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Abstract Genetic variants regulating RNA splicing and transcript usage have been implicated in

both common and rare diseases. Although transcript usage quantitative trait loci (tuQTLs) have

been mapped across multiple cell types and contexts, it is challenging to distinguish between the

main molecular mechanisms controlling transcript usage: promoter choice, splicing and 3’ end

choice. Here, we analysed RNA-seq data from human macrophages exposed to three inflammatory

and one metabolic stimulus. In addition to conventional gene-level and transcript-level analyses, we

also directly quantified promoter usage, splicing and 3’ end usage. We found that promoters,

splicing and 3’ ends were predominantly controlled by independent genetic variants enriched in

distinct genomic features. Promoter usage QTLs were also 50% more likely to be context-specific

than other tuQTLs and constituted 25% of the transcript-level colocalisations with complex traits.

Thus, promoter usage might be an underappreciated molecular mechanism mediating complex

trait associations in a context-specific manner.

DOI: https://doi.org/10.7554/eLife.41673.001

Introduction
Genome-wide association studies (GWAS) have discovered thousands of genetic loci associated with

complex traits and diseases. However, identifying candidate causal genes and molecular mechanisms

at these loci remains challenging. Complex trait-associated variants are enriched in regulatory ele-

ments and are therefore thought to act via regulation of gene expression levels, often in a cell type-

and context-specific manner (Alasoo et al., 2018; Fairfax et al., 2014; Kim-Hellmuth et al., 2017).

However, such variants are equally enriched among splicing quantitative trait loci (QTLs) (Fraser and

Xie, 2009; Li et al., 2016) and incorporating splicing QTLs in a transcriptome-wide association study

increased the number of disease-associated genes by twofold (Li et al., 2018). In addition to splic-

ing, genetic variants can also alter transcript sequence by regulating promoter and 3’ end usage,

which we refer to collectively hereafter as transcript usage QTLs (tuQTLs). Alternative transcript start

and end sites underlie most transcript differences between tissues (Pal et al., 2011; Reyes and

Huber, 2018), they are dynamically regulated in response to cellular stimuli (Alasoo et al., 2015;

Richards et al., 2017) and they are also frequently dysregulated in cancer (Demircioğlu et al.,

2017; Lee et al., 2018). Moreover, experimental procedures designed to capture either 5’ or 3’
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ends of transcripts have identified disease-relevant genetic variants that regulate promoter or 3’ end

usage (Garieri et al., 2017; Zhernakova et al., 2013). However, well-powered RNA-seq-based

tuQTL studies performed across cell types (Battle et al., 2014; Chen et al., 2016;

Lappalainen et al., 2013; Li et al., 2016; Ongen and Dermitzakis, 2015) and conditions

(Nédélec et al., 2016; Ye et al., 2018) have thus far not distinguished between promoter usage,

splicing and 3’ end usage. Thus, how these distinct transcriptional mechanisms contribute to com-

plex traits and how context-specific these genetic effects are is currently unclear.

In addition to splicing analysis, RNA-seq data can also be used to quantify promoter and 3’ end

usage. The simplest approach would be to first quantify the expression of all annotated transcripts

using one of the many quantification algorithms (benchmarked in Teng et al., 2016). Linear regres-

sion can then be used to identify genetic variants that are associated with the usage of each tran-

script of a gene (Li et al., 2018; Ongen and Dermitzakis, 2015). Comparing the associated

transcripts to each other can reveal which transcriptional changes take place (Figure 1A). A key

assumption here is that all expressed transcripts are also part of the annotation catalog. If some of

the expressed transcripts are missing, then reads originating from the missing transcripts might be

erroneously assigned to other transcripts that are not expressed at all (Figure 1B) (Soneson et al.,

2018). This can lead to individual genetic variants being spuriously associated with multiple tran-

scriptional changes. For example, a genetic variant regulating promoter usage might also appear to

be associated with the inclusion of an internal exon (Figure 1B), although there are no reads origi-

nating from that exon. Importantly, this is not just a theoretical concern, because 25–35% of the

exon-exon junctions observed in RNA-seq data are not present in transcript databases (Ongen and

Dermitzakis, 2015), and up to 60% of the transcripts annotated by Ensembl (Zerbino et al., 2018)

are truncated at the 5’ or 3’ end (Figure 1—figure supplement 1, Figure 1—figure supplement 2).

To overcome the issue of missing transcript annotations, recent tuQTL studies have focussed on

quantifying transcription at the level of individual exons (Fadista et al., 2014; Lappalainen et al.,

2013; Odhams et al., 2017), introns (Odhams et al., 2017) or exon-exon junctions (Figure 1C)

(Li et al., 2018; Odhams et al., 2017; Ongen and Dermitzakis, 2015). While these approaches

often discover complementary genetic associations (Odhams et al., 2017; Ongen and Dermitzakis,

eLife digest Genes contain all instructions needed to build an organism in form of DNA.

Humans share around 99.5% of DNA, but it is the remaining 0.5% that contain the small genetic

variations that make us unique. Subtle differences in genes can, for example, influence the color of

our hair or eyes.

To build gene products, such as proteins, DNA first needs to be transcribed into RNA. Some

genetic variants can affect how a gene is transcribed into an RNA molecule, for example by making

it be transcribed too much or too little, which can lead to diseases. These variants can also influence

where the transcription begins through a process called promoter usage. This can lead to shorter or

longer RNAs, which can have different biological impacts.

With current research methods it is difficult to detect changes in the latter kind of alteration. As a

result, it is harder to distinguish these from other types of changes. Now, Alasoo et al. wanted to

find out what proportion of genetic variants that alter traits influence promoter usage, compared to

other changes. To do so, a new computational method was developed to directly measure how

genetic variants influence different parts of the RNA, such as promoters, middle sections and ends.

The method was then applied to datasets of human immune cells. The experiments revealed that

genetic variants often influence promoter usage. Many of the effects could only be found when cells

are exposed to external stimuli, such as bacteria.

The results highlight that to discover genes responsible for human traits and disease we need to

consider all the possible ways genetic differences between individuals could alter the gene

products. Large published datasets could be reanalyzed using this method to identify new genes

that could be implicated in human health and disease, potentially leading to new treatment options

in future.

DOI: https://doi.org/10.7554/eLife.41673.002
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2015), they do not explicitly reveal the transcriptional mechanism (promoter usage, alternative splic-

ing or 3’ end usage) underlying the genetic associations. The most successful approach to differenti-

ate between distinct transcriptional mechanisms has been ‘event-level’ analysis where reference

transcripts are split into independent events (e.g. promoters, splicing events and 3’ ends) whose

expressions is then quantified using standard transcript quantification methods (Figure 1C). This

approach was pioneered by MISO (Katz et al., 2010) and was recently used to identify promoter

usage QTLs in the GEUVADIS dataset (Richards et al., 2017). Despite its success, MISO covers only

a subset of promoter events (alternative first exons) and its event annotations have not been

updated since it was first published. Thus, there is a need for a method that is able to detect a com-

prehensive set of promoter, splicing and 3’ end usage QTLs in an uniform manner.

