reviews of the existing
23 literature (Ioannidis, 2005b) and alarm calls by the pharmaceutical industry (Begley & Ellis, 2012a;
24 Begley & Ellis, 2012b; Prinz et al., 2011). These concerns have subsequently been covered both
25 in scientific journals (see, for example, Baker, 2016) and in the wider media (Economist, 2013; Harris,
26 2017). While funding agencies have expressed concerns about reproducibility (see, for example,
27 Collins & Tabak, 2014), efforts to replicate published findings in specific areas of research have
28 mostly been conducted by bottom-up collaborations and supported by private funders. The
29 Reproducibility Project: Psychology, which systematically reproduced 100 articles in psychology
30 (Open Science Collaboration, 2015), was followed by similar initiatives in the fields of experimental
31 economics (Camerer et al., 2016), philosophy (Cova et al., 2018) and social sciences (Camerer et
32 al., 2018), with replication rates ranging between 36 and 78%. Two projects in cancer biology (both
33 involving the Center for Open Science and Science Exchange) are currently ongoing (Errington et
34 al., 2014; Tan et al., 2015).

35 Although such projects are very welcome, they are all limited to specific research topics or
36 communities. Moreover, apart from the two projects in cancer biology, most have focused on areas
37 of research in which experiments are relatively inexpensive and straightforward to perform: this
38 means that the reproducibility of many areas of biomedical research has not been studied.
39 Moreover, although scientific research is mostly funded and evaluated at a regional or national
40 level, the reproducibility of research has not, to our knowledge, been studied at these levels. To
41 begin to address this gap, we have obtained funding from the Serrapilheira Institute, a recently
42 created nonprofit institution, in order to systematically assess the reproducibility of biomedical
43 research in Brazil.

44 Our aim is to replicate between 60 and 100 experiments from life sciences articles published by
45 researchers based in Brazil, focusing on common methods and performing each experiment at
46 multiple sites within a network of collaborating laboratories in the country. This will allow us to
47 estimate the level of reproducibility of research published by biomedical scientists in Brazil, and to
48 investigate if there are aspects of the published literature that can help to predict whether a finding
49 is reproducible.

50

51

52 **Brazilian science in a nutshell**

53 Scientific research in Brazil started to take an institutional form in the second half of the 20th
54 century, despite the earlier existence of important organizations such as the Brazilian Academy of
55 Sciences (established in 1916) and the Universities of Brazil (later the Federal University of Rio de

56 Janeiro) (1920) and São Paulo (1934). In 1951, the federal government created the first national
57 agency dedicated to funding research (CNPq), as well as a separate agency to oversee
58 postgraduate studies (CAPES), although graduate-level education was not formalized in Brazil until
59 1965 (Schwartzman, 2001). CNPq and CAPES remain the major funders of Brazilian academic
60 science.

61
62 As the number of researchers increased, CAPES took up on the challenge of creating a national
63 evaluation system for graduate education programs in Brazil (Barata, 2016). In the 1990s, the
64 criteria for evaluation began to include quantitative indicators, such as numbers of articles
65 published. In 1998, significant changes were made with the aim of trying to establish articles in
66 international peer-reviewed journals as the main goal, and individual research areas were left free
67 to design their own criteria for ranking journals. In 2007, amidst the largest-ever expansion in the
68 number of federal universities, the journal ranking system in the life sciences became based on
69 impact factors for the previous year, and remains so to this day (CAPES, 2016).

70
71 Today, Brazil has over 200,000 PhDs, with more than 10,000 graduating every year (CGEE, 2016).
72 Although the evaluation system is seen as an achievement, it is subject to much criticism, revolving
73 around the centralizing power of CAPES (Hostins, 2006) and the excessive focus on quantitative
74 metrics (Pinto & Andrade, 1999). Many analysts criticize the country's research as largely
75 composed of "salami science", growing in absolute numbers but lacking in impact, originality and
76 influence (Righetti, 2013). Interestingly, research reproducibility has been a secondary concern in
77 these criticisms, and awareness of the issue has begun to rise only recently.

78
79 With the economic and political crisis afflicting the country since 2014, science funding has
80 suffered a sequence of severe cuts. As the Ministry for Science and Technology was merged with
81 that of Communications, a recent constitutional amendment essentially froze science funding at
82 2016 levels for 20 years (Angelo, 2016). The federal budget for the Ministry suffered a 44% cut in
83 2017 and reached levels corresponding to roughly a third of those invested a decade earlier
84 (Floresti, 2017), leading scientific societies to position themselves in defense of research funding (,
85 2018). Concurrently, CAPES has initiated discussions on how to reform its evaluation system
86 (Academia Brasileira de Ciências, 2018). At this delicate moment, in which a new federal
87 government is about to take office, an empirical assessment of the country's scientific output
88 seems warranted to inform such debates.

89
90
91 **The Brazilian Reproducibility Initiative: aims and scope**

92 The Brazilian Reproducibility Initiative was started in early 2018 as a systematic effort to evaluate
93 the reproducibility of Brazilian biomedical science. Openly inspired by multicenter efforts such as

94 the Reproducibility Project: Psychology (Open Science Collaboration, 2015), the Reproducibility
95 Project: Cancer Biology (Errington et al., 2014) and the Many Labs projects (Ebersole et al., 2016;
96 Klein et al., 2014; Klein et al., 2018), our goal is to replicate between 60 and 100 experiments from
97 published Brazilian articles in the life sciences, focusing on common methods and performing each
98 experiment in multiple sites within a network of collaborating laboratories. The project's
99 coordinating team at the Federal University of Rio de Janeiro is responsible for the selection of
100 methods and experiments, as well as for the recruitment and management of collaborating labs.
101 Experiments are set to begin in mid-2019, in order for the project to achieve its final results by
102 2021.