Figure 1. Challenges of quantifying transcript usage from RNA-seq data. Transcript quantification seeks to estimate the most likely configuration of

known transcripts that best explains observed read counts supporting the inclusion of each exon. (A) In scenario A, each copy of the G allele increases

the usage of transcript 2 by 10%. Since both expressed transcripts (transcript 1 and transcript 2) are annotated, we successfully detect the change and

conclude that the G allele increases the expression of the proximal promoter of the gene. (B) In scenario B, each copy of the G allele still increases the

usage of transcript 2 by 10%. However, since transcript 2 is missing from the annotations, reads originating from transcript 2 are now falsely assigned to

transcript 3. Since transcript 3 also contains alternative second exon, we now falsely conclude that in addition to promoter usage, the G allele is also

associated with increased inclusion of exon 2, even though there are no reads mapping to exon 2. Furthermore, the magnitude of the genetic effect is

underestimated, because the reads assigned to transcript 3 are assumed to be evenly distributed across the promoter and the alternative exon. (C) Top

panel: Two hypothetical transcripts that differ from each other at the promoter, at an internal exon and at the 3’ end. Middle panel: Leafcutter uses

reads mapping to exon-exon junctions to identify alternatively excised introns. Bottom panel: txrevise uses the exons shared between transcripts (dark

blue) as a scaffold to construct three independent transcriptional events from the two original transcripts.

DOI: https://doi.org/10.7554/eLife.41673.003

The following figure supplements are available for figure 1:

Figure supplement 1. Prevalence of truncated transcripts in the Ensembl database.

DOI: https://doi.org/10.7554/eLife.41673.004

Figure supplement 2. Extending truncated transcript annotations with txrevise.

DOI: https://doi.org/10.7554/eLife.41673.005

Figure supplement 3. Identifying groups of transcripts that share the most exons.

DOI: https://doi.org/10.7554/eLife.41673.006

Figure supplement 4. Filling in alternative internal exons for promoter and 3’ end events.

DOI: https://doi.org/10.7554/eLife.41673.007
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In this study, we re-analysed RNA-seq data from human induced pluripotent stem cell-derived

macrophages (IPSDMs) exposed to three inflammatory stimuli (18 hr IFNV stimulation, 5 hr Salmo-

nella infection and IFNV stimulation followed by Salmonella infection) (Alasoo et al., 2018). We also

collected a new dataset of IPSDMs from 70 individuals stimulated with acetylated LDL (acLDL) for 24

hr. We mapped genetic associations at the level of total gene expression, full-length transcript usage

and exon-exon junction usage in each experimental condition. In addition to existing quantification

methods, we also developed a complementary approach (txrevise) that stratifies reference transcript

annotations into independent promoter, splicing and 3’ end events. Using txrevise, we found that

promoter and 3’ end usage QTLs constituted 55% of detected tuQTLs, exhibited distinct genetic

architectures from canonical expression or splicing QTLs, and often colocalised with complex trait

associations. Promoter usage QTLs were also 50% more likely to be context-specific than canonical

splicing QTLs. Thus, context-specific regulation of promoter usage might be a previously underap-

preciated molecular mechanism underlying complex trait associations.

Results

Quantifying transcript usage in stimulated macrophages
We analysed RNA-seq data from human induced pluripotent stem cell (iPSC)-derived macrophages

exposed to three inflammatory stimuli (18 hr IFNV stimulation, 5 hr Salmonella infection, and IFNV

stimulation followed by Salmonella infection) and one metabolic stimulus (24 hr acLDL stimulation).

While the gene expression analysis of the IFNV+Salmonella dataset from 84 individuals has previ-

ously been described (Alasoo et al., 2018), the acLDL data from 70 individuals was newly generated

for the current study. The acLDL dataset allowed us to assess how our results generalise to weaker,

non-inflammatory stimuli. Both datasets included independent unstimulated control samples

(denoted as ‘naive’ and ‘Ctrl’). In each condition, we quantified gene expression and transcript usage

using the following established quantification approaches: (i) gene-level read count quantified with

featureCounts (Liao et al., 2014), (ii) full-length transcript usage quantified with Salmon

(Patro et al., 2017) (Figure 1C), and (iii) exon-exon junction usage quantified with Leafcutter

(Li et al., 2018) (Figure 1C).

Inspired by event level analysis proposed by MISO (Katz et al., 2010; Richards et al., 2017), we

also developed a complementary approach (txrevise) to stratify reference transcript annotations into

independent promoter, splicing and 3’ end events. To achieve this, txrevise identifies constitutive

exons shared between all transcripts of a gene and uses those to assign non-constitutive exons to

promoter, internal exon or 3’ end events (Figure 1C). Since up to 60% of the transcripts annotated

by Ensembl (Zerbino et al., 2018) are truncated at the 5’ or 3’ end (Figure 1—figure supplement

1), txrevise extends truncated transcripts by copying over exons from the longest transcript of the

gene (Figure 1—figure supplement 2). This step eliminates a large number of implausible alterna-

tive promoter and 3’ end events that lack experimental evidence. To make the approach suitable for

genes with non-overlapping transcripts, we also select a subset of transcripts that share the largest

number of exons between them (Figure 1—figure supplement 3). Finally, to ensure that the new

alternative promoter and 3’ end events do not capture splicing changes, txrevise masks alternative

exons in promoter and 3’ end events that are not the first or last exons (Figure 1—figure supple-

ment 4). Although this means that some splicing events near the promoters and 3’ ends of the

genes may remain undetected by txrevise, it is a trade-off that improves the overall interpretability

of txrevise tuQTLs. The R package as well as custom transcriptional events constructed by txrevise

are available from GitHub (https://github.com/kauralasoo/txrevise; Alasoo, 2018a).

Genetic effects on transcript usage
Depending on the experimental condition and quantification method, we detected between 1500

and 3500 QTLs at a 10% false discovery rate (FDR) (Figure 2A). Leafcutter consistently detected the

lowest number of QTLs per condition, while txrevise detected approximately 30% more associations

than other methods (Figure 2A), 55% of which affected promoter or 3’ end usage instead of internal

exons (Figure 2—figure supplement 1). However, this increase in QTLs can be partially explained

by the fact that txrevise detected multiple associations for ~24% of the genes while the full-length

tuQTL analysis was limited to single lead association per gene (Figure 2—figure supplement 2,
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Figure 2. Diversity of QTLs detected by different quantification methods. In panels A-C, all txrevise QTLs from promoters, internal exons and 3’ ends

have been pooled to facilitate comparison with eQTLs as well as Leafcutter and full-length transcript usage QTLs. (A) Number of QTLs detected by

read count, full-length transcript usage, Leafcutter and txrevise methods in each condition (N, naive; I, IFNV; S, Salmonella; I + S, IFNV+Salmonella;

Ctrl; AcLDL) at 10% FDR. The number of QTLs detected by Leafcutter and txrevise are reported at the level of independent events (intron clusters or

promoters/internal exons/3’ ends) and can include multiple QTLs per gene (Figure 2—figure supplement 2). The quantile-quantile plots are presented

in Figure 2—figure supplement 3. (B) Sharing of QTLs detected by four quantification methods. The numbers on the heatmap show the fraction of

QTLs detect by one method that were replicated by each of the three other methods (r2 >0.8 between lead variants). Only QTLs with FDR < 0.01 were

included in the analysis. (C) Enrichment of genomic annotations at QTLs detected by the four quantification methods. (D) Comparison of Leafcutter

tuQTLs to promoter, internal exon and 3’ end usage QTLs detected by txevise. Genomic annotations used for enrichment analysis: promoter -

promoter flanking regions (�2000 bp to +200 bp); 5’ UTR, coding, intron, 3’ UTR - corresponding regions extracted from Ensembl transcripts; poly(A) -

experimentally determined polyadenylation sites (±25 bp) (Gruber et al., 2016); open chromatin - open chromatin regions from macrophages

Figure 2 continued on next page
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Figure 2—figure supplement 3). Some of these additional QTLs are likely to represent independent

causal variants, such as the three independent tuQTLs detected for the IRF5 gene (Figure 2—figure

supplement 4) while others could be explained by technical biases such as large gene expression

QTL (eQTL) effects (Figure 2—figure supplement 5) or positional biases in the RNA-seq data (Fig-

ure 2—figure supplement 6). Alternatively, additional associations could also be caused by tran-

scriptional coupling where promoter or 3’ end choice directly influences the splicing of an internal

exon or vice versa (Anvar et al., 2018; Bentley, 2014).