103
104 Any project with the ambition of estimating the reproducibility of a country's science is inevitably
105 limited in scope by the expertise of the participating teams. However, we will aim for the most
106 representative sample that can be achieved without compromising feasibility, through the use of
107 the strategies described below. Nevertheless, representativeness will be limited by the selected
108 techniques and biological models, as well as by our inclusion and exclusion criteria – which include
109 the cost and commercial availability of materials and the expertise of the replicating labs.
110

111 *Focus on individual experiments*

112 Our first choice was to base our sample on experiments rather than articles. As studies in basic
113 biomedical science usually involve many experiments with different methods revolving around a
114 hypothesis, trying to reproduce a whole study, or even its main findings, can be cumbersome for a
115 large-scale initiative. Partly because of this, the Reproducibility Project: Cancer Biology (RP:CB),
116 which had originally planned to reproduce selected main findings from 50 studies, has been
117 downsized to fewer than 20 (Kaiser, 2018). Moreover, in some cases RP:CB has been able to
118 reproduce parts of a study but has also obtained results that cannot be interpreted or are not
119 consistent with the original findings. Furthermore, the individual Replication Studies published by
120 RP:CB do not say if a given replication attempt has been successful or not: rather, the project uses
121 multiple measures to assess reproducibility.
122
123

124 Contrary to studies, experiments have well defined effect sizes, and although different criteria can
125 be used for what constitutes a successful replication (Goodman et al., 2016; Open Science
126 Collaboration, 2015), they can be defined objectively, allowing a quantitative assessment of
127 reproducibility. Naturally, there is a downside in that replication of a single experiment is usually not
128 enough to confirm or refute the conclusions of an article (Camerer et al., 2018). However, if one's
129 focus is not on the studies themselves, but rather on evaluating reproducibility on a larger scale,
130 we believe that experiments represent a more manageable unit than studies.
131

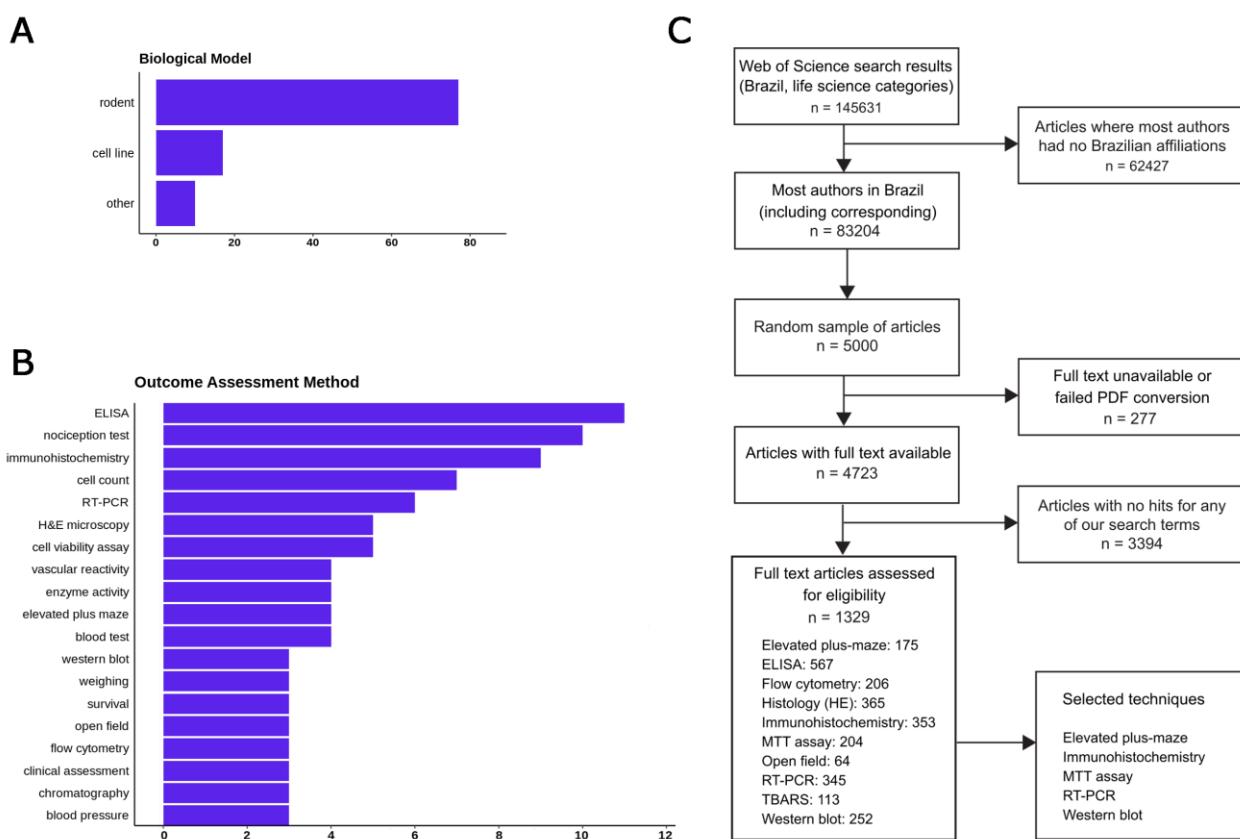
132

133

134 *Selection of methods*

135 No replication initiative, no matter how large, can aim to reproduce every kind of experiment. Thus,
136 our next choice was to limit our scope to common methodologies that are widely available in the
137 country, in order to ensure that we will have a large enough network of potential collaborators. To
138 provide a list of candidate methods, we started by performing an initial review of a sample of
139 articles in Web of Science life sciences journals published in 2017, filtering for papers which: a)
140 had all authors affiliated with a Brazilian institution; b) presented experimental results on a
141 biological model; c) did not use clinical or ecological samples. One hundred randomly selected
142 articles had data extracted concerning the models, experimental interventions and methods used
143 to analyze outcomes: the main results are shown in Figure 1A and B. A more detailed protocol for
144 this step is available at <https://osf.io/f2a6y/>.

145


146

147 Based on this initial review, we restricted our scope to experiments using rodents and cell lines,
148 which were by far the most prevalent models (present in 77% and 16% of articles, respectively).
149 After a first round of automated full-text assessment of 5000 Brazilian articles between 1998 and
150 2017, we selected 10 commonly used techniques (Figure 1C) as candidates for replication
151 experiments. An open call for collaborating labs within the country was then set up, and labs were
152 allowed to register through an online form for performing experiments with one or more of these
153 techniques and models during a three-month period. After this period, we used this input (as well
154 as other criteria such as cost analysis) to select five methods for the replication effort: MTT assay,
155 reverse transcriptase polymerase chain reaction (RT-PCR), elevated plus maze, western blot and
156 immunohisto/cytochemistry. We are starting the project with the first three methods, while inclusion
157 of the latter two will be confirmed after a more detailed cost analysis based on the fully developed
158 protocols.

159

160
161

Figure 1

162
163

Figure 1: Selecting papers for replication in the Brazilian Reproducibility Initiative

164 (A) Most frequent biological models used in main experiments within a sample of 100 Brazilian life
165 sciences articles. (B) Most frequent methods used for quantitative outcome detection in these
166 experiments. 'Cell count', 'enzyme activity' and 'blood tests' include various experiments for which
167 methodologies vary and/or are not described fully in articles. Nociception tests, although frequent,
168 were not considered for replication due to animal welfare considerations. (C) Flowchart describing
169 the first full-text screening round to identify articles in our candidate techniques, which led us to
170 select our final set of five methods.

171
172

173 We are currently selecting articles using these techniques by full-text screening of a random
174 sample of life sciences articles from the past 20 years in which most of the authors, including the
175 corresponding one, are based in a Brazilian institution. From each of these articles, we select the
176 first experiment using the technique of interest, defined as a quantitative comparison of a single
177 outcome between two experimental groups. Although the final outcome of the experiment should
178 be assessed using the method of interest, other laboratory techniques are likely to be involved in
179 the model and experimental procedures that precede this step.

180

181 We will restrict our sample to experiments that: a) represent one of the main findings of the article,
182 defined by mention of its results in the abstract; b) present significant differences between groups,
183 in order to allow us to perform sample size calculations; c) use commercially available materials; d)
184 have all experimental procedures falling within the expertise of at least three laboratories in our
185 network; e) have an estimated cost below 0.5% of the project's total budget. For each included
186 technique, 20 experiments will be selected, with the biological model and other features of the
187 experiment left open to variation in order to maximize representativeness. A more detailed protocol
188 for this step is available at <https://osf.io/57f8s/>.

189
190 After experiments are selected, we will record each study's methods description in standardized
191 description forms, which will be used to define replication protocols. These experiments will then
192 be assigned to three laboratories each by the coordinating team, which will confirm that they have
193 the necessary expertise in order to perform it.

194
195 *Multicenter replication*

196 A central tenet of our project is that replication should be performed in multiple laboratories. As
197 discussed in other replication projects (Errington et al., 2014; Gilbert et al., 2016; Open Science
198 Collaboration, 2015) a single failed replication is not enough to refute the original finding, as there
199 are many reasons that can explain discrepancies between results (Goodman et al., 2016). While
200 some of them – such as misconduct or bias in performing or analyzing the original experiment –
201 are problematic, others – such as unrecognized methodological differences or chance – are not
202 necessarily as alarming. Reproducibility estimates based on single replications cannot distinguish
203 between these causes, and can thus be misleading in terms of their diagnoses (Jamieson, 2018).

204
205 This problem is made worse by the fact that data on inter-laboratory variability for most methods is
206 scarce: even though simulations demonstrate that multicenter replications are an efficient way to
207 improve reproducibility (Voelkl et al., 2018), they are exceedingly rare in most fields of basic
208 biomedical science. Isolated attempts at investigating this issue in specific fields have shown that,
209 even when different labs try to follow the same protocol, unrecognized methodological variables
210 can still lead to a large amount of variation (Crabbe et al., 1999; Hines et al., 2014; Massonnet et
211 al., 2010). Thus, it might be unrealistic to expect that reproducing a published experiment – for
212 which protocol details will probably be lacking (Hair et al., 2018; Kilkenny et al., 2009) – will yield
213 similar results in a different laboratory.

214
215 In our view, the best way to differentiate irreproducibility due to bias or error from that induced by
216 methodological variables alone is to perform replications at multiple sites. In this way, an estimate
217 of inter-laboratory variation can be obtained for every experiment, allowing one to analyze whether
218 the original result falls within the expected variation range. Multicenter approaches have been used

219 successfully in the area of psychology (Ebersole et al., 2016; Klein et al., 2014; Klein et al., 2018),
220 showing that some results are robust across populations, while others do not reproduce well in any
221 of the replication sites.