Different quantification methods may be biased towards discovering events with specific genomic

properties, which is not captured by the number of QTLs detected. To address this, we quantified

how often the lead QTL variants (FDR < 0.01) from different methods were in high linkage disequilib-

rium (LD) (r2 >0.8) with each other (see Materials and methods). Consistent with previous reports

that tuQTLs are largely independent from eQTLs (Li et al., 2016), we found that only 11–25% of the

lead variants detected at the read count level replicated at the transcript level (r2 >0.8, irrespective

of the replication p-value), independent of which quantification method was used (Figure 2B). In

contrast, ~50% of the Leafcutter QTLs were also detected by txrevise or full-length transcript usage

approaches. Similarly, the tuQTLs detected by txrevise and full-length transcript usage quantification

were in high LD more than 60% of the time (Figure 2B). Finally, we found that while 44% of the txre-

vise internal exon QTLs were in high LD with Leafcutter QTLs, this decreased to ~20% for promoter

and 3’ end QTLs (Figure 2—figure supplement 1), suggesting that Leafcutter is less suited to cap-

ture those events. Thus, different quantification approaches appear to capture complementary sets

of genetic associations.

Genomic properties of transcript usage QTLs
To characterise the genetic associations detected by different quantification methods, we compared

the relative enrichments of the identified QTLs across multiple genomic annotations. We constructed

genomic tracks for eight annotations: open chromatin measured by ATAC-seq (Alasoo et al., 2018),

promoter flanking regions (�2000 bp to +200 bp), 5’ UTRs, coding sequence (CDS), introns, 3’

UTRs, polyadenylation sites (Gruber et al., 2016), and eCLIP-binding sites for RNA-binding proteins

involved in splicing regulation (splicing factors) (Van Nostrand et al., 2017). We then used the hier-

archical model implemented in fgwas (Pickrell, 2014) to estimate the enrichment of each genomic

annotation among the QTLs detected by each quantification method. Consistent with the limited

overlap between eQTLs and tuQTLs (Figure 2B), we found that eQTLs were strongly enriched in

sites of open chromatin (Figure 2C; log enrichment of 3.31, 95% CI [3.15, 3.47]), whereas all tran-

script-level QTLs were enriched at the binding sites of splicing factors detected by eCLIP

Figure 2 continued

(Alasoo et al., 2018); splicing factor - experimentally determined binding sites of splicing factors detected by eCLIP (Van Nostrand et al., 2017). The

points on panels C and D show the natural logarithm of enrichment for each annotation and the lines represent the 95% confidence intervals from

fgwas (Pickrell, 2014).

DOI: https://doi.org/10.7554/eLife.41673.008

The following figure supplements are available for figure 2:

Figure supplement 1. Diversity of transcript usage QTLs.

DOI: https://doi.org/10.7554/eLife.41673.009

Figure supplement 2. Fraction of genes with multiple independent tuQTLs detected by Leafcutter and txrevise.

DOI: https://doi.org/10.7554/eLife.41673.010

Figure supplement 3. Quantile-quantile plots of the QTLs detected by the four quantification methods.

DOI: https://doi.org/10.7554/eLife.41673.011

Figure supplement 4. Genetics of transcript usage of the IRF5 gene.

DOI: https://doi.org/10.7554/eLife.41673.012

Figure supplement 5. Example of an apparent tuQTL caused by a strong eQTL.

DOI: https://doi.org/10.7554/eLife.41673.013

Figure supplement 6. Simulated promoter usage QTL for the RNF220 gene leads to a false positive association at the 3’ end.

DOI: https://doi.org/10.7554/eLife.41673.014

Figure supplement 7. Shared genetic effect on promoter usage and chromatin accessibility at the promoter of HDLBP.

DOI: https://doi.org/10.7554/eLife.41673.015
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(Figure 2C, mean log enrichment of 2.29). Importantly, when all txrevise tuQTLs were pooled, the

enrichment patterns were broadly similar to tuQTLs detected by full-length Ensembl transcripts

(Figure 2C). This suggests that txrevise events and full-length transcripts capture similar genetic

associations but txrevise facilitates more accurate identification of the underlying transcriptional

event (i.e. promoter, internal exon or 3’ end usage) (Figure 2B). Finally, compared to Leafcutter, full-

length transcript usage and txrevise QTLs were both more strongly enriched at 3’ UTRs (Figure 2C,

mean log enrichment of 1.85), suggesting that they capture changes in 3’ UTR length that do not

manifest at the level of junction reads and are thus missed by Leafcutter.

To compare different types of transcriptional events, we repeated the fgwas analysis on the pro-

moter, internal exon and 3’ end QTLs detected by txrevise as well as Leafcutter splicing QTLs. We

found that Leafcutter and internal exon QTLs showed broadly similar enrichment patterns, with a

strong enrichment at the binding sites of splicing factors (Figure 2D, mean log enrichment of 2.53).

In contrast, promoter and 3’ end usage QTLs were specifically enriched at promoters (Figure 2D;

log enrichment of 2.76, 95% CI [2.59, 2.95]) and 3’ UTRs (Figure 2D; log enrichment of 3.60, 95% CI

[3.43, 3.76]), respectively (Figure 2D), and showed only a modest enrichment at the binding sites of

splicing factors (Figure 2D; mean log enrichment of 1.17). Compared to other events, promoter

usage QTLs were relatively more enriched in open chromatin regions (log enrichment of 1.58, 95%

CI [1.42, 1.74]). Thus, promoter usage, splicing and 3’ end usage appear to be regulated by largely

independent sets of genetic variants enriched in distinct genomic regions.

Motivated by the enrichment of promoter usage QTLs in open chromatin regions (Figure 2D), we

analysed chromatin accessibility QTLs that we previously identified in a subset of 41 individuals of

the same study (Alasoo et al., 2018). We wanted to determine how often changes in promoter

usage also manifest at the level of promoter accessibility. We found that 124/786 (15.8%) of the pro-

moter usage QTLs were in high LD with at least one chromatin accessibility QTL (r2 >0.9) compared

to 10.2% of the internal exon and 3’ end usage QTLs (Fisher’s exact test p-value=3.87�10�5). These

overlaps could correspond to both distal regulatory elements affecting promoter usage or direct

changes in local promoter accessibility. To focus on local promoter accessibility, we further required

the center of the accessible region to be no farther than 1000 bp from the closest promoter of the

gene, leaving 46/786 (5.8%) promoter usage QTLs with a putative coordinated effect on promoter

accessibility. One such example affecting promoter usage and promoter accessibility of the HDLBP

gene is highlighted in Figure 2—figure supplement 7. However, larger studies with increased statis-

tical power are needed to characterise the true extent of coordination between promoter accessibil-

ity and promoter usage.