222
223 Our plan for the Brazilian Reproducibility Initiative is to perform each individual replication in at
224 least three different laboratories; this, however, opens up questions about how much
225 standardization is desirable. Although one should follow the original protocol in a direct replication,
226 there are myriad steps that will not be well described. And while some might seem like glaring
227 omissions, such as the absence of species, sex and age information in animal studies (Kilkenny et
228 al., 2009), others might simply be overlooked variables: for example, how often does one describe
229 the exact duration and intensity of sample agitation (Hines et al., 2014)? When conditions are not
230 specified, one is left with two choices. One of them is to standardize steps as much as possible,
231 building a single, detailed replication protocol for all labs. However, this will reduce inter-laboratory
232 variation to an artificially low level, making the original experiment likely to fall outside the effect
233 range observed in the replications.

234
235 To avoid this, we will take a more naturalistic approach. Although details included in the original
236 article will be followed explicitly in order for the replication to be as direct as possible, steps which
237 are not described will be left open for each replication team to fill based on their best judgment.
238 Replication teams will be required to record those choices in detailed methods description forms,
239 but it is possible – and desirable – for them to vary according to each laboratory’s experience.
240 Methodological discrepancies in this case should approach those observed between research
241 groups working independently, providing a realistic estimate of inter-laboratory variation for the
242 assessment of published findings. This approach will also allow us to explore the impact of
243 methodological variation on the experimental results – a topic perhaps as important as
244 reproducibility itself – as a secondary outcome of the project.

245
246 A central issue in other replication projects has been engagement with the original authors in order
247 to revise protocols. While we feel this is a worthy endeavor, the rate of response to calls for sharing
248 protocols, data or code is erratic (Hardwicke & Ioannidis, 2018; Stodden et al., 2018; Wicherts et
249 al., 2011). Moreover, having access to unreported information is likely to overestimate the
250 reproducibility of a finding based on published information, leading results to deviate from a
251 ‘naturalistic’ estimate of reproducibility (Coyne, 2016). Thus, although we will contact the original
252 authors for protocol details when these are available, in order to assess methodological variation
253 between published studies and replications, this information will not be made available to the
254 replication teams. They will receive only the protocol description from the published article, with no
255 mention of its results or origin, in order to minimize bias. While we cannot be sure that this form of

256 blinding will be effective, as experiments could be recognizable by scientists working in the same
257 field, replicating labs will be stimulated not to seek this information.

258
259 Lastly, although non-described protocol steps will be left open to variation, methodological issues
260 that are consensually recognized to reduce error and bias will be enforced. Thus, bias control
261 measures such as blinding of researchers to experimental groups will be used whenever possible,
262 and sample sizes will be calculated to provide each experiment with a power of 95% to detect the
263 original difference – as in other surveys, we are setting our power estimates at a greater than usual
264 rate due to the recognition that the original results are likely to be inflated by publication bias.
265 Moreover, if additional positive and/or negative controls are judged to be necessary to interpret
266 outcomes, they will also be added to the experiment.

267
268 To ensure that these steps are followed – as well as to adjudicate on any necessary protocol
269 adaptations, such as substitutions in equipment or materials – each individual protocol will be
270 reviewed after completion in a round-robin approach (Silberzahn et al., 2018) by (i) the project's
271 coordinating team and (ii) an independent laboratory working with the same technique that is not
272 directly involved in the replication. Each of the three protocol versions of every experiment will be
273 sent to a different reviewing lab, in order to minimize the risk of over-standardization. Suggestions
274 and criticisms to the protocol will be sent back to the replicating team, and experiments will only
275 start after both labs and the coordinating team reach consensus that the protocol: a) does not
276 deviate excessively from the published one and can be considered a direct replication: b) includes
277 all necessary bias control measures and controls to ensure the validity of the results.

278
279
280 **Evaluating replications**

281 As previous projects have shown, there are many ways to define a successful replication, all of
282 which have caveats. Reproducibility of the general conclusions on the existence of an effect (e.g.
283 two results finding a statistically significant difference in the same direction) might not be
284 accompanied by reproducibility of the effect size; conversely, studies with effect sizes that are
285 similar to each other might have different outcomes in significance tests (Simonsohn, 2015).
286 Moreover, if non-replication occurs, it is hard to judge whether the original study or the replication is
287 closer to the true result. Although one can argue that, if replications are conducted in an unbiased
288 manner and have higher statistical power, they are more likely to be accurate, the possibility of
289 undetected methodological differences preclude one from attributing non-replication to failures in
290 the original studies.

291
292 Multisite replication is a useful way to circumvent some of these controversies, as if the variation
293 between unbiased replications in different labs is known, it is possible to determine whether the

294 original result is within this variability range. Thus, the primary outcome of our analysis will be the
295 percentage of original studies with effect sizes falling within the 95% prediction interval of a meta-
296 analysis of the three replications. Nevertheless, we acknowledge that this definition also has
297 caveats: if inter-laboratory variability is high, prediction intervals can be wide, leading a large
298 amount of results to be considered “reproducible”. Thus, replication estimates obtained by these
299 methods are likely to be optimistic. On the other hand, failed replications will be more likely to
300 reflect true biases, errors or deficiencies in the original experiments (Patil et al., 2016).

301
302 An additional problem is that, given our naturalistic approach to reproducibility, incomplete
303 reporting in the original study might increase inter-laboratory variation and artificially improve our
304 primary outcome. With this in mind, we will include other ways to define reproducibility as
305 secondary outcomes, such as the statistical significance of the pooled replication studies, the
306 significance of the effect in a meta-analysis including the original result and replication attempts,
307 and a statistical comparison between the pooled effect sizes of the replications and the original
308 result. We will also examine thoroughness of methodological reporting as an independent
309 outcome, in order to evaluate the possibility of bias caused by incomplete reporting.

310
311 Moreover, we will explore correlations between results and differences in particular steps of each
312 technique; nevertheless, we cannot know in advance whether methodological variability will be
313 sufficient to draw conclusions on these issues. As each experiment will be performed in only three
314 labs, while there are myriad steps to each technique, it is unlikely that we will be able to pinpoint
315 specific sources of variation between results of individual experiments. Nevertheless, by
316 quantifying the variation across protocols for the whole experiment, as well as for large sections of
317 it (model, experimental intervention, outcome detection), we can try to observe whether the degree
318 of variation correlates with variability in results. Such analyses, however, will only be planned once
319 protocols are completed, so as to have a better idea of the range of variability across them.

320
321 Finally, we will try to identify factors in the original studies that can predict reproducibility, as such
322 proxies could be highly useful to guide the evaluation of published science. These will include
323 features shown to predict reproducibility in previous work, such as effect sizes, significance levels
324 and subjective assessment by prediction markets (Dreber et al., 2015; Camerer et al., 2016, 2018;
325 Open Science Collaboration, 2015); the pool of researchers used for the latter, however, will be
326 different from those performing replications, so as not to compromise blinding with respect to study
327 source and results. Other factors to be investigated include: a) the presence of bias control
328 measures in the original study, such as blinding and sample size calculations; b) the number of
329 citations and impact factor of the journal; c) the experience of the study’s principal investigator; d)
330 the Brazilian region of origin; e) the technique used; f) the type of biological model; g) the area of
331 research. As our sample of experiments will be obtained randomly, we cannot ensure that there

332 will be enough variability in all factors to explore them meaningfully. Nevertheless, we should be
333 able to analyze some variables that have not been well explored in previous replication attempts,
334 such as 'impact' defined by citations and publication venues, as most previous studies have
335 focused on particular subsets of journals (Camerer et al., 2018; Open Science Collaboration, 2015)
336 or impact tiers (Errington et al., 2014; Ioannidis, 2005b).

337
338 A question that cannot be answered directly by our study design is whether any correlations found
339 in our sample of articles can be extrapolated to different methods in Brazilian biomedical science,
340 as well as to other regions of the world. For some factors, including the reproducibility estimates
341 themselves and their correlation with local variables, extrapolations to the international scenario
342 are clearly not warranted. On the other hand, relationships between reproducibility and
343 methodological variables, as well as with article features, can plausibly apply to other countries,
344 although this can only be known for sure by performing studies in other regions.

345
346 All of our analyses will be preregistered at the Open Science Framework in advance of data
347 collection. All our datasets will be made public and updated progressively as replications are
348 performed – a process planned to go on until 2021. As an additional measure to promote
349 transparency and engage the Brazilian scientific community in the project, we are posting our
350 methods description forms for public consultation and review (see
351 <http://reprodutibilidade.bio.br/public-consultation>), and will do so for the analysis plan as well.

352
353
354 **Potential challenges**

355 A multicenter project involving the replication of experiments in multiple laboratories across a
356 country of continental proportions is bound to meet challenges. The first of them is that the project
357 is fully dependent on the interest of Brazilian laboratories to participate. Nevertheless, the
358 response to our first call for collaborators exceeded our expectations, reaching a total of 71
359 laboratories in 43 institutions across 19 Brazilian states. The project received coverage by the
360 Brazilian media (Ciscati, 2018; Neves & Amaral, 2018; Pesquisa FAPESP, 2018) and achieved
361 good visibility in social networks, contributing to this widespread response. While we cannot be
362 sure that all laboratories will remain in the project until its conclusion, it seems very likely that we
363 will have the means to perform our full set of replications, particularly as laboratories will be funded
364 for their participation.

365
366 Concerns also arise from the perception that replicating other scientists' work indicates mistrust of
367 the original results, a problem that is potentiated by the conflation of the reproducibility debate with
368 that on research misconduct (Jamieson, 2018). Thus, from the start, we are taking steps to ensure
369 that the project is viewed as we conceive it: a first-person initiative of the Brazilian scientific

370 community to evaluate its own practices. We will also be impersonal in our choice of results to
371 replicate, working with random samples and performing our analysis at the level of experiments;
372 thus, even if a finding is not deemed reproducible, this will not necessarily invalidate an article's
373 conclusions or call a researcher into question.

374

375 An additional challenge is to ensure that participating labs have sufficient expertise with a
376 methodology or model to provide accurate results. Ensuring that the original protocol is indeed
377 being followed is likely to require steps such as cell line/animal strain authentication and positive
378 controls for experimental validation. Nevertheless, we prefer this naturalistic approach to the
379 alternative of providing each laboratory with animals or samples from a single source, which would
380 inevitably underestimate variability. Moreover, while making sure that a lab is capable of
381 performing a given experiment adequately is a challenge we cannot address perfectly, this is a
382 problem of science as a whole – and if our project can build expertise on how to perform minimal
383 certification of academic laboratories, this could be useful for other purposes as well.