Colocalisation with complex trait associations
To assess the relevance of different QTLs for interpreting complex trait associations, we performed

statistical colocalisation analysis with GWAS summary statistics for 33 immune-mediated and meta-

bolic traits and diseases (see Materials and methods). We found that 47 of 138 colocalised QTLs

influenced total gene expression level (Figure 3A) (PP3+PP4 >0.8, PP4/PP3 >9; PP3, posterior prob-

ability of a model with two distinct causal variants; PP4, posterior probability of a model with one

common causal variant). In contrast, the remaining 91 colocalised QTLs were associated with at least

one of the transcript-level phenotypes (full-length transcript usage, txrevise or Leafcutter) but not

with total gene expression (Figure 3A). Similarly, 44 of 91 transcript-level colocalisations were

detected only by a single transcript quantification approach (Figure 3A). An important caveat of this

analysis is that it does not directly test if the colocalisations are specific to one quantification method

or simply missed by others because of limited power. Thus, our estimates of method-specificity are

likely to be inflated.

Finally, to quantify the relative contribution of promoter usage, splicing and 3’ end usage to com-

plex traits, we stratified the txrevise colocalisations by transcriptional event type. We found that 44

of 77 colocalised QTLs influenced internal exons and the rest regulated promoters and 3’ ends

(Figure 3B). We were able to replicate known associations between splicing of exon two in CD33

and Alzheimer’s disease (Figure 3—figure supplement 1) (Malik et al., 2013) and splicing of exon

13 in HMGCR and LDL cholesterol (Figure 3—figure supplement 2) (Burkhardt et al., 2008).

Importantly, while half of the promoter and internal exon colocalisations were also detected by Leaf-

cutter, only 1/10 3’ end events were captured by Leafcutter, probably because these are less likely

to manifest at the level of junction reads (Figure 3B).
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Condition-specificity of expression and transcript usage QTLs
Next, we explored how the genetic effects of eQTLs and tuQTLs varied in response to stimuli. To

define response QTLs, we started with QTLs detected (FDR < 10%) in each of the four simulated

conditions (I, S, I + S and acLDL) and used an interaction test to identify cases where the QTL effect

size was significantly different between the simulated and corresponding naive condition

(FDR < 10%). To exclude small but significant differences in effect size, we used a linear mixed

model to identify QTLs where the interaction term explained more than 50% of the total genetic var-

iance in the data (see Materials and methods). Although the fraction of QTLs that were response

QTLs varied greatly between conditions (Figure 4A) and correlated with the number of differentially

expressed genes (Figure 4—figure supplement 1) as previously reported (Kim-Hellmuth et al.,

2017), we found that the fraction of response tuQTLs was relatively consistent between the four

quantification methods (Figure 4A). While previous reports have highlighted that eQTLs are more

condition-specific than tuQTLs (Nédélec et al., 2016), we found no clear pattern in our data with

stronger stimuli (S and I + S) showing larger fraction of condition-specific eQTLs, and weaker stimuli

(I, acLDL) showing smaller fraction of response eQTLs (Figure 4A) compared to tuQTLs. However,

when we focussed on the transcriptional events detected by txrevise, we found that promoter usage

QTLs were 50% more likely to be response QTLs than tuQTLs regulating either internal exons or 3’

ends (Figure 4B) (Fisher’s exact test combined p-value=2.79�10�6).

Finally, we assessed the condition-specificity of QTLs that colocalised with complex trait loci. We

found that, on average, 12% of the GWAS colocalisations corresponded to response QTLs

Figure 3. Overlap of colocalised gene-trait pairs detected by the four quantification methods across 33 complex traits. The UpSetR plot is an

alternative to Venn diagrams for visualising intersection of multiple sets (Conway et al., 2017). The horizontal bars show the total number of

colocalised trait-gene pairs detected by each quantification method. The dark circles indicate different patterns of sharing between the quantification

methods and the vertical bars show how many gene-trait pairs followed a given sharing pattern. For example, in panel A, the first column shows that 34

colocalised gene-trait pairs were detected only at the total read count level but not at the transcript level. Similarly, the second column shows that 21

colocalised gene-trait pairs were detected by all transcript-level methods but not by total read count. (A) Sharing of colocalised gene-trait pairs

between the four quantification methods. (B) Sharing of colocalised gene-trait pairs between Leafcutter and three independent txrevise event types

(promoters, internal exons, 3’ ends).

DOI: https://doi.org/10.7554/eLife.41673.016

The following figure supplements are available for figure 3:

Figure supplement 1. Colocalisation between CD33 splicing QTL and GWAS hit for Alzheimer’s disease.

DOI: https://doi.org/10.7554/eLife.41673.017

Figure supplement 2. Colocalisation between HMGCR splicing QTL and GWAS hit for LDL.

DOI: https://doi.org/10.7554/eLife.41673.018
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Figure 4. Condition-specificity of eQTLs and tuQTLs. (A) Fraction of all QTLs detected in each simulated condition that are response QTLs (FDR < 10%

and more than 50% of the genetic variance explained by the interaction term). (B) Fraction of txrevise tuQTLs classified as response QTLs, stratified by

the part of the gene that they influence (promoters, internal exons or 3’ ends). (C) Fraction of GWAS colocalisations that are response QTLs. (D)

Colocalisation between a GWAS hit for rheumatoid arthritis (RA) and IFNV-specific tuQTL at the CD40 locus. PP4 represents the posterior probability

from coloc (Giambartolomei et al., 2014) that the GWAS and QTL signals share a single causal variant. The dots are shaded according to r2 from the

lead RA GWAS variant. (E) Top panel: The lead GWAS variant (rs4239702) is associated with increased expression of the short 5’ UTR of the CD40 gene.

Bottom panel: Ensembl annotations couple the short 5’ UTR to skipped exon 6, but this is not supported by RNA-seq data (Figure 4—figure

supplement 2). FPM, fragments per million. (F) Relative expression of the short 5’ UTR stratified by the genotype of the lead GWAS variant. N, naive; I,

IFNV; S, Salmonella; I + S, IFNV+Salmonella.

DOI: https://doi.org/10.7554/eLife.41673.019

The following figure supplements are available for figure 4:

Figure supplement 1. Relationship between differential expression and response eQTL count.

DOI: https://doi.org/10.7554/eLife.41673.020

Figure supplement 2. Genetics of CD40 expression.