384

385 A final challenge will be to put the results into perspective once they are obtained. Based on the
386 results of previous reproducibility projects, a degree of irreproducibility is expected and may raise
387 concerns about Brazilian science, as there will be no estimates from other countries for
388 comparison. Nevertheless, our view is that, no matter the results, they are bound to put Brazil at
389 the vanguard of the reproducibility debate, if only because we will likely be the first country to
390 produce such an estimate.

391

392

393 **Conclusions**

394 With the rise in awareness over reproducibility issues, systematic replication initiatives have begun
395 to develop in various research fields (Camerer et al., 2016, 2018; Cova et al., 2018; Errington et
396 al., 2014; Open Science Collaboration, 2015; Tan et al., 2015). Our study offers a different
397 perspective on the concept, covering different research areas in the life sciences with focus in a
398 particular country.

399

400 This kind of initiative inevitably causes controversy both on the validity of the effort (Coyne, 2016;
401 Nature Medicine, 2016) and on the interpretation of the results (Baker & Dolgin, 2017; Gilbert et al.,
402 2016; Patil et al., 2016). Nevertheless, multicenter replication efforts are as much about the
403 process as about the data. Thus, if we attain enough visibility within the Brazilian scientific
404 community, a large part of our mission – fostering the debate on reproducibility and how to
405 evaluate it – will have been achieved. Moreover, it is healthy for scientists to be reminded that self-
406 correction and confirmation are a part of science, and that published findings are passive of
407 independent replication. There is still much work to be done in order for replication results to be

408 incorporated into research assessment (Ioannidis, 2014; Munafò et al., 2017), but this kind of
409 reminder by itself might conceivably be enough to initiate cultural and behavioral change.
410

411 Finally, for those involved as collaborators, one of the main returns will be the experience of
412 tackling a large scientific question collectively in a transparent and rigorous way. We believe that
413 large-scale efforts can help to lead an overly competitive culture back to the Mertonian ideal of
414 communality, and hope to engage not only collaborators but the Brazilian scientific community at
415 large through data sharing, public consultations and social media (centered in our website at
416 <http://reprodutibilidade.bio.br/home>). The life sciences community in Brazil is large enough to need
417 this kind of challenge, but perhaps still small enough to answer cohesively. We thus hope that the
418 Brazilian Reproducibility Initiative, through its process as much as through its results, can have a
419 positive impact on the scientific culture of our country for years to come.
420
421

422 **References**

423 Academia Brasileira de Ciências. (2018). Considerações sobre o processo de avaliação da pós-
424 graduação da Capes. Rio de Janeiro, RJ, Brazil.
425 http://www.abc.org.br/IMG/pdf/documento_pg_da_abc_22032018_fim.pdf [Accessed, January 25,
426 2019]

427 Angelo, C. (2016). Brazil's scientists battle to escape 20-year funding freeze. *Nature* 539:480.

428 Baker, M. (2016). Is there a reproducibility crisis? *Nature* 533:452–454.

429 Baker, M., & Dolgin, E. (2017). Reproducibility project yields muddy results. *Nature* 541:269–270.

430 Barata, R. C. B. (2016). Dez coisas que você deveria saber sobre o Qualis. *Revista Brasileira de*
431 *Pós-Graduação* 13:13-40. doi: 10.21713/2358-2332.2016.v13.947

432 Begley, C. G., & Ellis, L. M. (2012a). Drug development: Raise standards for preclinical cancer
433 research. *Nature* 483: 531–533.

434 Begley, C. G., & Ellis, L. M. (2012b). Editorial note. *Nature* 485:41.

435 Camerer, C. F., Dreber, A., Forsell, E., Ho, T.-H., Huber, J., Johannesson, M., Kirchler, M.,
436 Almenberg, J., Altmejd, A., Chan, T., Heikensten, E., Holzmeister, F., Imai1, T., Isaksson, S.,
437 Nave1, G., Pfeiffer, T., Razen, M. & Wu, H. (2016). Evaluating replicability of laboratory
438 experiments in economics. *Science* 351:1433–1436.

439 Camerer, C. F., Dreber, A., Holzmeister, F., Ho, T.-H., Huber, J., Johannesson, M., Kirchler, M.,
440 Nave, G., Nosek, B. A., Pfeiffer, T., Altmejd, A., Buttrick, N., Chan, T., Chen, Y., Forsell, E.,
441 Gampa, A., Heikensten, E., Hummer, L., Imai,T., Isaksson, S., Manfredi, D., Rose, J.,
442 Wagenmakers, E-J. & Wu, H. (2018). Evaluating the replicability of social science experiments in
443 *Nature and Science* between 2010 and 2015. *Nature Human Behaviour* 2:637-644.