Figure 4 continued on next page
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(Figure 4C). One example is an IFNV-specific promoter usage QTL for the CD40 gene that colocal-

ises with a GWAS signal for rheumatoid arthritis (Okada et al., 2014). The alternative C allele of the

rs4239702 variant is associated with increased usage of the transcript with the short 5’ UTR

(Figure 4E,F). This tuQTL was also visible at the absolute expression level of the two alternative pro-

moters (Figure 4—figure supplement 2), but was missed by Leafcutter, because there is no change

in junction reads. Although the variant was not significantly associated with total gene expression

level (Figure 4—figure supplement 2), the two promoters contain the same start codon. As a result,

the likely functional consequence of the CD40 tuQTL is modulation of protein abundance. Although

the same tuQTL was also detected at the full-length transcript usage level, the affected transcripts

also differ from each other by alternatively spliced exon 6, making it challenging to interpret the

result (Figure 4E). The preferential upregulation of the transcript with the short 5’ UTR after expo-

sure to an inflammatory stimulus is also supported by FANTOM5 capped analysis of gene expression

(CAGE) data from primary macrophages (Figure 4—figure supplement 3) (Baillie et al., 2017).

Discussion
We have performed a comprehensive analysis of the genetic determinants of transcript usage in

human iPSC-derived macrophages exposed to four different stimuli. Our approach to stratify tran-

scripts into individual events greatly improved the interpretability of molecular mechanisms underly-

ing tuQTLs. Consequently, we were able to discover that 55% of the transcript-level associations

affected promoter or 3’ end usage and these variants were enriched in markedly different genomic

features relative to canonical splicing QTLs. We also found that promoter usage QTLs were 50%

more likely to be condition-specific than other transcriptional events and often colocalised with

GWAS hits for complex traits. Thus, event-level analysis might be preferable over transcript-level

analysis when the aim is to identify specific transcriptional changes underlying genetic associations.

We were able to link 6% of the promoter usage QTLs to coordinated changes in promoter acces-

sibility. A likely reason for such a small overlap is limited statistical power in our chromatin accessibil-

ity dataset that contained only 41 individuals, leading us to miss many true effects on promoter

accessibility. Alternatively, as other studies have suggested, promoter accessibility might not be an

accurate proxy of activity and may merely be a prerequisite for transcription to take place

(Pliner et al., 2018), but demonstrating this would require better powered datasets to confidently

demonstrate lack of effect on promoter accessibility. There is a great potential to study this further

in larger datasets that have profiled gene expression, chromatin accessibility or histone modifica-

tions in hundreds of individuals (Chen et al., 2016; Kumasaka et al., 2019).

Choosing the optimal quantification method for RNA-seq data is a challenging problem. The field

of detecting and quantifying individual transcriptional changes from RNA-seq data has been devel-

oping rapidly. One of the most successful approaches has been the use of reads spanning exon-

exon junctions to detect differential usage of individual exons within genes. In our study, we used

Leafcutter to perform junction-level analysis, but other options are available such as JUM (Wang and

Rio, 2018) or MAJIQ (Vaquero-Garcia et al., 2016). A key advantage of junction-level analysis is

that it can discover novel exon-exon junctions and is thus well-suited for characterising rare or unan-

notated splicing events. On the other hand, changes in 5’ and 3’ UTR length are not captured by

junction-level methods, because these events do not overlap exon-exon junctions. Changes in UTR

length can only be detected by methods that consider all reads originating from alternative tran-

script ends such as MISO (Katz et al., 2010) or txrevise proposed here. MISO provides more fine-

grained events that can differentiate between various types of splicing events. Txrevise, on the other

hand, provides a more comprehensive catalog of promoter and 3’ end events that can be continu-

ously updated as reference annotations improve. A promising alternative to both of these methods

is Whippet, which quantifies transcriptional events by aligning reads directly to the splice graph of

the gene (Sterne-Weiler et al., 2017). Thus, no single approach is consistently superior to others

Figure 4 continued

DOI: https://doi.org/10.7554/eLife.41673.021

Figure supplement 3. Regulation of CD40 promoter usage in response to 2 hr lipopolysaccharide (LPS) stimulation in primary macrophages.

DOI: https://doi.org/10.7554/eLife.41673.022
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and characterizing the full spectrum of transcriptional consequences of genetic variation requires a

combination of analytical strategies (Odhams et al., 2017; Ongen and Dermitzakis, 2015).

An important limitation of txrevise is that it is only able to quantify splicing events present in ref-

erence transcript databases. However, our approach can easily be extended by incorporating addi-

tional annotations such experimentally determined promoters from the FANTOM5 (Forrest et al.,

2014) projects or alternative polyadenylation sites from the PolyAsite database (Gruber et al.,

2016), as is done by QAPA (Ha et al., 2018). Another option might be to incorporate novel tran-

scripts identified by transcript assembly methods such as StringTie (Pertea et al., 2015) into existing

annotation databases. Nevertheless, since txrevise relies on Salmon for event-level quantification, it

is still susceptible to some of the same limitations as full-length transcript quantification. Even

though event-level analysis reduces the problem slightly, a positive transcript expression estimate

does not guarantee that any specific exon is actually present in the transcript, especially if the tran-

script annotations are incomplete (Figure 1B) (Soneson et al., 2018). Secondly, large eQTL effects

and positional biases in the RNA-seq data can occasionally lead to spurious changes in transcript

usage (Figure 2—figure supplements 5 and 6). Therefore, it is important to visually confirm candi-

date transcriptional events using either base-level read coverage plots (Alasoo, 2017) or Sashimi

plots (Katz et al., 2015) before embarking on follow-up experiments.

A key aim of QTL mapping studies is to elucidate the molecular mechanisms underlying complex

trait associations. In our analysis, we found that over 50% of the genetic effects that colocalise with

complex traits regulated transcript usage and did not manifest at the total gene expression level.

Moreover, 42% of the transcript-level colocalisations affected promoter or 3’ end usage instead of

splicing of internal exons. Importantly, no single quantification method was able to capture the full

range of genetic effects, confirming that different quantification approaches often identify comple-

mentary sets of QTLs (Odhams et al., 2017; Ongen and Dermitzakis, 2015). Thus, there is great

potential to discover additional disease associations by re-analysing large published RNA-seq data-

sets such as GTEx (Battle et al., 2017) with state-of-the-art quantification methods.

Materials and methods

Cell culture and reagents
Donors and cell lines
Human induced pluripotent stem cells (iPSCs) lines from 123 healthy donors (72 female and 51 male)

(Supplementary file 1) were obtained from the HipSci project (Kilpinen et al., 2017). Of these lines,

57 were initially grown in feeder-dependent medium and 66 were grown in feeder-free E8 medium.

The cell lines were screened for mycoplasma by the HipSci project (Kilpinen et al., 2017). All sam-

ples for the HipSci project (Kilpinen et al., 2017) were collected from consented research volunteers

recruited from the NIHR Cambridge BioResource (http://www.cambridgebioresource.org.uk). Sam-

ples were initially collected under ethics for iPSC derivation (REC Ref: 09/H0304/77, V2 04/01/2013),

which require managed data access for all genetically identifying data. Later samples were collected

under a revised consent (REC Ref: 09/H0304/77, V3 15/03/2013) under which all data, except from

the Y chromosome from males, can be made openly available. The ethics approval was obtained

from East of England - Cambridge East Research Ethics Committee. The iPSC lines used in this study

are commercially available via the European Collection of Authenticated Cell Cultures. No new pri-

mary human samples were collected for this study.

The details of the iPSC culture, macrophage differentiation and stimulation for the IFNV+Salmo-

onella study have been described previously (Alasoo et al., 2018) (Supplementary file 2). Macro-

phages for the acLDL study were obtained from the same differentiation experiments.

AcLDL stimulation
Macrophages differentiated from a total of 71 iPSC lines were used for the acLDL stimulation. The

final sample size was decided on the basis of similar gene expression and splicing QTL mapping

studies performed previously (Alasoo et al., 2018; Li et al., 2016; Nédélec et al., 2016). Macro-

phages were grown in RPMI 1640 (Gibco) supplemented with 10% FBS (labtech), 2 mM L-glutamine

(Sigma) and 100 ng/ml hM-CSF (R and D) at a cell density of 150,000 cells per well on a six-well

plate. On day 6 of the macrophage differentiation, two wells of the six-well plate were exposed to

Alasoo et al. eLife 2019;8:e41673. DOI: https://doi.org/10.7554/eLife.41673 11 of 23

Research article Computational and Systems Biology Genetics and Genomics

http://www.cambridgebioresource.org.uk
https://doi.org/10.7554/eLife.41673


100 mg/ml human acLDL (Life Technologies) for 24 hr, whereas the other two wells were incubated in

fresh RPMI 1640 medium without stimulation throughout this period.

For RNA extraction, cells were washed once with PBS and lysed in 300 ml of RLT buffer (Qiagen)

per well of a six-well plate. Lysates from two wells were immediately pooled and stored at �80˚C.
RNA was extracted using a RNA Mini Kit (Qiagen) following the manufacturer’s instructions and

eluted in 35 ml nuclease-free water. RNA concentration was measured using NanoDrop, and RNA

integrity was measured on Agilent 2100 Bioanalyzer using a RNA 6000 Nano Total RNA Kit.

RNA sequencing and quality control
All RNA-seq libraries from the acLDL study were constructed manually using poly-A selection and

the Illumina TruSeq stranded library preparation kit. The TruSeq libraries were quantified using Bioa-

nalyzer and manually pooled for sequencing. The samples were sequenced on Illumina HiSeq 2000

using V4 chemistry and multiplexed at six samples/lane. The control and acLDL stimulated RNA sam-

ples from a single donor were always sequenced in the same experimental batch. Sample metadata

is presented in Supplementary file 2. RNA-seq reads from both studies were aligned to the

GRCh38 reference genome and Ensembl 87 transcript annotations using STAR v2.4.0j (Dobin et al.,

2013). Subsequently, VerifyBamID v1.1.2 (Jun et al., 2012) was used to detect and correct any sam-

ple swaps between donors. Two samples from one donor (HPSI0513i-xegx_2) were excluded from

downstream analysis, because they appeared to be outliers on the principal component analysis

(PCA) plot of the samples.

Quantifying gene and transcript expression
We used four alternative strategies to quantify transcription from RNA-seq data: (i) gene-level read

count quantified with featureCounts (Liao et al., 2014), (ii) full-length transcript usage quantified

with Salmon (Patro et al., 2017) (Figure 1C), (iii) promoter, internal exon and 3’ end usage quanti-

fied with txrevise, and (iv) exon-exon junction usage quantified with Leafcutter (Li et al., 2018).

Gene-level read counts
We used featureCounts v1.5.0 (Liao et al., 2014) to count the number of uniquely mapping frag-

ments overlapping transcript annotations from Ensembl 87. We excluded short RNAs and pseudo-

genes from the analysis leaving 35,033 unique genes of which 19,796 were protein coding.

Furthermore, in both IFNV+Salmonella and acLDL dataset, we used only genes with mean expres-

sion in at least one of the conditions greater than one transcripts per million (TPM) (Wagner et al.,

2012) in all downstream analyses. This resulted in 12,660 and 12,103 genes included for analysis in

the IFNV+Salmonella and acLDL datasets, respectively. We quantile-normalised the data and cor-

rected for sample-specific GC content bias using the conditional quantile normalisation (cqn)

(Hansen et al., 2012) R package as recommended previously (Ellis et al., 2013).

Full-length transcript usage
We downloaded the FASTA files with messenger RNA (mRNA) and non-coding RNA sequences

from the Ensembl website (version 87). We concatenated the two files and used salmon v0.8.2

(Patro et al., 2017) with ‘–seqBias –gcBias –libType ISR’ options to quantify the expression level of

each transcript. We used tximport (Soneson et al., 2015) package to import the expression esti-

mates into R and calculated the relative expression of each transcript by dividing the TPM expres-

sion estimate of each transcript with the sum of the expression estimates of all transcripts of the

gene.

Quantifying transcriptional events with txrevise
We downloaded exon coordinates for all Ensembl 87 transcripts using the makeTxDbFromBiomart

function from the GenomicFeatures (Lawrence et al., 2013) R package. We also downloaded meta-

data for these transcripts using the biomart (Durinck et al., 2005) R package. Finally, we extracted

transcript tags from the GTF file downloaded from the Ensembl website using the extractTranscript-

Tags.py script available from the txrevise repository (https://github.com/kauralasoo/txrevise). This

step was necessary, because Ensembl contains a large number of truncated transcripts (marked with
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cds_start_NF or cds_end_NF tags) (Figure 1—figure supplement 1), but this information is not

present in biomart.

We developed the txrevise R package to pre-process transcript annotations prior to quantifica-

tion. First, we extended all truncated protein coding transcripts using exons from the longest anno-

tated transcript of the gene that was part of the GENCODE Basic gene set (Figure 1—figure

supplement 2). We also performed the same step on transcripts annotated in Ensembl as retaine-

d_intron, processed_transcript or nonsense_mediated_decay, because they often ended abruptly in

the middle of the exons and were unlikely to correspond to true transcription start and end sites.

Next, we focused on splitting full-length transcripts into alternative promoters, internal exons and

3’ ends. However, some genes contained either non-overlapping transcripts or very short transcripts

that complicated this process. Thus, for each gene we first identified a group of transcripts that

shared the largest number of exons with each other. We then used the shared exons as a scaffold to

construct three types of independent transcriptional events: alternative promoters, internal exons

and 3’ ends (group 1) (Figure 1—figure supplement 3). We also repeated this process on a second

group of transcripts that shared the second-most exons with each other (group 2) (see Figure 1—

figure supplement 3 for illustration). Thus, the original transcripts from each gene were split into up

to six sets of transcriptional events (two sets of alternative promoters, internal exons and 3’ ends).

Next, to ensure that the new alternative promoter and 3’ end events did not capture splicing

changes, we masked all alternative exons that were not the first or last exons (Figure 1—figure sup-

plement 4). We applied this step only to alternative promoter and 3’ end events and not to internal

exon events. This final step can optionally be skipped to discover more association at the expense of

losing some interpretability, because a subset of the promoter and 3’ end events might be tagging

splicing changes. We used Salmon (Patro et al., 2017) with ‘–seqBias –gcBias –libType ISR’ options

to independently quantify the expression of each set of transcriptional events. Finally, we used txim-

port (Soneson et al., 2015) to import the event expression estimates into R and calculated the rela-

tive expression of each transcriptional event by dividing the TPM expression estimate of each event

with the sum of the expression estimates of all events within the same group of transcripts. This nor-

malisation was performed separately for each type of transcriptional event (promoters, internal

exons and 3’ ends) and also separately for the two groups of transcripts used for constructing the

alternative events, ensuring that the normalized value always represented the relative usage of one

transcriptional event compared to other events of the same type that shared the same scaffold.