444 CAPES (2016). Considerações sobre Qualis Periódicos. Retrieved from:
445 http://capes.gov.br/images/documentos/Qualis_periodicos_2016/Consider%C3%A7%C3%B5es_q
446 ualis_Biol%C3%B3gicas_II.pdf [Accessed, January 25, 2019]
447 CGEE (2016). Mestres e Doutores 2015.
448 https://www.cgee.org.br/documents/10182/734063/Mestres_Doutores_2015_Vs3.pdf. [Accessed,
449 January 25, 2019]
450 Ciscati, R. (2018). Projeto vai replicar experimentos de cientistas brasileiros para checar sua
451 eficiência. Jornal O Globo. Retrieved from: <https://oglobo.globo.com/sociedade/ciencia/projeto-vai->
452 replicar-experimentos-de-cientistas-brasileiros-para-checlar-sua-eficiencia-22615152 [Accessed,
453 January 25, 2019]
454 Collins, F. S., & Tabak, L. A. (2014). NIH plans to enhance reproducibility. *Nature* 505:612–613.
455 Cova, F., Strickland, B., Abatista, A., Allard, A., Andow, J., Attie, M., Beebe, J., Berniūnas, R.,
456 Boudesseul, J., Colombo, M., Cushman, F., Diaz, R., van Dongen, N.D.N., Dranseika, V., Earp,
457 B.D., Torres, A.G., Hannikainen, I., Hernández-Conde, J.V., Hu, W., Jaquet, F., Khalifa, K., Kim, H.,
458 Kneer, M., Knobe, J., Kurthy, M., Lantian, A., Liao, S., Machery, E., Moerenhout, T., Mott, C.,
459 Phelan, M., Phillips, J., Rambharose, N., Reuter, K., Romero, F., Sousa, P., Sprenger, J.,
460 Thalabard, E., Tobia, K., Viciana, H., Wilkenfeld, D. & Zhou, X. (2018). Estimating the
461 Reproducibility of Experimental Philosophy. *Review of Philosophy and Psychology*. DOI:
462 10.1007/s13164-018-0400-9
463 Coyne, J. C. (2016). Replication initiatives will not salvage the trustworthiness of psychology. *BMC*
464 *Psychology* 4:28
465 Crabbe, J. C., Wahlsten, D., & Dudek, B. C. (1999). Genetics of Mouse Behavior: Interactions with
466 Laboratory Environment. *Science* 284:1670-2.
467 Dreber, A., Pfeiffer, T., Almenberg, J., Isaksson, S., Wilson, B., Chen, Y., Nosek, B.A., &
468 Johannesson, M. (2015). Using prediction markets to estimate the reproducibility of scientific
469 research. *PNAS* 50:15343-15347.
470 Ebersole, C. R., Atherton, O. E., Belanger, A. L., Skulborstad, H. M., Allen, J. M., Banks, J. B., et
471 al. (2016). Many Labs 3: Evaluating participant pool quality across the academic semester via
472 replication. *Journal of Experimental Social Psychology* 67:68–82.
473 Economist (2013). Trouble at the lab. *The Economist*. Retrieved from:
474 <https://www.economist.com/briefing/2013/10/18/trouble-at-the-lab> [Accessed, January 25, 2019]
475 Errington, T. M., Iorns, E., Gunn, W., Tan, F. E., Lomax, J. & Nosek, B. A. (2014). An open
476 investigation of the reproducibility of cancer biology research. *eLife* 3:e04333.
477 Floresti, F. (2017). A ciência brasileira vai quebrar? *Revista Galileu*. Retrieved from:
478 <https://revistagalileu.globo.com/Revista/noticia/2017/09/ciencia-brasileira-vai-quebrar.html>
479 [Accessed, January 25, 2019]
480 Gilbert, D. T., King, G., Pettigrew, S., & Wilson, T. D. (2016). Comment on “Estimating the
481 reproducibility of psychological science”. *Science* 351:1037.

482 Goodman, S. N., Fanelli, D., & Ioannidis, J. P. A. (2016). What does research reproducibility
483 mean? *Science Translational Medicine* 8:341ps12.

484 Hair, K., Macleod, M. R., Sena, E. S., & The IICARus Collaboration. (2018). A randomised
485 controlled trial of an Intervention to Improve Compliance with the ARRIVE guidelines (IICARus).
486 bioRxiv. DOI: 10.1101/370874

487 Hardwicke, T. E., & Ioannidis, J. P. A. (2018). Populating the Data Ark: An attempt to retrieve,
488 preserve, and liberate data from the most highly-cited psychology and psychiatry articles. *PLoS*
489 *ONE* 13:e0201856.

490 Harris, R. (2017). *Rigor Mortis*. New York: Basic Books

491 Hines, W. C., Su, Y., Kuhn, I., Polyak, K., & Bissell, M. J. (2014). Sorting out the FACS: a devil in
492 the details. *Cell Reports* 6:779–81.

493 Hostins, R. C. L. (2006). Os Planos Nacionais de Pós-graduação (PNPG) e suas repercussões na
494 pós-graduação brasileira. *Perspectiva* 24:133–160. URL:
495 <https://periodicos.ufsc.br/index.php/perspectiva/article/view/10315/9578> [Accessed, January 25,
496 2019]

497 Ioannidis, J. P. A. (2005a). Why most published research findings are false. *PLoS Medicine*
498 2:e124.

499 Ioannidis, J. P. A. (2005b). Contradicted and initially stronger effects in highly cited clinical
500 research. *JAMA* 294:218-228.

501 Ioannidis, J. P. A. (2014). How to make more published research true. *PLoS Medicine*
502 11:e1001747.

503 Jamieson, K. H. (2018). Crisis or self-correction: Rethinking media narratives about the well-being
504 of science. *PNAS* 115:2620–2627.

505 Kaiser, J. (2018). Plan to replicate 50 high-impact cancer papers shrinks to just 18. *Science*. DOI:
506 10.1126/science.aau9619

507 Kilkenny, C., Parsons, N., Kadyszewski, E., Festing, M. F. W., Cuthill, I. C., Fry, D., Hutton, J. &
508 Altman, D. G. (2009). Survey of the quality of experimental design, statistical analysis and
509 reporting of research using animals. *PLoS ONE* 4:e7824.