Quantifying intron excision ratios with Leafcutter
Finally, we used Leafcutter (Li et al., 2018) to quantify the relative excision frequencies of alternative

introns. We used the spliced alignments from STAR as input to Leafcutter. We did not correct for

reference mapping bias, because we wanted to be able to directly compare Leafcutter results with

those from Salmon and there is no obvious way to correct for reference mapping bias in Salmon

quantification. We used the default parameters of requiring at least 50 reads supporting each intron

cluster and allowing introns of up to 500 kb in length.

Mapping expression and transcript usage QTLs
Preparing genotype data
We obtained imputed genotypes for all of the samples from the HipSci (Kilpinen et al., 2017) proj-

ect. We used CrossMap v0.1.8 (Zhao et al., 2014) to convert variant coordinates from GRCh37 ref-

erence genome to GRCh38. Subsequently, we filtered the VCF file with bcftools v.1.2 to retain only

bi-allelic variants (both SNPs and indels) with IMP2 score >0.4 and minor allele frequency

(MAF) >0.05. We created a separate VCF files for the IFNV+Salmonella study (84 individuals) and

the acLDL study (70 individuals). The same VCF files were used for all downstream analyses and

were imported into R using the SNPRelate R package (Zheng et al., 2012).

Association testing
We used QTLTools (Delaneau et al., 2017) to map QTLs in two stages. First, we used the permuta-

tion pass with ‘–permute 10000 –grp-best’ options to calculate the minimal lead variant p-value for

each feature (gene, transcript or splicing event) in a ± 100 kb window around each feature. We

included the first six principal components of the phenotype matrix as covariates in the QTL analysis.
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The ‘–grp-best’ option ensured that in case of transcript usage QTLs, the permutation p-values were

corrected for the number of alternative transcripts, exon-exon junction or transcriptional events

tested. For txrevise, we performed the permutations across the two groups of transcripts what were

used for event construction. Quantile-quantile plots confirmed that the permutation p-values were

well calibrated (Figure 2—figure supplement 3). Finally, we performed Benjamini-Hochberg FDR

correction on the permutation p-values to identify QTLs that were significant at the 10% FDR level.

For gene expression and full-length transcript usage QTLs this approach identified at most one lead

variant per gene. For txrevise analysis we report up to three lead variants per gene: one for each

independent transcriptional event type (promoters, internal exons, 3’ ends) (Figure 2—figure sup-

plement 3). If the two groups of events identified different genetic associations, we report only the

one lead variant that had the smallest permutation p-value across groups. Leafcutter analysis some-

times also identified multiple associations per gene if there were multiple independent intron clus-

ters within those genes (Figure 2—figure supplements 2 and 3). Finally, we note that additional

secondary associations could be discovered by performing conditional analysis on the QTLs that

have already been detected, but we did not do that analysis.

Secondly, we used the nominal pass to calculate nominal association p-values in a ± 500 kb cis

window around each feature. We used a larger cis window for the nominal pass to ensure that we

did not have missing data in the colocalisation analysis (see below), where we used the ±200 kb cis

window around each lead QTL variant. However, the colocalisation analysis was still based on the

lead QTL variants identified in the ±100 kb window. Thus, even if a stronger QTL lead variant was

detected in the ±500 kb window, this was not used for any downstream analysis.

QTL replication between quantification methods
To compare the QTLs detected by different quantification methods, we estimated the fraction of

QTL lead variants detected by each method that were replicated by the other methods. Since read

count and full-length transcript usage analysis were performed at the gene level, we decided to per-

form the replication analysis at the gene level as well. Because txrevise and Leafcutter quantified

multiple events per gene and sometimes detected multiple independent QTLs (Figure 2—figure

supplement 2), we picked the lead variant with the smallest p-value across all of the events quanti-

fied for a given gene as the gene-level lead variant. For each pairwise comparison of quantification

methods, we first identified all lead variant-gene pairs with FDR < 0.01 detected by the query

method. Subsequently, we extracted the lead variants for the same genes detected by the replica-

tion method and estimated the fraction of those that were in high LD (r2 >0.8) with each other. We

then repeated this analysis for all pairs of quantification methods. Note that this measure is not nec-

essarily symmetric between the quantification methods and also depends on the statistical power of

each method. Since Leafcutter had lower statistical power than other methods on our dataset, it also

replicated smaller fraction of QTLs detected by the other methods. In contrast, ~50% of the Leafcut-

ter QTLs were replicated by txrevise and full-length transcript usage (Figure 2B).

We acknowledge that our definition of replication ignores the direction of the effect of the

genetic variant on gene expression or transcript usage. For example, if Leafcutter detects a genetic

variant that is associated with increased inclusion of an exon in a gene and txrevise detects that the

same variant is associated with decreased inclusion of the same exon in the same gene, we would

still consider it to be a ‘successful’ replication. However, in practice it is difficult to map Leafcutter

events to specific Ensembl transcripts or txrevise events, especially if Leafcutter includes novel exon-

exon junctions not present in the Ensembl database. Furthermore, comparing the effect size direc-

tion between eQTLs and tuQTLs is not possible, because any variant that is associated with

increased usage of one transcript is by definition also associated with decreased usage of some

other transcripts of the same gene.

QTL enrichment in genomics annotations
Constructing genomic annotations
Gene features
We downloaded transcript annotations from Ensembl version 87 (Zerbino et al., 2018) using the

GenomicFeatures (Lawrence et al., 2013) R package. We retained only protein coding transcripts

and used fiveUTRsByTranscript, threeUTRsByTranscript, cdsBy, intronsByTranscript and promoters
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functions to extract 5’ UTRs, 3’ UTRs, coding sequences, introns and promoters, respectively. We

defined promoters as sequences 2000 bp upstream and 200 bp downstream of the annotated tran-

scription start sites.

Polyadenylation sites
We downloaded the coordinates of experimentally determined human polyadenylation sites from

the PolyASite database (version r1.0) (Gruber et al., 2016). After converting the coordinates to the

GRCh38 reference genome with CrossMap (Zhao et al., 2014), we extended each polyadenylation

site to ±25 bp from the center of the site.

Chromatin accessibility
We downloaded the coordinates of accessible chromatin regions in macrophages across four condi-

tions (N, I, S, I + S) from our previous study (Alasoo et al., 2018). Specifically, we downloaded the

ATAC_peak_metadata.txt.gz file from Zenodo (https://doi.org/10.5281/zenodo.1170560).

RNA-binding proteins
We downloaded processed eCLIP (Van Nostrand et al., 2016) peak calls for 93 RNA binding pro-

teins (RBPs) (Van Nostrand et al., 2017) from the ENCODE web site (https://www.encodeproject.

org). Each protein was measured in two biological replicates, resulting in 186 sets of peaks. We only

used data from the K562 myelogenous leukemia cell line. We further used Supplementary Table 1

from (Van Nostrand et al., 2017) to identify a subset of 29 RBPs that have previously been impli-

cated in splicing regulation, five factors that have been implicated in 3’ end processing and two fac-

tors (SRSF7 and HNRNPK) that have been implicated in both. Within each group (splicing, 3’ end

processing and both), we first removed all peaks that were detected only once and then merged all

peaks into a single genomic annotation.

Enrichment analysis
We used fgwas v0.3.6 (Pickrell, 2014) with the ‘-fine’ option to identify the genomic annotations in

which different types of QTLs were enriched. We converted QTLtools p-values to z-scores using the

stats.norm.ppf(p/2, loc = 0, scale = 1) function from SciPy (Jones et al., 2001), where p is the nomi-

nal p-value from QTLtools. The sign of the z-score was determined based on the sign of the QTL

effect size. We included all genomic annotations into a joint fgwas model using the ‘-w’ option. For

the enrichment analysis, we used QTLs from the naive condition only, but we found that the enrich-

ments patterns were very similar in all stimulated conditions.

Context-specificity of expression and transcript usage QTLs
To identify response QTLs, we started with QTLs detected (FDR < 10%) in each of the four stimu-

lated conditions (I, S, I + S and acLDL) and used an interaction test to identify cases where the QTL

effect size was significantly different between one of the stimulated and corresponding naive condi-

tion (FDR < 10%). We performed this test separately for each of the four stimulated condition (I, S,

I + S and AcLDL). Furthermore, to take advantage of our profiling of gene expression in overlapping

set of donors in the stimulated and naive conditions, we also included the cell line as a random effect

and fitted a linear mixed model using the lme4 (Bates et al., 2015) package. Specifically, for each

phenotype and lead variant pair, we used the anova function to compare the following two models:

H0: phenotype ~genotype + condition + (1|donor)

H1: phenotype ~genotype + condition+condition:genotype + (1|donor)

where (1|donor) denotes the donor-specific random effect. We obtained the p-value of rejecting

the null hypothesis and used the p.adjust function to identify phenotype and lead variant pairs that

were significant at 10% Benjamini-Hochberg FDR.

For some QTLs, we noticed that although the interaction test p-value was significant, the differ-

ence in the effect size between the two conditions was very small. To identify response QTLs with

large effect size differences between naive and stimulated conditions, we turned to variance compo-

nent analysis. Specifically, for the same phenotype and lead variant pairs tested above, we also fitted

the following linear mixed model:

phenotype ~ (1|genotype) + (1|condition) + (1|condition:genotype)
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where genotype, condition and the interaction between the two were all fitted as random effects.

We then quantified the variance explained by each of the three components using the VarCorr func-

tion form the lme4 package. Finally, we calculated the variance explained by the interactions term

relative to the total genetic variance:

s
2
relative = s

2
interaction /(s

2
interaction+s

2
genotype)

We defined response QTLs as those with FDR < 10% from the interaction test and s
2
relative > 0.5

from the variance component analysis. Although fitting genotype as a random effect in this way is

suboptimal because it ignores the expected linear relationship between the alternative allele dosage

and phenotype, we empirically found that filtering both on the p-value of the interaction test as well

as s2
relative was effective at identifying QTLs with large effect size differences between conditions.

Overlap with genome-wide association studies
Summary statistics
We obtained full summary statistics for ten immune-mediated disorders: inflammatory bowel disease

(IBD) including ulcerative colitis (UC) and Crohn’s disease (CD) (Liu et al., 2015), Alzheimer’s disease

(AD) (Lambert et al., 2013), rheumatoid arthritis (RA) (Okada et al., 2014), systemic lupus erythe-

matosus (SLE) (Bentham et al., 2015), type one diabetes (T1D) (Onengut-Gumuscu et al., 2015),

schizophrenia (SCZ) (Schizophrenia Working Group of the Schizophrenia Working Group of the

Psychiatric Genomics Consortium, 2014), multiple sclerosis (MS) (Beecham et al., 2013), celiac dis-

ease (CEL) (Trynka et al., 2011) and narcolepsy (NAR) (Faraco et al., 2013). We also obtained sum-

mary statistics for type two diabetes (T2D) (Morris et al., 2012), cardiovascular disease (CAD)

(Nelson et al., 2017; Nikpay et al., 2015) and myocardial infarction (MI) (Nikpay et al., 2015).

Finally, we obtained summary statistics for 20 cardiometabolic traits from a recent meta-analysis

(Iotchkova et al., 2016). Summary statistics for T1D, CEL, IBD, RA, AD, MS and SLE were down-

loaded in 2015. SCZ, T2D and NAR were downloaded in 2016. T2D summary statistics were con-

verted from GRCh36 to GRCh37 coordinates using the LiftOver tool, all the other summary statistics

already used GRCh37 coordinates.

Colocalisation analysis
We used coloc v2.3–1 (Giambartolomei et al., 2014) to test for colocalisation between gene expres-

sion and transcript usage QTLs and GWAS hits. We ran coloc on a 400 kb region centered on each

lead eQTL and tuQTL variant that was less than 100 kb away from at least one GWAS variant with a

nominal p-value<10�5. We used the following prior probabilities: p1 = 10�4, p2 = 10�4 and

p12 = 10�5. We then applied a set of filtering steps to identify a stringent set of eQTLs and tuQTLs

that colocalised with GWAS hits. Similarly to a previous study (Guo et al., 2015), we first removed

all cases where PP3+PP4 <0.8, to exclude loci where we were underpowered to detect colocalisa-

tion. We then required PP4/(PP3+PP4) >0.9 to only keep loci where coloc strongly preferred the

model of a single shared causal variant driving both association signals over a model of two distinct

causal variants. We excluded all colocalisation results from the MHC region (GRCh38: 6:28,510,120–

33,480,577) because they were likely to be false positives due to complicated LD patterns in this

region. We only kept results where the minimal GWAS p-value was <10�6. Plots illustrating the shar-

ing of colocalised GWAS signals by different quantification methods were made using UpSetR

(Conway et al., 2017).

Code availability
The Snakemake (Köster and Rahmann, 2012) files used for gene and transcript expression quantifi-

cation, QTL mapping and colocalisaton are available from the project’s GitHub repository (https://

github.com/kauralasoo/macrophage-tuQTLs; copy archived at https://github.com/elifesciences-pub-

lications/macrophage-tuQTLs; Alasoo, 2018b). The same repository also contains R scripts that

were used for all data analysis and figures. The txrevise R package is available from GitHub (https://

github.com/kauralasoo/txrevise; copy archived at https://github.com/elifesciences-publications/txre-

vise; Alasoo, 2018a) and wiggleplotr R package that was used to make transcript read coverage

plots is available from Bioconductor (http://bioconductor.org/packages/wiggleplotr/).
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Data availability
RNA-seq data from the acLDL stimulation study is available from ENA (PRJEB20734) and EGA (EGA

S00001000876). RNA-seq data from the IFNV+Salmonella study is available from ENA (PRJEB18997)

and EGA (EGAS00001002236). The imputed genotype data for HipSci cell lines is available from

ENA (PRJEB11749) and EGA (EGAD00010000773). Processed data and QTL summary statistics are

available from Zenodo: https://zenodo.org/communities/macrophage-tuqtls/.
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Beier E, Boor P, Castel SE, Nöthen MM, Barreiro LB, Pickrell JK, Müller-Myhsok B, Lappalainen T, Schumacher
J, Hornung V. 2017. Genetic regulatory effects modified by immune activation contribute to autoimmune
disease associations. Nature Communications 8:266. DOI: https://doi.org/10.1038/s41467-017-00366-1,
PMID: 28814792
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Griebel T, Ferreira PG, Barann M, Wieland T, Greger L, van Iterson M, Almlöf J, Ribeca P, Pulyakhina I, Esser D,
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