510 Klein, R. A., Ratliff, K. A., Vianello, M., Adams, R. B., Bahník, Š., Bernstein, M. J., et al. (2014).
511 Investigating variation in replicability: A “many labs” replication project. *Social Psychology* 45:142–
512 152.

513 Klein, R. A., Vianello, M., Hasselman, F., Adams, B., Adams Jr., R.B., Alper, S., et al. (2018). Many
514 Labs 2 : Investigating variation in replicability across sample and setting. *PsyArXiv*.
515 DOI:10.31234/osf.io/9654g

516 Massonnet, C., Vile, D., Fabre, J., Hannah, M. A., Caldana, C., Lisec, J., Beemster, G.T.S., Meyer,
517 R.C., Messerli, G., Gronlund, J.T., Perkovic, J., Wigmore, E., May, S., Bevan, M.W., Meyer, C.,
518 Rubio-Díaz, S., Weigel, D., Micol, J.L., Buchanan-Wollaston, V., Fiorani, F., Walsh, S., Rinn, B.,
519 Gruissem, W., Hilson, P., Hennig, L., Willmitzer, L. & Granier, C. (2010). Probing the reproducibility

520 of leaf growth and molecular phenotypes: a comparison of three *Arabidopsis* accessions cultivated
521 in ten laboratories. *Plant Physiology* 152:2142–57

522 Munafò, M. R., Nosek, B. A., Bishop, D. V. M., Button, K. S., Chambers, C. D., Percie du Sert, N.,
523 Simonsohn, U., Wagenmakers, E-J, Ware, J.J. & Ioannidis, J. P. A. (2017). A manifesto for
524 reproducible science. *Nature Human Behaviour* 1:0021

525 Nature Medicine (2016). Take the long view. *Nature Medicine* 22:1

526 Neves, K., & Amaral, O. B. (2018). Abrindo a caixa-preta. *Ciência Hoje*. Retrieved from:
527 <http://cienciahoje.org.br/artigo/abrindo-a-caixa-preta> [Accessed, January 25, 2019]

528 Open Science Collaboration. (2015). Estimating the reproducibility of psychological science.
529 *Science* 349:aac4716. DOI: 10.1126/science.aac4716

530 Patil, P., Peng, R. D., & Leek, J. T. (2016). What Should Researchers Expect When They
531 Replicate Studies? A Statistical View of Replicability in Psychological Science. *Perspectives on*
532 *Psychological Science* 11:539–544.

533 Pesquisa FAPESP (2018). Uma rede para reproduzir experimentos. *Revista Pesquisa Fapesp*.
534 Published on May 2018. Retrieved from: <http://revistapesquisa.fapesp.br/2018/05/17/uma-rede-para-reproduzir-experimentos> [Accessed, January 25, 2019]

535 Pinto, A. C., & Andrade, J. B. (1999). Fator de impacto de revistas científicas: qual o significado
536 deste parâmetro? *Química Nova* 22:448–53. DOI: 10.1590/S0100-40421999000300026

537 Prinz, F., Schlange, T., & Asadullah, K. (2011). Believe it or not: how much can we rely on
538 published data on potential drug targets? *Nature Reviews Drug Discovery* 10:712.

539 Righetti, S. (2013). Brasil cresce em produção científica, mas índice de qualidade cai. *Folha de S.*
540 *Paulo*. Published on April 22nd 2013. Retrieved from:
541 <https://www1.folha.uol.com.br/ciencia/2013/04/1266521-brasil-cresce-em-producao-cientifica-mas-indice-de-qualidade-cai.shtml> [Accessed, January 25, 2019]

542 SBPC (2018). Carta Aberta ao presidente da República em defesa da Capes recebe mais de 50
543 assinaturas e é destaque na imprensa nacional. Retrieved from:
544 <http://portal.spcnet.org.br/noticias/carta-aberta-ao-presidente-da-republica-em-defesa-da-capes-recebe-mais-de-50-assinaturas-e-e-destaque-na-imprensa-nacional> [Accessed, January 25, 2019]

545 Schwartzman, S. (2001). Um espaço para ciência: a formação da comunidade científica no Brasil.
546 Retrieved from: <http://livroaberto.ibict.br/handle/1/757> [Accessed, January 25, 2019]

547 Silberzahn, R., Uhlmann, E. L., Martin, D., Anselmi, P., Aust, F., Awtrey, E. C., et al. (2018). Many
548 analysts, one dataset: Making transparent how variations in analytical choices affect results.
549 *Advances in Methods and Practices in Psychological Science* 1:337-356

550 Simonsohn, U (2015). Small telescopes: detectability and the evaluation of replication results.
551 *Psychological Science* 26:559–569

552 Stodden, V., Seiler, J., & Ma, Z. (2018). An empirical analysis of journal policy effectiveness for
553 computational reproducibility. *PNAS* 115:2584–2589.

557 Tan, E. F., Perfito, N., & Lomax, J. (2015). Prostate Cancer Foundation-Movember Foundation
558 Reproducibility Initiative. Open Science Framework. URL: <https://osf.io/ih9qt/> [Accessed, January
559 25, 2019]

560 Voelkl, B., Vogt, L., Sena, E.S., Würbel, H (2018). Reproducibility of preclinical animal research
561 improves with heterogeneity of study samples. PLoS Biol 16:e2003693.

562 Wicherts, J. M., Bakker, M., & Molenaar, D. (2011). Willingness to share research data is related to
563 the strength of the evidence and the quality of reporting of statistical results. PLoS ONE 6:e26828.

564